
On sublimits, limit superior, and limit inferior
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1 The closed number line

In this document, R stands for the real line ]−∞,∞[ and R stands for the closed
real line [−∞,∞].

We remind ourselves of the axiom of the least upper bound property in R:
Least Upper Bound Property: Any nonempty set X ⊆ R with a real

upper bound has a least upper bound, denoted supX.
This property can easily be extended to the closed real line in a rather nicer

way:
Least Upper Bound Property (in R): Any set X ⊆ R has a least upper

bound, denoted supX.
We now conclude the latter principle from the former:

Proof. Let X ⊆ R.
If ∞ ∈ X, the least (and in fact, the only) upper bound is precisely ∞.
If ∞ 6∈ X, let Y = X ∩ R. If Y is empty, then X is either empty or {−∞};

in both cases any element of R is an upper bound, and the smallest of these is
precisely −∞.
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If Y is not empty, it either has a real upper bound or it does not. If not,
since ∞ is an upper bound and there are no real upper bounds, ∞ is the least
upper bound.

If, on the other hand, it does have a real upper bound, we are in the con-
ditions of the least upper bound property for R, and thus, Y has a least (real)
upper bound M in R. Notice this is still least in the context of R, since −∞ is
not an upper bound (because Y is nonempty) and, while ∞ is an upper bound,
it is larger than M , hence we conclude M is still, in this context, the least upper
bound of Y , and ergo of X.

Thus, we showed that, in every case, there exists a least upper bound for
X.

Notice that, as shown in the proof, if we are in the conditions of the real
LUBP, then the suprema obtained in R and in R are the same, and thus there
is no ambiguity in saying supX.

We use inf X to denote the greatest lower bound, which, as one can easily
show, always exists, equaling − sup(−X), where −X denotes {−x | x ∈ X }.

2 Limits

2.1 Neighbourhoods

We remind ourselves of the notion of neighbourhood of a real number :
Given a real number a and a positive real ε, we define

Vε(a) := {x | |x− a| < ε }

This definition does not make sense if we try to put a = ±∞, so in an effort
to define neighbourhoods in the real closed number line we must define them
for the infinities separately. As such, we define:

Vε(∞) := ]1/ε,∞]

Vε(−∞) := [−∞,−1/ε[

The reason behind using 1/ε rather than ε is simply so that we can assert
that if we decrease the radius of the neighbourhood we also decrease the set, a
property that is sometimes handy, albeit never strictly necessary.

2.2 Convergence

Given a sequence an of numbers in R, we say it converges towards L ∈ R,
denoted an → L if:

∀ε∃N∀n≥Nan ∈ Vε(L)

Where it is implied that ε ∈ R+ and N ∈ N.
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Prop 1. If an converges towards L and L′ then L = L′. That is: the limit,
when it exists, is unique.

Proof. To do this, it is enough to show that if L 6= L′ then there exist ε, ε′ such
that Vε(L) and Vε′(L

′) are disjoint. (We say that R is a Hausdorff space)
This is enough because we simply notice that, for such ε, by definition there

exists N such that for all n ≥ N we have that an ∈ Vε(L), and also there exists
N ′ such that for n ≥ N ′ we have an ∈ Vε′(L

′). Taking p as the maximum of N
and N ′, we have ap is in both Vε(L) and Vε′(L

′); an impossibility if these two
are disjoint.

So all we need to show now is that R is Hausdorff. We do this on a case-by-
case basis.

If L and L′ are both finite (i.e. in R) let ε = ε′ =
|L−L′|

2 > 0. It is a simple
application of the triangular inequality to show the respective neighbourhoods
are disjoint.

If L is finite and L′ is ∞, pick a positive number s greater than L. Put
ε = s−L and ε′ = 1/s. The case where L′ = −∞ is completely analogous, and
if L is infinite and L′ is finite one simply swaps the letters to return to this case.

Finally, if L = −L′ = ±∞, ε = ε′ = 1 works.

We can then write, without ambiguity, lim an to denote the limit of the
sequence an when it exists.

2.3 Operations

One of the main disadvantages of working with R instead of R is that the former
is not a field: while we are used to adding, subtracting, and multiplying elements
of R in very nice ways, infinity does not take kindly to being messed with in
this manner. Indeed, there is no way to extend the operations + and × on R
to R while staying in an ordered field.

An important thing to notice is that the symbol −∞ should not be taken in
the same sense something like −x should be: the latter stands for the additive
inverse of a real number; the number y such that x+ y = 0. The former, on the
other hand, is simply a symbol distinct from ∞.

However, this distinction can be easily blurred once we try to define multi-
plication on R.

To make life easier on ourselves, we will temporarily adopt the following for-
malism: instead of working with ±∞, we will work with ordered pairs (±1,∞),
where (1,∞) should be understood as ∞ and (−1,∞) as −∞.

For elements different from zero, we define the sign function, sgn, as

sgnx := 1 if x > 0, −1 if x < 0

We define multiplication of numbers in R as follows: let x, y ∈ R.
If both are real, their product is defined as their product as real numbers.
We define, in this context, 0×∞ to be 0.
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And finally, if one of them is an infinity and the other is different from zero,
we define xy to be (sgnx sgn y,∞).

One can easily check the following properties of this new multiplication on
R:

Prop 2. The product as we just defined it on R is such that, for all x, y, z ∈ R:

i) xy = yx

ii) x(yz) = (xy)z

iii) If x ≥ y and z ≥ 0 then xz ≥ yz

iv) However, it is possible that x > y and z > 0, yet xz 6> yz

v) If x ≥ y and z ≤ 0 then xz ≤ yz

Proof. This is left as an exercise.

Under this notion of multiplication, one can settle the situation with minuses:
if we take −x to be an abbreviation for (−1)x, then the symbol −∞ is the same
as −x for x =∞.

One can also check it (mostly) plays nice with limits.

Prop 3. If an → L and c ∈ R, can → cL

Proof. If c = 0 this is trivial, so we assume c 6= 0.
Pick some ε. We wish to find N such that for n ≥ N we have can ∈ Vε(cL).
If c > 0, as the reader may easily check, can ∈ Vε(cL) iff an ∈ Vε/c(L), which

happens for all large enough n.
If, on the other hand, c < 0, we have can ∈ Vε(cL) iff an ∈ V−ε/c(L), which

also happens for all large enough n.

Notice that we excluded the case c = ±∞. It is instructive to find an example
of a sequence an converging to some number L, and some c such that can does
not converge to cL.

A particular case which will be useful in the sequence:

Prop 4. If an → L then −an → −L

2.4 Sublimits

Unfortunately, not every sequence converges (shocker). However, as we will soon
show, given any sequence, we can find a subsequence of it that does converge.

First, an easy consequence of the supremum axiom.

Prop 5. Any monotone sequence converges in R.
In particular, if an is increasing it converges to sup an and if it is decreasing

it converges to inf an.
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Proof. We will do this proof only for an increasing sequence an; if an is decreas-
ing, simply consider the sequence −an, which shall converge to some limit L,
implying an will converge to −L.

Let L = sup an. If L = −∞ then all an must be −∞, so in this case the
proposition is trivially true.

Suppose, then, L 6= −∞. Fix any ε > 0. Let s be an element of Vε(L) that
is lesser than L. By definition of sup, there exists some aN > s. But then, since
the sequence is increasing, and L is greater than or equal to all an, we have
that, for n ≥ N , an ∈]s, L] ⊆ Vε(L), as we wished to show.

Because of this, to show that any sequence has a converging subsequence it
is enough to show it has a monotone one.

Prop 6. Any sequence has a monotone subsequence.

Proof. Let an be a sequence, and let S be the set of all n such that an is greater
than or equal to all elements after it. In symbols:

S = {n | an ≥ am for all m > n }

Either S is finite or infinite. If it is infinite, let i0 < i1 < i2 < · · · be an
infinitude of elements of S. Then, the sequence ain is decreasing, by definition
of ‘element of S’.

If, on the other hand, S is finite, pick i0 greater than all elements of S. Since
i0 is not in S, there exists i1 > i0 such that ai0 < ai1 . Likewise, there exists
i2 > i1 such that ai1 < ai2 , and so on and so forth. Collecting an infinitude of
such in, the sequence ain is increasing.

This allows us to conclude

Prop 7. Any sequence has a converging subsequence.

3 Sublimits

We proceed to investigate the concept of sublimit in more detail.
Given a sequence an, denote the set of its sublimits by Sa. We know by the

previous proposition that Sa 6= ∅.
A more or less natural question is the following: does this set have a maxi-

mum? Is there a single greatest sublimit?
The answer, somewhat surprisingly, is yes. But to answer this question, we

will delve a little bit into topology.

3.1 Topology

We will say a set X ⊆ R is open if for all x ∈ X there exists an ε-neighbourhood
of x contained in X. In symbols:

∀x∈X∃εVε(x) ⊆ X
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We say a set X is closed if its complement, Xc, is open.
The reader may easily check that, for all ε ∈ R+, x ∈ R, we have Vε(x) is

open.
Closed sets have the nice property of always (if not empty) having extrema,

as we proceed to show:

Prop 8. If X 6= ∅ is closed, it has a maximum and a minimum.

Proof. We show only the existence of a maximum; the existence of a minimum
is done much similarly, with inf instead of sup and a few signal swaps.

Let s = supX. We wish to show s is an element of X. If we do, we will have
shown s is an element of X greater than all others, i.e. the maximum of X.

If s = −∞, then s ∈ X, as X contains at least one element, which must be
≤ −∞, and thus must be −∞ itself, showing s ∈ X.

Suppose, then, s > −∞. Since X is closed, if s were not in X, there would
be an ε-neighbourhood of s disjoint from X. But then, we could pick an element
of said neighbourhood lesser than s, which would also be an upper bound of X.
This contradicts the definition of s as the least upper bound of X, which means
s must be in X, as we wished to show.

As such, to show there is a ‘biggest sublimit’ it is enough to show the set of
sublimits is closed.

Prop 9. Given a sequence an, Sa is closed.

Proof. To do this, we will fix a point L ∈ R and suppose that there exists no
ε > 0 such that Vε(L) is disjoint from Sa. In other words, for all ε we have
Vε(L) is not disjoint from Sa. We will conclude L ∈ Sa.

Ergo, by counterreciprocal, for any L 6∈ Sa there exists ε such that Vε(L) is
disjoint from Sa; i.e. Sa is closed.

So, fix L ∈ R in these conditions. We will construct explicitly a subsequence
of an that converges to L.

First, fix any i1 ∈ N. Then, fixed in−1, construct in as follows:
Consider the 1

n -neighbourhood of L. By hypothesis, there exists an element
of Sa in this neighbourhood. Let ` be such element, and let ajn be a subsequence
of an that converges to `.

Since V 1
n

(L) is open, there exists ε such that Vε(`) ⊆ V 1
n

(L). Since ajn → `,

we have that, for all big enough N , ajN ∈ Vε(`) ⊆ V 1
n

(L). Define in to be jN ,
for some N large enough that jN > in−1.

In this manner, we have constructed a sequence, ain , that converges to L,
as, fixed any ε > 0, we can pick N ∈ N such that 1/N < ε and therefore we will
have that, for n ≥ N , ain ∈ V 1

n
(L) ⊆ V 1

N
(L) ⊆ Vε(L). Therefore, L ∈ Sa.

Prop 10. Fixed a sequence an, there exists a largest and a least sublimit.

We will denote the largest sublimit of an by lim an, and the least sublimit
by lim an.
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3.2 Limit superior and limit inferior

Suppose we are interested in finding out the largest and the least sublimit of a
sequence an. One possible way to try and guess at it is as follows:

Suppose all elements of an are less than or equal to bn, where bn is some
converging sequence. As such, if ain is a converging subsequence of an, we have
ain ≤ bin , and as the reader may easily check:

Prop 11. Any subsequence of a converging sequence converges to the same limit.

Prop 12. Suppose an and bn converge to A and B respectively. If an ≤ bn for
all n, then A ≤ B.

And so, we conclude lim ain ≤ lim bn. In particular, lim an ≤ lim bn.
As such, if we have some bn in these conditions, and find a subsequence of

an that converges towards lim bn, we must necessarily have this number be the
largest sublimit of an.

That raises an idea. For a basic estimate of lim an, we could try finding
some sequence bn, greater than an, that does converge. To assert convergence,
perhaps requiring it to be monotone would make our life easier.

After some mental gymnastics, one could potentially come up with the se-
quence bn = supk≥n ak. We certainly have bn ≥ an, and since the sequence is
the supremum of a sequence of sets that are getting smaller and smaller, it’s
certainly decreasing, and therefore converges. We now have our first estimate:

lim an ≤ lim sup
k≥n

ak

Analogourly, for the least sublimit:

lim an ≥ lim inf
k≥n

an

These estimates are so important they deserve their own names, creatively
denoted limit superior (lim sup an) and limit inferior (lim inf an).

One last thing to notice is that, because of the way we showed convergence
of monotone sequences, we have

lim sup an = inf
n

sup
k≥n

ak and lim inf an = sup
n

inf
k≥n

ak

That is, we can write these estimates in terms of merely suprema and infima.

3.3 Oops

As it turns out, these estimates we just made are so good that we can replace
the inequalities by equalities. That is:

Prop 13.
lim an = lim sup an and lim an = lim inf an
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Proof. We will do only the proof for the limit superior, as the other one is
perfectly analogous.

We already know lim an ≤ lim sup an, so we need only find a subsequence of
an that converges towards lim sup an.

Let lim supk≥n ak = L. For all m, there exists N such that, for n ≥ N ,
supk≥n ak ∈ V1/m(L).

Define im as follows: fix any i0. Defined im−1, let n be some number greater
than im−1 such that supk≥n ak ∈ V1/m(L). By openness, there is a neighbour-
hood of supk≥n ak contained in V1/m(L); pick im ≥ n such that aim is in this
neighbourhood. (It must exist because for any nonempty set there are elements
arbitrarily close to the supremum.)

For in defined this way, we have that, for all m ∈ N , aim ∈ V1/m(L), and
hence aim converges to L, as we wished to show.

4 Applications

In this section, we show the versatility of having both definitions at our disposal.
We begin with a simple proposition:

Prop 14. an → L iff lim an = lim an = L.

Proof. We do this proof in two parts, each part being done two ways to show
how the different definitions compare.

(→) (a) Suppose an → L. Then, any subsequence of an also converges to L.
Therefore, the smallest and greatest possible sublimits are both L,
hence lim an = lim an = L.

(b) Suppose an → L. Then, for any ε > 0 there exists N such that
n ≥ N implies an ∈ Vε/2(L). Therefore, since the supremum and

infimum of S are contained in S, we have that if S ⊆ A then the
supremum and infimum of S are contained in A. In particular, the
sup and inf of {an}n≥N are contained in Vε(L) Since ε is arbitrary,
we get that the sequences supk≥n ak and infk≥n ak converge to L,
hence lim sup an = lim inf an = L.

(←) (a) Supose an does not converge to L. Then, there exists a ε > 0 such
that there are infinite i such that ai is not in Vε(L). Pick an in-
creasing sequence of in satisfying this. Then ain is a subsequence of
an. Suppose without loss of generality it converges to some limit L′.
(We can suppose this for, if it did not converge, we could pass to a
converging subsequence of it.)

Notice L′ cannot equal L, since, for the ε we fixed earlier, the terms
of ain are never within ε of L. Therefore, we have a subsequence that
converges to something different from L, which shows L is either not
the greatest sublimit (if L′ > L) or it is not the least (if L′ < L).
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(b) Fix some arbitrary ε > 0. There exists, by hypothesis, N such
that n ≥ N implies supk≥n ak, infk≥n ak ∈ Vε(L). In particular,
supk≥N ak, infk≥N ak ∈ Vε(L), hence, since for all n ≥ N we have an
is between these two numbers, an will be in Vε(L), which shows an
converges to L as desired.

The reader should notice that for the right-implication, the proof with the
sublimit definition was the most direct, while for the left-implication the proof
with suprema and infima was slightly easier. This shows that sometimes one def-
initions might be more convenient than another, and we should allow ourselves
to jump freely between them.

A trivial corollary from this proposition is the following:

Prop 15. an converges iff lim an = lim an
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