On nice enough ODEs and dependency on initial conditions

Duarte Maia

1 Introduction

This document is a repository for me to write down the sequence of results necessary to prove, from scratch, that the flow of a vector field exists and is smooth, in some sense. The flow is obtained by solving an ODE, which means that I want to show that, under some niceness assumptions, the solutions of an ODE exist locally and vary smoothly when the initial conditions change. In this document, I will only solve the case for \mathbb{R}^{n}, as translating that to the original goal (proving vector field flows exist) is beyond the scope of this.

2 Grunbaum's lemma

Grunbaum's lemma is a tool that allows us to take differential (or, to be more precise, differential) inequalities and turn them into actual inequalities.

The integral statement is as follows: let g and h be two positive-valued continuous functions satisfying the inequality

$$
g(t) \leq c+\int_{t_{0}}^{t} g(s) h(s) \mathrm{d} s
$$

for some positive c, for $t \geq t_{0}$. Then, we conclude $g(t) \leq c \exp \left(\int_{t_{0}}^{t} h(s) \mathrm{d} s\right)$.
The proof goes as follows. Define $G(t)=c+\int_{t_{0}}^{t} g h$. Then, G is a strictly positive function for $t \geq t_{0}$, and thus $\log G(t)$ makes sense. Furthermore, it is differentiable by the fundamental theorem of calculus, with $(\log G)^{\prime}(t)=$ $G^{\prime}(t) / G(t)=g(t) h(t) / G(t)$. By hypothesis, $g \leq G$ and so this is at most $h(t)$. In conclusion, $\log G(t)-\log G\left(t_{0}\right) \leq \int_{t_{0}}^{t} h$, and taking the exponential and applying $G \geq g$ again we reach the desired conclusion.

Note that this proof relies on $c>0$ to make sense of $\log G$ and division by G. However, if $c=0$ we can take the limit as $c \rightarrow 0$ of the strictly positive result, leading to the result: if $g(t) \leq \int_{t_{0}}^{t} g h$ then $g=0$.

Another note: our proof used $t \geq t_{0}$, but it also works for $t<t_{0}$ as long as the sign of the integral is kept positive.

A lot of the integral inequalities in what follow assume implicitly $t \geq t_{0}$ (for example, the inequality $\left|\int_{t_{0}}^{t} f\right| \leq \int_{t_{0}}^{t}|f|$ only goes through in this case; otherwise the limits in the integral must be swapped). This is of no consequence. I hope.

3 Picard-Lindelöf

The Picard-Lindelöf theorem states that, fixed initial conditions, the solution of an ODE exists locally and is unique globally.

To be more precise: suppose $f: D \rightarrow \mathbb{R}^{n}, D$ open subset of $\mathbb{R} \times \mathbb{R}^{n}$, is a continuous function satisfying the following property: for any compact $K \subseteq D$, $\left.f\right|_{K}$ is (uniformly) Lipschitz in x. That is, there exists a constant L such that for all $(t, x) \in K$ and $(t, y) \in K$ we have $|f(x)-f(y)| \leq L|x-y|$. We will later give general enough conditions for this to happen (for example, $f C^{1}$ is enough).

Fix $\left(t_{0}, x_{0}\right) \in D$. We will show that the ODE given by

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x) \tag{1}\\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

has a unique solution.
We begin by showing existence. Fix $\left(t_{0}, x_{0}\right) \in D$. Let $I \times R$ be a compact neighborhood of this point. Let M be the maximum of $|f|$ over this set and L the Lipschitz constant of f. Pick $\alpha>0$ small enough such that

$$
B_{\alpha}\left(t_{0}\right) \times \bar{B}_{M \alpha}\left(x_{0}\right) \subseteq I \times R \text { and } \alpha L<1
$$

Now put

$$
X=\left\{\varphi \in C\left(B_{\alpha}\left(t_{0}\right), \mathbb{R}^{n}\right) \mid d\left(\varphi(t), x_{0}\right) \leq M d\left(t, t_{0}\right)\right\}
$$

We may define $T: X \rightarrow X$ given by

$$
T(\varphi)(t)=x_{0}+\int_{t_{0}}^{t} f(s, \varphi(s)) \mathrm{d} s .
$$

The conditions imposed by $\varphi \in X$ guarantee that this is well-defined for all $t \in B_{\alpha}\left(t_{0}\right)$ and remains in X. Now, given two functions $\varphi, \psi \in X$ we conclude

$$
\begin{aligned}
|T \varphi-T \psi| & =\left|\int_{t_{0}}^{t} f(s, \varphi)-f(s, \psi) \mathrm{d} s\right| \\
& \leq \int_{t_{0}}^{t} L|\varphi-\psi| \\
& \leq \alpha L\|\varphi-\psi\|_{\infty},
\end{aligned}
$$

which shows that T is contracting in the sup norm. Standard arguments (Cauchy sequences) show that this implies $T^{n} x_{0}$ converges to some function φ, and note that φ must be a fixed point of T, for

$$
\left\|T T^{n} x_{0}-T \varphi\right\| \leq \alpha L\left\|T^{n} x_{0}-\varphi\right\| \rightarrow 0,
$$

and so $T^{n+1} x_{0}$ converges to $T \varphi$, but since it is a subsequence of $T^{n} x_{0}$ it also converges to φ, which shows equality.

We conclude that φ is a continuous function satisfying $\varphi(t)=x_{0}+\int_{t_{0}}^{t} f(s, \varphi(s)) \mathrm{d} s$, and differentiating both sides we obtain it is a solution of the original ODE.

Now for uniqueness. Let x and y be two solutions defined in a common interval $\left[t_{0}, t_{1}\right]$ without loss of generality. Then,

$$
\begin{array}{r}
|x(t)-y(t)| \leq\left|\int_{t_{0}}^{t} f(s, x)-f(s, y) \mathrm{d} s\right| \\
\leq \int_{t_{0}}^{t} L|x-y|
\end{array}
$$

where L is the Lipschitz constant that exists on the compact set given by the union of the curves given by x and y. By Gronwall's lemma, this implies $x=y$ on the interval.

4 Maximality of solutions

Consider the ODE (1). We will show that there is a maximal solution, where we take solutions to be defined in an open interval containing t_{0}.

Define I_{M} as the union of the intervals of definition of all possible (contiguous) solutions of the ODE. By the uniqueness part of Picard-Lindelöf, all solutions agree where mutually defined, so there is an unambiguous x defined on I_{M}, which is a solution of the ODE, and clearly the maximal possible.

It is possible to show that if I_{M} is bounded, say, from above, then in some sense x is 'exploding' or leaving D. Indeed, in this case, call the supremum of I_{M} by the name t_{f}. We assert that either $f(t, x)$ is unbounded as $t \rightarrow t_{f}$ or, in the negative case, $(t, x(t))$ converges to a limit $\left(t_{f}, x_{f}\right)$ as $t \rightarrow t_{f}$, and this limit lies outside D.

Suppose, then, $f(t, x)$ is bounded as $t \rightarrow t_{f}$. Then x^{\prime} is bounded and so x converges as $t \rightarrow t_{f}$, because it is also bounded and so has a converging subsequence, but boundedness of the derivative implies that any two sublimits coincide. As such, let x_{f} be the limit.

If $\left(t_{f}, x_{f}\right) \in D$ then it would be possible to find $\varphi:\left[t_{f}, t_{f}+\varepsilon\left[\rightarrow \mathbb{R}^{n}\right.\right.$ that is also a solution of the ODE. It is easy to see (calculating the left-derivative) that gluing φ to the end of x gives us another (bigger) solution of the ODE, contradicting x 's maximality. Therefore, $\left(t_{f}, x_{f}\right) \notin D$, concluding the proof.

5 Continuity in initial conditions

Define $x\left(t_{0}, x_{0}\right)(t)$ to be the solution of the ODE (1) with the given initial conditions. Given t_{0}, x_{0} fixed, suppose $x\left(t_{0}, x_{0}\right)$ is defined on an interval $[a, b]$. We will show that for t_{1}, x_{1} close enough to t_{0}, x_{0} the solution is also defined in $[a, b]$, and x is continuous as a function from this neighbourhood to $C[a, b]$ with the sup norm.

To this effect, we begin by defining a tubular neighbourhood of x. For each t, define $\delta(t)$ as the distance from $(t, x(t))$ to D^{c}. Since $[a, b]$ is compact, this is minimized at some value $\delta>0$, and so we define T as the closed tubular neighbourhood of x with radius, say, $\delta_{1}<\delta$. It is easy to check that T is compact, and so f is maximized there with some value M and has a Lipschitz constant L.

Now, let $\left(t_{1}, x_{1}\right)$ be in this tubular neighbourhood, and let us investigate how the solution starting at this point develops, starting with how long it takes to leave the tubular neighbourhood. Let φ be the original solution and x the (maximal) solution with these initial conditions.

$$
\begin{aligned}
|x(t)-\varphi(t)| & =\left|x_{1}-\varphi\left(t_{1}\right)+\int_{t_{1}}^{t} f(s, x)-f(s, \varphi) \mathrm{d} s\right| \\
& \leq\left|x_{1}-\varphi\left(t_{1}\right)\right|+\int_{t_{1}}^{t} L|x(s)-\varphi(s)| \mathrm{d} s
\end{aligned}
$$

As such, Gronwall's Lemma guarantees us that

$$
|x-\varphi| \leq\left|x_{1}-\varphi\left(t_{1}\right)\right| \exp (L(b-a))
$$

Therefore, if $\mid x_{1}-\varphi\left(t_{1}\right)<\exp (-L(b-a)) \delta_{1}$ we can be sure that x is defined over the whole interval, because it doesn't leave the tubular neighbourhood and for it to stop being defined at some point eiher f would need to become unbounded (which doesn't happen because M) or x would need to converge to some point outside D (which doesn't happen because it never leaves the tubular neighbourhood, which is closed and contained in D).

As a consequence, $x\left(t_{1}, x_{1}\right)$ is well-defined in a tubular neighbourhood of $\left(t_{0}, x_{0}\right)$, so it remains to show that it is continuous in $C[a, b]$. But the above argument serves to show that if x and y are two solutions (with initial conditions t_{1}, x_{1} and $\left.s_{1}, y_{1}\right)$ we have

$$
\begin{equation*}
\|x-y\| \leq\left|x_{1}-y\left(t_{1}\right)\right| \exp (L(b-a)) \leq C_{1}\left|x_{1}-y_{1}\right|+C_{2}\left|t_{1}-s_{1}\right| \tag{2}
\end{equation*}
$$

which is enough to guarantee continuity in the initial conditions.
Note that this also allows us to conclude that $x\left(t, t_{0}, x_{0}\right)$ is continuous as a three real-variable function.

In conclusion, the set where $x\left(t, t_{0}, x_{0}\right)$ is well-defined is open (as a subset of \mathbb{R}^{2+n}) and x is continuous in this domain.

6 Smoothness (in general)

Before investigating smoothness of the solution as a function of the initial conditions, it is perhaps useful to show that smoothness of f is enough to guarantee f Lipschitz on compacts.

Suppose, then, that f is continuous in t and C^{1} in x. Then, $\partial_{x} f$ is continuous, and so bounded on compacts. In particular, we may consider a compact
rectangular neighbourhood of an arbitrary $\left(t_{0}, x_{0}\right)$, wherein all partial derivatives of f are bounded by, say, M. Then, for any (applicable) t, the difference $f(t, x)-f(t, y)$ can be bounded using the mean value theorem by $n^{2} M|x-y|$, which shows that any point has a Lipschitz neighbourhood. It remains to show that f is Lipschitz on any compact.

The following idea is due to Manel. Fix a compact $K \subseteq D$. Let

$$
A=\{(t, x, y) \mid(t, x) \in K,(t, y) \in K, x \neq y\}
$$

Consider the function $g: A \rightarrow \mathbb{R}$ defined by

$$
g(t, x, y)=\frac{|f(t, x)-f(t, y)|}{|x-y|} .
$$

It is clear that this is well-defined and continuous. We wish to show it is bounded from above. To do so, suppose for contradiction that $\left(t_{n}, x_{n}, y_{n}\right)$ is a sequence of elements of A such that $g\left(t_{n}, x_{n}, y_{n}\right) \rightarrow \infty$. Since A is bounded, we may without loss of generality suppose that the sequence converges, and by continuity of g it must converge to a point (t, x, y) not in A.

It is easy to check that $(t, x) \in K$ and $(t, y) \in K$, so the only way for this point not to be in A is for $x=y$. But this contradicts the local Lipschitz condition, which guarantees that, for $\left(t^{\prime}, x^{\prime}, y^{\prime}\right)$ close enough to $(t, x, x), g$ is bounded. This concludes the proof that locally Lipschitz implies Lipschitz on compacts, and so C^{1} implies Lipschitz on compacts.

7 Derivative in x_{0}

In what follows, we suppose to simplify that f is C^{1} and does not depend on t. In other words, the ODE is reduced to

$$
\left\{\begin{array}{l}
x^{\prime}=f(x) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

We will show that the function $x\left(t, t_{0}, x_{0}\right)$ is C^{1}. Smoothness in t is obvious because f is continuous and smoothness in t_{0} is simply a consequence of $x\left(t, t_{0}, x_{0}\right)=x\left(t-t_{0}, 0, x_{0}\right)$ together with the chain rule. Differenciability wrt x_{0} is the hardest part.

The first step is to try to guess what the derivative would be. Let us refer to it as $J(t)=\partial_{x_{0}} x\left(t, t_{0}, x_{0}\right)$. It is easy to check that $J\left(t_{0}\right)=I$, and (assuming x is C^{1}) we could conclude that

$$
\begin{aligned}
& \partial_{t} J(t)=\partial_{t} \partial_{x_{0}} x\left(t, t_{0}, x_{0}\right)=\partial_{x_{0}} \partial_{t} x\left(t, t_{0}, x_{0}\right)=\partial_{x_{0}} f\left(x\left(t, t_{0}, x_{0}\right)\right)= \\
& \quad=f^{\prime}\left(t, x\left(t, t_{0}, x_{0}\right)\right) \partial_{x_{0}} x\left(t, t_{0}, x_{0}\right)=f^{\prime}\left(t, x\left(t, t_{0}, x_{0}\right)\right) J(t) .
\end{aligned}
$$

As a consequence, we guess that the derivative (wrt x_{0}) of x is described by the matrix J satisfying the ODE (in $\mathbb{R}^{n^{2}}$)

$$
\left\{\begin{array}{l}
J\left(t_{0}\right)=I \\
J^{\prime}(t)=A(t) J(t)
\end{array}\right.
$$

where $A(t)=f^{\prime}(x(t))$. Note that, by hypothesis on f, A is a continuous function of t and therefore the function $J, t \mapsto A(t) J$ is continuous in t and locally Lipschitz in J, and so J exists, at least locally.

Let us show that J is defined for all t that x is. Consider an interval $[a, b]$ in which x is defined. Then, so is A, and A has all entries bounded in this interval by some M. As a consequence,

$$
|J(t)| \leq n+\int_{t_{0}}^{t}|A(t) J(t)| \leq n+\int_{t_{0}}^{t} n^{3} M|J|
$$

and therefore by Grunbaum's lemma we conclude $|J| \leq n \exp \left((b-a) n^{3} M\right)$, and so J is bounded. Therefore, for J to stop being extendable after some time t_{f}, it would need to 'go outside the domain', but for every $t \in[a, b]$ the function $J \mapsto A J$ is defined for all J and therefore J must be extendable to all $t \in[a, b]$.

Note also that J is continuous as a function of x_{0}, as the ODE that specifies it can also be rewritten as to make x_{0} part of the initial conditions:

$$
\left\{\begin{array}{l}
J\left(t_{0}\right)=I \\
X\left(t_{0}\right)=x_{0} \\
J^{\prime}(t)=f^{\prime}\left(x\left(t, t_{0}, X(t)\right)\right) J(t) \\
X^{\prime}(t)=0
\end{array}\right.
$$

We now turn to verifying that J is in fact the derivative of x as a function of x_{0}. To this effect, let us call $x(t) \equiv x\left(t, t_{0}, x_{0}\right)$ and $x_{h}(t) \equiv x\left(t, t_{0}, x_{0}+h\right)$, for small enough h that this is well-defined. We wish to show that, for t and t_{0} fixed, the following expression converges to zero as $h \rightarrow 0$:

$$
\frac{1}{|h|}\left|x_{h}(t)-x(t)-J(t) h\right| .
$$

To this effect, let us try to bound $\left|x_{h}(t)-x(t)-J(t) h\right|$ from above. The first step is to expand it as an integral:

$$
\left|x_{h}(t)-x(t)-J(t) h\right| \leq \int_{t_{0}}^{t}\left|f\left(x_{h}(s)\right)-f(x(s))-f^{\prime}(x(s)) J(s) h\right| \mathrm{d} s
$$

which looks tempting because the quantity $f\left(x_{h}(s)\right)-f(x(s))$ should be of the form $f^{\prime}(x(s)) \Delta(s)+o(\Delta(s))$, where $\Delta=x_{h}-x$, and to a first order approximation $\Delta(s)$ should be more or less $J(s) h \ldots$ Of course, this is not a rigorous argument, but it is at least an indication that we might be in the right track.

Let us begin by applying the mean value theorem to conclude $f\left(x_{h}(s)\right)$ $f(x(s))=\left(f^{\prime}(x(s))+E(h, s)\right) \Delta(s)$, where E is an error matrix whose entries are of the form $\partial_{j} f_{i}(\xi(h, s))-\partial_{j} f_{i}(x(s))$, where $\xi(h, s)$ is a value somewhere within $|\Delta(s)|$ of $x(s)$. Since f is C^{1}, for all ε there exists a δ such that $|\Delta(s)|<\delta$ implies that all entries in $E(h, s)$ are at most ε. In turn, because of inequality (2) there exists C such that $\|\Delta\| \leq C|h|$ and as a consequence if $|h|<\delta / C$
then $\|\Delta\|<\delta$, and therefore all entries of E are (for all s) at most ε. As a consequence, we have, for small enough h, the inequality

$$
\begin{aligned}
\left|x_{h}(t)-x(t)-J(t) h\right| & \leq \int_{t_{0}}^{t}\left|f\left(x_{h}(s)\right)-f(x(s))-f^{\prime}(x(s)) J(s) h\right| \mathrm{d} s \\
& =\int_{t_{0}}^{t}\left|f^{\prime}(x(s)) \Delta(s)+E(h, s) \Delta(s)-f^{\prime}(x(s)) J(s) h\right| \mathrm{d} s \\
& \leq(b-a) \varepsilon\|\Delta\|+\int_{t_{0}}^{t}\left|f^{\prime}(x(s)) \Delta(s)-f^{\prime}(x(s)) J(s) h\right| \mathrm{d} s \\
& \leq(b-a) \varepsilon C|h|+\int_{t_{0}}^{t}\left|f^{\prime}(x(s))\left(x_{h}(s)-x(s)-J(s) h\right)\right| \mathrm{d} s \\
& \leq(b-a) \varepsilon C|h|+\int_{t_{0}}^{t} n^{2} M\left|x_{h}(s)-x(s)-J(s) h\right| \mathrm{d} s
\end{aligned}
$$

where M is the maximum value of the entries of $f^{\prime}(x(t))$ as t ranges from A To B.

As a consequence, we may apply Grunbaum's lemma to get, finally, that for all ε there exists δ such that $|h|<\delta$ implies

$$
\frac{1}{|h|}\left|x_{h}(t)-x(t)-J(t) h\right|<(b-a) \varepsilon C \exp \left(n^{2} M(b-a)\right)
$$

which concludes the proof that $J(t)$ is the derivative of $x_{h}(t)$ at $h=0$, or, in other words, $\partial_{x_{0}} x\left(t, t_{0}, x_{0}\right)$. We have already discussed continuity of J and the other derivatives of x, and so we conclude that if f is C^{1} so is the solution as a function of initial data.

8 Smoothness

We will now show that x absorbs all degrees of smoothness from f. In particular, if f is C^{∞}, so is x.

We will show by induction that if f is C^{p} then so is x. We have already proven the base case $p=1$, concluding that the jacobian of x is given by the solution of the ODE

$$
\left\{\begin{array}{l}
J\left(t_{0}\right)=I \\
X\left(t_{0}\right)=x_{0} \\
J^{\prime}(t)=f^{\prime}\left(x\left(t-t_{0}, 0, X\right)\right) J(t) \\
X^{\prime}=0
\end{array}\right.
$$

Now, suppose we have already shown the case for some p, and let us show it for $p+1$. If $f \in C^{p+1}$ then in particular $f \in C^{p}$, and so x is C^{p}. Therefore, the function

$$
(J, X, t) \mapsto f^{\prime}\left(x\left(t-t_{0}, 0, X\right)\right) J
$$

is C^{p}, because it is the composition of two C^{p} functions: f^{\prime} and x. Therefore, by applying the induction hypothesis to the ODE that yields J, we conclude J is C^{p} and thus that x is C^{p+1} everywhere it is defined. In particular, if f is C^{∞} then so is x. The proof of everything is complete.

