
On nice enough ODEs and dependency on initial

conditions

Duarte Maia

1 Introduction

This document is a repository for me to write down the sequence of results
necessary to prove, from scratch, that the flow of a vector field exists and is
smooth, in some sense. The flow is obtained by solving an ODE, which means
that I want to show that, under some niceness assumptions, the solutions of an
ODE exist locally and vary smoothly when the initial conditions change. In this
document, I will only solve the case for Rn, as translating that to the original
goal (proving vector field flows exist) is beyond the scope of this.

2 Grunbaum’s lemma

Grunbaum’s lemma is a tool that allows us to take differential (or, to be more
precise, differential) inequalities and turn them into actual inequalities.

The integral statement is as follows: let g and h be two positive-valued
continuous functions satisfying the inequality

g(t) ≤ c+

∫ t

t0

g(s)h(s)ds

for some positive c, for t ≥ t0. Then, we conclude g(t) ≤ c exp(
∫ t
t0
h(s)ds).

The proof goes as follows. Define G(t) = c +
∫ t
t0
gh. Then, G is a strictly

positive function for t ≥ t0, and thus logG(t) makes sense. Furthermore, it
is differentiable by the fundamental theorem of calculus, with (logG)′(t) =
G′(t)/G(t) = g(t)h(t)/G(t). By hypothesis, g ≤ G and so this is at most

h(t). In conclusion, logG(t)− logG(t0) ≤
∫ t
t0
h, and taking the exponential and

applying G ≥ g again we reach the desired conclusion.
Note that this proof relies on c > 0 to make sense of logG and division by

G. However, if c = 0 we can take the limit as c → 0 of the strictly positive
result, leading to the result: if g(t) ≤

∫ t
t0
gh then g = 0.

Another note: our proof used t ≥ t0, but it also works for t < t0 as long as
the sign of the integral is kept positive.
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A lot of the integral inequalities in what follow assume implicitly t ≥ t0 (for

example, the inequality |
∫ t
t0
f |≤

∫ t
t0
|f | only goes through in this case; otherwise

the limits in the integral must be swapped). This is of no consequence. I hope.

3 Picard-Lindelöf

The Picard-Lindelöf theorem states that, fixed initial conditions, the solution
of an ODE exists locally and is unique globally.

To be more precise: suppose f : D → Rn, D open subset of R × Rn, is a
continuous function satisfying the following property: for any compact K ⊆ D,
f |K is (uniformly) Lipschitz in x. That is, there exists a constant L such that
for all (t, x) ∈ K and (t, y) ∈ K we have |f(x) − f(y)| ≤ L|x − y|. We will
later give general enough conditions for this to happen (for example, f C1 is
enough).

Fix (t0, x0) ∈ D. We will show that the ODE given by{
x′(t) = f(t, x)

x(t0) = x0
(1)

has a unique solution.
We begin by showing existence. Fix (t0, x0) ∈ D. Let I × R be a compact

neighborhood of this point. Let M be the maximum of |f | over this set and L
the Lipschitz constant of f . Pick α > 0 small enough such that

Bα(t0)×BMα(x0) ⊆ I ×R and αL < 1.

Now put
X = {ϕ ∈ C(Bα(t0),Rn) | d(ϕ(t), x0) ≤Md(t, t0) }.

We may define T : X → X given by

T (ϕ)(t) = x0 +

∫ t

t0

f(s, ϕ(s))ds.

The conditions imposed by ϕ ∈ X guarantee that this is well-defined for all
t ∈ Bα(t0) and remains in X. Now, given two functions ϕ,ψ ∈ X we conclude

|Tϕ− Tψ| = |
∫ t

t0

f(s, ϕ)− f(s, ψ)ds|

≤
∫ t

t0

L|ϕ− ψ|

≤ αL‖ϕ− ψ‖∞,

which shows that T is contracting in the sup norm. Standard arguments
(Cauchy sequences) show that this implies Tnx0 converges to some function
ϕ, and note that ϕ must be a fixed point of T , for

‖TTnx0 − Tϕ‖ ≤ αL‖Tnx0 − ϕ‖ → 0,
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and so Tn+1x0 converges to Tϕ, but since it is a subsequence of Tnx0 it also
converges to ϕ, which shows equality.

We conclude that ϕ is a continuous function satisfying ϕ(t) = x0+
∫ t
t0
f(s, ϕ(s))ds,

and differentiating both sides we obtain it is a solution of the original ODE.
Now for uniqueness. Let x and y be two solutions defined in a common

interval [t0, t1] without loss of generality. Then,

|x(t)− y(t)| ≤ |
∫ t

t0

f(s, x)− f(s, y)ds|

≤
∫ t

t0

L|x− y|,

where L is the Lipschitz constant that exists on the compact set given by the
union of the curves given by x and y. By Gronwall’s lemma, this implies x = y
on the interval.

4 Maximality of solutions

Consider the ODE (1). We will show that there is a maximal solution, where
we take solutions to be defined in an open interval containing t0.

Define IM as the union of the intervals of definition of all possible (con-
tiguous) solutions of the ODE. By the uniqueness part of Picard-Lindelöf, all
solutions agree where mutually defined, so there is an unambiguous x defined
on IM , which is a solution of the ODE, and clearly the maximal possible.

It is possible to show that if IM is bounded, say, from above, then in some
sense x is ‘exploding’ or leaving D. Indeed, in this case, call the supremum of
IM by the name tf . We assert that either f(t, x) is unbounded as t→ tf or, in
the negative case, (t, x(t)) converges to a limit (tf , xf ) as t→ tf , and this limit
lies outside D.

Suppose, then, f(t, x) is bounded as t → tf . Then x′ is bounded and so
x converges as t → tf , because it is also bounded and so has a converging
subsequence, but boundedness of the derivative implies that any two sublimits
coincide. As such, let xf be the limit.

If (tf , xf ) ∈ D then it would be possible to find ϕ : [tf , tf + ε[ → Rn that
is also a solution of the ODE. It is easy to see (calculating the left-derivative)
that gluing ϕ to the end of x gives us another (bigger) solution of the ODE,
contradicting x’s maximality. Therefore, (tf , xf ) 6∈ D, concluding the proof.

5 Continuity in initial conditions

Define x(t0, x0)(t) to be the solution of the ODE (1) with the given initial
conditions. Given t0, x0 fixed, suppose x(t0, x0) is defined on an interval [a, b].
We will show that for t1, x1 close enough to t0, x0 the solution is also defined in
[a, b], and x is continuous as a function from this neighbourhood to C[a, b] with
the sup norm.
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To this effect, we begin by defining a tubular neighbourhood of x. For each
t, define δ(t) as the distance from (t, x(t)) to Dc. Since [a, b] is compact, this
is minimized at some value δ > 0, and so we define T as the closed tubular
neighbourhood of x with radius, say, δ1 < δ. It is easy to check that T is
compact, and so f is maximized there with some value M and has a Lipschitz
constant L.

Now, let (t1, x1) be in this tubular neighbourhood, and let us investigate
how the solution starting at this point develops, starting with how long it takes
to leave the tubular neighbourhood. Let ϕ be the original solution and x the
(maximal) solution with these initial conditions.

|x(t)− ϕ(t)| = |x1 − ϕ(t1) +

∫ t

t1

f(s, x)− f(s, ϕ)ds|

≤ |x1 − ϕ(t1)|+
∫ t

t1

L|x(s)− ϕ(s)|ds.

As such, Gronwall’s Lemma guarantees us that

|x− ϕ| ≤ |x1 − ϕ(t1)| exp(L(b− a)).

Therefore, if |x1−ϕ(t1) < exp(−L(b−a))δ1 we can be sure that x is defined
over the whole interval, because it doesn’t leave the tubular neighbourhood
and for it to stop being defined at some point eiher f would need to become
unbounded (which doesn’t happen because M) or x would need to converge to
some point outside D (which doesn’t happen because it never leaves the tubular
neighbourhood, which is closed and contained in D).

As a consequence, x(t1, x1) is well-defined in a tubular neighbourhood of
(t0, x0), so it remains to show that it is continuous in C[a, b]. But the above
argument serves to show that if x and y are two solutions (with initial conditions
t1, x1 and s1, y1) we have

‖x− y‖ ≤ |x1 − y(t1)| exp(L(b− a)) ≤ C1|x1 − y1|+ C2|t1 − s1| (2)

which is enough to guarantee continuity in the initial conditions.
Note that this also allows us to conclude that x(t, t0, x0) is continuous as a

three real-variable function.
In conclusion, the set where x(t, t0, x0) is well-defined is open (as a subset

of R2+n) and x is continuous in this domain.

6 Smoothness (in general)

Before investigating smoothness of the solution as a function of the initial con-
ditions, it is perhaps useful to show that smoothness of f is enough to guarantee
f Lipschitz on compacts.

Suppose, then, that f is continuous in t and C1 in x. Then, ∂xf is contin-
uous, and so bounded on compacts. In particular, we may consider a compact
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rectangular neighbourhood of an arbitrary (t0, x0), wherein all partial deriva-
tives of f are bounded by, say, M . Then, for any (applicable) t, the difference
f(t, x)− f(t, y) can be bounded using the mean value theorem by n2M |x− y|,
which shows that any point has a Lipschitz neighbourhood. It remains to show
that f is Lipschitz on any compact.

The following idea is due to Manel. Fix a compact K ⊆ D. Let

A = { (t, x, y) | (t, x) ∈ K, (t, y) ∈ K,x 6= y }.

Consider the function g : A→ R defined by

g(t, x, y) =
|f(t, x)− f(t, y)|

|x− y|
.

It is clear that this is well-defined and continuous. We wish to show it is
bounded from above. To do so, suppose for contradiction that (tn, xn, yn) is a
sequence of elements of A such that g(tn, xn, yn) → ∞. Since A is bounded,
we may without loss of generality suppose that the sequence converges, and by
continuity of g it must converge to a point (t, x, y) not in A.

It is easy to check that (t, x) ∈ K and (t, y) ∈ K, so the only way for this
point not to be in A is for x = y. But this contradicts the local Lipschitz
condition, which guarantees that, for (t′, x′, y′) close enough to (t, x, x), g is
bounded. This concludes the proof that locally Lipschitz implies Lipschitz on
compacts, and so C1 implies Lipschitz on compacts.

7 Derivative in x0

In what follows, we suppose to simplify that f is C1 and does not depend on t.
In other words, the ODE is reduced to{

x′ = f(x)

x(t0) = x0.

We will show that the function x(t, t0, x0) is C1. Smoothness in t is obvi-
ous because f is continuous and smoothness in t0 is simply a consequence of
x(t, t0, x0) = x(t − t0, 0, x0) together with the chain rule. Differenciability wrt
x0 is the hardest part.

The first step is to try to guess what the derivative would be. Let us refer
to it as J(t) = ∂x0x(t, t0, x0). It is easy to check that J(t0) = I, and (assuming
x is C1) we could conclude that

∂tJ(t) = ∂t∂x0
x(t, t0, x0) = ∂x0

∂tx(t, t0, x0) = ∂x0
f(x(t, t0, x0)) =

= f ′(t, x(t, t0, x0))∂x0
x(t, t0, x0) = f ′(t, x(t, t0, x0))J(t).

As a consequence, we guess that the derivative (wrt x0) of x is described by

the matrix J satisfying the ODE (in Rn2

){
J(t0) = I

J ′(t) = A(t)J(t)
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where A(t) = f ′(x(t)). Note that, by hypothesis on f , A is a continuous function
of t and therefore the function J, t 7→ A(t)J is continuous in t and locally
Lipschitz in J , and so J exists, at least locally.

Let us show that J is defined for all t that x is. Consider an interval [a, b] in
which x is defined. Then, so is A, and A has all entries bounded in this interval
by some M . As a consequence,

|J(t)| ≤ n+

∫ t

t0

|A(t)J(t)| ≤ n+

∫ t

t0

n3M |J |,

and therefore by Grunbaum’s lemma we conclude |J | ≤ n exp((b−a)n3M), and
so J is bounded. Therefore, for J to stop being extendable after some time tf ,
it would need to ‘go outside the domain’, but for every t ∈ [a, b] the function
J 7→ AJ is defined for all J and therefore J must be extendable to all t ∈ [a, b].

Note also that J is continuous as a function of x0, as the ODE that specifies
it can also be rewritten as to make x0 part of the initial conditions:

J(t0) = I

X(t0) = x0

J ′(t) = f ′(x(t, t0, X(t)))J(t)

X ′(t) = 0.

We now turn to verifying that J is in fact the derivative of x as a function
of x0. To this effect, let us call x(t) ≡ x(t, t0, x0) and xh(t) ≡ x(t, t0, x0 + h),
for small enough h that this is well-defined. We wish to show that, for t and t0
fixed, the following expression converges to zero as h→ 0:

1

|h|
|xh(t)− x(t)− J(t)h| .

To this effect, let us try to bound |xh(t)− x(t)− J(t)h| from above. The
first step is to expand it as an integral:

|xh(t)− x(t)− J(t)h| ≤
∫ t

t0

|f(xh(s))− f(x(s))− f ′(x(s))J(s)h|ds,

which looks tempting because the quantity f(xh(s))− f(x(s)) should be of the
form f ′(x(s))∆(s) + o(∆(s)), where ∆ = xh − x, and to a first order approx-
imation ∆(s) should be more or less J(s)h... Of course, this is not a rigorous
argument, but it is at least an indication that we might be in the right track.

Let us begin by applying the mean value theorem to conclude f(xh(s)) −
f(x(s)) = (f ′(x(s))+E(h, s))∆(s), where E is an error matrix whose entries are
of the form ∂jfi(ξ(h, s))−∂jfi(x(s)), where ξ(h, s) is a value somewhere within
|∆(s)| of x(s). Since f is C1, for all ε there exists a δ such that |∆(s)| < δ
implies that all entries in E(h, s) are at most ε. In turn, because of inequality
(2) there exists C such that ‖∆‖ ≤ C|h| and as a consequence if |h| < δ/C
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then ‖∆‖ < δ, and therefore all entries of E are (for all s) at most ε. As a
consequence, we have, for small enough h, the inequality

|xh(t)− x(t)− J(t)h| ≤
∫ t

t0

|f(xh(s))− f(x(s))− f ′(x(s))J(s)h|ds

=

∫ t

t0

|f ′(x(s))∆(s) + E(h, s)∆(s)− f ′(x(s))J(s)h|ds

≤ (b− a)ε‖∆‖+

∫ t

t0

|f ′(x(s))∆(s)− f ′(x(s))J(s)h|ds

≤ (b− a)εC|h|+
∫ t

t0

|f ′(x(s))(xh(s)− x(s)− J(s)h)|ds

≤ (b− a)εC|h|+
∫ t

t0

n2M |xh(s)− x(s)− J(s)h|ds,

where M is the maximum value of the entries of f ′(x(t)) as t ranges from A To
B.

As a consequence, we may apply Grunbaum’s lemma to get, finally, that for
all ε there exists δ such that |h| < δ implies

1

|h|
|xh(t)− x(t)− J(t)h| < (b− a)εC exp(n2M(b− a)),

which concludes the proof that J(t) is the derivative of xh(t) at h = 0, or, in
other words, ∂x0

x(t, t0, x0). We have already discussed continuity of J and the
other derivatives of x, and so we conclude that if f is C1 so is the solution as a
function of initial data.

8 Smoothness

We will now show that x absorbs all degrees of smoothness from f . In particular,
if f is C∞, so is x.

We will show by induction that if f is Cp then so is x. We have already
proven the base case p = 1, concluding that the jacobian of x is given by the
solution of the ODE 

J(t0) = I

X(t0) = x0

J ′(t) = f ′(x(t− t0, 0, X))J(t)

X ′ = 0.

Now, suppose we have already shown the case for some p, and let us show
it for p+ 1. If f ∈ Cp+1 then in particular f ∈ Cp, and so x is Cp. Therefore,
the function

(J,X, t) 7→ f ′(x(t− t0, 0, X))J
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is Cp, because it is the composition of two Cp functions: f ′ and x. Therefore,
by applying the induction hypothesis to the ODE that yields J , we conclude J
is Cp and thus that x is Cp+1 everywhere it is defined. In particular, if f is C∞

then so is x. The proof of everything is complete.
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