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1 Introduction

This work originally started as a project for a class on the Calculus of Variations,
at Instituto Superior Técnico. The topic of the project is classical optimization
with holonomic and non-holonomic constraints. However, when doing research
on the subject, I was shocked to find very few mathematical references with
the Lagrange multiplier theorem for the non-holonomic case, and corresponding
proof. Consequently, I have taken it upon myself to create such a reference.

This document is divided into two parts. The first part is a relatively simple
exploration of holonomic constraints, that is, optimization on (possibly time-
dependent) manifolds. In other words, we require that our paths satisfy equa-
tions of the form φi(t, u(t)) = 0, i = 1, . . . , k. The second part is trickier, in
which the restrictions become differential equations of the form φi(t, u(t), u̇(t)),
i = 1, . . . k. This is where I had a problem finding references.

This work is the culmination of a couple of weeks spent interpreting 16
pages’ worth of Bliss’ Lectures on the Calculus of Variations [1, pp. 187-202]. I
don’t know whether to blame my unfamiliarity with the notational conventions,
the great amount of generality in which the proof is done, or my own lack of
experience with the topic, but it was with more effort than I am proud to admit
that I could finally understand the proof which I reproduce in section 4, albeit
in much less generality (though the essential ideas are there). Perhaps this work
might serve as a primer for someone else’s reading of Bliss’ proof.

2 Notational Conventions

In this section we lay down the basic notational conventions that will be followed
over the rest of this document.

The problem at hand is to find a curve u : [tstart, tend]→ Rn that minimizes

the value of a certain integral I(u) =
r tend
tstart

f(t, u(t), u̇(t))dt. In order for this
expression to make sense, it is assumed that the curves u being considered are
at least C1, and the function f is at least continuous, though the results to be
obtained require in fact that f is at least C2.
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The function f is considered to be a function of 3 variables: time t ∈
[tstart, tend], position u ∈ Rn and velocity ξ ∈ Rn. In truth, we could be con-
sidering f defined in more general (i.e. smaller) domains, but since our results
are local in nature correctness is not harmed by omitting consideration of the
domain.

We allow ourselves to consider partial derivatives in vector coordinates, for
example ∂f

∂ξ (t, u, ξ). These derivatives are to be taken in the sense of multivari-
able calculus; for example, the expression we have just written is understood as
a 1× n row-matrix.

Arguments of functions will often be omitted. For example, if u represents
a curve, an expression like f(t, u, u̇) is understood to mean f(t, u(t), u̇(t)): the
evaluations at time t are implied. Somewhat more extreme, if u is understood
to be the curve in consideration, we might go as far as to write f without any
arguments to mean f(t, u(t), u̇(t)). So, for example, we might write I(u) =
r end

start
f . This applies especially to expressions involving partial derivatives. For

example, the standard Euler-Lagrange equations might be written as

∂f

∂u
− d

dt

∂f

∂ξ
= 0.

Note that that the total time derivative is evaluated after the implicit inser-
tion of variables, unlike the partial derivatives. These conventions are common
in physics books (see, e.g. [4]), so we hope that they are understandable to the
reader.

In section 4.3, we introduce a notation for the ‘Euler-Lagrange derivative’,
which we record here for completeness. We define the differential operator Θ as

Θ(f) :=
∂f

∂u
− d

dt

∂f

∂ξ
.

3 Holonomic Constraints

3.1 Introduction

An optimization problem with holonomic constraints is one where the objective
is to minimize I(u) as u ranges over (say, C1) paths satisfying the constraint
φ(t, u) = 0 for all t, where φ is a (nice enough) function [tstart, tend]×Rn → Rk.
In other words, u must obey a set of k cartesian equations. As in the statement
for Lagrange multipliers in Rn, it is necessary to assume that these equations
are independent, in the sense that the k rows of ∂φ

∂u are linearly independent
everywhere in the domain of consideration; in other words, that 0 is a regular
value of φ(t, u) as a function of u. Therefore, we will henceforth work under the
following hypotheses:

Problem Statement. In this section, we endeavor to minimize the value of
the functional I(u) as u ranges over paths starting at ustart and ending at uend,
such that the k cartesian equations given by

φ(t, u(t)) = 0
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are satisfied for all t ∈ [tstart, tend].
It is assumed that φ is a C2 function.

3.2 Local Coordinates (Time-Independent Conditions)

The most basic way to solve an optimization problem with holonomic constraints
is to write it out in local coordinates.

The idea is easiest to state when φ ≡ φ(u). In this case, the problem is
reduced to optimization on a C2-submanifold of Rn. The usual proof of necessity
of the Euler-Lagrange equations can be easily modified to work in coordinate
charts. We state the result without proof (really, it’s almost word-for-word the
proof in euclidean space).

Theorem 1. Let M be an m-dimensional C2 manifold embedded in n-dimensional
euclidean space. Let f : [tstart, tend]×Rn×Rn → R be a C2 function, and u a C2

path. Let r : Rm → Rn be a C2 chart of M . Define f̃ : [tstart, tend]× Rm × Rm
(i.e. ‘f in coordinates’) as

f̃(t, q, v) = f(t, r(q), r′(q)v).

Furthermore, define ũ (‘u in coordinates’) as

ũ(t) = r−1(u(t)), for applicable t.

Then, if u0 minimizes the value of I(u) =
r
f(t, u, u̇) as u ranges over

paths starting at ustart and ending at uend, u0 must satisfy the Euler-Lagrange
equations in every coordinate chart, i.e., for all C2 charts,

∂f̃

∂q
− d

dt

∂f̃

∂v
= 0.

Remark 1. Even though the above theorem requires that the verification be
made for every coordinate chart, it is enough to do the verification in a chart
that covers u, as the Euler-Lagrange equations are invariant under change of
coordinates. In physics parlance, we say that the Euler-Lagrange equations
are invariant under point transformations. The proof is a trivial exercise in
application of the chain rule.

Remark 2. Theorem 1 also holds for abstract C2 manifolds, not embedded in
Rn, if f is defined on [tstart, tend]×TM , where TM is the tangent bundle of M .

Example 1. Suppose that we wish to find length-minimizing curves on the
sphere of unit radius. Then, we begin by parametrizing the sphere using polar
coordinates:

r(θ, ϕ) = (cos θ cosϕ, sin θ cosϕ, sinϕ),

and now we calculate the function f(t, u, ξ) = ‖ξ‖ in local coordinates:
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Figure 1: Polar coordinate system.

f̃ = ‖r′(θ, ϕ)(θ̇, ϕ̇)‖

=

∥∥∥∥∥∥
− sin θ cosϕ − cos θ sinϕ

cos θ cosϕ − sin θ sinϕ
0 cosϕ

[ θ̇
ϕ̇

]∥∥∥∥∥∥
=

√
cos2(ϕ) θ̇2 + ϕ̇2.

The Euler-Lagrange equations then become, in local coordinates:

∂f̃

∂θ
− d

dt

∂f̃

∂θ̇
= 0⇔ d

dt

(
cos2(ϕ)θ̇

f

)
= 0,

∂f̃

∂ϕ
− d

dt

∂f̃

∂ϕ̇
= 0⇔ cosϕ sinϕ θ̇2

f
=

d

dt

(
ϕ̇

f

)
.

To find a solution to these equations, we begin by pointing out that the length
of a curve does not depend on the parametrization, as long as it does not double
back. Therefore, we may, for simplicity, find a unit-speed parametrization. This
simplification is equivalent to requiring that f = 1, so the equations become

θ̇ =
C

cos2(ϕ)
, ϕ̈ = cosϕ sinϕ θ̇2,

and the second equation can be simplified to ϕ̈ = C2 sinϕ
cos3 ϕ .
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Finally, to simplify matters, let us suppose without loss of generality (by
rotation) that the starting point of our curve lies in the equator (ϕ = 0), and its
initial velocity is θ̇ = 1, ϕ̇ = 0. Then, the Euler-Lagrange equations become easy
to solve, as ϕ constant equal to 0 is a solution of ϕ̈ = C2 sinϕ

cos3 ϕ , and θ̇ = C = 1,

and so our curve is just a constant speed rotation about the equator. This (and
invariance by change of coordinates) proves that the (unit speed) solutions of
the Euler-Lagrange equations are great circle rotations.

Of course, this does not solve the problem of length-minimizing curves in the
circle, as we would need to ensure that length-minimizing curves are C2, and
solutions of the Euler-Lagrange equations do not necessarily minimize the value
of the functional. However, this example has served the purpose of exemplifying
the method.

Remark 3. This method also works for time-dependent conditions, but it is
slightly more complicated, because the spaces that the conditions define are not
just manifolds, but rather ‘time-dependent’ manifolds. Unfortunately, I do not
know of any relevant bibliography on this matter.

3.3 Langrange Multipliers

When solving problems in calculus of optimization in manifolds, sometimes lo-
cal parametrizations are very messy business. Indeed, even though the implicit
function theorem guarantees that the solutions to independent cartesian equa-
tions are manifolds in euclidean space, to parametrize these manifolds explicitly
is often messy at best, and impossible at worst. This motivates the study of
parametrization-independent methods of optimization. The most well-known
of these is the method of Lagrange multipliers, which can be extended to the
Calculus of Variations in two ways: it can be applied to problems with integral
restriction (e.g. curves of a fixed length), see [3, §12.1], or it can be applied
to problems with pointwise (i.e. holonomic) restrictions, as we will see in this
section. In section 4, we show a more general version of this principle, which
can be applied to nonholonomic constraints, and see also remark 7 where we
show how integral constraints are really just a particular case of nonholonomic
constraints.

The main result of this section is the following:

Theorem 2. Let u0 be a curve that minimizes the functional I(u) =
r
f(t, u, u̇)

as u ranges over C1 curves starting at ustart, ending at uend, and satisfying the
k cartesian equations φ(t, u(t)) = 0 for all t. Suppose that u0 is C2, that f and
φ are C2 in an open set containing all points of the form (t, u0, u̇0) and (t, u0)
respectively, and that ∂φ

∂u has rank k on all points of the form (t, u0). Then,
there exists a continuous function λ : ]tstart, tend[→ Rk such that

∂f

∂u
− d

dt

∂f

∂ξ
= λ(t)ᵀ

∂φ

∂u

∣∣∣∣
t,u0(t)

. (1)
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Remark 4. The most common way to ensure the condition on the rank of ∂φ
∂u

is to request that 0 is a regular value of φ.

Proof. The proof of this theorem proceeds locally. We will show that, for all t,
there exists a neighborhood of t and a function λ defined on this neighborhood,
satisfying (1). The theorem follows immediately, as the functions thus defined
are unique. Indeed, since ∂φ

∂u has linearly independent rows, the equation in λ(t)
given by (1) has at most one solution for each t. The remarkable fact is that
these solutions exist for all t, and form a continuous function.

To show the theorem locally, we use the inverse function theorem. Given t0,
since ∂φ

∂u has linearly independent rows, we can without loss of generality (by
swapping coordinates if necessary) suppose that the n× n matrix

A =

[
∂φ
∂u

∣∣∣
t0,u0(t0)

0 I

]

is invertible. Now, let Φ(t, u) = (t, φ(t, u), uk+1, . . . , un). It is obvious that

Φ′(t0, u0(t0)) =

[
1 0
∗ A

]
,

which is invertible and so we are in the conditions of the inverse function theo-
rem.

To simplify notation, let us define u2 = (uk+1, . . . , un), so that, for example,
Φ can be written as Φ(t, u) = (t, φ(t, u), u2). Then, by the inverse function
theorem, there exist open sets in Rn+1, say U and V such that:

1. (t0, u0(t0)) ∈ U , and

2. Φ is a C2 diffeomorphism U → V .

Since (t0, u0(t0)) ∈ U and Φ(t0, u0(t0)) ∈ V , by continuity there exists a
neighborhood of t0, say B = ]t0 − δ, t0 + δ[, such that for all t in this neighbor-
hood we have (t, u0(t)) ∈ U and Φ(t, u0(t)) ∈ V . Furthermore, suppose that δ
is small enough such that, for all t ∈ B, for all z ∈ Rn of norm less than some
d, Φ(t, u0(t)) + (0, 0, z) ∈ V . To show that such a δ exists, begin by picking a
neighborhood of Φ(t0, u0(t0)) of the form R = ]t0 − δ0, t0 + δ0[×B2d(0, u

2
0(t0))

such that R is contained in V . Now pick δ < δ0 such that u0(t) differs less
than d from u0(t0) for t within δ of t0. This exists by continuity. Then, for
t ∈ ]t0 − δ, t0 + δ[ and z of norm less than d, we have that∥∥(0, u2

0(t0))−
(
(0, u2

0(t)) + (0, z)
)∥∥ ≤ ‖u2

0(t0)− u2
0(t)‖+ ‖z‖ ≤ 2d.

This shows that Φ(t, u0(t)) + (0, 0, z) ∈ R ⊆ V , which allows us to define
the variation of I at u0 with respect to some variations contained in B. More
specifically, let v : [tstart, tend] → Rn−k be a C∞ function of support contained
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in B. Then, for ε small enough (such that ‖εv‖ ≤ d), for all t ∈ B we have
(t, φ(t, u0(t)), u2

0(t) + εv(t)) ∈ V . Then, we may define uε as

uε(t) =

{
u0(t), t 6∈ supp v,

Ψ(t, φ(t, u0(t)), u2
0(t) + εv(t)), t ∈ B,

where Ψ is defined as follows. Since Φ is of the form Φ(t, u) = (t, φ(t, u), u2),
its inverse must be of the form Φ−1(t, w) = (t, ψ(t, w), w2). We set Ψ(t, w) =
(ψ(t, w), w2). In other words, Ψ =

[
0 I

]
◦ Φ−1, i.e. Ψ is the inverse of Φ with

the time component thrown out.
Since both branches of this definition are open, agree on the intersection, and

each branch is C1, we conclude that uε is also a C1 path. It is also trivial to see
that it satisfies the boundary conditions and that φ(t, uε(t)) = 0. Therefore, we
must have

I(uε) ≥ I(u0)

Now, the standard idea is to take the derivative in ε = 0 and apply Leibniz
to get that a certain integral expression is null. However, for our purposes it is
useful to first split the integral in two parts:

I(uε) =
w

[tstart,tend]\B
f(t, u0, u̇0)dt+

w

B
f(t, uε, u̇ε)dt.

Now, the first expression is constant in ε, so differentiating and applying
Leibniz we get

dI(uε)

dε
=

w

B

∂

∂ε
f(t, uε, u̇ε)dt.

The usual chain rule and integration by parts of the calculus of variation
yields1

dI(uε)

dε
=

w

B

∂f

∂u

∂uε
∂ε

+
∂f

∂ξ

∂u̇

∂ε
dt =

w

B

(
∂f

∂u
+

d

dt

∂f

∂ξ

)
∂u

∂ε
dt.

Note that in the integration by parts we used the fact that partial derivatives
commute, and so

∂u̇ε
∂ε

=
∂2uε(t)

∂ε∂t
=

∂

∂t

∂uε
∂ε

.

The term ∂u
∂ε plays the part of the variation in the usual proof of the Euler-

Lagrange equations. If ∂u
∂ε were arbitrary, we would in fact conclude Euler-

Lagrange. However, they are not. Intuitively, they are arbitrary, though tangent
to the manifold given by the cartesian equations φ = 0. Therefore, one intuits
that the term ∂f

∂u + d
dt
∂f
∂u̇ is always orthogonal to the manifold, which matches

up with the expected conclusion, as we know from vector calculus that the

1Here is where we use the assumption that φ is C2 and that Φ is a C2 diffeomorphism,
because we need that the function ∂f

∂ξ
be C1, and so that u̇ε be C1 in t and ε. To ensure that

this is the case, we require the assumption that Ψ is C2, and so that Φ is a C2 diffeomorphism.
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space orthogonal to a manifold defined by cartesian equations is generated by
∇xφ1, . . . ,∇xφk..

To proceed with the proof, let us investigate ∂uε

∂ε

∣∣
ε=0

. This can be computed
using the chain rule:

∂uε
∂ε

∣∣∣∣
0

=
∂

∂ε
Ψ(t, φ(t, u0(t)), u2

0(t) + εv(t))

∣∣∣∣
0

=
[
0 I

] ∂
∂ε

Φ−1(t, φ(t, u0(t)), u2
0(t) + εv(t))

∣∣∣∣
0

=
[
0 I

]
(Φ−1)′(t, φ(t, u0(t)), u2

0(t))(0, 0, v(t))

=
[
0 I

] (
Φ′(Φ−1(t, φ(t, u0(t)), u2

0(t)))
)−1

(0, 0, v(t))

=
[
0 I

]
(Φ′(t, u0(t)))

−1
(0, 0, v(t)).

Therefore, the conclusion is that, for all smooth v defined in B,

w

B

(
∂f

∂u
+

d

dt

∂f

∂ξ

)[
0 I

]
(Φ′(t, u0(t)))

−1
(0, 0, v(t))dt = 0.

Now, we may apply at once the Fundamental Lemma of the Calculus of
Variations, to conclude that the last n−k coordinates of the (n+1)-dimensional
row-vector (

∂f

∂u
+

d

dt

∂f

∂ξ

)[
0 I

]
(Φ′(t, u0(t)))

−1

are null. In other words, we can write this vector in the form(
∂f

∂u
+

d

dt

∂f

∂ξ

)[
0 I

]
(Φ′(t, u0(t)))

−1
= (`(t), λ(t), 0)ᵀ,

for some ` : B → R and λ : B → Rk. Note that these functions are continu-
ous, as they are a product of continuous functions, and we cannot ensure more
regularity under only C2 assumptions because of the d

dt
∂f
∂ξ term.

To finalize, let us try to solve for ∂f
∂u + d

dt
∂f
∂ξ , which we will temporarily

refer to as T (t). Simply put, multiplying by Φ′ and applying matrix block
multiplication,

[
0 T (t)

]
= (`(t), λ(t), 0)ᵀΦ′(t, u0(t)) = (`(t), λ(t), 0)ᵀ

1 0 0

∗ ∂φ
∂u

∗ 0 I

 .
Therefore, we conclude T (t) = λ(t)ᵀ ∂φ∂u , and so the proof is complete. �

Example 2. Let us reproduce example 1, i.e. to find paths of minimal length
on the unit sphere. In this case,

φ = x2 + y2 + z2 − 1,

f =
√
ẋ2 + ẏ2 + ż2.
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Our variables are x(t), y(t), z(t) and λ(t), and our equations are

∂f

∂x
− d

dt

∂f

∂ẋ
= λ(t)

∂φ

∂x
,

(Same for y and z),

φ = 0,

and these equations simplify to

− d

dt

ẋ

f
= 2λ(t)x,

(Same for y and z),

x2 + y2 + z2 = 1,

As in example 1, let us make the simplifying assumption of unit speed
parametrizations, i.e. f = 1. With this simplification, our equations become

d2

dt2
(x, y, z) = −2λ(t)(x, y, z),

x2 + y2 + z2 = 1.

In what follows, let q = (x, y, z). The previous equations state that

q̈ = −2λq, ‖q‖2 = 1.

If we can show that λ is constant equal to 1/2, q obeys the Harmonic Oscil-
lator equation, and it is easy to then write out the solutions explicitly as sines
and cosines to obtain great circles. Therefore, it suffices to try and solve for
λ. To this effect, we use the following trick. Since we are assuming that q has
constant norm, we get that 〈q̇, q〉 = 0 by the product rule. Differentiating this
expression a second time, we get

0 =
d 〈q̇, q〉

dt
= 〈q̈, q〉+ 〈q̇, q̇〉 .

Since q̈ = −2λq and we are assuming a unit speed parametrization, this
gives

0 = −2λ+ 1.

Consequently, λ is constant equal to 1/2, and the example is complete.

4 Nonholonomic Constraints

4.1 Introduction

In the previous section, we went over problems with holonomic (pointwise) con-
straints, i.e. optimization problems where the path u to be optimized must
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Figure 2: The coordinate system for the rolling upright disk.

satisfy k (independent) cartesian equations of the form φ(t, u) = 0. For a non-
holonomic problem, the constraints are now differential equations of the form
φ(t, u, u̇) = 0.

Problems with nonholonomic constraints occur often when describing phys-
ical systems. The classical example is that of an upright disk rotating without
slipping on the xy plane. It is described by four coordinates: the (x, y) coordi-
nates of the disk’s center, the angle of the disk about the vertical axis, which
we call ϕ, and the disk’s rotation about its normal axis, which we call θ. See
figure 4.1.

Then, even though all four coordinates can attain any number, they are not
independent. If the θ angle changes a little bit, that induces a change in x and
y that depends on ϕ. In physics texts, this condition is often described using
infinitesimals, as follows

dx = cosϕdθ, dy = sinϕdθ.

For our mathematical purposes, we ‘divide by dt’ to obtain the ordinary
differential equation {

ẋ = cosϕ θ̇,

ẏ = sinϕ θ̇.

Therefore, if we intend to model the possible paths such a rolling disk might
take, they ought to satisfy this differential equation.
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In dealing with holonomic constraints, it was essential to assume that the
equations of constraint were independent, in the sense that the space-coordinate
derivative had full rank. Such an assumption is also necessary here, except
that as we now wish to ensure that a collection of differential equations is
independent, we consider the derivative in the velocity-coordinate.

Problem Statement. A problem of optimization with nonholonomic constraints
is that in which we intend to minimize the value of the functional I(u) =r
f(t, u, u̇)dt under the constraints:

1. u has prescribed initial and final conditions, i.e. u(tstart) = ustart and
u(tend) = uend, and

2. u satisfies the equation φ(t, u, u̇) = 0, where

φ ≡ φ(t, u, ξ) : R× Rn × Rn → Rk.

The k differential equations φ = 0 are said to be independent if the k × n
matrix given by ∂φ

∂ξ has rank k, i.e. has linearly independent rows.

Remark 5. In most applications, φ is given in the so-called Pfaffian form, i.e.

φ(t, u, ξ) = A(t, u)ξ + b(t, u),

for some matrix A and vector b. In this case, the requirement of independence
of the equations corresponds to requiring that the rows of A are linearly inde-
pendent.

Remark 6. The definition we have just given is not universal. Indeed, in
physics, the term nonholonomic is usually reserved for constraints which cannot
be made holonomic. So, for example, a constraint of the form dx = dy + dz
would not be nonholonomic, because it is equivalent to x = y + z +C for some
fixed C.

However, in this document the distinction is not useful, and we will use the
term nonholonomic for any problem whose constraints are differential equations.
Indeed, we consider holonomic problems a subset of nonholonomic problems: see
remark 7 below.

Remark 7. A wide class of problems can be seen as nonholonomic. For exam-
ple, any holonomic problem can be seen in this framework.

Consider a holonomic problem with restriction φ(t, u) = 0. The obvious
way to transform it into a nonholonomic problem would be to simply write
φ̃(t, u, ξ) = φ(t, u). However, φ̃ does not satisfy the independence requirement
for nonholonomic problems, which means that our methods will not be appli-
cable. Instead, a better way to turn a holonomic problem into a nonholonomic
one would be to note that φ(t, u) is constant, and so, differentiating in time,
∂φ
∂u u̇ + ∂φ

∂t = 0. This can be seen as a nonholonomic constraint in Pfaffian
form, and it is easy to see that independence of the holonomic equations φ = 0
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is equivalent to independence of the nonholonomic equations ψ = 0, where

ψ(t, u, ξ) = ∂φ
∂u

∣∣∣
t,u
ξ + ∂φ

∂t

∣∣∣
t,u

(see remark 5).

Another class of problems that can be seen in nonholonomic form is prob-
lems with functional constraints. That is, suppose we wish to consider paths u
satisfying

r
g(t, u, u̇)dt = c. Such a constraint can be written as a differential

equation by adding an auxiliary quantity, which we call j(t), which representsr t
start

g. Then, we add the constraints

j(tstart) = 0, j(tend) = c,
dj

dt
= g(t, u, u̇).

4.2 Valid Displacements

The strategy used to prove the basic form of the Euler-Lagrange equations,
which consists of adding a perturbation to a path u0 which is assumed to min-
imize I(u), requires vector space structure, which is lost when we restrict our
paths to those satisfying nonlinear conditions. In the holonomic case, this prob-
lem was recoverable by using the inverse/implicit function theorem to locally
‘distort the space into Rn’.

Unfortunately, such strategies fall completely flat when passing to the non-
holonomic case. Because of the differential nature of the restrictions, small
perturbations will propagate from the place of perturbation to the end of the
path. The easiest way to see this is to imagine a problem in which the con-
straint is given by ‖u̇‖ = 1. Then, a straight line cannot possibly be perturbed
without changing the initial or final location. This means that we necessarily
have to give up on the strategy of considering small admissible perturbations of
a minimal path.

Therefore, our strategy will be to consider perturbations that keep only the
start of the path fixed. We will concern ourselves with the end later on. But
even lifting this restriction, it is not obvious that any nontrivial perturbation
exists, or how to construct it. It is here that the hypothesis of independence of
the differential equations comes into play, because it allows is to apply a kind
of implicit/inverse function theorem, which we will now state. The proof of this
theorem is left to appendix A. For an alternative proof, we direct the reader
to [2, §3].

Theorem 3. Let u : [tstart, tend] → Rn be a Cp curve, for p ∈ N0, Ω an open
subset of X = R×Rn×Rn such that (t, u(t), u̇(t)) ∈ Ω for all t, and φ ≡ φ(t, u, ξ)
a Cp+1 function φ : Ω→ Rk.

Suppose that for all t the matrix ∂φ
∂ξ has rank k. Then there exist open subsets

of X, say U and V , and a function φ̃ : U → Rn, such that

• U contains all points of the form (t, u(t), u̇(t)),

• U is contained in Ω,

• The first k coordinates of φ̃ agree with φ
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• The function given by

Φ: U → V

(t, u, ξ) 7→ (t, u, φ̃(t, u, ξ))

is a Cp diffeomorphism.

We will now use this theorem to build our perturbations of a path. Indeed,
given a path u0, construct the U , V , and Φ given above. Let the inverse of Φ
be denoted (t, u, ξ) 7→ (t, u, ψ(t, u, ξ)).

We can use ψ to build a valid displacement of u as follows. We wish to find
a perturbation of u, let’s say ũ, such that φ(t, u, u̇) = 0. Therefore, φ̃(t, u, u̇)
is of the form (0, w(t)) for some v. This can be solved for u̇, and we get the
differential equation

u̇(t) = ψ(t, u(t), w(t)).

We can now use ODE theory to guarantee that this has a solution for w
‘close enough to w0’, for ‘w0 corresponding to the path u0’.

Theorem 4. Let p ∈ N+.2 Let u be a Cp+1 path satisfying φ(t, u, u̇) = 0 for φ
a Cp function such that ∂φ

∂ξ has linearly independent rows. Extend φ to φ̃ (in a

Cp way) using the methods of theorem 3. Let φ̃(t, u, u̇) = (0, w(t)). Then, given
a curve v : [tstart, tend] → Rn−k of class Cp in this interval, for real numbers b
close enough to zero the following ODE has a unique solution with (t, u, u̇) ∈ U :{

φ̃(t, u, u̇) = (0, w(t) + b v(t)),

u(tstart) = ustart.

For b small enough that this exists, we refer to this solution as uvb (t), or ub
if v is implied.

The resulting function of two parameters (b and t) is Cp.

Proof. We begin by applying theorem 3 to φ, to obtain the U , V and Φ therein
described. Let

Φ−1(t, u, ξ) = (t, u, ψ(t, u, ξ)).

Note that all points of the form (t, u(t), 0, w(t)) are in V , for t ∈ [tstart, tend].
The set of these points form a compact set, and it is known from metric space
theory that there exists a δ > 0 such that for all z with ‖z‖ < δ we have
(t, u, 0, w)+z ∈ V for all t. Consequently, if b < δ/max‖v‖, (t, u, 0, w+bv) ∈ V ,
and so3

φ̃(t, u, u̇) = (0, w(t) + b v(t)) iff u̇(t) = ψ(t, u(t), w(t) + b v(t)).

Therefore, (for small enough b) our ODE is of the form{
u̇(t) = F (t, u(t), b),

u(tstart) = ustart,

2We will only use the case p = 1.
3It is subtle, but this ‘if and only if’ is where we use the hypothesis that (t, u, u̇) ∈ U .
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to which elementary ODE theory is applicable. Note that since ψ, w, and v are
Cp, F is also Cp. In particular, it is C1, and so (see [5, p.74]) the solution exists
and is unique for small enough t. Moreover, it is known to exist in [tstart, tend]
for b = 0 (it is u0 in this case), and consequently (see [5, thm.2, p.84]) the
solution exists and is unique for t ∈ [tstart, tend], for b close enough to 0.

To show differentiability in these two variables, the cited reference proves
only the case p = 1. However, the methods therein found can be used to prove
inductively for all p ∈ N+ that if F is Cp then u is also Cp in time and the
parameters. �

Remark 8. Though the above proof was stated for only one parameter b, it
could easily be stated and extended for several parameters and v’s. In other
words, we could have considered the ODE{

φ̃(t, u, u̇) = (0, w(t) + b1 v1(t) + · · ·+ bqvq(t)),

u(tstart) = ustart.

The same result and notation applies, except that we collect the functions
vi in a (n − k) × q matrix we call V (t), and the scalars bi form a vector we
call b̄. This will be crucial in section 4.4, which contains the main result of this
document: the multiplier rule.

4.3 First Variation

Consider a one-parameter family of arcs of the form uvb (t), constructed as de-
scribed above. We will abbreviate this to ub(t). We will now investigate the

behavior of I(ub) around zero: more precisely, we will study dI(ub)
db

∣∣∣
0
, i.e. the

first variation of I along this family.
Recall that I(ub) is defined as

r
f(t, ub(t), u̇b(t))dt, and since this is integra-

tion over a compact interval of a C1 function in both its variables (assuming f
is C1 and ub(t) is C2 jointly in both variables) Leibniz’ rule is applicable and so

dI(ub)

db
=

w end

start

∂

∂b
f(t, ub, u̇b)dt =

w end

start

∂f

∂u

∂ub
∂b

+
∂f

∂ξ

∂u̇b
∂b

dt.

If we now assume that f is C2, the usual integration by parts of the calculus
of variations can be performed. In doing so, we are implicitly using the fact
that, since u is C2 in b and t, the order of derivatives is irrelevant, and thus
∂u̇b

∂b = ∂2ub(t)
∂t∂b . We conclude

dI

db
=

w end

start

(
∂f

∂u
− d

dt

∂f

∂ξ

)
∂ub
∂b

dt+

[
∂f

∂ξ

∂ub
∂b

]end

start

.

Finally, note that we are keeping the first end of u fixed, so that ub(tstart)
is constant and so ∂ub

∂b

∣∣
start

= 0. Therefore, the bracket term can be simplified,
yielding

dI

db
=

w end

start

(
∂f

∂u
− d

dt

∂f

∂ξ

)
∂ub
∂b

dt+
∂f

∂ξ

∣∣∣∣
end

∂ub
∂b

∣∣∣∣
end

. (2)
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In order to avoid writing a burdensome amount of terms, we now introduce a
notation for the ‘Euler-Lagrange derivative’. Let Θ be the differential operator
given by

Θ(f) :=
∂f

∂u
− d

dt

∂f

∂ξ
.

With this notation, (2) can be written

dI

db
=

w end

start
Θ(f)

∂ub
∂b

dt+
∂f

∂ξ

∣∣∣∣
end

∂ub
∂b

∣∣∣∣
end

. (3)

There exists a trick that will later be used to get rid of the non-integral
terms, which we now describe. Recall that ub satisfies the differential equation

φ̃(t, ub(t), u̇b(t)) = (0, w(t) + b v(t)),

where φ̃(t, u0, u̇0) = (0, w(t)). This actually consists of n differential equations,
which can be added together. Indeed, if µ(t) = (µ1(t), µ2(t)) is a regular enough
time-dependent n-vector,

µ · φ̃(t, u, u̇) = µ2 · w + b µ2 · v.
Taking the partial derivative in b, we obtain

µ · ∂φ̃
∂u

∂u

∂b
+ µ · ∂φ̃

∂ξ

∂u̇

∂b
= µ2 · v,

which can be rewritten in terms of Θ as

Θ(µ · φ̃)
∂u

∂b
= µ2 · v −

d

dt

(
∂(µ · φ̃)

∂ξ

∂u

∂b

)
.

Integrating, this yields

w end

start
Θ(µ · φ̃)

∂u

∂b
dt =

w end

start
µ2 · vdt−

[
∂(µ · φ̃)

∂ξ

∂u

∂b

]end

start

.

Using the same trick as before, the bracket can be simplified to get
w end

start
Θ(µ · φ̃)

∂u

∂b
dt =

w end

start
µ2 · vdt− µ(tend) · ∂φ̃

∂ξ

∣∣∣∣
end

∂u

∂b

∣∣∣∣
end

.

Adding and subtracting this expression to a multiple of dI
db , using (3) we get

`0
dI

db
=

w end

start
Θ(`0f + µ · φ̃)

∂ub
∂b

dt−
w end

start
µ2 · vdt

+

(
`0
∂f

∂ξ

∣∣∣∣
end

+ µ(tend)ᵀ
∂φ̃

∂ξ

∣∣∣∣
end

)
∂ub
∂b

∣∣∣∣
end

. (4)

Even though this expression looks more complex than (3), it has a large
degree of freedom to exploit: µ has been left arbitrary (as long as it is C1 so
that the Θ term exists). For example, we could cross out the non-integral term
by choosing an appropriate value for µ(tend). We will not do so yet, however,
because an even more appropriate choice will present itself in due time. The
mysterious `0 coefficient appears for technical reasons, and is necessary in a
proof. If the reader is mystified by its presence, he or she may ignore it for now.
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4.4 The Multiplier Rule

In this section, we will finally prove the necessary condition for a minimum that
we have been building up to: the Lagrange Multipler Rule.

Suppose that that u0 is a minimum of the functional I over the class of
paths such that u(tstart) = ustart, u(tend) = uend and φ(t, u, u̇) = 0, under the
hypothesis that f is C2, u0 is C2 and φ is C3 and that ∂φ

∂ξ has full rank over
the path u0.

We might be tempted to apply the formula (3) or (4) for dI
db and claim that

dI
db = 0 for all v, since u0 minimizes the value of I. However, that is neglecting
the requirement that u(tend) = uend: since the variations we have created break
this requirement, I(ub) has no obligation to be minimal at b = 0. One could
consider restricting themselves to variations v that guarantee the boundary
conditions, but such v might not even exist: consider the example where u0 is
a straight line and φ(t, u, ξ) = ‖ξ‖.

To get around this, consider an arbitrary collection v1, . . . , vn+1 of smooth
functions [tstart, tend] → Rn−k, which we collect into the matrix V (t). We can
see I as function in n+ 1-variables, given by the vector b̄ (see remark 8). Fur-
thermore, we can see u(tend) as a function of b̄ as well, and so we can consider
the function (with n+ 1 variables and values in Rn+1) given by

b̄ 7→ (I(uVb̄ ), ub̄(tend)). (5)

This function is C1 in a neighborhood of the origin. To see why, first note
that theorem 4 guarantees that ub̄(t) is C2 as a function of both parameters, and
so in particular is C1 if we fix t = tend. This shows that the last n coordinates
of (5) are C1. It now suffices to show that I(uV

b̄
) is C1. To do so, note that

f is C1 in its three arguments: t, uV
b̄

(t) and u̇V
b̄

(t). Furthermore, since all its

arguments are C1 in t and b̄ (here we use that φ is C3 to show that u is C2

in t and b̄ and so u̇ is C1 in b̄), we get that so is the composite, and Leibniz’
theorem guarantees that an integral in t of a C1 function in t and b̄ is C1 in b̄.

Since (5) is C1 from n+ 1-dimensional space to n+ 1-dimensional space, we
are in conditions of applying the inverse function theorem. We conclude that
if the jacobian of (5) at b̄ = 0 were invertible, (5) would be a diffeomorphism
in a neighborhood of the origin. But this contradicts the assumption that u0

is a minimum of I, for in this case we could find b̄ such that ub̄(tend) = uend,
and I(uV

b̄
) is slightly smaller than I(u0). In other words, under the assumption

that u is a minimum of I, the following matrix has linearly dependent columns:
(evaluated at b̄ = 0)

∂

∂b1
I(uVb̄ ) . . .

∂

∂bn+1
I(uVb̄ )

∂

∂b1
uVb̄ (tend) . . .

∂

∂bn+1
uVb̄ (tend)

 .
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Note that, at b̄ = 0, these columns can be simplified:
d

db
I(uv1b ) . . .

d

db
I(u

vn+1

b )

d

db
uv1b (tend) . . .

d

db
u
vn+1

b (tend)

 .
Since this holds for arbitrary collections v1, . . . , vn+1, we can actually con-

clude a surprisingly strong result. Let q be the maximal possible number of
v1, . . . , vq such that the following matrix has linearly independent columns

A =


d

db
I(uv1b ) . . .

d

db
I(u

vq
b )

d

db
uv1b (tend) . . .

d

db
u
vq
b (tend)

 .
By the above, q < n+1. Therefore, for any v, the vector ( d

dbI(uvb ),
d
dbu

v
b (tend))

is a linear combination of the columns of A, i.e. of the form Aw for some
w ∈ Rn+1.

Since the matrix A has more rows than columns, there exists a row-matrix,
say E =

[
`0 e

]
=
[
`0 e1 . . . en

]
, such that EA = 0. By the previous

paragraph, we conclude that for this specific collection of scalars(!), for any
smooth v we have

`0
d

db
I(uvb ) + e

d

db
uvb (tend) = 0. (6)

We can now rewrite the variation in I using (4) to get

`0
dI

db
=

w end

start
Θ(`0f + µ · φ̃)

∂ub
∂b

dt−
w end

start
µ2 · vdt

+

(
`0
∂f

∂ξ

∣∣∣∣
end

+ µ(tend)ᵀ
∂φ̃

∂ξ

∣∣∣∣
end

)
∂ub
∂b

∣∣∣∣
end

,

where, as the reader will recall, µ has been left as an arbitrary C1 function.
Substituting in (6), we obtain

w end

start
Θ(`0f + µ · φ̃)

∂ub
∂b

dt−
w end

start
µ2 · vdt

+

(
`0
∂f

∂ξ

∣∣∣∣
end

+ µ(tend)ᵀ
∂φ̃

∂ξ

∣∣∣∣
end

+ e

)
∂ub
∂b

∣∣∣∣
end

= 0, for all regular v. (7)

Even though this looks like a very complicated expression, this is where the
arbitrariness of µ comes into play. For instance, we can now pick µ(tend) to
make

`0
∂f

∂ξ

∣∣∣∣
end

+ µ(tend)ᵀ
∂φ̃

∂ξ

∣∣∣∣
end

+ e = 0.

This is possible because ∂φ̃
∂ξ is invertible. Note that this choice is independent

of v.
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As a further simplification, we may wish to ensure that Θ(`0f + µ · φ̃).
Expanding the expression, we get the following linear ODE:

`0
∂f

∂u
+ µᵀ ∂φ̃

∂u
= `0

d

dt

∂f

∂ξ
+ µᵀ d

dt

∂φ̃

∂ξ
+ µ̇ᵀ ∂φ̃

∂ξ
, (8)

where all partial derivatives are evaluated on the vector (t, u0(t), u̇0(t)). Since
∂φ̃
∂ξ is invertible, this can be rewritten as a linear ODE of the form

µ̇(t) = A(t)µ(t) +B(t). (9)

Classical ODE theory guarantees that (9) has unique solution for all time,
given initial conditions (see [5, pp. 60,61]). Therefore, we may construct a
concrete µ as the unique solution toΘ(`0f |t,u0(t),u̇0(t) + µ(t) · φ̃(t, u0(t), u̇0(t)),

`0
∂f
∂ξ

∣∣∣
end

+ µ(tend)ᵀ ∂φ̃∂ξ

∣∣∣
end

+ e = 0.
(10)

For this particular µ, (7) simplifies to

w end

start
µ2 · vdt = 0 for all regular v.

We may now apply the FLCV to get that the last k coordinates of µ are
null, and so

Θ(`0f + µ1 · φ) = 0

This is good, because this result does not depend on any arbitrary choices,
such as the extension of φ to φ̃. Therefore, we have the first version of the
Lagrange multiplier rule:

Theorem 5. Let u0 be a C2 minimum of the optimization problem

min I(u) =
w
f,

where f is C2 and u varies over C1 paths satisfying u(tstart) = ustart, u(tend) =
uend, and the k differential equations given by

φ(t, u(t), u̇(t)) = 0,

where φ is a C3 function with k coordinates. Suppose that these k equations
are independent differential equations, in the sense that ∂φ

∂ξ has rank k over the

whole path. Then, there exists a constant `0 and k C1 functions, say λ1, . . . , λk,
such that the following differential equation is satisfied in [tstart, tend].

`0
∂f

∂u
+ λ · ∂φ

∂u
=

d

dt

(
`0
∂f

∂ξ
+ λᵀ

∂φ

∂ξ

)
. (11)

Furthermore, it is not the case that `0, λ1, . . . , λk are all null.
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Remark 9. The condition that not all be null is essential to stop the theo-
rem from becoming a triviality: otherwise, the trivial solution would always be
possible.

To show that not all are null, suppose that `0 is null. Then, by (10) λ
satisfies

λ(tend)ᵀ
∂φ̃

∂ξ

∣∣∣∣
end

+ e = 0.

Since by hypothesis the row-matrix E =
[
`0 e

]
is non-null, and we are

assuming that `0 is null, and so e cannot be, and therefore λ(tend) cannot be as
well. By continuity, we conclude that λ cannot be the null function.

Remark 10. As it ought to, the problem posed by (11) has as many equations
as it has variables, if we consider the solution of the problem to be the process
of finding the u0. Indeed, we have n+ k functions to find:

u1, . . . , un, λ1, . . . , λk,

and k+n equations: k are given by the condition φ(t, u, u̇) = 0, and n are given
by (11). It is by solving this problem in n+ k variables and equations that one
usually solves this kind of variational problems.

4.5 Normality and Abnormality

Consider the parameter `0 in the Lagrange multiplier equations, (??). There
exist two possible cases:

• If `0 6= 0, the whole equation can be divided by `0, yielding solutions to
the equation

∂f

∂u
+ λ · ∂φ

∂u
=

d

dt

(
∂f

∂ξ
+ λ · ∂φ

∂ξ

)
. (12)

This is the so-called normal case;

• If `0 = 0, we obtain a nontrivial solution to the equation

λ · ∂φ
∂u

=
d

dt

(
λ · ∂φ

∂ξ

)
. (13)

This is the so-called abnormal case.

The solutions to the Lagrange multiplier equation can be divided into two
types: normal solutions, wherein `0 6= 0, and abnormal solutions, where `0 = 0.

An analogy can be made between the distinction normal/abnormal solutions
and the distinction interior/border of a manifold. In some sense, as the name
would indicate, abnormal solutions are ‘undesired’, or uncommon. In fact, note
that the existence (or not) of abnormal solutions does not depend on the func-
tional being considered, but only on the constraints placed on the paths! This is
by analogy to optimization in calculus, where, besides checking critical points of
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the function to be optimized, one must usually also check the border of the space
for extrema. According to Brunt [6, p. 129], the usual approach to variational
problems with nonholonomic constraints is to work under the assumption that
the problem is normal, i.e. that there are no abnormal extrema, and only after-
wards study the abnormal solutions and compare them to the normal critical
points found.

Geometrically, abnormal solutions correspond to solutions that cannot be
perturbed. For example, in a constant-speed nonholonomic problem, a straight
line cannot be perturbed while preserving the boundary conditions, while a
non-straight line can be slightly perturbed. This particular case can easily be
verified:

Theorem 6. Let φ(t, u, ξ) = ξ2 − 1. Then, u is an abnormal solution to the
Euler-Lagrange equations if and only if it is a straight line.

Proof. The equation to be solved is given by (13), which in this case reduces
to

0 =
d(2λu̇)

dt
,

i.e. the vector λu̇ is constant. Furthermore, we are under the constraint ‖u̇‖ = 1,
so taking the norm of λu̇ we obtain that λ is constant, and by nontriviality of the
solution must be a constant different from zero. Therefore, u̇ must be constant,
and so u is a (speed 1) straight line. �

4.6 Example of application

Let us apply the method of Lagrange multipliers to Dido’s problem, of finding
a curve of fixed length L > 2, starting at (−1, 0) and ending at (1, 0), that
encompasses the most area between it and the x axis. To do so, we encode the
problem as a variational problem with nonholonomic constraints.

In order to consider curves of fixed length L, instead of considering an in-
tegral constraint on the paths, we will consider paths of unit speed defined on
[0, L]. That is, if we let u = (x, y), our restrictions are given by

x(0) = −1, x(L) = 1, y(0) = y(L) = 0, ẋ2 + ẏ2 − 1 = 0. (14)

To measure the area encompassed by the curve4 u = (x, y), the usual trick
is to apply Green’s formula on the integral

r
Ω

1dxdy to get a formula for the
area such as

I(u) = −
w L

0
xẏdt.

Let us now find the Euler-Lagrange equations. By theorem 6, the abnormal
solutions to the Euler-Lagrange equations are straight lines, and straight lines
cannot satisfy the boundary conditions as the start and end points are too

4The usual remark about the equivalence of maximization and minimization problems
applies.
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close together, at a distance of 2 < L. Therefore, we need only consider the
Euler-Lagrange equations for the normal case, which are

∂f

∂x
+ λ

∂φ

∂x
=

d

dt

(
∂f

∂ẋ
+ λ

∂φ

∂ẋ

)
,

∂f

∂y
+ λ

∂φ

∂y
=

d

dt

(
∂f

∂ẏ
+ λ

∂φ

∂ẏ

)
,

ẋ2 + ẏ2 = 1,

where λ is a C1 real function, and u satisfies (14). Expanding the partial
derivatives, 

−ẏ = 2λ̇ẋ+ 2λẍ,

0 = −ẋ+ 2λ̇ẏ + 2λÿ,

ẋ2 + ẏ2 = 1.

(15)

To solve these equations, note that from the restriction ẋ2 + ẏ2 = 1 we
conclude

2λẍẋ+ 2λÿẏ = 0.

Therefore, adding appropriate multiples of the other two equations, we ob-
tain

���−ẏẋ = 2λ̇ẋ2 +���−ẋẏ + 2λ̇ẏ2,

and using ẋ2 + ẏ2 = 1 we get
λ̇ = 0.

Consequently, λ is a constant, and (15) reduces to
ẏ = −2λẍ,

ẋ = 2λÿ,

ẋ2 + ẏ2 = 1.

(16)

Consequently, ẋ = 2λÿ = −4λ2 ˙̈x, and so ẋ is of the form

ẋ = A sin(2λt) +B cos(2λt).

If λ = 0, x would be a constant and so ẍ = 0, implying ẏ = 0 and so (x, y)
is constant, contradicting the hypothesis of unit speed. Therefore, λ 6= 0 and so
we can integrate ẋ to get

x = A′ sin(2λt) +B′ cos(2λt) + C,

for A′ = 1
2λB and B′ = − 1

2λA. Integrating ẏ = 2λẍ, we get

y = A′ cos(2λt)−B′ sin(2λt) + C ′.

We conclude that the curve (x, y) describes a circle around the point (C,C ′),
and so the (multiple) solutions to the Euler-Lagrange equations are unit speed
circle sections starting at (−1, 0) and ending at (1, 0). Further investigation
would be necessary to find expressions for these circles and to discover which of
them is the best candidate for a maximum.
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4.7 Further reading

As mentioned in the introduction, this proof is, for the most part, a particu-
larization of the proof found in Bliss [1, pp. 187-202]. We direct the interested
reader there, as the theorem is stated and proved in much, much greater general-
ity: the paths considered are sectionally C1, the endpoints of the curves are not
fixed but rather obey some set of equations (imagine a chain with endpoints on
a rail), tstart and tend are likewise not fixed, and the functional to be optimized
might have a term depending on the endpoints. It is reasonably well-written,
though in a terse style which, when combined with unusual notational conven-
tions (e.g. the Euler-Lagrange equations are written in integral form) might
leave a first-time reader perplexed. I certainly was.

The section on normality and abnormality was loosely based on Brunt [6,
pp. 128,129], which also has a discussion of the (non)applicability of the La-
grange multiplier method to nonholonomic problems in mechanics, as well as
further bibliographic references.

Appendix A An implicit function-like theorem

In this appendix, we prove the following auxiliary result, which was used in
section 4.2

Theorem 3. Let u : [tstart, tend] → Rn be a Cp curve, for p ∈ N0, Ω an open
subset of X = R×Rn×Rn such that (t, u(t), u̇(t)) ∈ Ω for all t, and φ ≡ φ(t, u, ξ)
a Cp+1 function φ : Ω→ Rk.

Suppose that for all t the matrix ∂φ
∂ξ has rank k. Then there exist open subsets

of X, say U and V , and a function φ̃ : U → Rn, such that

• U contains all points of the form (t, u(t), u̇(t)),

• U is contained in Ω,

• The first k coordinates of φ̃ agree with φ

• The function given by

Φ: U → V

(t, u, ξ) 7→ (t, u, φ̃(t, u, ξ))

is a Cp diffeomorphism.

The kernel of the proof is the following lemma:

Lemma 1. Let A(t) be a variable k × n matrix, for t ∈ [tstart, tend]. Suppose
that A is a Cp function for some p ∈ N0. Then, it is possible to add n − k
(variable) rows to A, yielding a function Ã(t), such that Ã is Cp and invertible
for all t.
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Proof. To prove this lemma, we will actually prove something stronger yet.
We will show that if k < n then there exists v(t), different from zero, defined
on [tstart, tend] such that v is orthogonal to all rows of A. Such a v can clearly
be appended as a row to A, creating a (k + 1) × n matrix of rank k + 1, and
repeating the process n− k times we obtain the desired Ã.

The main trick in this proof is that, locally, such a v is determined uniquely
by n−k well-chosen coordinates. Indeed, we wish to solve the equation Av = 0.
We know from linear algebra that there exists a k×k invertible minor of A (which
corresponds to the pivots in gaussian elimination). Without loss of generality
we can suppose that, for some fixed t1, this minor is the leftmost, i.e. given t1
we can by reordering of coordinates assume that A(t) =

[
A1(t) A2(t)

]
, with

A1(t1) invertible. Of course, by continuity of the determinant, A1 is actually
invertible for t in a neighborhood of t1.

Consequently, the problem can be solved easily in a neighborhood of tstart.
Indeed, choose vk+1(t), . . . , vn(t) arbitrarily, as long as they are not all zero, and
v1(t), . . . , vk(t) is uniquely determined as

(v1, . . . , vk) = −A1(t)−1A2(t)(vk+1, . . . , vn).

Note that if the vk+1, . . . , vn are chosen to be Cp functions, then v is also
Cp. This uses the well-known fact that if an invertible matrix is Cp then so is
its inverse, by the cofactor formula.

To solve the problem globally, let us consider the following number:

t0 = sup{ t ∈ [tstart, tend] | There exists v of class Cp defined on [tstart, t]
satisfying the hypotheses of the theorem

}.

We have just shown that t0 > tstart. Now, we will show that t0 = tend.
Suppose that t0 < tend. Then, consider an invertible k × k minor of A(t0),

which we will again suppose without loss of generality is A1 above. Suppose A1

is invertible for t in a neighborhood of t0, say V = ]t0 − δ, t0 + δ[. Pick some
number τ strictly between t0 and t0 − δ. Then, by definition of supremum, we
know that there exists a v satisfying the hypotheses of the theorem defined up
until τ . However, by the paragraph at the start of the proof, such a v is uniquely
determined on V by its last n − k coordinates. Therefore, all one has to do is
to extend vk+1, . . . , vn from [tstart, τ ] to [tstart, t+ δ/2], say, in a Cp way, taking
care to avoid zero. The Cp extension can be done by considering the Taylor
expansion of each vi at τ and extending it with that formula. To avoid zero,
pick a coordinate vi such that vi(τ) 6= 0, and add a large enough multiple of
±(x−τ)p+1. Then, we have just defined a nonzero v(t) such that Av = 0 on the
interval [tstart, t0 + δ/2], contradicting the hypothesis that t0 was the supremum
of that set.

This concludes the proof that t0 = tend. Clearly this proof can be easily
adjusted to show that there exists v(t) defined over [tstart, tend], Cp and never
null, such that Av = 0. Therefore, the proof is complete. �
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Proof of theorem 3. Define A(t) = ∂φ
∂ξ

∣∣∣
t,u(t)

. By hypothesis, A(t) is a k × n
matrix of rank k, and its coordinates are Cp in time. Therefore, we are in the
conditions of lemma 1, and can find a (n − k) × n matrix, let’s say B(t), such

that Ã =

[
A
B

]
is invertible for all t. Furthermore, we may suppose that B is

Cp. Then, we define
φ̃(t, u, ξ) = (φ(t, u, ξ), B(t)ξ).

This function is clearly Cp in all its variables, and well-defined whenever φ
is. Now, put

Φ(t, u, ξ) = (t, u, φ̃(t, u, ξ).

This is a function from Ω ⊆ R2n+1 to R2n+1, and computing the derivative
one easily finds that Φ′(t, u(t), u̇(t)) is always invertible. Therefore, by the in-
verse function theorem, for all t there exists a neighborhood U(t) of (t, u(t), u̇(t))
where Φ is a diffeomorphism. By compactness, a finite number of these is needed
to cover all points of the form (t, u(t), u̇(t)). If we suppose, without loss of gen-
erality, that these neighborhoods are tubular in ξ in R2n+1, then we can ensure
that Φ is a bijection (and thus a Cp diffeomorphism by the IFT) from the union
of these balls (let’s call it U = U(t1) ∪ · · · ∪ U(tN )) to Φ(U) (which we call V ).

To be more specific, suppose that U(t) is of the following form: there exists
an interval ]a, b[ and two radii r1, r2, such that

(t, u, ξ) ∈ U(t) iff t ∈ ]a, b[ , ‖u− u(t)‖ < r1 and ‖ξ − u̇(t)‖ < r2,

where we have extended u in a Cp to an open interval containing [tstart, tend].
This can be done by using the Taylor expansion of u at the ends of the interval.

The tubularity assumption on the neighborhoods can be made without loss
of generality because given an open containing (ti, u(ti), u̇(ti)), one may assume
that it is of the form ]a, b[×W for some open W , decrease the interval to ensure
that (u(t), u̇(t)) is always contained in W , and then set r1 = r2 as the minimum
distance from (u(t), u̇(t)) to the outside of W as t ranges over [a, b].

Now, under the assumption that the U(ti) are tubular, suppose that (t, u, ξ)
and (t′, u′, ξ′) are two points of U such that Φ(t, u, ξ) = Φ(t′, u′, ξ′). If we show
that there exists some U(ti) which contains (t, u, ξ) and (t′, u′, ξ′) then the result
will be proven, since Φ is injective when restricted to U(ti).

Since Φ(t, u, ξ) = Φ(t′, u′, ξ′) we have t = t′ and u = u′. Now, consider the
distance from ξ to u̇(t) and ξ′ to u̇(t). If, say, ξ is closer to u̇(t) than ξ′ is,
then the tubular neighborhood that contains (t, u, ξ′) also contains (t, u, ξ). If ξ
is not closer than ξ′, the same argument can be made with the neighborhoods
swapped. Therefore, these two points are in a neighborhood in which Φ is known
to be injective, and the proof is complete. �
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