
In-Cache Streaming: Morphable Infrastructure

for Many-Core Processing Systems

Nuno Neves, Adrien Mussio, Fabien Gonçalves, Pedro Tomás, and Nuno Roma

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
Rua Alves Redol, 9, 1000-029 Lisboa - Portugal

Abstract. Although conventional cache structures often reduce or mit-
igate the memory wall problem, they often struggle when dealing with
memory-bound applications or with arbitrarily complex memory access
patterns that are hard (or even impossible) to capture with dynamic
prefetching mechanisms. Stream-based communication infrastructures
have proved to efficiently tackle such issues in certain application do-
mains, by allowing the programmer to explicitly describe the memory
access pattern to achieve increased system throughputs. However, most
conventional computing architectures only adopt a single interfacing
paradigm, making it difficult to efficiently handle both communication
approaches. To circumvent this problem, an efficient unification is herein
proposed by means of a seamless adaptation of the communication in-
frastructure, capable of simultaneously providing both address-based and
stream-based models. This newly proposed in-cache streaming infrastruc-
ture is able to dynamically adapt memory resources according to runtime
application requirements, while mitigating the hardware requirements re-
lated to the co-existence of both cache and stream buffers. The presented
experimental evaluation considered arithmetic, bioinformatics and image
processing applications and it showed that the proposed structure is ca-
pable of increasing their performance up to 14x, 5x and 12x, respectively,
with a limited amount of additional hardware resources.

1 Introduction

The ever increasing demand for computational processing power at a significantly
low-energy consumption has pushed the research for alternative heterogeneous
and often specialized many-core processing architectures. However, the design
of such architectures is usually mainly focused on the processing blocks, often
neglecting the power/performance impact of the inherent data transfers and
general data indexing. In fact, a common approach is to rely on conventional
cache structures to avoid the usually high memory access latencies. However,
although they are well suited for compute-bound applications, they struggle
when the application dataset is very large and does not fit in the cache, or
when dealing with memory-bound applications, or even with arbitrarily complex
memory access patterns, where data locality cannot be efficiently exploited.



Several solutions have been proposed to handle those applications and access
patterns, usually relying on efficient prefetching techniques [1,2] and/or stream-
based communication systems capable of handling complex data-patterns [3, 4].
However, although viable, these techniques can hardly deal with certain appli-
cation domains (e.g. those based on graphs, on dynamically indexed procedures
or on non-deterministic/runtime generated data access patterns), whose imple-
mentation is usually more efficient with conventional cache-based approaches.

This duality presents an interesting opportunity to combine both approaches
in a single and adaptable communication infrastructure that is capable of in-
time switching its paradigm to better suit a running application. Moreover, by
combining the advantages of such approaches in a single structure, highly efficient
and adaptable communication systems can be deployed, providing the means for
exploiting both data-locality and complex data access patterns.

Accordingly, a novel in-cache streaming architecture is herein proposed based
on a dynamic adaptation of cache memories at the processing nodes, in order
to exploit both stream-based and address-based communication paradigms with
the same hardware infrastructure. The proposed architecture is based on a hy-
brid in-cache stream controller that takes advantage of a conventional n-way
set-associative cache organization, by making each way individually usable as a
stream buffer, capable of accommodating multiple streams. At the main mem-
ory side, the proposed infrastructure relies on a specially devised shared memory
controller that combines a conventional address-based memory access controller
with an efficient stream generation controller (that deploys the stream-based
communication paradigm previously proposed in [4]). The communication be-
tween all the system’s Processing Elements (PEs) and the main (shared) mem-
ory is assured by a high-performance and low-footprint ring-type Network on
Chip (NoC), supported by a dedicated message-based protocol.

The envisaged approach contrasts to (and complements) other established
strategies based on the sole exploitation of adaptable data-processing struc-
tures. Several examples use dynamic reconfiguration capabilities of nowadays
Field-Programmable Gate Array (FPGA) devices, where the processing infras-
tructures can adapt to the target application by reconfiguring its PEs in run-
time [5–7]. However, such adaptation is usually only applied to the processing
architecture, since the reconfiguration process still results in non-negligible time
overheads and power dissipation that can greatly impact the performance and
energy consumption of the communication infrastructure. Nonetheless, energy-
efficiency has been targeted with the adaptation of the communication subsys-
tem, such as cache architectures with dynamically reconfigurable parameters [8]
(such as size and associativity); power-gated hybrid designs built with combi-
nations of different memory technologies [9]; or partial reconfiguration of local
scratchpad memories into second level caches, to support implicit and explicit
communication [10]. However, although widely adaptable, all these approaches
still incur in inevitable delays in the reconfiguration process and struggle when
dealing with complex memory access patterns. On the contrary, the efficient and
adaptable communication structure that is now proposed is deployed by exploit-



ing a coarser-grained adaptation, that is capable of efficiently and seamlessly
switching between address-based and stream-based communication paradigms.

The proposed in-cache streaming architecture capabilities for prefetching
and data reutilization through stream-based communication were demonstrated
through an experimental evaluation using three benchmark applications. When
compared to a baseline conventional cache setup, the obtained result, with a
system configuration with 16 PEs, show performance increases of up to 14x for
a block matrix multiplication application, 5x for a biological sequence alignment
algorithm and 12x for an histogram equalization kernel.

2 Data Streaming with Compiler-Assisted Prefetching

In many common applications (including memory-bound), the PEs are able to
perform elementary operations much faster than the main memory accesses,
leading to considerable performance losses when off-chip memory modules are
accessed. Although a multi-level cache hierarchy can considerably mitigate such
overheads, it still presents several drawbacks, namely those resulting from the
common utilization of shared communication infrastructures, allied with the in-
herent main memory access concurrency and bus contention; and also those
resulting from the intrinsic characteristics of the executed applications (e.g.
memory-bound kernels or complex memory access patterns), which in turn result
in reduced data-locality exploitation.

2.1 Dynamic and Static Prefetching

Advanced static and dynamic prefetching techniques are often considered to
hide data transfer overheads behind the PEs computation, by fetching data
from memory in advance and storing it in local buffers or caches.

Dynamic prefetching usually relies on complex dedicated modules aggregated
to the PEs (or caches), which analyze the recent memory access pattern and try
to predict future accesses based on prediction heuristics. The most commonly
used techniques are based on stride prefetching, where the prefetcher calculates
the difference (or stride) between the most recent requested addresses and issues
requests to memory for subsequent addresses based on that difference. However,
although such an approach allows a complete abstraction of the prefetching pro-
cedure from the application perspective, it can fall short in arbitrarily complex
access patterns. Moreover, this technique imposes an increased amount of re-
sources, often related to the adopted level of prefetching aggressiveness [1].

In contrast, static prefetching is usually performed with the aid of compile-
time procedures, where the code is pre-analyzed to extract/model the application
memory access pattern. Such information is then fed to on-chip prefetching mod-
ules, which autonomously generate the required memory address sequence. Such
an approach requires far simpler hardware structures, since no on-time analysis is
performed, thus resulting in lower-footprint and more energy efficient controllers,
at the cost of an increased pre-processing effort. Furthermore, static prefetching



Fig. 1. 3D data-pattern descriptor specification, illustrating its (A) tree-based hier-
archical organization, (B) the descriptor parameter encoding, and (C) a pattern de-
scription example. The numbers in (A) indicate the order in which the descriptors are
solved and in (C) the order in which data blocks are accessed.

also promotes the exploitation of highly efficient stream-based communication
means, allied to several other approaches to further improve the communication
efficiency, such as data reutilization and reorganization, complemented with im-
plicit stream manipulation operations [4].

2.2 Stream-based Communication and Data Reutilization

Instead of relying on prefetching structures, stream-based communication sys-
tems rely on dedicated address generation units to pre-fetch the data, according
to pre-determined memory access sequences, and on generating the requested
data stream. Such units are commonly devised based on the fact that, inde-
pendently of their application domain, many algorithms are characterized by
memory access patterns represented by an n-dimensional affine function [11],
where the memory address (y) is calculated based on an initial offset, increment
variables xk and stride multiplication factors, as follows:

y(x1,· · ·,xn) = offset +
n∑

k=1

xk×stridek , xk∈{0, · · · , sizek}

Since such representation allows indexing many regular access patterns, it is
commonly used by Direct Memory Access (DMA) controllers and other similar
data-fetch controllers, although typically restricted to 2D patterns (n=2).

Naturally, to describe other arbitrarily complex memory access patterns,
affine functions with higher dimensionality can be used, and even allied with
hierarchical combinations of several functions, where the affine functions in the
higher levels of the hierarchy are used to calculate either the offset or the stride
of the functions in the lower levels. Hence, each complex data stream can be de-
fined by a set of descriptors, each encapsulating the set of parameters required
to generate the sequence of addresses at a given hierarchy level.

Accordingly, the herein proposed stream-based infrastructure adopts the 3D
tree-based descriptor specification, previously proposed in [4] (depicted in Fig. 1).
Such memory access pattern is represented by the tuple {offset, hsize, stride,
vsize, span, dsize, level, next}, specifying the starting address of the first



Fig. 2. Morphable communication infrastructure overview (A), comprising the pro-
posed In-Cache Stream controllers at the PEs interface, the main memory controller
and a ring-based NoC. The main memory controller is composed of a SMC (B), re-
sponsible for generating/storing data stream to/from the main memory, to which the
address generation is performed by a dedicated DTC (C).

memory block (offset), the size of each contiguous block (hsize), the starting
position of the next contiguous block with relation to the previous (stride),
the number of repetitions of the two previous parameters (vsize), the starting
of the next 2D pattern in relation to the previous (span), and the number of
repetitions of the four previous parameters (dsize). Also, several descriptors can
be combined in a tree-based hierarchical scheme (depicted in Fig. 1.A), in which
multiple parent-child relations are established between descriptors, representing
dependencies between different descriptor levels. Hence, each descriptor has a
reference to a child descriptor (next) and a reference to a descriptor that shares
the same parent descriptor (level).

To allow detaching the PEs computational effort from the memory address
generation, and to promote the re-utilization of data streams among multiple
PEs, multiple address-generation units can co-exist within a single many-core
system. Hence, to maximize the utilization efficiency of the available memory
bandwidth, a stream management unit, included in the memory controller (see
Fig. 2.A), is used to broadcast multiple streams (from the main memory) to one
or more PEs, or to organize the writting of data from multiple streams (generated
by the PEs) to the main memory. On the other hand, special-purpose stream
controllers are located next to the PEs, to manage the flow of data into/out
of each PE, effectively allowing data to be directly streamed from one PE to
another, or to be broadcasted to multiple PEs or to the main memory.

3 In-Cache Streaming Architecture

The herein proposed in-cache streaming architecture allows each individual PE
to seamlessly switch its local communication infrastructure between two dis-
tinct paradigms: i) conventional memory-addressed data access; and ii) packed-



Fig. 3. Hybrid Controller architecture. The cache controller and the stream controller
(supported by the information stored in the stream table) perform an exclusive access
to an n-way set-associative cache memory depending on the requests received from the
PE and from the communication infrastructure.

stream data access. However, to avoid a complete switching of the two paradigms,
which could result in potential performance penalties in non-pure streaming ap-
plications, the proposed approach allows morphing a PE n-way set-associative
cache memory into a set of n1 cache ways plus n−n1 stream buffers, each ca-
pable of holding multiple streams. Accordingly, not only does the proposed ap-
proach support both memory-addressed and packed-stream data accesses, but it
also supports mixed scenarios composed of compile-time predictable and non-
predictable/runtime generated memory access patterns. To attain such a mor-
phable infrastructure, the proposed approach relies on an in-cache stream con-
troller to seamless adapt (in runtime) the cache memory according to the in-
stantaneous requirements of the running application (see Fig. 2.A).

3.1 Hybrid Cache/Stream Infrastructure

The proposed in-cache streaming controller, supported by a specially devised
main memory controller, comprises two independent modules: a hybrid cache
controller and a stream controller (depicted in Fig. 3), together with an internal
n-way set-associative memory that is managed by one of these modules at a
time. The adoption of such a switched control structure (instead of relying on
dynamic reconfiguration) ensures an immediate switch of the communication
paradigm, since no reconfiguration time is imposed.

In-Cache Stream Controller: The default memory-addressed communica-
tion paradigm can be assured by a conventional cache controller (see Fig. 3),
using any arbitrarily replacement and write policies. Notwithstanding, the used
controller is implemented by means of a simple and efficient hardware struc-
ture that deploys a write-through-invalidate, write no-allocate snooping proto-
col on the local memory, managed by a binary-tree-based Pseudo-Least Recently
Used (LRU) replacement policy.



Fig. 4. Configuration example, where a 4-way cache is configured to use 2 ways for
conventional memory-address mode and 2 ways for stream mode.

The cache access time is limited to two clock cycles (disregarding cache miss
penalties) and hit/miss-related action is taken according to the coherence and
consistency protocols in place. PE requests are only answered with a wait state
when there is a read miss, until the required data is fetched. Upon a write miss
scenario, the written data block is immediately sent to the main memory and
is followed by an invalidation broadcast, thus minimizing the waiting times and
the number of on-the-fly messages in the communication infrastructure.

On the other hand, in order to reuse the resources of the n-way set-associative
cache memory for a stream-based communication, its access mechanism has to
be conveniently adapted. Hence, each cache way is viewed as an independent
buffering structure and it is accessed with a dedicated set of read and write
pointers to the memory region where a stream is stored. This transforms the
n-way set-associative memory in m independent stream buffers, each capable of
storing multiple streams, while allowing the remaining n−m ways to be accessed
using traditional memory-address load/store operations (see Fig. 4).

Accordingly, the stream-based paradigm requires a set of auxiliary data struc-
tures (stored in a programmable stream table), including the information and
the state of every stream currently stored and handled by the controller. Each
table entry (depicted in Fig. 3) comprises: i) a unique stream identifier; ii) the
way used for buffering the stream; iii) pointers to the start and end of the
buffering region within the way; iv) pointers for identifying the PE local read-
/write positions in the inbound/outbound stream; v) the stream destination
(own identification, if it is an incoming stream); and vi) a read/write pointer
for identifying the current read/write position for a Message-Protocol Manager,
which transparently handles the communication of the data into/out of the PE.

Hence, whenever a read/write request is performed for a given stream iden-
tifier (see Fig. 4), the local memory is accessed according to the information de-
picted in the stream table, with the consequent update of its read/write pointers.
Outgoing streams are automatically sent as soon as they become available and
its transmission is granted by the scheduling manager of the processor aggregate.
However, the output transmission does not immediately erase the stream data
from the local memory, allowing the data to be reused by the PE.



Main Memory Controller: The in-cache stream controllers are served by
a remote main memory controller (see Fig. 2.A), composed of: i) a low-profile
DMA controller, to perform address-based memory operations; and ii) a Stream
Management Controller (SMC) (depicted in Fig. 2.B), which generates and saves
the streams, according to the patterns described by the hierarchical set of de-
scriptors stored in the pattern descriptor memory.

The SMC memory access is handled by a special Descriptor Tree Con-
troller (DTC) [4] that deploys the 3D descriptor specification and resolves the
procedure described in Section 2.2. Accordingly, the DTC (depicted in Fig. 2.C)
is composed of: i) a tree iterator, that manages the flow of the descriptor tree;
and ii) an Address Generation Unit (AGU), that generates the correct sequence
of memory addresses, according to a given descriptor. On the other hand, the
stream generation/storage is performed by temporarily saving the data in a
stream buffer, redirecting it (either to the PEs or the main memory) according
to a local stream table (as in the in-cache stream controller) (see Fig. 2.B).

3.2 Interface Configuration and Parameterization

To handle both memory-address and stream-based read/write requests at each
PE, a generic and parameterizable interface is provided. In particular, each PE
request to the cache addressing space is handled by the cache controller, whereas
requests to the stream addressing space are handled by the steam controller,
where the stream identifier is encoded in the interface’s address and the local
memory is accessed according to the stream table.

The hybrid controller interfaces with the communication infrastructure by
means of two input/output register-based buffers. Such an approach not only al-
lows contention mitigation through intermediate buffering, but it also provides
isolation between the PEs and the interconnection operating frequencies, allow-
ing them to operate with different clock frequencies. Each buffer accommodates
a complete message to/from the NoC. Hence, depending on the assigned mes-
sage type (see protocol definition in Section 3.3), incoming messages are handled
either by the cache controller or the stream controller. Outgoing messages are
generated by one of the controllers, depending on which is activated at the time.

3.3 Unified Message-Passing Protocol

To abstract the underlying ring-based NoC infrastructure from the PEs mor-
phable interface perspective, and to keep the impact on the performance of the
inter-communication between the system components as low as possible, a sim-
ple message-passing protocol was adopted, which consists on a 32-bit header, an
optional memory address and a number of data words that, at most, add up to
the size of a cache line. The header is composed of: i) a message identification;
ii) flags for invalidate, read/write and data access mode (memory-addressed or
packed-stream); iii) message size; and iv) identification of the message sender.

The bidirectional ring-based NoC infrastructure itself was devised to deploy
a very efficient and low-profile interconnection. Hence, each node routes the



Table 1. Resource usage of the Morphable Communication Infrastructure

Available Baseline In-Cache Main Memory Ring
Resources Cache Ctrl. Stream Ctrl. Stream Ctrl. Node

Slices 75,900 1896 2370 852 155
LUTs 303,600 3602 4367 1666 297
Registers 607,200 365 1176 991 164
BRAM 3,090 0 0 2 2

Max. Freq. [MHz] - 238 210 232 278

incoming messages to/from its two adjacent nodes (right and left) and to/from
its connected component. To overcome the contention caused by simultaneously
arriving packets, a simple round-robin priority function was devised that rotates
the priority between channels upon the completion of a message transmission.

4 Experimental Evaluation

To validate the proposed infrastructure, a complete prototype was implemented
in a Xilinx VC707 board, equipped with a XC7VX485T Virtex-7 FPGA and
a 1GB DDR3 SODIMM 800MHz/1600Mbps memory module. The proposed
infrastructure was evaluated against a conventional cache-based system, using
three representative benchmarks from the computational algebra, image pro-
cessing and bioinformatics domains. For such purpose, both computing infras-
tructures are composed of multiple PEs, each one comprising an adapted MB-
LITE [12] processor, a private scratchpad for program data, and a memory-
mapped interface to the proposed in-cache stream controller.

To guarantee a fair and realistic comparison, the cache configuration of the
baseline system was made identical to a typical ARM Cortex A7 configuration.
Hence, each PE is associated with a 8KB 4-way set-associative cache memory
with 64-Byte cache lines. According to the considered cache line size, each mes-
sage of the proposed communication protocol is composed of (at most) 16 32-bit
data words plus the header and the address fields, totaling an 18-word message.

4.1 Hardware Resource Overhead

The FPGA implementation results are presented in Table 1. Despite the added
versatility of the offered streaming capabilities, the results obtained for the de-
vised in-cache stream controller represent a very low increase of the hardware
resources, with an impact as small as 28 MHz in the maximum operating fre-
quency. In fact, each of the devised components requires less than 2% of the
FPGA resources. Moreover, due to the inherent scalability of the adopted ring-
based NoC interconnection, it can be efficiently used to support a very large
number of processing elements, being the only limiting factor the increased com-
munication latency between nodes. The presented BRAM utilization refers to the
buffering structures that are present at each component, except for the in-cache
stream controller where they are implemented with registers.



4.2 Performance Evaluation

To evaluate and demonstrate the data-transfer and communication capabilities
of the proposed infrastructure, three different benchmarks were considered.

– A Block-based Matrix Multiplication kernel that performs the C=C+AB

operation, where A, B and C are 128×128 matrices, divided in 8×8 sub-
blocks, in order to maximize the cache usage. Since the matrices do not
entirely fit in the cache memory, each row of matrix A is fetched once from
memory (and maintained in the cache memory for as long as it is required),
while matrix B is fetched once for each sub-block of matrix C.

– A Biological Sequence Alignment application that performs the computation
of the alignment score between a reference and several query sequences (all
randomly generated with a size of 1024 symbols). Two steps are considered,
namely: (i) a pre-processing stage, where sequence data is reorganized to
generate a query profile; and (ii) the computation of the alignment score
matrix, by using the algorithm proposed in [13].

– A Histogram Equalization application to enhance the contrast by adjusting
the intensities of a 256×256 pixels image. Two steps are required: (i) compu-
tation of the 8-bit image intensity histogram and corresponding cumulative
distribution function (CDF), and (ii) scaling of the image intensities accord-
ing to the obtained CDF. The first step is applied by evenly distributing the
original image to the different PEs, such that multiple partial histograms are
firstly obtained and then reduced and accumulated in a single PE, in order
to generate the CDF. In the second step, each PE reads the CDF and applies
the image intensity scaling to an individual block of the original image.

The first benchmark highlights the prefetching and broadcasting capabilities
of the proposed system, the second one illustrates the proposed system capabili-
ties when dealing with complex memory access patterns and data reorganization
and the third demonstrates the advantages of deploying a morphable commu-
nication infrastructure that can adapt itself to the requirements of a running
application. The obtained results for the three evaluation benchmarks are de-
picted in the graphs of Fig. 5, by considering a variable number of PEs.

In particular, the bar plots present the data transfer clock cycle reduction
attained by the proposed framework due to the offered streaming and broad-
casting capabilities. As it can be observed, the proposed infrastructure provides
a significant reduction of the data transfer overheads in all benchmarks, which
results from an efficient data prefetching and reutilization, allowing not only
a mitigation of the shared memory latency, but also a reduction of the total
number of memory accesses, therefore decreasing the contention in the shared
interconnections. Naturally, these offered advantages are directly reflected in
the resulting performance, as presented in the line plots, representing: the sys-
tem performance scalability (n-PEs vs 1-PE) when relying on traditional pure
cache-based approaches (orange); the system performance scalability (n-PEs vs
1-PE) when relying on the proposed morphable infrastructure (blue); and the



Fig. 5. Comparison of the proposed morphable infrastructure with the considered base-
line conventional cache-based system, in what concerns data transfer and manipulation
latency (top graphs) and performance scalability (bottom graphs).

speedup offered by an n-PE processing system using the proposed morphable
infrastructure, regarding a traditional n-PE based system (black).

A careful analysis of the presented results evidences a poor scalability of the
conventional cache-based system (orange), which even leads to a performance
degradation when a higher number of PEs is used. On the other hand, the
proposed morphable infrastructure is characterized by data transfer overheads
that are mostly mitigated by its prefetching capabilities, partially aided by the
broadcast capabilities of the supporting ring interconnection. As a result, a per-
formance speedup of up to 15.03x, 15.9x and 4.7x is observed in the block matrix
multiplication (Fig. 5.A), biological sequence alignment (Fig. 5.B) and histogram
equalization (Fig. 5.C) benchmarks, respectively, with a 16-PE configuration.

5 Conclusion

A novel in-cache streaming architecture for many-core systems was proposed.
Depending of the PE data request, the devised controller is able to deploy both
conventional memory-addressing and stream-based communication paradigms
and offers a rather convenient set of streaming capabilities, such as prefetching,
complex memory access generation and stream manipulation, supporting a seam-
lessly switching between these communication paradigms without any significant
impact in the data-transfer performance. The underlying communication is sup-
ported on a ring-based NoC interconnection, able to deploy a low-contention
and broadcast-capable communication through a very low resource and scalable
structure. When compared to a baseline conventional cache, with system config-
urations of up to 16 PEs, the obtained results show performance increases of up
to 14x for a block matrix multiplication application, 5x for a biological sequence
alignment algorithm and 12x for an histogram equalization kernel.



Acknowledgment

This work was partially supported by national funds through Fundação para a
Ciência e a Tecnologia (FCT) under project UID/CEC/50021/2013 and research
grant SFRH/BD/100697/2014.

References

[1] Y. Guo, P. Narayanan, M. A. Bennaser, S. Chheda, and C. A. Moritz, “Energy-
efficient hardware data prefetching,” IEEE Transactions on Very Large Scale In-
tegration Systems, vol. 19, no. 2, pp. 250–263, 2011.

[2] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved corre-
lated prefetching,” in IEEE/ACM International Symposium on Microarchitecture
(MICRO-46). ACM, 2013, pp. 247–259.

[3] T. Hussain, M. Shafiq, M. Pericàs, N. Navarro, and E. Ayguadé, “PPMC: A
Programmable Pattern Based Memory Controller,” in Reconfigurable Computing:
Architectures, Tools and Applications, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7199, pp. 89–101.

[4] N. Neves, P. Tomás, and N. Roma, “Efficient data-stream management for shared-
memory many-core systems,” in 2015 25th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 2015, pp. 508–515.

[5] T. Chau, X. Niu, A. Eele, W. Luk, P. Cheung, and J. Maciejowski, “Heteroge-
neous reconfigurable system for adaptive particle filters in real-time applications,”
in Reconfigurable Computing: Architectures, Tools and Applications, ser. Lecture
Notes in Computer Science. Springer, 2013, vol. 7806, pp. 1–12.

[6] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad, “Application-aware topology
reconfiguration for on-chip networks,” IEEE Trans. on Very Large Scale Integra-
tion Systems, vol. 19, no. 11, pp. 2010–2022, 2011.

[7] R. Pal, K. Paul, and S. Prasad, “Rekonf: A reconfigurable adaptive manycore
architecture,” in IEEE Int. Symposium on Parallel and Distributed Processing
with Applications (ISPA), 2012, pp. 182–191.

[8] K. T. Sundararajan, T. M. Jones, and N. P. Topham, “The smart cache: An
energy-efficient cache architecture through dynamic adaptation,” International
Journal of Parallel Programming, vol. 41, no. 2, pp. 305–330, 2013.

[9] Y.-T. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and G. Reinman,
“Dynamically reconfigurable hybrid cache: An energy-efficient last-level cache de-
sign,” in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2012. IEEE, 2012, pp. 45–50.

[10] G. Kalokerinos, V. Papaefstathiou, G. Nikiforos, S. Kavadias, M. Kateve-
nis, D. Pnevmatikatos, and X. Yang, “Fpga implementation of a configurable
cache/scratchpad memory with virtualized user-level rdma capability,” in Inter-
national Symposium on Systems, Architectures, Modeling, and Simulation, 2009
(SAMOS’09). IEEE, 2009, pp. 149–156.

[11] S. Ghosh, M. Martonosi et al., “Cache miss equations: An analytical represen-
tation of cache misses,” in ACM International Conference on Supercomputing.
ACM Press, 1997, pp. 317–324.

[12] T. Kranenburg and R. van Leuken, “MB-LITE: A robust, light-weight soft-core
implementation of the MicroBlaze architecture,” Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp. 997–1000, March 2010.

[13] M. Farrar, “Striped Smith-Waterman speeds database searches six times over
other SIMD implementations,” Bioinformatics, vol. 23, no. 2, p. 156, 2007.


