2130

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 7, JULY 2017

Adaptive In-Cache Streaming for
Efficient Data Management

Nuno Neves, Student Member, IEEE, Pedro Tomas, Member, IEEE, and Nuno Roma, Senior Member, IEEE

Abstract—The design of adaptive architectures is frequently
focused on the sole adaptation of the processing blocks, often
neglecting the power/performance impact of data transfers and
data indexing in the memory subsystem. In particular, conven-
tional address-based models, supported on cache structures to
mitigate the memory wall problem, often struggle when dealing
with memory-bound applications or arbitrarily complex data
patterns that can be hardly captured by prefetching mechanisms.
Stream-based techniques have proven to efficiently tackle such
limitations, although not well-suited to handle all types of
applications. To mitigate the limitations of both communication
paradigms, an efficient unification is herein proposed, by means
of a novel in-cache stream paradigm, capable of seamlessly
adapting the communication between the address-based and
stream-based models. The proposed morphable infrastructure
relies on a new dynamic descriptor graph specification, capable
of handling regular arbitrarily complex data patterns, which
is able to improve the main memory bandwidth utilization
through data reutilization and reorganization techniques. When
compared with state-of-the-art solutions, the proposed structure
offers higher address generation efficiency and achievable mem-
ory throughputs, and a significant reduction of the amount of
data transfers and main memory accesses, resulting on average
in 13 times system performance speedup and in 245 times energy-
delay product improvement, when compared with the previous
implementations.

Index Terms— Adaptive communication,
data-management, morphable architectures,
prefetching.

energy-efficient
stream-based

I. INTRODUCTION

HE ever increasing demand for computational processing

power at a significantly lower energy consumption has
pushed the research for alternative heterogeneous and often
specialized high-performance many-core processing architec-
tures. In particular, to avoid the inherent disadvantages of
power-hungry high-end general purpose processing systems,
adaptive processing architectures have gradually been adopted
to handle broader ranges of applications and workloads.
Specifically, they try to extract or predict the characteristics
of a running application by adapting their own processing
scheme at runtime (or even their architecture, through dynamic
reconfiguration), in order to make the execution as efficient
as possible, both in terms of performance and energy consump-
tion [1]-[3]. However, the design and runtime adaptation of

Manuscript received August 12, 2016; revised December 4, 2016; accepted
January 29, 2017. Date of publication March 14, 2017; date of current version
June 23, 2017. This work was supported by national funds through Fundagdo
para a Ciéncia e a Tecnologia under Project UID/CEC/50021/2013 and
Grant SFRH/BD/100697/2014.

The authors are with INESC-ID, Instituto Superior Técnico, Universi-
dade de Lisboa, 1000-029 Lisbon, Portugal (e-mail: nuno.neves @inesc-id.pt;
pedro.tomas @inesc-id.pt; nuno.roma@inesc-id.pt).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSIL.2017.2671405

such architectures is usually focused on the processing blocks,
often neglecting the power/performance impact of the inherent
data transfers and general data indexing in the memory sub-
system, which usually remain nonadaptive. In fact, a common
approach is to simply rely on conventional local (and often
multilevel) cache structures to avoid the usually high memory
access latencies. However, as the number of cores on a cache
coherent system increases, the inherent contention (particu-
larly in memory-bound applications) and the overall energy
consumption tend to increase, and can even reach a point
where the addition of more cores is no longer useful [4], hence
limiting the system’s achievable performance. Moreover, such
structures often struggle when the application data set is very
large and does not fit in the cache hierarchy, or in the presence
of complex memory access patterns, where data locality cannot
be efficiently exploited.

Nevertheless, some examples of adaptive schemes specif-
ically targeting energy efficiency in the communication
infrastructure have already been deployed, based on either
dynamic reconfiguration processes [5], [6] or power-gated
designs and/or hybrid memory technologies [7]. However,
such strategies mostly target the efficient utilization of the
memory resources, to reduce the energy consumption through
architectural adaptation. As a consequence, inevitable delays
in the reconfiguration and gating procedures are still incurred
by these solutions. Moreover, they do not address the data
communication itself, resulting in memory access structures
that still rely on conventional cache-based accesses.

To tackle such problem, different techniques can be
exploited in order to adapt the data communication scheme
to the running application. In particular, efficient prefetching
techniques have been reemerging [8]-[10], often based on the
combination of several different approaches that can handle a
variety of memory-intensive applications. However, there are
still several issues that must be dealt with, particularly those
related to prediction overheads and inaccuracy penalties that
can result in added pressure and increased traffic in the mem-
ory subsystem, especially when dealing with complex mem-
ory access patterns. Conversely, stream-based communication
schemes have been regarded as a viable alternative to con-
ventional cache-based systems and address-based prefetchers.
Although they have been traditionally suited for particular sets
of applications, they can be easily adapted to reduce the com-
munication contention and to manage large data sets in broader
ranges of regular applications [11]. Accordingly, instead
of having each system’s processing element (PE) (and/or
associated prefetchers) to concurrently perform main memory
requests, these approaches explicitly decouple the communi-
cation and processing infrastructures, making it possible to

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

NEVES et al.: ADAPTIVE IN-CACHE STREAMING FOR EFFICIENT DATA MANAGEMENT

hide data transfers behind computations. Moreover, streaming
approaches are capable of independently handling complex
data patterns, thus exploiting the data access pattern of each
processing block to smoothly and transparently buffer and
stream (eventually even broadcasting) the data to the corre-
sponding PEs [11]-[13].

However, accurate memory access pattern descriptions are
still limited to applications with deterministic memory access
patterns. As such, purely stream-based infrastructures can
hardly deal with particular types of applications (such as
those fully or partially supported by pointer-based data struc-
tures or dynamic indexing procedures), where the memory
access is either nondeterministic or it is generated at runtime.

Accordingly, a new in-cache stream communication para-
digm for many-core heterogeneous systems is herein proposed.
The considered methodology combines a conventional cache-
based memory hierarchy approach with efficient stream-based
prefetching techniques. This hybrid paradigm is deployed in a
single and adaptable infrastructure that is capable of in-time
switching its communication paradigm to better suit a running
application or its evolving requirements. As a result, it is
capable of combining the different advantages that are offered
by each paradigm (including exploitation of data locality,
stream prefetching and manipulation, and complex memory
access generation) in a single structure, while mitigating their
individual drawbacks. In accordance, the main contributions
of the proposed morphable infrastructure are as follows.

1) An in-cache streaming communication model supporting
not only memory-addressed and packed-stream data
accesses, but also an adaptive mode combining the
memory-addressed/packed-stream schemes, especially
suited for applications composed of compile-time pre-
dictable streams, while still supporting nonpredictable
memory access patterns. The proposed communication
paradigm makes use of a previously proposed in-cache
stream controller architecture [14], specially devised
to take the advantage of a conventional n-way set-
associative cache memory, by making each way indi-
vidually usable as a stream buffer.

2) A new data-pattern dynamic descriptor specifica-
tion (extended from [13]), capable of efficiently encod-
ing highly complex memory access patterns, through
improved description flexibility and code memory uti-
lization, when compared with the current state-of-the-art
approaches [11]-[13].

3) A pattern description controller (PDC) architecture,
composed of a specially devised address generation
unit (AGU), capable of handling and generating com-
plex data indexing based on the proposed descriptor

specification.
4) Efficient memory access optimization techniques
(i.e., bandwidth optimization, data reorganization

and reutilization, and in-time stream manipulation),

deployed by a memory-aware stream management

controller (SMC), composed of a dedicated burst
controller and stream reorder buffers.

The proposed in-cache stream communication model was

prototyped on a fully functional morphable infrastructure,

2131

implemented on a state-of-the-art field-programmable gate
array (FPGA) device. Its address generation efficiency was
compared with state-of-the-art data-fetch and prefetching
architectures, and its capabilities for prefetching and data
reutilization were demonstrated through the experimental eval-
uation of several benchmark applications. The obtained results
also show performance increases achieved by the proposed
system, averaging 126.7 times when compared with a cache-
based conventional setup, with system configurations of up
to 64-PE. Such a gain corresponds to a 13 times performance
improvement over a previous hybrid implementation [14], also
revealing 91% of average total energy savings and 245 times
of performance-energy efficiency improvements.

The remainder of this paper is organized as follows.
In Section II, the advantages and characteristics of the pro-
posed approach are discussed and compared with the cur-
rent state-of-the-art in adaptive data-management systems,
prefetching and stream-based communication. The proposed
in-cache stream communication model and an overview of
the devised morphable communication infrastructure are pre-
sented in Section III. Section IV describes the proposed
dynamic descriptor graph specification and its potential for
data-management applications. In Section V, it is detailed the
proposed memory-aware SMC and its components. Section VI
presents the obtained experimental results, concerning the
measured data-pattern generation efficiency and achievable
main memory throughput, as well as a thorough performance
and energy efficiency evaluation. This paper is concluded
in Section VII, by addressing the main contributions and
achievements.

II. RELATED WORK

Several different communication paradigms have been
adopted to minimize the power/performance impact of the
data-management subsystem [10], [12], [15]. In particular,
contrasting to straightforward and aggressive address-
based prefetch schemes, often associated with high-energy
consuming memory/cache hierarchies [8], more efficient and
sophisticated stream-based communication schemes have
been deployed. In fact, by relying on streaming approaches,
hence decoupling the data communication from the processing
structures, it is possible to hide the data transfers overhead
behind computation by using intermediate (small) buffering
memories, which can be independently preloaded by
the data streaming structures. This approach presents a
rather advantageous outcome since, even without directly
relying on aggressive address-based prefetching schemes
and structures, it is still possible to handle complex data
patterns [10] or reduce the energy consumption of the data-
management infrastructure [8].

A. Advanced Prefetching Techniques

To reduce the main memory access concurrence and
contention of conventional cache-based systems and shared
communication infrastructures, advanced prefetching tech-
niques [8], [13], [16] are often considered. Such techniques

2132

are usually designed to deal with the intrinsic characteris-
tics of certain types of applications, such as reduced data
locality and complex memory access patterns, memory-bound
kernels or very large data sets that do fit in the local memories.

The most commonly used prefetching techniques usually
rely on complex dedicated modules, which dynamically ana-
lyze the most recent memory access patterns and try to predict
future accesses based on prediction heuristics. In particular,
Ishii et al. [9] propose the access map pattern match-
ing (AMPM) stride prefetcher to identify hot zones in
memory and store a bitmap to infer strided patterns
in the access stream. It showed to be able to effi-
ciently detect regular memory accesses, independently of
the order in which they are observed, providing a high
prefetching coverage. Other examples include global history
buffers [17], irregular access structural mapping [10], and
delta-prefetching [16]. However, although such approaches
allow a complete abstraction of the prefetching procedure
from the application perspective, they fall short when the
application is characterized by complex memory access
patterns. Moreover, they impose an increased amount of
resources, often related with the adopted level of prefetching
aggressiveness [8].

A viable alternative that has been considered [18] relies
on compiler-aided approaches, where the compiler prean-
alyzes the code and tries to extract/model the application
memory access pattern and feeds it to on-chip prefetching
modules. This results in far simpler hardware structures,
since no on-time analysis is performed, in turn resulting in
lower footprint and more energy efficient controllers, at the
cost of an increased preprocessing effort. Such an approach
also promotes the exploitation of efficient stream-based
communication means, since the required information for
memory data-stream generation can be created with compile-
time analysis information and/or through explicit data-pattern
programming [11], [13].

B. Stream-Based Communication Architectures

Regarding the stream-based approaches, several tech-
niques have been proposed to improve the throughput
of the data streaming and management infrastructure.
Park and Diniz [15], [19] tackled the problem concerning
the data fetching from an external memory to an FPGA in
the context of stream-computing, acknowledging that proper
data reutilization mechanisms are fundamental in FPGA-based
systems. Meanwhile, Hussain et al. [12] proposed an advanced
pattern-based memory controller (APMC) that supports up to
3-D regular data-fetching mechanisms, such as scatter-gather
and strided accesses with programmable tiling. However, while
the APMC represents a step forward toward the streaming
of complex patterns, it was designed for moving large and
regular data-chunks and falls short with irregular or complex
memory indexing. In fact, irregular and pointer-based accesses
are managed through runtime memory access analysis and
recording.

To address the issue of complex data-pattern genera-
tion and efficient data manipulation schemes, the Hotstream
framework [11] relies on PE-coupled dedicated pattern-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 7, JULY 2017

programmable data-fetch controllers (DFCs). Nevertheless,
although the considered programmable approach eases the
description of complex, but still regular, data patterns, it also
struggled with many complex data access patterns.

To tackle such patterns, a tree-based 3-D data-pattern
descriptor specification was proposed in [13]. Such specifica-
tion relies on a set of comprehensive data-pattern descriptors,
organized in a treelike hierarchical fashion, which significantly
eases the description of complex memory access patterns.
To decode such descriptors, a descriptor tree controller (DTC)
architecture was proposed that is capable of efficiently han-
dling the memory address generation and data indexing. The
proposed specification was also used to deploy different stream
manipulation operations, such as stream splitting and merging,
seeking an improvement of the communication efficiency by
promoting data reutilization and reorganization.

However, although it proved efficient in resolving complex
data patterns and stream manipulations, ultimately reducing
the number of main memory accesses and communication-
related energy consumption, the specification from [13]
requires further improvements. In fact, it still imposes impor-
tant drawbacks in what concerns the pattern description code
size when the complexity of the pattern increases, which may
limit the complexity of the described pattern.

C. Morphable Communication Systems

Several established processing strategies are aided by
the dynamic reconfiguration capabilities of nowadays FPGA
devices, where the processing infrastructures can adapt to the
target application by reconfiguring its PEs at runtime [1]-[3].
However, the communication infrastructure is usually kept
with nonreconfigurable and generic structures (e.g., network
on chip or shared-bus structures). This is often because the
reconfiguration process still results in nonnegligible time over-
heads and power dissipation that can critically impact the
performance and energy consumption of the communication
infrastructure.

Nonetheless, although still incurring in inevitable delays
in the reconfiguration process, there are such cases where
energy efficiency has been targeted with the adaptation of
the communication subsystem (e.g., cache structures, local
memories, and network/bus topologies). As an example,
Sundararajan et al. [S] proposed a cache architecture that
allows the dynamic reconfiguration of both its size and asso-
ciativity organization, whose best configuration for a given
application is dynamically predicted with the aid of a decision
tree machine learning model. In [20], it is proposed a v-set
cache design, targeting an adaptive and dynamic utilization
cache blocks, for shared last-level caches in multicore environ-
ments. A reconfigurable cache design is also proposed in [7],
where different memory technologies [SRAM and nonvolatile
memory (NVM)] are unified at the same cache level to form
a hybrid design. Moreover, power gating circuitry is also
introduced to allow an adaptive powering of SRAM/NVM
subarrays at each way level. To increase a multicore processor
cache performance, in [6], it is proposed an architecture
comprising a local scratchpad memory that can be partly

NEVES et al.: ADAPTIVE IN-CACHE STREAMING FOR EFFICIENT DATA MANAGEMENT

Core #0
Processing

Core #1
Processing
Element (PE)

Stream | N8N | In-Cache
Buffer| =l | Stream Controllers

Processing

Element (PE)

Stream| e}
Buffer| [

Element (PE)

Cache Cache

f Ring Il
Node

[}~ Node |
Main Memory
Controller
Memory ‘ SMC Pattern
5 Access BUs | |(stream Management Controller) i
Shared Main Memory DMA D&Secrgg;\(/y
‘ ‘ ‘ (Direct Memory Access)]

Fig. 1. Morphable communication infrastructure overview, comprising the
in-cache stream controllers at the PEs interface, the main memory controller,
and a ring-based interconnection.

[2 ways working in memory-address mode

2 ways working in stream mode]

input stream [ID| DEST | WAY [START [END|PEqy

output stream [ID[DEST[WAY [START [ENDJPEqo [PEwn | New]

data data
to PE from PE

l«—END

ag Jafa block

Circular

Data wailng in buffer for

[-Data waiting in-|

Circular [stream buffer | H;:’e‘;ff;l

buffer for {-Data waiting in-|
[_stream buffer -

an input

stream Data already
START read

END ——»1

Data already
sent

START

data from NoC data to NoC

data hit

Fig. 2. Example configuration of a four-way set-associative memory after
a control switch, becoming configured to use two ways for conventional
memory-address mode and two ways for stream mode.

configured at runtime, to operate as a local second level cache,
providing a unified hardware support for both implicit and
explicit communication.

III. IN-CACHE STREAM COMMUNICATION PARADIGM

The proposed approach differs from (and complements)
other established strategies based on the sole exploitation
of adaptable data-processing structures and targets the effi-
cient runtime adaptation of an accelerator’s communication
scheme. In fact, even without using dynamic reconfigura-
tion procedures, the herein proposed in-cache streaming par-
adigm allows a system to deploy a complete morphable
communication infrastructure (from the main shared memory
level up to the PEs local memory level). Hence, it is able
to seamless switch and share its communication paradigm
between conventional memory-addressed and packed-stream
data accesses (see Fig. 1). In order to do so, the proposed
approach allows each PE to view a local n-way set-associative
cache memory as a set of n| cache ways plus n — n; stream
buffers, each capable of holding multiple streams (as shown
in the example of Fig. 2).

Such a convenient and dynamic memory assignment,
together with the adoption of a switched control structure,
allows the communication infrastructure to instantly adapt
(no reconfiguration overheads are imposed) the cache memory
according to the instantaneous requirements of the running
application. Moreover, it also avoids a complete switching of
the two paradigms, which could otherwise result in potential
performance penalties in nonpure streaming applications.

2133

The exploitation of such a morphable structure was prelim-
inarily discussed in [14], where it was proposed a specially
devised cache controller that supports both paradigms, allied
with mixed scenarios composed of compile-time predictable
and nonpredictable/runtime generated memory access patterns.

Such an in-cache stream communication model is herein
significantly extended and even complemented with a spe-
cially devised memory-aware SMC (see Section V), that
deploys a set of memory bandwidth optimization and data
reutilization and reorganization techniques, through in-time
stream manipulation. In fact, the proposed infrastructure is
based on a data-pattern dynamic descriptor graph specification
(see Section IV), capable of efficiently encoding highly com-
plex memory access patterns and stream indexing.

A. Morphable In-Cache Stream Infrastructure Overview

At a system level, the proposed in-cache stream com-
munication paradigm is deployed by a complete morphable
communication infrastructure (shown in Fig. 1) that is com-
posed of: 1) PE-coupled in-cache stream controllers [14];
2) a low-profile interconnection, supported by a message-
passing protocol, with point-to-point and broadcast data trans-
fer capabilities; and 3) a hybrid main memory controller,
comprising a memory-addressed direct memory access (DMA)
module and a packed-stream memory-aware SMC.

Although the communication between the main memory
controller and the in-cache stream controllers can be imple-
mented by any type of interconnection, it should not only
assure point-to-point communication between all its connected
components, but also support broadcast data transfer capabili-
ties, which have been proven to be essential for efficient stream
communication [13], [14]. Both the in-cache stream controllers
and the hybrid main memory controller interface with the
communication infrastructure by means of two input/output
register-based buffers, allowing to mitigate the memory access
contention through intermediate buffering.

In the particular case of the proposed infrastructure, it was
considered a bidirectional ring-based topology to ensure an
efficient and low-profile interconnection architecture, com-
pletely abstracted from the remaining morphable infrastruc-
ture. This, in turn, results in an insignificant impact on the
performance of the intercommunication between the system
components. Hence, each node is able to route the incoming
messages to/from its two adjacent nodes (right and left) and
to/from its connected component. To overcome the contention
caused by simultaneously arriving packets, a simple round-
robin priority function was devised that rotates the prior-
ity between channels upon the completion of a message
transmission.

B. Set-Associative Cache Memory Hybridization

To adapt a n-way set-associative memory, to support the
proposed communication paradigm, the cache memory is
simultaneously managed by two independent modules [14]:
a hybrid cache controller and a stream controller. The default
memory-addressed communication paradigm is assured by
the cache controller, by using any arbitrarily replacement

2134

A. Zig-Zag Scanning Data-Pattern B. Zig-Zag Scanning Algorithm
(8x8 Image Block) (8x8 Image Block)
intd=1; /1 start direction (diagonal up)
inti=0,j=0; // indexes
for (int k= 0; k < 64; k++) { // all matrix elements
bitstream(k] = block[ijl:
i+=d; j=d; /1 next index positions
if (j<0) { /1 outside top
j=0;
d=-d; // change direction
Yelseif (i<0){
iti>7){ /1 outside left and bottom
k i=7i+=2
8 }else{ // outside left
i=0;
}
d=-d;
Yelseif (i>7){ // outside right
i=7;j+=2
d=-d;
Yelseif (j>7){ 1/ outside bottom
=7 0i+=2;
d=-d;
}
}

Fig. 3.

and write policies. On the other hand, a specific SMC is
used to conveniently adapt and reuse the resources of the
n-way set-associative cache memory to implement the buffer-
ing structures required by a packed-stream communication.

Hence, each associative way is regarded as an independent
buffering structure that is accessed with a dedicated set of
read and write pointers that identify the memory region where
a stream is stored. This transforms the n-way set-associative
memory in m independent stream buffers, each capable of stor-
ing multiple streams, while allowing the remaining n —m ways
to be accessed using traditional memory-address load/store
operations (see Fig. 2). This stream-based paradigm requires
a set of supporting data structures (stored in a programmable
stream table), to accommodate the information and the state
of every stream currently stored and handled by the controller.

At any instant, the memory configuration is defined by a
simple register, shared by both controllers, indicating which
ways are accessible (or owned) by each controller. The register
can be modified either: 1) explicitly, by the cache’s PE;
2) externally, by a central system manager (if available);
or 3) implicitly, by the configuration of the stream table.
Accordingly, the memory is configured by default with each
way owned by the cache controller, and, upon request,
the ownership of individual ways can be changed to the
steam controller. The control switch for each way is per-
formed transparently from each of the controllers, eliminating
any unnecessary waiting times that could otherwise degrade
performance.

In the steam controller, whenever a request is performed
for a given stream identifier (see Fig. 2), the local memory is
accessed according to the information depicted in the stream
table, with the consequent update of its read/write pointers.
Outgoing streams are automatically sent as soon as they
become available and their transmission is granted by the
scheduling manager of the processor aggregate. Moreover,
upon their transmission, stream data can either be immediately
erased from the local memory or made persistent (and later
explicitly erased), allowing the data to be reused by the PE.

IV. MODELING OF COMPLEX DATA PATTERNS

Complex memory access patterns are usually indexed by
making use of several control primitives and nontrivial address
computations. As a result, the required amount of control

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 7, JULY 2017

C. 3D Descriptor Tree

D. Dynamic Descriptor Graph*
(128 bit descriptors) (64-bit base + 32-bit dynamic pairs + 16-bit modifier fields)
d; :{0{1,0,1,0 1} dy -} d, :{0, 4}, {d,, dy}
dy :{ 1,{1,7,2,0, 1}, d3 -} d, {0, 1}, {-7, 1}, [offset, vsize,]:(4), {16}, {2}, {da, -}
d; :{16,{1,-7.3,0, 1}, dy. -} dy {1, 1}.{-7. 2}, [offset, vsize,]:(4), {2}, {2}
dy :{3{1,7.4,0, 1}, ds -} d, :{0, 3}, {d;. ds}
ds :{32,{1.-7.5,0, 1}, dy, -} ds {57, 1}, {7, 7}, [offset, vsize,]:(3), {2}, (-2}, {ds -}
dg :{5{1.7.6,01}.d;-} dg {21, 1}, {7. 6}, [offset, vsize,]:(3), {16}, {-2}
dy {48,{1,7,7,0, 1}, de, dy 1163, 1) Synamic Modifier Chain.
dg :{7.{1.,7.8,0, 1} dy, -}
dy :{57,{1,-7,7.0, 1}, dy. -}
dip:{23,{1,7,6,0, 1}, d). -}
dyy 1 {59,{1,-7,5,0, 1}, dy, -}
d1:439,{1,7,4,0,1}, 3, -}
dis:{61,{1,-7.3,0,1}, dis -}
Gu55.01.7.2.0,1 6) omtectccer
s {63,{1,0,1,0, 1}, () - Modiifier chain repetifions

Data pattern description of a zig-zag scanning of an 8 x 8 block, used in the entropy encoding step of an image encoder.

steps to generate these patterns (in a PE) presents a consid-
erable overhead to what should, in most cases, be reduced
to a straightforward set of operations. One example of such
patterns is the one that is required to implement the entropy
encoding algorithm used in image processing applications.
To encode a quantized image block, its pixels are first divided
into blocks and subsequently scanned in a zig-zag pattern
[shown Fig. 3(A)]. The generation of such pattern (including
all the necessary control steps) in a PE imposes a significant
amount of overhead, as shown in Fig. 3(B). However, such
overhead can be significantly reduced with the adoption of
pattern generation controllers [13] [see Fig. 3(C)], to alleviate
the PE from the need to compute the required memory
addresses. Moreover, when combined with a stream-based
communication scheme, the data transfer procedure can be
completely detached from the PE execution, which in turn
can lead to an increased system throughput.

A. Efficient Data Indexing and Manipulation

The proposed dynamic descriptor graph specification
follows the general principle that, independently of their
application domain, many algorithms are characterized by
complex memory access patterns that can be represented by an
n-dimensional (n-D) affine function [21] (or by a set of
such functions). The memory address (y) is calculated by
considering an initial offset, a base increment variable x,
and pairs of increment variables x; and stride; multiplication
factors

n
y(X) = offset + xo + Zxk x strideg,
k=1
xx€{0, ..., sizeg}. (1)
Since such a representation allows indexing a significant
amount of regular access patterns, this particular specification
is commonly used by DMA controllers and other similar
DFCs, although typically restricted to 2-D patterns (n = 2).
However, affine functions with a higher dimensionality can
also be used, which can be described by relying on spe-
cially devised instruction-set architectures [11] or by using
descriptor-based approaches [12], [13]. Furthermore, even
more complex memory access patterns can still be described

NEVES et al.: ADAPTIVE IN-CACHE STREAMING FOR EFFICIENT DATA MANAGEMENT

by hierarchically combining multiple » — D functions. In par-
ticular, several functions can be chained together by using
affine functions in the higher levels of the hierarchy to
calculate the initial offser, the increment variables or the
multiplication factors of the functions in the lower levels.
Hence, each data stream can be defined by a set of n — D
functions combined in a given hierarchical structure, each
encapsulating the set of parameters required to generate the
correct sequence of addresses.

B. Tree-Based 3-D Descriptor Limitations

The 3-D data-pattern descriptor tree representation pre-
viously proposed in [13] was specially devised to tackle
the representation of complex memory access patterns, since
the commonly used 2-D descriptor representation struggles
when trying to describe higher levels of pattern complex-
ity (e.g., diagonal, zig-zag, and diamond patterns). However,
this requires very large descriptor lists and a very complex
control, which not only increases the size of the descriptors,
but also the hardware structures that support it [11]. Moreover,
there is usually a certain amount of overhead associated with
the switching between different descriptors, which degrades
the rate and efficiency of the memory address generation
procedures.

In fact, although it proved to be a valuable improve-
ment (regarding address generation), the 3-D descriptor tree
specification proposed in [13] still lacks scalability in terms
of pattern encoding and descriptor code size. Not only is
the 3-D base descriptor underused when the most common
and simple data patterns (such as arrays and matrices) are
described, but the double-pointer treelike hierarchical orga-
nization, by itself, cannot entirely exploit certain levels of
regularity in the described pattern. As an example, by con-
sidering the previous zig-zag pattern, it can be observed
that although it presents a certain regularity in the scanning
path [see Fig. 3(A)], its descriptor is hardly encoded in
an efficient manner. To describe such a pattern, the 3-D
descriptor tree specification [13] requires a different descriptor
for each of the pattern’s diagonals, thus not exploiting the pat-
tern’s inherently regular characteristics [see Fig. 3(C), where
15 128-bit descriptors must be used to correctly encode the
data pattern].

C. Dynamic Descriptor Graph Specification

The new descriptor definition that is herein proposed
(specified in Fig. 4) extends the previously proposed specifica-
tion [13] by significantly improving its scalability and coding
efficiency. This base descriptor defines an unidimensional data
access pattern by means of: 1) an header field, contain-
ing the descriptor configuration (discussed in the following);
2) an of fset field, specifying the starting address of the first
memory position; and 3) an hsize field, indicating the size
of a contiguous block of memory accesses. However, in order
to provide support for multidimensional memory accesses,
additional fields can be added to the base descriptor. Hence, for
each additional dimension, an extra tuple (hereafter referred
to as a dynamic pair) is subsequently added to the descriptor,
composed of: 1) a stride field, with the starting position of

2135

Base D (Dy ic Pairs Modifier Chain Ref. Pointers
{[header], offset, hsize}, {stride,, vsize,}.... {stride,, vsize,)}, [fargets], {fmod.}....{fmod}, {level, next}

/A ——

L‘ Graph reference pointers flag
Number of modiifier chain iterations

Maodifier chain size in number of modifier fields
Descriptor size in number of dinamic pairs (i.e. descriptor dimensionality)

Fig. 4. Dynamic Descriptor Graph Definition.

Top Level

Bottom Level

offset-type node/descriptor . address-type node/descriptor

Fig. 5. Adopted graph-based hierarchical descriptor organization, showing
both the graph representation (left) and the corresponding referencing between
the descriptors (right). The number associated with each node represents the
order in which they are iterated. Note that the descriptor at the bottom level
is referenced twice; hence, it is solved with two different offset patterns.

the next contiguous block (with relation to the previous one)
and 2) a vsize field, indicating the number of repetitions of
all the previous parameters of the descriptor.

Furthermore, to exploit the inherent regularity of the most
complex data patterns (without requiring very large descriptor
graphs), each field can be made modifiable upon its com-
pletion. As such, besides the introduced dynamic pairs, each
descriptor also contains an optional modifier chain, composed
of: 1) a target mask field, indicating the fields of the
base and dynamic pairs changeable by the modifier chain and
2) a variable number of fmod fields, indicating the value used
to modify the corresponding target field.

Moreover, the proposed descriptor organization relies on
a graph-based hierarchical scheme, as shown in Fig. 5.
Accordingly, multiple parent—child relations can be estab-
lished between descriptors, representing dependencies between
different descriptors. For such purpose, descriptors are dis-
tinguished between offset-type descriptors (used to calculate
relative offsets) and address-type descriptors, which generate
memory addresses based on such relative offsets. Moreover,
address-type descriptors are characterized by not having any
depending-child descriptors in the hierarchy.

To deploy a graphlike hierarchy, a double-referencing rep-
resentation (typically employed to represent graphs in pro-
gramming languages) was used. Hence, each descriptor has
optional references to a child descriptor (next) and to a
descriptor that shares the same parent descriptor (level).
This way, a descriptor with multiple child descriptors only
references one of them, which in turn establishes a reference
chain that includes all its siblings (see Fig. 5). By adopting
such a representation, the addressed positions are resolved
by traversing this graph structure in child-priority order
(see Fig. 5). Hence, for each iteration of a given descriptor,

2136

A. Example Dynamic Descriptor Tree
(Encoding + Tree representation) _

dy {0, 1}, {64, 2}, {-, da} o

d, : {0, 4}, {32, 2}, {8, 2}, [hsize]:(1), {-2}, {d3, -} next
level ds
*Descriptor representation:

d;: {16, 4}, {8, 2}, {32, 2}, [offset, hsize]:(1), {2}, {2}
{offset hsize), (SIae1, vsize 1)... {sriden, vsizen, [farge! mask:(ter), {imod}....{modrm), flevel, next)

B. Encoded Data-Pattern (# - Data access order)
16

2 2 2B 2|

13 14 15 '\6

» 2 31 3|

conm

47 48 49 50

41 42

T e ||

C. Descriptor Solving Procedure

Step 1: Traverse tree from top-level descriptor (d
descriptor (dy)

B 44 45 46 | 51 52

59 60 61 62 63 64

1) until first address-type

Step 2: Solve first address-type descriptor (d,); simultaneously apply
modifier chain (if available)

Modifiers: hsize - 2
d, : {0, 4}, {32, 2}, {8, 2} => d', : {0, 2}, {32, 2}, {8. 2}

Step 3: If available, iterate to same level descriptor (ds)
Solve descriptor (ds); simultaneously apply modifier chain

Modifiers: offset + 2, hsize + 2
dy: {16, 4}, {8, 2}, {32, 2} => d'3 : {18, 6}, {8, 2}, {32, 2}
Step 4: Return to upper level and perform one iteration of top-level

descriptor (d,)
Repeat Steps 1-3 w/ updated relative offset and modified fields

Fig. 6. Example of a data-pattern dynamic descriptor graph (A). Note the
order in which the blocks are accessed in (B). d; calculates a relative offset for
both d> and d3, which, accordingly, generate two distinct patterns. Note that
the patterns generated by dp and d3 are modified after a complete iteration,
which are performed according to their modifier chain (C).

its child descriptor (referenced by the next field) should be
completely solved once. Subsequently, when the first child is
itself completely solved, the procedure will solve the following
sibling descriptor that shares the same parent descriptor
(referenced by the level field).

To configure each descriptor, in what concerns its para-
meterization and dimensionality, the base descriptor tuple
contains a convenient header field that encodes the following
variables: 1) a size variable, used to configure the dimensional-
ity of the descriptor (i.e., the number of {stride, vsizey}
pairs of the descriptor); 2) a msize variable, indicating the
size of the descriptor’s modifier chain (i.e., the number of
{fmod,, } fields); 3) an ifer value, indicating the number of
repetitions of the modifier chain over the target fields of the
base and dynamic pairs; and 4) a graph, flag, indicating the
presence of the {1evel, next} reference pointer pair.

In accordance, the proposed dynamic descriptor graph spec-
ification is defined as shown in Fig. 4. Fig. 6 shows its
resolution procedure applied to an example descriptor graph.

Hence, with this approach, it is possible to achieve the envis-
aged pattern regularity while still targeting the aimed flexibility
and code size reduction, as can be observed in its descrip-
tion of the adopted zig-zag pattern example [see Fig. 3(D)]
when compared with the equivalent description code for the
previously proposed 3-D descriptor tree specification [13]
[see Fig. 3(C)]. Such advantages and the added capabilities
are thoroughly discussed in Section VI and compared with
other state-of-the-art pattern description solutions.

Although it is out of the scope of this paper, it is worth
mentioning that several solutions are currently being consid-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 7, JULY 2017

ered in what concerns the automatic extraction of a given
application memory access pattern and its encoding with
the proposed descriptor specification. In fact, straightforward
solutions can either rely on the explicit encoding of patterns
with high-level APIs [11], or on using extensions to parallel
programming languages in the form of code annotations and
dedicated compiler directives. On the other hand, considering
the deterministic nature of the proposed specification’s math-
ematical representation, more ambitious approaches can be
considered, such as the extraction of memory access patterns
during compilation. In particular, prominent compiler methods,
such as polyhedral analysis [22], [23] or memory access
profiling [24], can be conveniently explored and adapted to
analyze a given application/kernel data indexing pattern and
automatically generate the corresponding descriptor encoding.

V. MEMORY-AWARE DATA-STREAM GENERATION

In a stream-based communication environment, each com-
ponent must be capable of generating/processing its own data
streams. Although each PE can manage the flow of its data
streams with the aid of the in-cache stream controllers, streams
fetched from the main memory require a dedicated structure
to handle the translation between a memory-addressed access
and a stream-based communication. This is accomplished
through a dedicated main memory controller, composed of:
1) a low-profile address-based DMA controller, to perform
address-based memory operations upon memory access
requests performed by the PEs and 2) a memory-aware SMC,
which automatically generates and saves the streams, respec-
tively, by fetching/storing data from/to the main memory.

The SMC itself relies on a Pattern Description Controller
(PDC) architecture (shown in Fig. 7 and detailed in Section V-
A), which is able to generate memory access patterns accord-
ing to the proposed dynamic descriptor graph specification (see
Section 1V). A dedicated burst controller was also devised
to optimize the main memory access by taking advantage
of its burst capabilities, as presented in Section V-B. The
SMC operation in managed by a low-profile programmable
controller, which is responsible for sequencing the required
stream generation operations for each application under exe-
cution. The stream storing procedure, on the other hand,
is automatically performed upon the reception of a stream from
the communication infrastructure.

A. Pattern Description Controller Architecture

To efficiently index the memory access patterns described
by the previously presented dynamic descriptor graph specifi-
cation, the proposed PDC architecture was designed to use the
least number of clock cycles (per memory address) as possible.
For such purpose, the PDC architecture is conveniently divided
into three parallel submodules, namely: 1) a graph solver
unit (GSU), responsible for iterating over the descriptor graph;
2) an AGU, responsible for generating the memory addresses
according to the described pattern and starting at the offset
address defined by its parent descriptor; and 3) a dynamic
chain unit (DCU), responsible for modifying a descriptor
according to its modifier chain (if available).

The GSU communicates with the other units through a ded-
icated register bank, and all these units operate completely in

NEVES et al.: ADAPTIVE IN-CACHE STREAMING FOR EFFICIENT DATA MANAGEMENT

A. PDC Architecture

GSU
(Graph Solver Unit)

2137

Control FSM

address

Control/status
Register Bank

Memory
Interface

AGU
(Address Generation Unit)

Descriptor
Stack

Descriptor Memory

Graph Iterator

Dynamic Chain
Controller

(Dynamic Chain Unit)

Fig. 7.

parallel. Hence, while the AGU is executing a given address-
type descriptor, the DCU can solve that descriptor’s modifier
chain and replace the modified fields in the original descriptor,
while the GSU iterates over the graph to calculate the relative
offset for a subsequent descriptor. A minimal local scratchpad
memory is used to store the descriptors being processed.

The PDC’s AGU and DCU functional units (shown
in Fig. 7) iterate over a descriptor according to the addressing
function defined in (1) and modify its fields each time it is
solved, according to its respective modifier chain. To keep the
architecture footprint as low as possible, it is solely based on
adder elements and control and status registers. Both units
are connected to register-based structures that store a single
descriptor’s parameters and its current iteration status.

Since the proposed dynamic descriptor graph specification
relies on descriptors that can have a variable dimensionality,
their resolving architecture must be able to efficiently iterate
over each dimension without incurring in overheads, both in
terms of required hardware structures and latency between
generated output values. Hence, the proposed resolving archi-
tecture operates by iterating over a single dynamic pair,
in parallel with the base descriptor {OFFSET, HSIZE} pair.
A dedicated register bank (programmable by the GSU) is
used to store each dynamic pair and its current iteration
status. Moreover, a set of control registers is used to store the
base descriptor configuration (indicated by the HEADER and
OFFSET fields) and a set of control and status flags, used to
select the correct sequence of dynamic pairs to be considered
by the resolving architecture.

Accordingly, the AGU functional unit [see Fig. 7(B)] com-
prises three parallel functional blocks, each composed of
an adder and specific operand selection and control logic.
Depending on the currently selected dimension (k), the stride
control block is responsible for incrementing an inc vari-
able (representing the current contiguous data block) and
for generating the required multiplication factors, by suc-
cessively adding each dynamic pair stridey field to the
current descriptor of fset field. The resulting intermediate
values are stored in a poffsety register. The offset control
block calculates the output of the functional unit (the actual
memory address) based on the poffsety value and either
the inc or stridey variables, depending on the current
descriptor state. The count control block is used to calculate
the current descriptor iteration state, by incrementing the x
and xj values [refer to (1)], limited by the hsize and
vsizey descriptor fields, respectively. In accordance, a set

B. AGU Architecture C. DCU Architecture
descrptor
: Status Values (base and dynamic pairs) :
[foffset, hsize}) [istride,, vsize) {Xoo X [target mask] l {fmod,} chain size
offset control stride control count control field control | |[modifier control| [count control
selected v
fiel
poffsefy
output inc sflags modified field mflags

Proposed pattern descriptor controller (PDC) and its functional units architecture.

of control flags (sflags) is generated at the end of the logic
path of the count control block to represent the iteration state
of the descriptor. These flags are used to control all three
functional blocks in terms of operand selection and reset logic.
This way, each functional block performs one iteration per
clock cycle, involving the computation of the current memory
address, of the multiplication factors for the next iteration and
of the next descriptor state, together with its corresponding
control flags.

Similarly, the DCU functional unit [see Fig. 7(C)] is com-
posed of two parallel functional blocks and a field selection
block. This field control block is responsible for selecting the
correct fields to be modified by iterating over each bit of
the descriptor’s modifier chain target mask. Each selected
field (n), is sent to the modifier control block, which performs
the correct modification operation by adding it with its corre-
sponding fmod,, value. The mask iteration procedure and the
operation of the DCU are managed by the count control block,
which receives the number of targets (size) in the descriptor’s
modifier chain and generates a set of control flags (mflags)
by counting the number of iterations of the field control block.

The GSU control unit, represented in Fig. 7, is composed
of: 1) a finite-state machine that deploys the descriptor graph
solving procedure (see Section IV); 2) an iteration structure,
composed by the same three-adder topology used in the AGU
and DCU functional units, used to perform single iterations
over the graph’s offset-type descriptors; and 3) a descriptor
stack, to store the descriptors’ state. Specifically, the GSU
is initiated upon the reception of an offset and a descriptor
reference, iterating over the descriptor graph in the child-
priority order described in Section IV. This way, offset-type
descriptors are iterated once by the GSU and pushed into the
stack as the GSU is going down through the graph’s hierarchy.
This approach significantly eases the operation of the GSU,
since the order in which the descriptor states are pushed into
the stack is the reverse order in which they are needed when
the GSU is going up through the hierarchy.

B. Memory Burst Controller

Although highly efficient when dealing with fast-access
local memories (e.g., BRAMs), AGUs often struggle
to perform requests to long-latency external memories
(e.g., DDR3 memories). This is mainly because these mem-
ories usually impose costly latency overheads (up to tens of
clock cycles per request). To mitigate such delays and increase
the throughput, most memories offer the ability to burst

2138

A. Burst Control+Buffering Optimization | B. Example Pattern Fetch Optimization

ing Inferface

Ring Interface

=
Stream FIFO

offset hsize

Request
Queue

data-stream

Reorder
uffer

address| burst size

Memory Address
Channel

Memory Data
Channel

Fig. 8. Burst controller and reorder buffer optimization structures (A). The
example in (B) shows the memory requests performed by the PDC for the
zig-zag pattern descriptor depicted in Fig. 3 with proposed optimizations.

data transfers of contiguous memory regions. Accordingly,
the herein proposed PDC’s AGU is duplicated and coupled
with a specially devised burst controller [see Fig. 8(A)] that
generates and manages burst requests to the main memory,
based on the descriptor being resolved.

However, instead of sending each address (indexed by a
given descriptor), the AGU sends the descriptor’s current
offset and hsize fields to the burst controller, indicating a
contiguous memory region to be accessed [see Fig 8(B)]. The
burst controller is then responsible for splitting the request
in one or more burst requests (depending on the maximum
burst length supported by the memory and its communication
protocol), which is performed by a very simple register-based
increment/subtract architecture.

C. Reorder Buffer Optimization and Stream Manipulation

Although the proposed burst controller can increase the
main memory throughput for most regular access patterns,
dealing with complex patterns characterized by poor data
locality is still a difficult challenge. One example is the
previously described zig-zag pattern (shown in Fig. 3). Due
to its diagonal scanning pattern, the direct application of
the referred burst controller would not improve the resulting
memory throughput. However, most of these complex patterns
are usually contained in regular memory regions that can be
prefetched from the main memory and temporarily buffered
in fast-access memory structures. In particular, the adopted
zig-zag pattern example is scanned in 8 x 8 data blocks and
each block can be individually fetched and stored in a specially
devised reorder buffer, which can then be accessed by the PDC
with a zig-zag descriptor, as shown in Fig 8(B).

To offer such a functionality, each stream can be regarded
as a block of contiguous data, where the data block is stored
in memory address (offset) 0 x O [13]. By adopting such
an analogy, it is possible to extract a specific data block
from a previously prefetched data stream by simply adding
a stream start pointer to an offset generated by the PDC. This
allows applying the proposed descriptors to straightforwardly
extract subpatterns from prefetched data streams. Furthermore,
it is possible to easily apply runtime stream manipulation
operations (e.g., stream splitting and merging) based on the
proposed descriptor specification, as well as rerouting opera-
tions over the flowing streams between the PEs and memory.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 7, JULY 2017

To be properly accessed by the PDC, the specially devised
reorder buffer is composed of a set of stream buffer banks,
each able to store multiple streams. In fact, its control architec-
ture is similar to that of the stream controller from the in-cache
stream controller, where a stream table is used to maintain
the information of the stored streams. Hence, the PDC is
used to access the new reorder buffer (obtaining new data
blocks as soon as they become available in the buffer), while
the duplicated AGU is used to prefetch the data blocks from
memory, aided by the burst controller [see Fig.8(A)].

VI. EXPERIMENTAL EVALUATION

To evaluate the proposed morphable infrastructure, a proto-
type was implemented in a Xilinx VC707 development board,
equipped with an XC7VX485T Virtex-7 FPGA and a 1-GB
DDR3-1600 SODIMM memory module (MT8JTF12864HZ-
1G6G1). The DDR3 module is accessed through a Xilinx
IP MIG controller, comprising an AXI4-Full interface with
a 20 clock cycle overhead per transfer request (independently
of its length). The AXI4 protocol [25] allows burst transfers of
up to 256 words and an attainable bus throughput of 400 MB/s
per channel direction (32-bit words at 100 MHz), resulting in a
maximum theoretical throughput of 800 MB/s. The Synthesis
and Place&Route procedures were performed using Xilinx
ISE 14.5. The power consumption of each of the system’s
components was estimated with the Xilinx Power Estimation
toolchain and the DDR3 memory power consumption was
calculated according to the vendor’s guidelines and estimation
tool [26]. Accurate clock cycle simulations were performed
using Xilinx iSim simulator. The obtained results in what
concerns the address generation and efficiency were compared
with the most relevant related work, namely, with a Xilinx
AXI DMA engine [27], whose functionalities are equivalent
to those of the APMC [12], the Hotstream framework [11],
and the previously proposed DTC [13]. All the proposed
dynamic descriptor’s fields are configured as 16-bit wide
values (including the header), except for the of fset and
reference fields, which are 32- and 8-bit wide, respectively.
Such parameter configuration results in 64-bit base descrip-
tors, 32-bit {stridey, vsizer} dynamic pairs, and 16-bit
{ fmod,, } modifier chain fields, which allows to fully address
the 1-GB DDR3 memory module.

To evaluate the in-cache stream infrastructure with the pro-
posed memory-aware SMC (ICS-SMC setup), a comparison
was performed with the implementations of the previously
proposed in-cache stream infrastructure [14] (ICS) and the
state-of-the-art AMPM [9] stride prefetcher.! To guarantee
a fair and realistic comparison, a conventional cache-based
system (BASE) was used as reference setup. A computing
infrastructure (common to all setups) was used, composed of a
variable amount of PEs (ranging between 1 and 64), each com-
prising: an adapted MB-LITE [28] processor (as characterized
in Table I) modified to support vector instructions and float-
ing point operations; a private scratchpad for program data;
and a memory-mapped interface to a L1 cache (BASE and
AMPM) or an in-cache stream controller (ICS and ICS-SMC).

! An idealized behavioral model was implemented and simulated according
to the architecture description provided in [9].

NEVES et al.: ADAPTIVE IN-CACHE STREAMING FOR EFFICIENT DATA MANAGEMENT

2139

TABLE I
RESOURCE USAGE FOR EACH COMPONENT OF THE MORPHABLE COMMUNICATION INFRASTRUCTURE

Available Baseline In-Cache DTC Proposed Memory-Aware Burst Ring MB-LITE-based

Resources Cache Ctrl.? Stream Ctrl.? Architecture PDC SMC (w/ PDC) Controller Node PE
Slices 75,900 1896 (2.5%) 2370 (3.1%) 498 (.7%) 605 (.8%) 852 (1.1%) 274 (4%) 155 (.2%) 1753 (2.3%)
LUTs 303,600 3602 (1.4%) 4367 (1.4%) 952 (.3%) 1466 (.5%) 1666 (.5%) 508 (.2%) 297 (.1%) 4566 (1.5%)
Registers 607,200 365 (.1%) 1176 (.2%) 692 (.1%) 19 (1%) 991 (.2%) 415 (1%) 164 (.1%) 1013 (.2%)
BRAM 3,090 16 (.5%) 16 (.5%) 7 (2%) 7 (2%) 9 (3%) 0 (0%) 2 (.1%) 6 (2%)
Static Power’ - 21042
Dynamic Power** - 89.3 91.2 22.8 34.1 432 442 10.3 138

* @100 MHz T Power consumption values displayed in mW

Considering an 8KB 4-way set-associative memory w/ 64B cache lines

*Descriptor representation:

{offset, hsize}, {stride . vsize1}.....{striden, vsizen}, [target mask]:(iter), {fmod}....{fmodm}, {level, nexty
1024 8 1024
P S—
d,1{0,1024 _
X 8
A. Linear
1024
128
7 d, {0, 1024}, {dly, dy} d, {0, 4}, {d,, dy) |
512 d, :{0. 1}, {1023, 1}, [vsize,]:(1024), {1} d, {0 1}, {7 1}, [offset, vsize,]:(4). {16}, {2}, {ds, -} =
d, {1024, 1023), -, o} dy {1 1), 7. 2}, [offset, vsize J:(4). {2}, {2}
d, {2047, 1), {1023, 1024}, [vsize,]:(1023), 1), : {0, 3}, {0, ds) -
512 o H57. 07,7 [offsel, vsizen3), @ (2 {6) d {16, 16), {1056, 16}, {16880, 2}, {16912, 2}, {48, 22}, {49152, 2]
) {0, 128), {512, 72), (128, 4), (36864, 7} A {21, 1), 07, 63, [offset, vsize 1:(3). {16}, (-2} {1616}, {1056, 16} {16880, 2}, {16912, 2}, {48, 22, {49152, 22}
d (63,1
B. Tiled C. Diagonal D. Zig-1ag E. Greek Cross

Fig. 9.

Considered data patterns (shown using 2-D memory regions representations) and their corresponding dynamic descriptor graph encoding. The

HEADER field is omitted in each descriptor for the convenience of the illustration.

The cache memory configurations were made identical to
a typical ARM Cortex A7 configuration. Hence, each PE is
associated with an 8 kB four-way set-associative data cache
memory with 64-Byte cache lines, deploying a write-through-
invalidate, write no-allocate snooping protocol, managed by
a binary-tree-based pseudoleast recently used replacement
policy. The proposed SMC was configured with a 256 x 64-bit
descriptor memory (scratchpad), while the reorder buffer com-
prises a 4 kB, 32-bitline, direct-mapped memory structure. The
AMPM prefetcher was configured with a prefetch degree of 4
(four prefetch requests per memory access), hence achieving
top performance, while avoiding overprefetching, as presented
in [9]. The memory access map was tuned for a 4-kB storage
(large enough for the considered data sets).

Finally, the considered setups are connected to the
DDR3 controller through an AXI4-Full bus interconnec-
tion (memory access bus in Fig 1). Accordingly, the main
memory controller for the BASE, AMPM, and ICS setups was
configured to perform cache-line-sized burst transfers. On the
other hand, in the proposed SMC, the burst controller was set
to use a maximum burst length of 256 words (the same as
the AXI4 protocol), meaning that it splits the requested data
transfers in individual 256-word burst requests.

A. Hardware Resources Overhead

The results of the implementation of the proposed mor-
phable infrastructure (shown in Fig. 1) in the considered
Virtex-7 FPGA device are presented in Table I. Despite
the added versatility of the offered streaming capabilities,
the results obtained for the devised in-cache stream con-

troller represent a lightweight increase of the required hard-
ware resources (about 0.6% of the total FPGA slices),
when compared with the baseline cache controller. In fact,
each of the devised components requires less than 3% of the
FPGA resources. Moreover, since the adopted ring-based inter-
connection is inherently scalable in what concerns its hardware
footprint and operating frequency, it can be efficiently used to
support a very large number of PEs, being the only limiting
factor the increased communication latency between nodes.
Besides the 8-kB four-way set-associative cache memories
present in both the baseline cache and the proposed in-cache
streaming architectures, the presented BRAM utilization also
comprises the buffering structures that are found in each
component, except for the in-cache stream controller, which
implements these buffers with registers.

B. Data-Pattern Generation Efficiency

To evaluate the proposed PDC data-pattern generation effi-
ciency and compare it with the state-of-the-art APMC [12],
Hotstream [11] and the previously proposed DTC [13], a rep-
resentative set of benchmark kernels were executed, using
the data patterns considered in [13], namely: Linear; Tiled;
Diagonal; Zig-Zag; and Greek Cross. Fig. 9 shows the consid-
ered patterns (in a 2-D representation) and their corresponding
descriptor specifications. Table II presents the efficiency of
the PDC in resolving the data patterns encoded with the
proposed dynamic descriptor graph specification, compared
with the considered state-of-the-art approaches (with their
corresponding description encoding).

2140

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 7, JULY 2017

TABLE II

ADDRESS GENERATION RATE AND DESCRIPTOR SIZE (IN BYTES) FOR THE PROPOSED PDC
AND COMPARISON WITH THE CONSIDERED RELATED WORK APPROACHES

Proposed PDC DTC [13] DFC [11] AXI DMA [27]
Pattern Applications/ Pattern Length
Type Data Structures (# words) Addrfeycle

P Size! N Size! Addr/cycle Size® Addr/cycle Size! Addr/cycle
No Burst Burst*

Linear Array, Table 1024 8 1 256 16 1 24 1 32 0.96
Tiled Arithmetic, Matrix 128 %722 20 1 128 32 1 40 0.99 32 1
Diagonal Bioinformatics [29] 1024 x 1024 52 1 1 128 1 44 1 65k 1
Zig-Zag Entropy Encoding [30] 8x8 104 1 1 208 1 48 (132*) 036 (0.71%) 480 0.63
Greek Cross Diamond Search [31] 1024 x 1024 28 1 16 48 1 132 0.89 228k 1

* Values obtained after loop unrolling
2 Within a memory block of 512x512

By analyzing the values presented in Table II, it is clear
that the proposed PDC architecture, by itself (not accounting
for the SMC burst control), provides a steady one-address per
cycle generation rate, which is the same as the DTC architec-
ture [13] (hence, showing no performance loss from the added
complexity), whereas the remaining considered state-of-the-art
pattern generation structures show a significant performance
degradation for high complex patterns. This is rather impor-
tant, since the address generation rate typically constraints the
system throughput, especially in memory-bound applications.
Another advantage of the proposed system, when compared
with the state-of-art approaches, regards the memory require-
ments for storing the actual data access pattern. As it can
be concluded from Table II, the proposed graph-based pattern
descriptor leads to an overall reduction of the required amount
of memory, achieving up to 3.69 times and 8142 times memory
savings for the Greek Cross pattern, when compared with the
HotStream [11] and with the APMC [12] (since it is equivalent
to an AXI DMA [27]). This corresponds to a maximum
41% improvement in memory resource requirements when
compared with the previously proposed DTC [13].

The evaluation presented in Table II also shows that for
some of the patterns, the Hotstream DFC requires slightly
fewer memory resources for its pattern description code than
the other approaches. However, while the Hotstream frame-
work deploys one DFC controller per stream and per PE [11]
(corresponding to at least two DFCs for a minimal scenario
with one input and one output stream), the proposed mor-
phable infrastructure requires only one SMC, independently
of the number of PEs and streams. This way, with a slightly
higher memory size that is required in some cases to store
the proposed descriptor graph specification, it is possible to
achieve a higher pattern generation rate (for any described
pattern), with significantly fewer data-fetching hardware struc-
tures. As such, not only is most of the FPGA fabric left free
for computing structures, but it also allows reducing the total
energy consumption of the data-management infrastructure.

C. Main Memory Throughput

To complement such results, the benefits of the proposed
burst control and reorder buffering optimizations to the
main memory access were also evaluated. For such purpose,
it was measured the throughput and average memory access
latency (measured in cycles per byte) of the considered
DDR memory with the adopted evaluation patterns for both

T Description code size in bytes
3 Assuming a maximum burst length of 256 words (ref. AXI4 Protocol [25])

512

No Burst 256 -~
[MB/s] 128} - - - -fs

64 - p

Burst (w/AXI4) 32[-
[MB/s]

— N~ ® o

|

Burst +
Reorder Buffer
[MB/s]

Tiled

G.-Cross
5.25
0.56
0.27

Linear
5.25
0.27
0.27

 Striped
5.25
525
0.33

Zig-Zag
5.25
5.25
0.88

5.25
0.29
0.27

5.25
5.25
3.10

Avg. Memory a
Access Latency
[cycles/Byte]]

Fig. 10. Main memory throughput and associated average memory access
latencies with the proposed burst control and reorder buffer optimizations for
the considered data patterns.

optimization setups and compared with a direct connection
between the PDC and the main memory, where only a single
word is transferred per burst.

The obtained results for an SMC implementation operating
at 100 MHz are shown in Fig. 10. From these results, it is clear
that the most regular access patterns (with larger contiguous
data regions) take the most advantage of the proposed burst
controller. In particular, for the Linear and Tiled patterns,
it is possible to reduce the average latency by as much as
20 times, resulting in a throughput of 371 MB/s, close to the
AXI4 bus theoretical maximum (400 MB/s for a single channel
direction), when compared with a direct PDC connection.
On the other hand, for the Greek-Cross pattern, the achieved
throughput was limited at 128 MB/s (only nine times average
latency reduction), due to its smaller 16-word burst lengths.
The remaining patterns have no contiguous data regions and
as such cannot take advantage of the proposed burst controller
by itself.

However, some substantial improvements are observed
when adding the proposed reorder buffer optimization.
In particular, it is possible to increase the throughput of
the Greek-Cross pattern to 371 MB/s by prefetching the
48 x 48 blocks before applying the crossed pattern. Similarly,
some significant benefits can be observed for the Diagonal and
Zig-Zag patterns. Similarly, for the zig-zag pattern, it is
possible to prefetch each 8 x 8 block while applying the
zig-zag scan (reducing the average latency by six times), hence
increasing the effective throughput to 90 MB/s. Conversely,
for the Diagonal pattern, only a slight throughput increase
of 13 MB/s is observed, due to the limited size (4 kB) of
the adopted reorder buffer, which provides limited data reuse
opportunities (even when using a tiling procedure) when the

NEVES et al.: ADAPTIVE IN-CACHE STREAMING FOR EFFICIENT DATA MANAGEMENT 2141
Blocked Matrix g Biological Sequence Histogram /" [D.]2D Poisson Equation [E]Convolutional
Multiplication Alignment Equalization Solver Neural Network
c HPEs—1 2 4 8 16 3 & 12 4 8 16 B e 12 8 16 3 e 12 4 8 16 B e 12 4 8 16 B e
S[1.]10% R T A = | (o [JBASE I o 1 o0 I e
T % 20 AMPM
L 0 0% | Moweris better- § OMICS i
g ‘g % |- *loweris better: (“H.ICSfSMC
£ 40% | B ey
£ 1 ’_l_l- Lo]_’_l
o H H i H H H |
8 ol hollLLihl l e 0
@ 84 ! ! ! 1 ICSISMC, ’ ! ! ! 1 ICS-SSMC, ey

] > 16 ! / T)/_ L]
5§ S| PogA ICS-$MC
Eos | BASE = 21cs
ST : Sl
T 9 "IN AMP
S 02 BAS|

0.0625 :
031024
2 o 2%
S5 &«
€0
5 O 16
2
o wv
o 1

100%
>[4
> 8%
2,
22 eon
T B 40% 2 0 AMPM

v w
% SWICS
° o o W ICS-SMC]
0% b
SO S P T T N
S =0 i 0 T B B S S T R S =Y
° = Lo off AR i P) S Lol s Lop o BASES
Qg 0 B T e el T T T T AMPM T P e
>3 108 ——rlert LT b = <ICS B t L S ymd P : s * AMPM
o 1 =1 1ICS-SMC S . S P Stk L Fod “cs
[7) Q 105 i A i i i P = §-Tk e f 1S =
c o Tower is better: VICS-5MC] i i i i I | [ICS-SMC I t
w 107 [R S R R R R — 5 L i & § f § |4 LT Iessme
#PEs—1 2 4 6 16 32 & 7 1 2 4 & 16 3 647 i 2 § 16 32 67 1 2 4 8 16 32 647 1 2 4 8 16 32 647
Fig. 11. Comparison of the proposed ICS-SMC with the BASE, AMPM, and ICS setups in: communication and execution time ratio improvement (top row),

performance speedup scalability (second row) for each setup against its own single-PE configuration, execution time speedup (third row) and the total energy
savings (fourth row) against the BASE reference, and overall system performance-energy efficiency (bottom row).

diagonal size is too large. In fact, at the larger diagonal,
the throughput becomes effectively the same as with a direct
connection to the memory. Naturally, when allowed by the
processing algorithm, a possible optimization for this pattern
is the adoption of a stripped (or banded) processing approach,
where n x 1024 stripes are prefetched and processed in smaller
diagonals. With such an optimization, it becomes possible
to take full advantage of the proposed burst controller and
reorder buffer, resulting in an overall throughput increase.
For example, with a configuration of 16 times 1024 stripes,
the average memory access latency is reduced by 16 times and
a maximum throughput of 304 MB/s is achieved (see Fig. 10,
column Striped).

D. Performance Evaluation

In order to evaluate the gains provided by the data trans-
fer and communication capabilities of the proposed mor-
phable infrastructure (ICS-SMC), several different benchmarks
were considered (see Table III), namely: 1) block-based
matrix multiplication; 2) biological sequence alignment [32];
3) histogram equalization; 4) 2-D Poisson equation paral-
lel solver [33]; and 5) convolutional neural network for
image recognition [34]. The considered setups were evaluated
in terms of: 1) data communication and memory access
time reduction; 2) performance speedup scalability for each
setup against its own single-PE configuration; 3) performance
speedup and total energy savings against the reference BASE
setup: and 4) performance-energy efficiency [in the form of
an energy-delay product (EDP) study].

TABLE III

ADOPTED BENCHMARK APPLICATIONS AND THEIR
CORRESPONDING DATA SETS, DATA ACCESS
PATTERNS AND COMMUNICATION

CHARACTERISTICS
BENCHMARK INPUT SIZE DATA COMM'/DATAI
PATTERNS MANAGEMENT
Blocked Matrix 128x 128 Tiled Hybrid, Broadcast
Multiplication 8x8 blocks Data Reuse

Biological Sequence 128x 1024 queries Diagonal Stream, PE-PE, Broadcast
Alignment [32] 4096 reference Striped Data Reorganization
Histogram 256256 Tiled Hybrid, PE-PE,

Equalization image Linear Broadcast, Data Reuse
2D Poisson 128x 128 grid Tiled Stream, PE-PE
Equation Solver? [33] 100 iterations Linear Data Pipelining
Convolutional 32x32 image Tiled Stream, PE-PE, Broadcast

Neural Network? [34] 142x 5x5 kernels
T As used in the In-Cache Stream setups
3 For image classification

Data Reuse+Pipelining
2 Jacobi parallel iteration method
(striped decomposition)

1) Performance Evaluation: The obtained results for the
considered evaluation benchmarks are shown in the graphs of
Fig. 11, by considering a variable number of PEs. In particular,
the bar plots on the top row represent the ratio of the
communication time over the total execution time for
each setup. Although the AMPM shows significant data-
communication overhead reductions, when compared with the
BASE reference, they are mostly present in configurations
with fewer PEs (only up to 8 in most cases). Hence, despite
their efficient capabilities, this type of prefetching mechanisms
is not particularly suited for many-core systems, since they
cannot cope with the increase in memory access traffic and
bus contention in larger systems.

Conversely, as it can be observed for most of the consid-
ered benchmarks, the previous ICS setup already provides

2142

mechanisms that target the mitigation of such drawbacks,
allowing a significant data-communication overhead reduction
when compared with the AMPM setup. In particular, its
offered stream prefetching, broadcasting, and data reutilization
capabilities, allow a significant reduction of the total number
of main memory accesses, therefore decreasing the observed
contention in the interconnections. This is particularly evident
with higher numbers of PEs, where increased levels of data
reutilization and inter-PE communication are possible, due
to the added amount of local memory resources available
in the infrastructure. In fact, as it can be observed in the
performance scalability graphs in the second row of Fig. 11,
the AMPM setup with more than 16 PEs (8 in the Poisson
equation solver benchmark) incurs in a high communication
contention, resulting in a noticeable performance degrada-
tion (even resulting in performance slowdowns). Contrarily,
the proposed ICS-SMC is capable of fully taking advantage
of its capabilities to mitigate contention and increase overall
performance, even with an amount of PEs as high as 64. For
the histogram equalization [Fig. 11(C)] and Poisson equation
solver [Fig. 11(D)], it is possible to observe a sudden increase
in performance when the entire data set fits in the local memo-
ries and starts being directly communicated between PEs, thus
avoiding unnecessary communication with the main memory.

Despite providing increased levels of communication effi-
ciency with the addition of the proposed memory-aware SMC,
an even higher data communication efficiency is observed
for the ICS-SMC setup, as it can be observed from the top
two rows of Fig. 11. In fact, a significant communication-
execution time ratio reduction is observed, when compared
with the AMPM and ICS setups, resulting from the proposed
memory bandwidth optimization techniques of the SMC (burst
controller and reorder buffer). This allows a greater mitigation
of the communication overhead resulting from costly main
memory accesses, which is particularly clear when observing
the communication-execution time ratio improvement for the
memory-bound matrix multiplication application [Fig. 11(A)].

Such a significant memory access optimization and the
observed performance scalability are directly reflected on the
total execution time speedups (against the BASE reference)
presented in the bar plots from the third row of Fig. 11.
As it could be expected, the AMPM is only capable of partly
mitigating contention and memory traffic with fewer cores,
achieving an average four times speedup for the considered
benchmarks. Contrarily, the preliminary optimizations intro-
duced by the ICS setup already allow significant perfor-
mance scalability improvements, not showing the slowdowns
observed in the BASE and AMPM setups, with configurations
with more than 8 PEs. This, in turn, results in average
32 times execution time speedups for the ICS setup, when
compared with the BASE setup, corresponding to a 10 times
improvement over the AMPM.

However, when combining the in-cache stream
infrastructure with the proposed memory-aware techniques,
the ICS-SMC setup consistently provided performance
speedup levels with no noticeable performance loss for most
of the considered benchmarks. In fact, the only exceptions are
the histogram equalization [Fig. 11(C)] and the convolutional

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 7, JULY 2017

neural network [Fig. 11(E)] benchmarks, where no added
gain is observed with a 64-PE configuration (when compared
with a 32-PE configuration), due to computation- and
synchronization-related overheads. Such an improved com-
munication efficiency allows average performance speedups
of 126.7 times against the BASE setup, corresponding to
average 54 times and 13 times improvements over the
AMPM and ICS setups, respectively. Moreover, maximum
performance speedups of up to 1500 times are observed for
the ICS-SMC setup in the matrix multiplication [Fig. 11(A)]
and Poisson equation solver [Fig. 11(D)] benchmarks.

2) Energy Savings Evaluation: The observed performance
increases and data transfer overhead reductions directly impact
the total energy consumption of the whole system, as shown in
the energy savings attained by the proposed ICS-SMC (when
compared with the other setups) (bar plots from the fourth
row of Fig. 11). From the graphs, it is clear that besides
the discussed performance improvements and the efficient
data management of the proposed streaming and broadcasting
techniques, the considered main memory access optimizations
also allow a significant reduction of the system’s total energy
consumption. Such savings (averaging 91% with 64-PE setups)
are directly related to the obtained execution time speedups,
the significant decrease in bus communication (resulting from
to the offered broadcast capabilities) and the reduced number
of accesses to the main memory (accounted in the ratios of
the top row bar plots for data transfers reduction).

3) Performance-Energy Efficiency Evaluation: To gather
all the observed results in a single metric, an additional
performance-energy efficiency study was performed. In this
case, it was used an EDP metric, calculated by multiplying
the total energy consumption of a given setup by the corre-
sponding execution time of each application. The line plots
in the bottom row of Fig. 11 represent the measured EDP for
each setup. By keeping in mind that lower values represent
a higher efficiency, the measured results reflect the attained
lower energy consumption and the improved scalability of the
proposed morphable infrastructure, when compared with the
hybrid setup. As it could be expected, the poorer performance
scalability and higher energy consumptions observed in the
BASE and AMPM setups also result in a poorly scalable EDP
with the increase of the number of PEs, due to the increased
contention in its shared interconnections. On the contrary,
the measured EDP values for the proposed ICS-SMC show
that it is capable of mitigating the contention to the shared
structures and consequently reduce data transfer overheads,
allowing higher communication throughputs with lower energy
consumptions. This is a direct result of the proposed data
prefetching, reutilization, efficient communication capabilities
and memory access optimization mechanisms. In fact, thanks
to the introduction of the proposed SMC, it is possible to
observe energy efficiency improvements as high as 245 times
when compared with the previously proposed ICS setup.

VII. CONCLUSION
A novel in-cache stream communication model for many-
core systems was proposed. The devised infrastructure is
able to seamlessly switching between conventional memory-

NEVES et al.: ADAPTIVE IN-CACHE STREAMING FOR EFFICIENT DATA MANAGEMENT

address and stream-based communication paradigms, while
offering a set of streaming capabilities, including prefetching,
complex memory access generation, and stream manipula-
tion. The generation of data streams is performed by a
new memory-aware SMC structure, which relies on a novel
dynamic descriptor graph specification, capable of easily
describing any arbitrarily complex access pattern. To decode
such descriptors, a PDC architecture was specially devised that
is capable of offering a steady-state one-address per clock
cycle pattern generation efficiency. Furthermore, the con-
ceived SMC is paired with a burst controller to optimize
the main memory bandwidth, along with a reorder buffer to
further exploit data reorganization and reutilization techniques
through in-time stream manipulation.

The obtained results show performance increases, averaging
126.7 times, 54 times, and 13 times, when compared with
a reference setup, a state-of-the-art stride prefetcher [9] and
a previous implementation [14], respectively. The proposed
infrastructure also allows significant total energy savings
(averaging 91%), which result in overall processing energy
efficiency improvements as high as 245 times, when compared
with the previous implementation. To conclude, the obtained
results highlight the proposed morphable infrastructure capa-
bilities to significantly reduce the data transfer overheads with
its efficient data prefetching, reutilization and communication
management techniques, mitigating contention in the shared
interconnections, which in turn increases performance and
overall energy efficiency.

REFERENCES

[1] T. Chau, X. Niu, A. Eele, W. Luk, P. Cheung, and J. Maciejowski,
“Heterogeneous reconfigurable system for adaptive particle filters in
real-time applications,” in Proceedings of the Reconfigurable Comput-
ing: Architectures, Tools and Applications: 9th International Symposium,
ARC 2013 (Lecture Notes in Computer Science), vol. 7806. Berlin,
Germany: Springer, 2013, pp. 1-12.

[2] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad, “Application-aware
topology reconfiguration for on-chip networks,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 19, no. 11, pp. 2010-2022, Nov. 2011.

[3] R. Pal, K. Paul, and S. Prasad, “Rekonf: A reconfigurable adaptive
manycore architecture,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process. Appl. (ISPA), Apr. 2012, pp. 182-191.

[4] R. Kumar, T. G. Mattson, G. Pokam, and R. Van Der Wijngaart,
“The case for message passing on many-core chips,” in Multiprocessor
System-on-Chip. New York, NY, USA: Springer, 2011, pp. 115-123.

[5] K. T. Sundararajan, T. M. Jones, and N. P. Topham, “The smart cache:
An energy-efficient cache architecture through dynamic adaptation,” Int.
J. Parallel Program., vol. 41, no. 2, pp. 305-330, 2013.

[6] G. Kalokerinos et al, “FPGA implementation of a configurable
cache/scratchpad memory with virtualized user-level RDMA capability,”
in Proc. Int. Symp. Syst., Archit., Modeling Simulation (SAMOS), 2009,
pp. 149-156.

[7]1 Y.-T. Chen et al., “Dynamically reconfigurable hybrid cache: An energy-
efficient last-level cache design,” in Proc. Design, Autom. Test Eur. Conf.
Exhibit. (DATE), Apr. 2012, pp. 45-50.

[8] Y. Guo, P. Narayanan, M. A. Bennaser, S. Chheda, and C. A. Moritz,
“Energy-efficient hardware data prefetching,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 19, no. 2, pp. 250-263, Feb. 2011.

[9] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for high
performance data cache prefetch,” J. Instruct.-Level Parallelism, vol. 13,
pp. 1-24, Sep. 2011.

[10] A. Jain and C. Lin, “Linearizing irregular memory accesses for
improved correlated prefetching,” in Proc. IEEE/ACM Int. Symp.
Microarchit. (MICRO), Oct. 2013, pp. 247-259.

2143

[11] S. Paiagua, F. Pratas, P. Tomas, N. Roma, and R. Chaves, “Hotstream:
Efficient data streaming of complex patterns to multiple accelerating
kernels,” in Proc. 25th Int. Symp. Comput. Archit. High Perform.
Comput. (SBAC-PAD), Sep. 2013, pp. 17-24.

[12] T. Hussain, O. Palomar, O. Unsal, A. Cristal, and E. Ayguadé, and
M. Valero, “Advanced pattern based memory controller for FPGA
based HPC applications,” in Proc. Int. Conf. High Perform. Comput.
Simulation (HPCS), Sep. 2014, pp. 287-294.

[13] N. Neves, P. Tomds, and N. Roma, “Efficient data-stream management
for shared-memory many-core systems,” in Proc. 25th Int. Conf. Field
Program. Logic Appl. (FPL), Sep. 2015, pp. 508-515.

[14] N. Neves, A. Mussio, F. Gongalves, P. Tomds, and N. Roma,
“In-cache streaming: Morphable infrastructure for many-core processing
systems,” in Proc. Eur. 9th Workshop Conventional High Perform.
Comput. (UCHPC), 2016.

[15] J. Park and P. C. Diniz, “Data reorganization and prefetching of pointer-
based data structures,” IEEE Design Test Comput., vol. 28, no. 4,
pp. 38-47, Apr. 2011.

[16] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson,
S. H. Pugsley, and Z. Chishti, “Efficiently prefetching complex
address patterns,” in Proc. 48th Int. Symp. Microarchit., Sep. 2015,
pp- 141-152.

[17] T. E. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Practical off-chip meta-data for temporal memory streaming,” in Proc.
IEEE 15th Int. Symp. High Perform. Comput. Archit., Sep. 2009,
pp. 79-90.

[18] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching
systems,” in Proc. IEEE 15th Int. Symp. High Perform. Comput. Archit.,
Apr. 2009, pp. 7-17.

[19] J. Park and P. Diniz, “Synthesis of pipelined memory access controllers
for streamed data applications on FPGA-based computing engines,” in
Proc. 14th Int. Symp. Syst. Synth., 2001, pp. 221-226.

[20] A. A. El-Moursy and F. N. Sibai, “V-set cache: An efficient adaptive
shared cache for multi-core processors,” J. Circuits, Syst., Comput.,
vol. 23, no. 07, p. 1450095, 2014.

[21] S. Ghosh et al., “Cache miss equations: An analytical representa-
tion of cache misses,” in Proc. ACM Int. Conf. Supercomput., 1997,
pp. 317-324.

[22] T. Grosser, H. Zheng, R. Aloor, and A. Simburger, A. Grosslinger, and
L.-N. Pouchet, “Polly-polyhedral optimization in LLVM,” in Proc. Ist
Int. Workshop Polyhedral Compilation Techn. (IMPACT), 2011.

[23] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache,
“GRAPHITE: Polyhedral analyses and optimizations for GCC,” in Proc.
GCC Develop. Summit, 2006.

[24] Z. Majo and T. R. Gross, “Matching memory access patterns and data
placement for NUMA systems,” in Proc. 10th Int. Symp. Code Generat.
Optim., Sep. 2012, pp. 230-241.

[25] ARM Ltd. (Feb. 2013). AMBAAXI and ACE Protocol Specification, Issue
E. [Online]. Available: http://infocenter.arm.com

[26] “TN-41-01: Calculating memory system power for DDR3,” Micron
Technol., Inc., Boise, Idaho, USA, Tech. Rep. TN-41-01, 2007.

[27] “LogiCORE IP AXI DMA v6.03a,” Xilinx, San Jose, CA, USA,
Tech. Rep. PG021, 2012.

[28] T. Kranenburg and R. van Leuken, “MB-LITE: A robust, light-
weight soft-core implementation of the MicroBlaze architecture,” in
Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2010,
pp- 997-1000.

[29] N. Neves, N. Sebastiao, D. Matos, and P. Tomas, P. Flores, and N. Roma,
“Multicore SIMD ASIP for next-generation sequencing and alignment
biochip platforms,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 23, no. 7, pp. 1287-1300, Apr. 2015.

[30] G. Wallace, “The JPEG still picture compression standard,” IEEE Trans.
Consum. Electron., vol. 38, no. 1, pp. xviii—xxxiv, Jan. 1992.

[31] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Trans. Image Process., vol. 9, no. 2,
pp. 287-290, Feb. 2000.

[32] M. Farrar, “Striped Smith—Waterman speeds database searches six times
over other SIMD implementations,” Bioinformatics, vol. 23, no. 2,
p. 156, 2007.

[33] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil com-
putations to maximize parallelism,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., Sep. 2012, pp. 1-40.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

