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Abstract—Dynamic voltage and frequency scaling (DVFS) is a popular technique to improve the energy-efficiency of high-performance

computing systems. It allows placing the devices into lower performance stateswhen the computational demands are lower, opening the

possibility for significant power/energy savings. Thiswork presents a GPU power consumptionmodel, used to predict theGPU power

consumption of any application at different frequency levels. To obtain this model, an estimation algorithm is proposed, relying on careful

benchmarking of the GPU architecture. Themodel can estimate the contribution of twelve different GPU components (FP32-ADD/MUL/

FMA, FP64-ADD/MUL/FMA, INT, SF, CF units, sharedmemory, L2-cache, and DRAM) to the GPU power consumption. Different model

use cases are evaluated (fixed-frequency, DVFS, and scaling-factors), which can obtain both the total or the per-component GPU power

consumption. A technique to export models to a distinct GPU from the one it was estimated on is also proposed. These approacheswere

extensively validated on five different GPUs from the threemost recentmicroarchitectureswith a set of 42 standard benchmarks,

achieving very accurate predictions. In particular, the scaling-factor power model achieves an average prediction error of 3.5 percent

(Titan Xp), 4.6 percent (GTX Titan X), 3.1 percent (GTX 980) and 2.4 percent (Tesla K40c).

Index Terms—GPGPU, DVFS, power modeling, scaling-factors
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1 INTRODUCTION

AS the usage of accelerators, particularly GPUs, has
become more predominant in high-performance com-

puting (HPC) systems [1], it is increasingly important to find
mechanisms to maximize their energy-efficiency. One of the
most widely used techniques is the dynamic voltage and fre-
quency scaling (DVFS), which allows placing the devices
into lower performance states. When carefully applied to
match the needs of the executing applications, DVFS can
lead to significant power and energy savings, oftenwithmin-
imum impact on performance [2], [3], [4].

Nonetheless, to efficiently apply power management
techniques (including DVFS), accurate models are required
to predict how the performance/power consumption of
applications scales with the GPU operating frequencies/vol-
tages. In the past, it has been shown that applications with
different GPU resources utilizations have diverse perfor-
mance and power consumption scaling behaviours when
DVFS is applied [5], [6], [7], [8]. Hence, attaining accurate
models requires information of how the executing applica-
tions are using the different GPU components.

Previousworks proposing GPU power consumptionmod-
els have focused on either fixed frequency [9], [10], [11] or

more recently on DVFS prediction [12], [13]. In our previous
work [14], a DVFS-aware GPU power consumption model
was proposed, which relies on a set of carefully devised
microbenchmarks and on a regression-based algorithm to
estimate the unknown model parameters. Such devised
model allows decoupling the power consumption in seven
different components with a high accuracy. This was also one
of the first works to consider the non-linear scaling of the
GPU voltage with the operating frequency.

This paper significantly expands on our previous
work [14] with an extensive focus on the different usage sce-
narios of power models such as: 1) fixed frequency predic-
tions; 2) DVFS predictions; 3) scaling-factor predictions; and
4) per-component power breakdown in twelve different
components. This work also introduces a detailed analysis
of the effects of hardware changes in the power consum-
ption model, namely on the portability of an estimated
model. Furthermore, the microbenchmark suite is extended
with new applications that exercise multiple new GPU
components.

Each of these different approaches was extensively vali-
dated on five different GPU devices (Titan Xp, GTX Titan X,
GTX 980, GTX 960 and Tesla K40c) from the three most recent
NVIDIA GPUmicroarchitectures (Pascal, Maxwell and Kep-
ler) with a set of 42 benchmarks from five commonly used
benchmark suites (Parboil [15], Rodinia [16], Polybench [17],
SHOC [18] and CUDA SDK [19]). From the conducted expe-
rimental evaluation it is shown that the proposed models
achieve accurate results, particularly the scaling-factor
power model which achieves an average error rate as low as
3.5 percent (Titan Xp), 4.6 percent (GTX Titan X), 2.4 percent
(Tesla K40c) and even 3.1 percent for the GTX 980, where the
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last one was obtained by adapting the model estimated for
theGTXTitan XGPU.

Accordingly, this work makes the following contribu-
tions with regards to [14]:

� Introduction of additional microbenchmarks into the
microbenchmark suite, allowing the characterization
of novel GPU components, as well as the separation
of some previously aggregated components (e.g., by
separating FP32 unit into FP32 ADD, FP32 MUL and
FP32 FMA compute units).

� New power model and voltage estimation algorithm,
allowing to simultaneously estimate the voltage of
each frequency domain as well as the unknown
model coefficients.

� Extensive validation of the estimated power con-
sumption models in multiple usage scenarios (fixed-
frequency, DVFS, scaling-factors, power breakdown),
including the evaluation of the results obtained from
exporting an estimated model from one GPU to a dif-
ferent one.

� Discussion of the obtained results, including consid-
erations about the general limits of power models
based on supervised learning (statistical- or machine-
learning).

The complete source code, including themicrobenchmark
suite and a tool to construct the DVFS-aware GPU power
consumption model, is publicly available online (https://
github.com/hpc-ulisboa/gpupowermodel).

The rest of this paper is organized as follows. Section 2
motivates the presented work, including a summary of the
most relevant state-of-the-artworks. Section 3 details the pro-
posed DVFS-aware power model. Section 4 presents the dif-
ferent model use cases, validated on real hardware devices.
Section 5 overviews the obtained results and Section 6 con-
cludes the manuscript.

2 BACKGROUND AND MOTIVATION

The architecture of GPUs is composed by several distinct
components (as an example, Fig. 1 represents a NVIDIA
Titan XpGPU). Themain execution components of GPUs are
the streaming-multiprocessors (SMs), which include differ-
ent computational units (INT, FP32, FP64, etc.), as well as
several elements of private memory (texture/L1-cache,
shared memory). GPU devices usually have multiple SMs

(30 in the case of the Titan Xp), as well as an L2-cache and the
main devicememory (DRAM).

2.1 GPU DVFS and Power Consumption

Most GPU devices have two independent frequency
domains, which are the core (or graphics) domain, clocked at
fcore, and the memory domain, clocked at fmem. DVFS can be
applied as a way of exploiting the existence of these two
independent frequency domains, since it allows adapting
the performance of the GPU components to the particular
requirements of the executing applications. This can often
result in considerable energy savings [2], [3], [20], [21].

However, optimizing the GPU configuration, i.e., the
voltage-frequency (V-F) levels of both core and memory
domains is not a trivial problem [7], [8], [22]. It requires
accurate estimations of both the execution time and average
power consumption, namely the effects that changing the
V-F configuration will have on these two metrics.

Different GPU applications have their unique characteris-
tics (used algorithm, data types, operations, size of the input
data, dimensions of the grid of threads, etc.), which deter-
mine how the different GPU components are stressed during
the application execution. Furthermore, depending on how
the different GPU components are exercised by applications,
DVFS can have vastly different impacts on the performance
and on the total GPU power consumption.

Fig. 2 presents an example of such a scenario, where the
BlackScholes and the CUTCP benchmarks are executed on an
NVIDIA GTX Titan X GPU across multiple V-F configura-
tions. Fig. 2 also shows the utilization of the main GPU com-
ponents, represented as the ratio of the achieved and peak
theoretical throughputs of the component. As it can be seen,
the two applications present very different utilization rates
of some GPU components (see L2-cache and DRAM utiliza-
tions), which results in the different power consumption
levels of 181W and 135W at the default GPU frequency con-
figuration (fcore ¼ 975 MHz and fmem ¼ 3505 MHz). Addi-
tionally, it can also be seen that the variation of the power
consumption when the memory frequency is decreased is
much higher for the BlackScholes benchmark, because of its
greater DRAM utilization: when the memory frequency
decreases from 3505 MHz to 810 MHz, the power consump-
tion decreases by 52 percent (from 181W to 87W). On the
other hand, the power consumption of the CUTCP bench-
mark decreases by only 24 percent (from 135W to 102W).

Regarding the core frequency scaling, it can be seen that,
unlike it is proposed in other previous works [10], [12], the

Fig. 1. Block diagram of a Titan Xp GPU (Pascal family).

Fig. 2. DVFS impact on the power consumption of two applications on the
GTX Titan X. Left: GPU components utilization during the applications
execution, when fcore ¼ 975 MHz and fmem ¼ 3505 MHz. Right: power
consumption variation with the core andmemory frequency scaling.
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GPU power cannot be represented as a simple linear func-
tion of the core frequency. In practice, the power consump-
tion of a GPU device can be decomposed in the sum of the
power consumptions of its multiple architectural compo-
nents [23]. Furthermore, the power of each component (Ck)
is associated with its peak power consumption and with
how an executing application stresses such component
(PowerðCkÞ / UtilizationðCkÞ).

With regards to this observation, Butts et al. [24] and
Gonzalez et al. [25] proposed the power models presented
in Eqs. (1) and (2), which can be used to describe how the
dynamic and static components scale with the frequency
and voltage of their respective hardware elements:

PowerStatic ¼ V �N �Kdesign � Îleak; (1)

PowerDynamic ¼ a � C �V2 � f; (2)

where a denotes the average utilization ratio, C the total
capacitance, V the supply voltage, f the operating frequency
andN the number of transistors in the chip design.Kdesign is
a constant factor associated with the technology characteris-
tics and Îleak is a normalized leakage current for a single tran-
sistor, which depends on the threshold voltage.

These models can already provide some reasoning about
the non-linear behaviour of the power consumption in Fig. 2,
as frequency scaling is usually accompanied by changes of
the components voltage. However, even though these mod-
els give a valuable insight on the impact of DVFS, it is usually
impossible to accuratelymeasure these two components sep-
arately, let alone determine the model individual parame-
ters. Consequently, other approaches to model the GPU
power consumption are often required [12].

From these observations, it becomes clear the importance
of accurate DVFS-aware power models to characterize the
relationship between the GPU components utilization, their
runtime power consumption and how they change when
the frequency/voltage of the GPU domains are scaled.

2.2 Related Work

Initial attempts to model the GPU power consumption were
focused on modeling the power at a fixed V-F configuration,
not taking into consideration the effect of DVFS [26], [27],
[28]. In particular, Nagasaka et al. [29] proposed a power
consumption model for a Tesla GPU (GTX285) using a statis-
tical approach to find the correlation between hardware
performance events and the GPU power consumption,
achieving an average prediction error of 4.7 percent. How-
ever, the authors stated that the approach was ineffective for
more recent GPUs, namely those from the Fermi generation.

Hong et al. also proposed a power model for a Tesla GPU
(GTX280) [9] based on an analysis of both the binary PTX
and the device pipeline at runtime. The offline PTX analysis
allows this model to attain highly accurate GPU power pre-
dictions, at the cost of being very GPU-specific. Hence, such
an approach lacks the ability to make accurate predictions
for different GPU architectures, or even for the same GPU
at different core and memory configurations.

Song et al. proposed an artificial neural-network based
power model for GPU devices [11], achieving better predic-
tion accuracy than previous traditional regression-based

models. However, neural network approaches usually lead
to highly complex models, where it is often hard to extract
its physical/architectural meaning.

Leng et al. integrated Hong’s power model inside the
GPGPU-Sim [30] simulator, resulting in the GPUWattch [10]
tool. Hence, it only supports NVIDIA Tesla and Fermi GPU
microarchitectures. GPUWattch can estimate the cycle-level
GPU power consumption during application execution.
However, it assumes that the power consumption of a GPU
domain always scales linearly with its frequency[10, eq.6],
which previousworks (Mei et al. [8] andGuerreiro et al. [14])
showed to be often incorrect, because of the non-linear
behaviour of the voltage scaling in some GPU devices. Nath
et al. also used GPGPU-Sim to create a performance model
for DVFS, which could potentially be expanded to include a
power model [31]. However, this type of approaches often
requires adding logic to the GPU scoreboard, making it
impossible to replicate them on real hardware.

Abe et al. deemed the previous approaches to be product-
specific and difficult to apply on modern GPUs, and pro-
posed DVFS-aware power regression models for GPUs from
the NVIDIA Tesla, Fermi and Kepler generations [12]. The
authors separated the GPU power consumption in core and
memory domains, each proportional to their corresponding
frequency and associated performance events. The models
were estimated through linear regression by using measure-
ments taken at three different core and three different mem-
ory frequencies. The proposed models achieved average
prediction errors of 15 percent for the Tesla GPU, 14 percent
for the Fermi GPU and 23.5 percent for the most recent Kep-
ler GPU. However, the work does not disclose the set of per-
formance events used in the model. Additionally, despite
performing the power consumption decomposition in the
core and memory domains (similar to the one herein pre-
sented) the work proposed in [12] also does not consider the
non-linear scaling effects of the voltage.

Wu et al. studied how the performance and power con-
sumption of an AMD GPU scale with core and memory
frequency variations, as well as with different number of
cores [13]. The proposed work groups GPU applications into
distinct clusters based on their characteristics, each repre-
senting a different performance/power scaling-factor. Prop-
erly trained neural-network classifiers are then used to
characterize new applications, by predicting which scaling-
factor better represents an application. They achieve an aver-
age prediction error of about 10 percent on the tested GPU
device. However, the model accuracy is highly dependent
on a set of fine-tuned parameters, such as the number of
clusters, which makes it difficult to replicate on different
architectures. More recently, a follow-up technique [32] was
proposed that predicts the characteristics of upcoming ker-
nels, based on recent execution history.

The work that is herein presented vastly expands over our
previouswork [14], where aDVFS-aware power consumption
model was proposed. Such model could predict the total or
per-component power consumption of GPUs for any voltage-
frequency configuration, by using performance counters
gathered at a single configuration. To estimate the model of
each GPU device, a suite of microbenchmarks was provided
and made publicly available, as well as a tool that imple-
mented the devised iterative algorithm relying on statistical
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regression to model not only the unknown hardware charac-
teristics but also to accurately predict how the core voltage
scales with its frequency. The model was validated on three
GPU devices from different microarchitectures using a set
of 26 standard benchmarks, achieving average errors of
7 percent (Pascal), 6 percent (Maxwell) and 12 percent
(Kepler). The herein presented work not only extends on our
previous power model (using several more GPU compo-
nents), but also provides an extensive focus on different usage
scenarios (e.g., fixed frequency predictions,DVFS predictions,
scaling-factor predictions, per-component power breakdown
and the effects of hardware changes), ultimately resulting in
more accurate GPUpower consumption predictions.

2.3 Applications of a GPU Power Model

As it was referred above, one advantage of this work over
previous models (e.g., over machine-learning based ones,
where it is hard to convey the architectural meaning of the
estimated elements) is its versatility over multiple usage sce-
narios. Hence, the following use cases can be highlighted:

1) DVFS management, since the model allows searching
for the optimal frequency state without exhaustive
execution on all possible configurations (contrasting
to [33]).With the proposedmodel it is possible to esti-
mate the power consumption at different V-F config-
urations after executing the application at a single
configuration (Section 4.4).

2) Power consumption estimation in GPUs without power
sensors, by using a previously estimated model (e.g.,
using external sensors) to provide an estimate of the
total and/or per-component GPU power consump-
tion (similarly to [34] from Intel). Additionally, by
using a powermodel such as the herein proposed one,
i.e., based on architectural characteristics of the devi-
ces, it can also be possible to export a power model
from oneGPUdevice to a different one (Section 4.6).

3) Power-aware optimization of applications, as the model
allows obtaining the per-component power consump-
tion breakdown, which can help developers to assess
the power bottlenecks of applications (Section 4.5),
as an alternative to the more common perform-
ance optimization. This can even be useful in virtuali-
zation scenarios (such as the NVIDIA GRID system
using Hyper-V execution [35]), where the model—
constructed in the Hypervisor — could be provided
to the guest VMs, allowing them to estimate their
corresponding total and/or per-component power
consumption (which they currently have no way of
measuring).

4) GPU hardware integration, by implementing the pro-
posed model in hardware (similar to Intel RAPL
[36]), where it would be able to account for fine-
grained V-F perturbations and potentially even non-
SMU (SystemManagement Unit) V-F adjustments.

3 GPU POWER CONSUMPTION MODEL

To effectively apply DVFS techniques to optimize the power
consumption of an application execution, it is fundamental to
predict how the scaling of each GPU domain frequency/

voltage affects its overall power consumption. This section
describes the proposed procedure to create a statistical power
consumptionmodel of the GPU architecture.

To obtain an accurate model of the GPU power consump-
tion, one must consider the decomposition of the power con-
sumption across the internal components of the GPU. By
taking into account that these components operate under dif-
ferent frequency and voltage domains, the following decom-
position can be obtained:

PGPU ¼
XNV�F

k¼1

PðDkÞ; (3)

where NV�F is the number of independent voltage/fre-
quency (V-F) domains and PðDkÞ is the power consumption
of each domain (Dk), defined as follows:

PðDkÞ ¼ a0�vk þ �vk
2fk

 
a1 þ

XNC

i¼1

gi � Ui

!
; (4)

where fk represents the frequency of domain Dk, �vk is the
normalized voltage of the domain (�vk ¼ vk=vRef:), NC is the
number of GPU components operating in domain Dk and
Ui 2 ½0; 1� is their respective average utilization rate. The
coefficients a0, a1, g1,...,gNC

represent a set of hardware-
specific parameters, associated to the characteristics of the
underlying architecture, such as component total capaci-
tance and leakage resistance. In particular, the proposed
power model contains the following distinct elements:

1) a0�vk: corresponding to the static power of domain Dk

(see Eq. (1)).
2) a1�vk

2fk: corresponding to the constant power con-
sumption of that V-F configuration of domain Dk,
i.e., the dynamic power that is independent of the
modeled component utilizations.

3) g i�vk
2fkUi: corresponding to the dynamic power of

component i (see Eq. (2)).
Terms a0�vk and a1�vk

2fk correspond to what it is usually
denoted by the idle power of that specific V-F level, inde-
pendent of the utilization rates.

As previously stated, most modern GPUdevices comprise
two frequency domains, i.e., NV�F ¼ 2, corresponding to the
core and memory domains (PGPU ¼ Pcore þ Pmem). By rewrit-
ing Eq. (4) considering these two domains and by denoting
withNcore the number of modeled GPU components from the
core domain, the following equations are obtained:

Pcore ¼ a0�vcore þ �vcore
2fcore a1 þ

XNcore

i¼1

giUi

 !
; (5)

Pmem ¼ a2�vmem þ �vmem
2fmemða3 þ gmemUmemÞ: (6)

3.1 Modeled GPU Components

The proposed power model (Eqs. (5) and (6)) is based on the
utilization rates of themodeled GPU components. These rates
represent a reliable measure of how the considered applica-
tion exercises the components during its execution. The pro-
posed model focuses on modeling the hardware components
that have a significant impact on power consumption during
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the execution of GPU applications (and which have associ-
ated performance counters available), namely: the integer
(INT), single- and double-precision floating-point (FP32/
FP64), special-function (SF) and control-flow units (CF), the
shared memory, the L2 cache and the DRAM. Additionally,
the model also considers separate units for different FP com-
pute instructions (FMA, ADD and MUL), as it was experi-
mentally observed that their distinct complexities lead to
different power consumption levels. Furthermore, the mod-
ular structure of themodel allows an easy adaptation of it if/
when new components (and corresponding performance
counters) are added to newGPUs.

The utilization rate of the considered GPU compute
units, measured during the application execution, is com-
puted as the ratio between the number of executing warps
with the number of warps that would execute if these units
were always filled (theoretical peak). Hence, the utilization
rates of the SM computational units can be expressed as:

Ux ¼ AWarpsx �WarpSize

ACycles �UnitsPerSMx
;

x 2 fINT=FP32;FP64; SF;CFg;
(7)

where AWarpsx is the number of warps executing on unit x
during the application execution, ACycles is the number of
cycles when there is at least one active warp on the SMs,
UnitsPerSMx is the number of units of type x on each SM and
WarpSize is the number of threads in a warp, which is a char-
acteristic of the GPU device. Since NVIDIA GPUs aggregate
in a single counter the number of warps executing in the INT
and FP32 units, the number of instructions of each type
(InstINT and InstFP32) is used to decompose this metric into
the utilizations of each separate unit. Similarly, the number
of floating-point operations (single or double precision) of

each type (ADD, MUL or FMA) are used to separate the uti-
lizations of the FP32 and FP64 units.

On the other hand, the utilization rate of the different
memory hierarchy levels is computed as follows:

Uy ¼ ABandy
PeakBandy

; y 2 L2; Shared;DRAMf g; (8)

where ABand and PeakBand are the achieved and peak
bandwidth of each memory subsystem, respectively.

Accordingly, to model all the considered GPU compo-
nents, the metrics summarized in Table 1 are required.

3.2 Microbenchmarking the GPU

To accurately model the unknown characteristics of the
underlying architecture, the proposed methodology relies on
microbenchmarking. By creating a set of carefully designed
applications covering several GPU components, it is possible
to get an accurate prediction on the contribution of each com-
ponent to the total GPUpower consumption.

Fig. 3a presents an example of a skeleton source code
of the developed microbenchmark GPU kernels. These
microbenchmarks are mainly composed by an unrolled for
loop which stresses the desired GPU component. By varying
its loop boundaries, it is possible to achieve different mix-
tures of components utilizations. For example, in a given
microbenchmark stressing the integer unit, each iteration of
the loop executes arithmetic instructions on the registers
data. By decreasing the number of loop iterations, the result-
ing arithmetic intensity (arithmetic instructions per amount
of data read frommainmemory) decreases, which allows cre-
ating a range of microbenchmarks, e.g., from a more integer-
intensive (high INT and low DRAM utilizations) to a more
DRAM-intensive (low INT and highDRAMutilizations).

Table 2 presents a summary of the developed collection of
101 microbenchmarks used to estimate the proposed power
model. The model considers 12 different GPU components.
To better model the interactions between different instruc-
tions, the suite also includesmicrobenchmarkswith different
mixes of GPU components utilizations (MIX).

Fig. 3b shows a correlation heatmap of the utilization vec-
tors for all microbenchmarks, as well as an histogram of the
correlation values. As expected, microbenchmarks from the
same group have a higher correlation value, as they are
exercising the same component. However, the histogram
shows that most microbenchmarks from different groups
mostly have a low correlation (absolute value around 0.2).

TABLE 1
Required Metrics to Compute the Utilization Rates
used in the Proposed Power Consumption Model

Name Domain

1 ACycles Core
2-5 AWarpsfINT=FP32;FP64;SF;CFg Core
6-7 InstfINT;FP32g Core
8-10 FP32FLOPSfADD;MUL;FMAg Core
11-13 FP64FLOPSfADD;MUL;FMAg Core
14-15 ABandfL2;Sharedg Core
16 ABandDRAM Memory

Fig. 3. Microbenchmark suite.

TABLE 2
Developed Microbenchmark Suite to Model the Power
Consumption of the Considered GPU Components

Name Components # Name Components #

INT Integer units 13 SF SF units 10

FP32 32-bit FP units ADD 4 FP64 64-bit FP units ADD 4
MUL 4 MUL 4
FMA 4 FMA 4

L2 L2-cache 10 Shared Shared memory 9

DRAM DRAM 12 Mix Mix of arithmetic 7
Shared, L2 and

DRAM
CF Control-flow units 15 Idle - 1
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3.3 Model Parameter Estimation

Estimating the DVFS-aware power model corresponds to
the determination of the unknown coefficients x ¼ ½a0;a1;
a2;a3, gmem, g1, . . ., gN �. In order to facilitate the presentation
of the proposed methodology, this section considers a
device consisting of 2 frequency domains, with 1 compo-
nent in the memory domain and N components in the core
domain (which is consistent with most GPU devices). Addi-
tionally, given that in some devices it is unknown how the
voltage of each frequency domain scales with their operat-
ing frequency [8], the proposed methodology also estimates
the vectors of voltages vcore and vmem associated with each
operating frequency.

In order to better understand the characteristics of each
GPU component, the previously described set of developed
microbenchmarks (Section 3.2) is used to stress these compo-
nents. The microbenchmarks are executed and their power
consumption is measured at each supported V-F configura-
tion. Additionally, the value of the metrics (see Table 1)
required to compute the component utilization rates is also
measured for each microbenchmark. This set of measure-
ments can then be used to estimate the unknown parameters
of the proposedmodel.

Finally, Eqs. (5) and (6) show a relation between both
the unknown voltages vk and coefficients ai and gi (with

k2fcore;memg). Therefore, a simple least squares regression
cannot be used, as it leads to a non-full-rank optimization
problem. Hence, an alternative iterative optimization algo-
rithm was devised to estimate such parameters. Its opera-
tion is summarized in Fig. 4. The referred Optimization
Problems 1 and 2 are described in Fig. 5.

The algorithm is composed of two main phases, corre-
sponding to the estimation of the voltage levels and model
coefficients. In phase 1, the model coefficients (x) are fixed to
the previously found values in order to compute the voltage
levels of each frequency domain. Furthermore, the algorithm
focuses on each domain separately, for example, by first fix-
ing the memory voltages to a constant value and estimating
the core voltages for each frequency level (i.e., by solving
Problem 1 for each core operating frequency). Afterwards
the estimated core voltages are used to estimate the memory
voltages associated with each memory configuration (i.e., by
solving Problem 1 for each memory operating frequency). In
phase 2, all the estimated voltages are simultaneously used
to estimate themodel coefficients (i.e., by solving Problem 2).

It is important to note that, unlike previous works [10],
[12], the proposed methodology does not make any assump-
tion on the scaling of the voltage with the frequency of each
domain. Given the importance of the voltage in the power
consumption of these types of devices (in both the static—
Eq. (1) — and dynamic — Eq. (2) — power consumptions), it
is important to have an informed knowledge of these values,
in order to avoid a low prediction accuracy. However, in sit-
uations where the device voltage levels are known a priori,
the proposed methodology can be simplified into a single
execution of phase 2 (i.e., by only solving Problem 2), utiliz-
ing the real voltage values.

3.4 Fixed Frequency Estimation

The proposed model can also be applied when the goal is
to simply predict the power consumption for a fixed fre-
quency configuration, i.e., in the same configuration where

Fig. 4. Devised algorithm to estimate the model coefficients (x) and GPU
voltage levels (vcore and vmem).

Fig. 5. Optimization problems for the algorithm from Fig. 4.
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the utilization levels are measured. In this simpler case, the
model parameters are estimated with a fixed frequency (and
voltage), and Eq. (4) can be rewritten as:

PðDkÞ ¼ b0 þ
XNC

i¼1

vi � Ui; (9)

where the values of the voltages and frequencies are now
integrated inside the coefficients to be determined. Since
there are no products between unknown parameters in this
simplifiedmodel (in contrast with the previous formulation),
parameter estimation can be done in a single step, by using
least squares regression. This is done by executing phase 2 of
the previous algorithm, i.e., by solving Problem 2 using the
measurements taken at the target frequency.

3.5 Power Consumption Prediction

Once the model coefficients are known, the newly deter-
mined GPU power model can be used to predict the power
consumption of any (previously unseen) application, as it is
presented in Fig. 6. The model allows predicting how the
application power consumption changes over the whole
range of the device V-F configurations, by simply measuring
its performance events on a single configuration (without
requiring any powermeasure). Themodel also allows decou-
pling the partial power consumption of themultiplemodeled
GPU components from the total power consumption (more
on this in Section 4.5).

4 POWER MODEL USE CASES

One feature of the proposed power model is its potential
usefulness in multiple and diverse scenarios. This section
presents five of these use cases, providing also a validation
of the proposed model in real and modern hardware devi-
ces and with a set of commonly used standard benchmarks
(not used during model estimation).

4.1 Experimental Setup

To validate the proposed model, a collection of five GPUs
from different NVIDIA microarchitectures were used as
testing platforms (summarized in Table 3). All experiments
were performed on a Linux CentOS 7.4 server, with CUDA
9.0 and NVIDIA driver v384.98.

The NVML [37] library was used for monitoring and for
changing the operating frequencies of the GPU domains (the
voltage is automatically set). Additionally, real power meas-
urements are also obtained using NVML. To guarantee a
proper model validation, a reasonable set of power samples
are required during the kernel execution. Since the GPU
power sensors have a low sampling frequency, the kernels
were repeatedly executed whenever necessary, to ensure an
execution time of at least 1 second at the fastest GPU configu-
ration (highest core and memory frequencies). Finally, the
power consumption of each kernel was computed as the
average of all gathered samples. To guarantee the accuracy
of the presented results, all applicationswere repeatedly exe-
cuted, with the presented values corresponding to the
median value.

To estimate the devised power model on each GPU
device, the conceivedmicrobenchmark suite (see Section 3.2)
was executed on a wide range of different V-F configura-
tions. By using the corresponding power consumption val-
ues (measured at all tested V-F configurations) and the
performance events used to compute the metrics presented
in Table 1 (measured only at the reference frequency configu-
ration), it is possible to estimate all themodel coefficients. For
all GPU devices, the estimation algorithm (see Fig. 4) con-
verged in less than 100 iterations, corresponding to less than
5minutes execution on an Intel i7 8550U processor.

Model validation was performed using an independent
collection of 42 applications from 5 benchmark suites (see
Table 4), i.e., these benchmarks were not used during model
estimation. Each application was executed at the reference
frequency configuration to measure the hardware events
required by the model. Fig. 7 presents the utilization rate of
the GPU components for each benchmark, where the utiliza-
tion of each component is in the [0,1] range. The obtained
results show a wide diversity of different utilizations. In
order to evaluate the accuracy of the power predictions pro-
vided by the devised model, the power consumption of each

Fig. 6. Usage of a (previously estimated) power model to predict the power consumption of a new application.

TABLE 3
Summarized Description of the used GPUs

Titan GTX GTX GTX Tesla

Xp Titan X 980 960 K40c

Base architecture Pascal Maxwell Kepler
Compute capability 6.1 5.2 3.5

Memory frequencies
(MHz)

{5705, 4705}� {4005, 3505, 3505 3004
3300, 810}

Core freq. range (MHz) [1911:582] [1164:595] 1226 [875:666]
Default Mem. Frequency 5705 3505 3505 3004
Default Core Frequency 1404 975 1226 875

Number of SMs 30 24 16 8 15

Per SM SP/INT Units 128 128 128 128 192
DP Units 4 4 4 4 64
SF Units 32 32 32 32 32
Shared Memory 96K 96K 96K 96K {16,32
(bytes) 48}K

L2-Cache Size (bytes) 3M 3M 2M 1M 1.5M
L2-Cache Banks 12 12 8 4 6
Global Memory Size
(bytes)

12G 12G 4G 4G 12G

Memory Bus Width (bits) 384 384 256 128 384

TDP (W) 250 250 165 120 235

� NVIDIA driver does not allow setting the memory frequency to lower levels.
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application at the different V-F configurations was also mea-
sured. Since these applications were not used to estimate the
model parameters, they show the model robustness for new
(unseen) applications.

The rest of this section will analyze the model by looking
at the different scenarios in which it can be used: i) at fixed
V-F configuration, therefore disregarding the influence of
both voltage and frequency levels on the power consump-
tion (Section 4.2); ii) for DVFSmanagement, i.e., by providing
predictions over the whole frequency range, which (in these
cases) also include providing the voltage levels—as such
values are unknown (Section 4.3); iii) using a single power
sample to improve the DVFS model accuracy over the whole
frequency range (using scaling-factors—Section 4.4); iv)
providing a per-component breakdown of the GPU power
consumption (Section 4.5); and v) performing power predic-
tions on a different GPU than the one the model was esti-
mated on (Section 4.6).

4.2 Power Prediction at a Fixed Frequency

As previously discussed, the proposed power consumption
model can be used to predict the power consumption of
applications at the same frequency configuration that the
performance counters are measured. Fig. 8a presents such a
scenario, with the values of the predicted and measured
power consumptions for each benchmark executed on the
GTX Titan X GPU. The obtained results show the accuracy of
the proposed power model for the set of standard bench-
marks (used only to validate themodel).

Fig. 8b presents the obtained results for the five considered
GPUs at their respective reference (default) frequency config-
uration, namely the cumulative prediction errors on each
GPU. For theGTX 980 andGTX 960GPUs, two curves are pre-
sented corresponding to the obtained results with and with-
out the correction factor after exporting an estimated model

to a different GPU (more details on this in Section 4.6). The
results show that the power model is able to accurately pre-
dict the GPUs power consumption, where a mean absolute
error of 5.5 percent was achieved on the GTX Titan X, while
on the other GPUs the errors were 8.8 percent (Titan Xp),
7.7 percent (GTX 980), 8.5 percent (GTX 960) and 7.1 percent
(Tesla K40c).

4.3 DVFS-Aware Power Prediction

Unlike previous ones, the proposedmodel assumes that both
Vcore and Vmem can scale with the frequency changes of the
two GPU domains. However, while the estimated core vol-
tages were possible to be confirmed, by using the measured
voltages obtained using the NVIDIA Inspector and MSI
Afterburner (third-party Windows tools), the voltage of the
memory domain cannot bemeasured using these tools.

From the obtained measurements, it was observed that
the voltage scaling behaviour depends on the method used
to scale the domains frequency. When using the NVML
library (on the Titan Xp, GTX Titan X and Tesla K40c GPUs),
the voltage variation presents two different regions [14]: for
higher frequencies the voltage scales linearly, while for lower
frequencies it stays constant. In some GPUs NVML does not
allow changing the frequency (e.g., for non-Titan or non-
Tesla GPUs). In these cases, the domains frequencies were
changed by varying the graphics clock and memory transfer
rate offsets of the Powermizer inside the nvidia-settings tool.
However, experimental results showed that this alternate
method does not result in the same behaviour as in this case
the voltage stays constant across all frequencies.

Fig. 9 presents the accuracy of the proposed DVFS power
model when considering the validation set of standard bench-
marks, for multiple core and memory V-F configurations on

TABLE 4
Standard Benchmarks used for Model Validation

Suite Application Name

Parboil [15] CUTCP, LBM, MRI-Gridding

Rodinia [16] Backprop, DWT2D, Gaussian, Hotspot, Hotspot3D,
LUD, K-Means, K-Means_2, ParticleFilter_naive,
ParticleFilter_float, SRAD_v1, SRAD_v2, Streamcluster

Polybench [17] 2MM, 3MM, 3DCONV, ATAX, BICG,
CORR, COVAR, FDTD-2D, GEMM, GESUMMV,
GRAMSCHM, MVT, SYRK, SYRK_DOUBLE

SHOC [18] BFS, FFT, MD5Hash, Reduction, S3D, S3D_double,
Sort, Stencil2D, Stencil2D_double, QTClustering

CUDA SDK [19] Blackscholes, matrixMulCUBLAS

Fig. 7. Per-component utilizations for the set of 42 standard benchmarks on the Titan Xp.

Fig. 8. Power prediction at a fixed V-F configuration on the standard
benchmarks (not used in the model estimation).
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the GTX Titan X GPU. This figure presents the power esti-
mated by the model versus the measured power consump-
tions for the considered benchmarks (not used to estimate the
model), across 2 memory and 12 core frequencies. The power
predictions are based on the performance countersmeasured,
for each application, at a single (reference) V-F setting. The
diverse set of applications and frequency configurations
results in a wide range of observed power consumptions,
going from 50W up to 250W. Hence, when covering a fre-
quency range up to 4� for the core frequencies and 1:2� for
the memory frequencies, the model showed to be still able to
make accurate power predictions, with a mean absolute error
of 9.9 percent.

Fig. 10C presents the obtained results across the four
considered GPU devices (GTX960 was not considered in
this section, because it does not allow to change frequency
configurations). Overall, the devised DVFS-aware power
model results in mean absolute errors of 9.9 percent (Titan
Xp), 6.4 percent (GTX Titan X), 7.7 percent (GTX 980) and
8.6 percent (Tesla K40c). The approach presented in [12]
proposed a DVFS power consumption model for NVIDIA
GPUs, achieving a mean error of 23.5 percent for the Kepler
GPU (same as the Tesla K40c).

4.4 DVFS Predictions with Scaling-Factors

To produce power estimations, the proposed power model
always requires at least one execution of the application
under evaluation to measure the components utilizations.
Leveraging from this fact, whenever the device has power
sensors available, the GPU power consumption can also be
measured during the application execution. Once the power
consumption at a certain V-F configuration is known, the
power model can be used to determine how the consump-
tion will scale for different V-F variations (i.e., the different
scaling-factors, as referred in [13]), in the followingway:

P̂ðscalingÞðf2; v2Þ ¼ PGPUðf2; v2Þ
PGPUðf1; v1Þ � Pmeas:ðf1; v1Þ; (10)

where f1 and v1 are the frequencies and voltages at the refer-
ence configuration, and PGPUðf1; v1Þ and PGPUðf2; v2Þ are the
power consumptions given by the regular DVFS model
(Eqs. 5 and 6) at configurations ðf1; v1Þ and ðf2; v2Þ, respec-
tively. Finally,Pmeas:ðf1; v1Þ is themeasured power consump-
tion at the reference configuration and P̂ðscalingÞðf2; v2Þ is the
new estimate for the power consumption at configuration
ðf2; v2Þ.

Since thismethod is already using ameasured value of the
power consumption (offsetting the curve to a known value),
it will result in a much higher accuracy of the DVFS power
predictions. Figs. 10A and 10B present an example of the
benefits of using the scaling-factors approach on two distinct
applications on the Titan XpGPU. Fig. 10A presents themea-
sured and estimated power consumptions using the regular
DVFS approach (presented in Section 4.3), resulting in a
mean absolute prediction error of 9.3 percent. However, in
both cases, the error is almost constant across the different V-
F configurations, i.e., the model accurately predicts how the
power scales with the frequency and voltage of the two
domains. This is confirmed in the results achieved using the
scaling-factors method, presented in Fig. 10B. In this case,
the measured power sample allows sliding the estimated
curve closer to themeasure values, resulting inmuch smaller
prediction errors (1.7 percent).

The overall results of the scaling-factors approach on the
considered GPU devices are presented in Fig. 10D. Since the
model is using the actual samples for the reference configu-
ration, it will have an error of 0 percent at those configura-
tions (hence the curves are not asymptomatically tending to

Fig. 9. DVFS power predictions, across all V-F configurations, of the stan-
dard benchmarks (not used in themodel estimation), on the Titan Xp.

Fig. 10. Top: Example of frequency scaling model benefits on two bench-
marks, on Titan Xp. Bottom: Results on the standard benchmarks, across
the different V-F configurations: Cumulative distribution of the prediction
errors of the regular DVFS (C.) and scaling-factors (D.); and summary of
the obtained results (E.).
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0, when the relative error goes to �1). From these results it
can be seen that around 20 percent (Titan Xp), 18 percent
(GTX Titan X), 30 percent (GTX 980) and 40 percent (Tesla
K40c) of the estimated values have an error below 1 percent.
On the other hand, 95 percent (Titan Xp), 85 percent (GTX
Titan X), 95 percent (GTX 980) and 97 percent (Tesla K40c) of
the estimated values have an error below 10 percent, while
using the regular DVFS approach these values would be
60 percent (Titan Xp), 80 percent (GTX Titan X), 70 percent
(GTX 980) and 70 percent (Tesla K40c). The results are
summarised in Fig. 10E. Comparing with previous state-
of-the-art works, the approach presented in [13] proposed a
scaling-factor power consumption model (using a neural
network classifier) and achieved amean error of 10 percent.

4.5 GPU Power Decoupling

Once the power model is fully determined, it can be used to
estimate not only the total GPU power consumption, but
also the power of each component during the execution of
any application. This power breakdown can be very useful
for the application optimization, as it provides crucial infor-
mation to the developers regarding which components rep-
resent the main power consumption bottleneck.

Fig. 11 presents a breakdown of the dynamic power con-
sumption at the reference V-F configuration for each mod-
eled component of the GTX Titan X GPU, for four distinct
benchmarks (large pies). The relative utilizations of the GPU
components for each of these applications are also presented
in the figure (small pie). As one would expect, these two rep-
resentations produce different results. This is because of the
different estimated weights of each GPU component in the
power model (gi in Eqs. (5) and (6)), which make some com-
ponents to have a more dominant contribution to the power
consumption than others. For example, in the MRI-Gridding
application, the SFU has a utilization of only 5 percent of the
total application execution. However, as it is shown in
Fig. 11, the SFU contributes to 9 percent of the GPU dynamic

power consumption. Its contribution is actually higher than
the contribution of the CF units, which have a much larger
utilization. Naturally, this result is coherent with the com-
plexity of each unit, as the SF performs much more complex
operations than the CF unit.

The difference between the two representations of Fig. 11
confirms the usefulness of the proposed model: providing
the means for alternative power optimization strategies
regarding the conventional performance only approach.

4.6 Exporting the Model to Different GPUs

Given the modular design of NVIDIA GPUs (as it can be
observed from Table 3), a power model estimated for a spe-
cific GPU could potentially be adapted and applied to a dif-
ferent GPU. To attain this objective, one must take into
account the effects of the architectural changes in the power
consumption of GPU applications. This can be particularly
useful in providing power estimations for GPU devices with-
out power sensors. Additionally, this approach (summarized
in Fig. 12) would also avoid the need for the execution of the
whole microbenchmark suite on the target GPU device. For
now, this work focused on extrapolating the model only
within GPUs of the same microarchitecture, namely, for the
three Maxwell GPUs (see Table 3). Despite that, a similar
approach could be used to provide power predictions for
GPUs of different microarchitectures, which could be even
useful in the design stages of future microarchitectures.

As it is summarized in Table 3, the GTX Titan X, GTX 980
and GTX 960 have 30, 24 and 16 SMs, respectively. However,
the internal architecture of each SM is the same. Therefore, it
is reasonable to assume that the peak power consumption
associated with each modeled internal component (FP32,
FP64, INT, etc.) will scale by the same factor. Hence, for the
target GPUs, the model coefficients associated with each
modeled GPU component are obtained by scaling the esti-
mated coefficients (from the base GPU) in the same way that
the corresponding components are scaling between the two
GPU devices. For example, between the GTX Titan X and
GTX 980 GPUs, the number of SMs is decreased by 2=3.
Therefore, the coefficients associated with the SMs units (gi

in Eq. (5)) will be 2=3 of the coefficient value from the GTX
Titan X. Regarding the memory hierarchy, it can be seen that
from Table 3 L2-Cache and DRAM components are actually
scaling in the same proportion as the number of SMs. There-
fore, their coefficients (gL2 and gmem) will also scale by the
same factor (naturally, on other GPUs the scalings for the
memory and SM components may differ).

Regarding the estimation of the new coefficients associ-
ated with the static and constant power of the V-F configura-
tions (a0; . . . ;a3 in Eqs. (5) and (6)) two possible approaches

Fig. 11. Dynamic power consumption breakdown for each modeled GPU
component on GTX Titan X. The values below benchmark names corre-
spond to the dynamic power at the reference V-F, where constant power
is predicted to be 87 W.

Fig. 12. Diagramdisplaying howamodel estimated for aGPU can be used
on a different GPU.
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were tested. The first one assumes the coefficients also scale
with the same factors as the components of each domain (e.g.,
for GTX 980 a0 and a1 would be 2=3 of the values inGTXTitan
X, etc.). However, this approach ignores the possibility that
between the two GPUs there are probably multiple (not
modeled) components that do not change (e.g., PCIe interface,
GigaThread Engine, etc.) and therefore their power consump-
tion remains the same. Therefore, this straightforward
approach will generally under-predict the power consump-
tion on the target GPUs, resulting in prediction errors greater
than the ones obtained on the source GPU. In particular,
for the fixed-frequency model, the mean absolute errors
obtained for the two GPUs were 14.2 percent (GTX 980)
and 15.4 percent (GTX 960). For the regular DVFS model
on the GTX 980, a mean absolute error of 14.3 percent was
obtained.

The second approach requires the measurement of the
idle power at the reference configuration and therefore
requires the existence of GPU power sensors. Using the mea-
sured idle power consumptions, the values of the new coeffi-
cients can be obtained in the followingway:

a
ðtargetÞ
i ¼ a

ðbaseÞ
i � P

ðtargetÞ
idle

P
ðbaseÞ
idle

; i 2 f0; 1; 2; 3g: (11)

The measured values for the idle power consumption at
the reference V-F configuration of each GPU device are 75W
(GTX Titan X), 65W (GTX 980) and 36W (GTX 960). As it was
previously mentioned, it can be seen that the idle power val-
ues at the target GPUs are greater than those obtained by
assuming it simply scales with the number of SMs (e.g.,
75W� 2=3 ¼ 50W < 65W).

By using this approach to determine the corrected coeffi-
cients, a much higher prediction accuracy is obtained, where
the fixed frequency prediction model has a mean absolute
errors of 7.7 percent (GTX 980) and 8.5 percent (GTX 960).
The DVFS model also has an error of 7.7 percent on the GTX
980 GPU.

5 DISCUSSION

The presented research represents an improvement and a
substantial extension over our previous work presented in
[14], where a DVFS power model was proposed, together
with a microbenchmark suite that allowed the modeling of
seven GPU components. The herein presented work pro-
poses three different variations of a GPU power model: 1)
fixed frequency, 2) DVFS and 3) DVFS with scaling-factors.

All three include the modeling of twelve GPU components,
allowing the models to provide either the total or per-
component GPU power consumption. Furthermore, this
extended work also presented a successful technique to
export power models estimated on a GPU device to GPUs
with different hardware configurations.

The newly proposed model was validated on five differ-
ent GPU devices (from three different NVIDIA microarchi-
tectures) with a set of 42 benchmarks. The results of the
different model usage scenarios are summarized in Table 5,
where the results obtained from the models trained in [14]
are also provided (applied to the new set of benchmarks). It
is important to recall that some of the model features herein
proposed were not supported in [14] (e.g., scaling-factors
model or portability of an estimated model). It can be seen
that even in a fair comparison scenario, i.e., comparing just
the regular DVFS power model between the two works, the
herein proposed model outperforms the former one on all
GPU devices. Furthermore, these predictions can even be
further improved on all devices by using the scaling-factors
model, which was not considered in the previous work.

5.1 Model Limitations

Despite achieving considerable improvements over thework
presented in [14], a few roadblocks were reached while try-
ing to develop the herein presented work, some of which
would equally limit the quality of any supervised regres-
sion/machine-learning based power model. In particular,
one factor that can limit the quality of the proposed model is
the accuracy of the GPU performance counters (or power
samples). Notwithstanding, as it was presented the pro-
posed model is still able to achieve very accurate power pre-
dictions on a diverse range of GPU devices.

On the other hand, by allowing to directly choose which
GPU components can be modeled, the proposed model
arises as in a more hardware-centric approach. However, it
becomes very important to consider the possibility for multi-
collinearity between utilization rates of the chosen compo-
nents [38]. Fig. 13a presents an example of the observed
correlation between the utilization rates of 10 GPU compo-
nents during the execution of the microbenchmark suite
(Section 3.2) on the Titan Xp GPU (for simplicity, this figure
aggregates the ADD, MUL and FMA components in the
FP32 and FP64 units). It can be seen that there is a very high
correlation (� 0:99) between the utilizations of the Load/
Store (LDST) unit and the shared memory. Similarly, there is
also a high correlation between the utilizations of the texture

TABLE 5
Summary of Proposed Model Results

Source Model Titan GTX GTX GTX Tesla
Type Xp Titan X 980 960 K40c

HPCA [14] DVFS 11.7% 6.75% - - 9.07%

Proposed
Fixed 8.75% 5.51% 14.2% (7.66%)y 15.4% (8.47%)y 7.09%
DVFS 9.91% 6.43% 14.3% (7.67%)y -z 8.60%
Scaling 3.54% 4.55% 3.07% (2.80%)y -z 2.39%

y Porting model trained on GTX Titan X. Errors without (with) constant
power correction.

z The GTX 960 only allows 1 frequency configuration.

Fig. 13. Model limitations.
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units and L2 cache. A similar behaviour was observed on the
GTX Titan X and Tesla K40c devices. For this reason, the
LDST units and Texture units were not considered as sepa-
rate units in the herein presentedmodel, since their inclusion
would result in a decrease of the model prediction accuracy.
In fact, the high correlation between their utilizations and
the utilization of an already modeled unit, means the pro-
posed regression-based model is already partially account-
ing for their power consumptions.

Another limitation arises from the fact that the same PTX
instruction can have different power consumptions depen-
ding on the used operands. For example, a FP32 ADD
instruction of the form Rc=Ra+Ra has a different power con-
sumption than one of the form Rc=Ra+Rb. This difference
can be seen in Fig. 13b, where it is presented the GPU power
consumption over the time for seven different 32-bit FP
instructions (using different number of register operands) on
the GTX 980 GPU. The encountered problem is the fact that
these different power consumptions are impossible to take
into account in the proposed power model, as there are no
performance counters that give insights on these differences
during the applications execution (i.e., how to distinguish
between FMA-3Regs, FMA-2Regs and FMA-1Reg). Simi-
larly, there are also no counters that allow distinguishing
between different types of integer instructions (ADD, MUL
or MAD), which were observed to also have different power
consumptions. Without being able to identify these differen-
ces, they are impossible to model and therefore there will
always be a baseline prediction in accuracy which cannot be
reduced. However, it is important to note that these different
power consumptions could be easily included in the model
if NVIDIA introduced new performance counters that
allowed identifying these different invocations of similar
instructions types.

6 CONCLUSIONS

This work presented a GPU power consumption model that
can be used to predict the GPU power consumption during
the execution of any application (and at any voltage and fre-
quency configuration). Tomodel the GPU, a novel estimation
algorithm is presented, which relies on careful benchmarking
of the GPU architecture. This algorithm not only is able to
estimate the contribution of twelve different GPU com-
ponents (FP32-ADD/MUL/FMA, FP64-ADD/MUL/FMA,
INT, SF, CF units, shared memory, L2-cache and DRAM) to
the total power consumption, but it also allows to determine
how the voltage of each separate GPU domain scales with its
corresponding frequency.

Three different model use cases were proposed (fixed fre-
quency, DVFS and scaling-factors) to obtain the total or per-
component GPU power consumption, as well as a way to
export models to a distinct GPU device than the one it was
estimated on. Each of these approaches was extensively vali-
dated on five different GPU devices from the three most
recent GPUmicroarchitectures (Pascal, Maxwell and Kepler)
with a set of 42 benchmarks fromfive commonly used bench-
mark suites. In particular, the scaling-factor power model
provided very accurate power predictions, with an average
error of 3.5, 4.6, 3.1 and 2.4 percent for the Titan Xp, GTX
Titan X, GTX 980 and Tesla K40c GPUs, respectively.
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