
Compiler-Assisted Data Streaming for
Regular Code Structures

Nuno Neves ,Member, IEEE, Pedro Tom�as , Senior Member, IEEE,

and Nuno Roma , Senior Member, IEEE

Abstract—The performance of modern processors is often limited by execution stalls resulting from long memory access latencies.

Compile-time optimizations, deep cache hierarchies and prefetching mechanisms already provide significant performance gains, by

performing memory accesses in parallel with computation. However, they are reaching a throughput improvement limit. Hence, new

solutions that effectively exploit the memory access patterns to improve processing throughput are required. To achieve this objective, a

new compiler-assisted data streaming method is proposed. It leverages static analysis and code transformations with an on-chip data

streaming support as a viable alternative to prefetching mechanisms for regular code structures. Static analysis is used to identify and

encode memory accesses with a dedicated representation. Then, a code transformation algorithm detaches data indexation and

address calculation from computation, allowing for a significant code reduction. An on-chip data stream controller, attached to the L1

data cache, is used to autonomously generate memory accesses from the pattern representation and reorganize the data transfers in

streams, with the aid of stream buffers. When compared with state-of-the-art prefetchers, the proposed solution provides up to 26

percent of code reduction, an IPC improvement of 2.4x, and an average performance improvement of 40 percent.

Index Terms—Compiler static analysis, data streaming, regular code structures, indirect memory accesses

Ç

1 INTRODUCTION

THE performance of Central Processing Units (CPUs) is
often limited by the adverse impact of stalls due to long

memory access latencies. Although caches promote an
attenuation of such impact, the memory access latency is
bound by the characteristics of the data access pattern and
can only be fully mitigated by hiding it behind computation.
From the vast set of approaches that have been considered,
code optimization [1], [2], [3], [4], [5] and data (pre-)fetch-
ing [6], [7], [8], [9], [10], [11], [12], [13] have shown signifi-
cant performance improvements.

At the hardware level, prefetching mechanisms monitor
the cache miss stream, detecting the application memory
access pattern [9], [10], [12], and prefetching data ahead of
request. At the software level, compiler tools rely on static
code analysis [1], [2], [3] to infer the memory access pattern
and/or critical memory instructions [14]. This information
allows the application of code transformations (e.g., data
access reorganization [5], [14], code optimizations [4], and
software prefetching [15], [16]) with the goal of hiding the
memory access latency behind computation. The inferred
access pattern can also be used at runtime for assisted exe-
cution [14] and assisted data prefetching [13], [17].

Existing prefetching methods are particularly successful
when dealing with specific memory access issues, such as

reduced data-locality [6], [7], [18], complex memory access
patterns [19], [20], [21] or large datasets that do not fit in
cache [17], [22]. In fact, prefetching technology has evolved
to a point where the main concern is no longer the memory
access pattern detection and prediction, but the timeliness
and effectiveness of the procedure itself. This led to the
emergence of new prefetchers [9], [10], [11], [23] that com-
bine multiple hardware modules, with different data fetch
granularities and prediction heuristics, across different
cache levels. However, despite the improved throughput,
resulting from a high accuracy and coverage of data access
prediction, the added gains provided by each new genera-
tion of prefetchers are becoming limited.

To tackle such limitations, several works [8], [21], [24], [25],
[26] exploit the fact that complex memory access patterns are
most often generated by regular code structures that are com-
pile-time detectable. These include common data indexation
schemes based on affine loop transformations and on irregu-
lar data accesses, such as indirect memory accesses in the for-
mat A[B[i]]. Due to their deterministic representation, such
patterns can be detected at compile-time and described by
affine relations, and then dynamically resolved at runtime by
on-chip data fetching modules (data streaming). As a result, it
is possible to explicitly detach the addressing of the memory
accesses from the processor to accelerate data acquisition and
increase the processing throughput.

While some works have exploited such approaches to
detect indirect memory accesses for stream prefetching [21],
actual data streaming approaches [8], [24], [25], [26] have
been limited to deterministic data access sequences (i.e., they
lack support for irregular accesses). Moreover, they have only
been deployed in application-specific accelerators [8], [24],

� The authors are with INESC-ID, Instituto Superior T�ecnico, Universidade
de Lisboa Rua Alves Redol, 9, 1000-029 Lisboa, Portugal.
E-mail: {nuno.neves, pedro.tomas, nuno.roma}@inesc-id.pt.

Manuscript received 6 Aug. 2019; revised 11 Mar. 2020; accepted 5 Apr. 2020.
Date of publication 27 Apr. 2020; date of current version 10 Feb. 2021.
(Corresponding author: Nuno Neves.)
Recommended for acceptance by P. Gratz.
Digital Object Identifier no. 10.1109/TC.2020.2990302

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 3, MARCH 2021 483

0018-9340� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0628-2259
https://orcid.org/0000-0003-0628-2259
https://orcid.org/0000-0003-0628-2259
https://orcid.org/0000-0003-0628-2259
https://orcid.org/0000-0003-0628-2259
https://orcid.org/0000-0001-8083-4432
https://orcid.org/0000-0001-8083-4432
https://orcid.org/0000-0001-8083-4432
https://orcid.org/0000-0001-8083-4432
https://orcid.org/0000-0001-8083-4432
https://orcid.org/0000-0003-2491-4977
https://orcid.org/0000-0003-2491-4977
https://orcid.org/0000-0003-2491-4977
https://orcid.org/0000-0003-2491-4977
https://orcid.org/0000-0003-2491-4977
mailto:nuno.neves@inesc-id.pt
mailto:pedro.tomas@inesc-id.pt
mailto:nuno.roma@inesc-id.pt


[25] and usually require the programmer to hand-model the
access pattern and to program it with custom application
code.

This paper presents a new data streaming approach for
compile-time detectable memory access patterns as an alter-
native to complex prefetching schemes for regular data access
code structures. Hence, contrasting to state-of-the-art pre-
fetchers, the proposed approach features: (1) a compilation
tool that leverages static analysis to detect and explicitly
describe memory access patterns (addressing the limitations
of inaccurate memory access predictions); and (2) a dedicated
controller to stream data (upon request) directly from the
memory to the processor (addressing the performance satura-
tion caused by prefetching timeliness). It operates as follows:

� At compile-time, the application memory access pat-
tern is identified, described and encoded in a multi-
level affine model, which also allows encoding data
dependencies between accesses. The tool is able to
infer deterministic access patterns and indirect mem-
ory accesses from regular code structures. As a result
of this explicit representation of memory access pat-
terns, their corresponding indexation and address
calculation (by the CPU) becomes redundant.
Accordingly, the tool performs a code transformation
pass that replaces the subscript and indexation of
each encoded load instructionwith a stream reference
(represented by a pointer). This reduces the number
of instructions per loop iteration, accelerating the exe-
cution of the code.

� At runtime, a Data Stream Controller (DSC), collo-
cated with the L1 data cache, generates memory
accesses from the encoded representation and reor-
ganizes data in streams. Hence, the DSC becomes
responsible for fetching and buffering streams and for
serving them (upon request) to the processor. In such
circumstances, the L1 data cache is bypassed for data
stream acquisition and access, avoiding cache pollu-
tion and early evictions resulting from poor data fetch
timeliness.

The proposed compilation tool was integrated in the
LLVM compiler and deployed as a Clang front-end tool.
The DSC was implemented on the Gem5 simulator [27]. The
resulting data streaming solution outperforms a typical
stride prefetcher, attaining speedups as high as 1.9x. Fur-
thermore, the implicit set of code transformations reduces
the code size as much as 26 percent, leading to a combined
performance improvement as high as 2.6x. As a result, the
combination of the proposed techniques outperforms state-
of-the-art prefetchers by 40 percent (on average).

2 BACKGROUND AND MOTIVATION

Just as caches, the simplest and most common prefetching
solutions exploit the spatial locality of memory accesses.
Sequential prefetchers usually anticipate the loading of data
in the cache lines based on the most recently accessed
address (ycurrent). Being this a hardly efficient approach,
stride-based prefetchers analyze individual accesses and cal-
culate the distance between consecutive addresses (stride), to
predict the sequence of future accesses (up to a given degree)

yðdegreeÞ ¼ ycurrent þ degree� stride: (1)

Spatial Prefetching. Some of these approaches also adopt
intelligent prediction tables, indexed by the Program
Counter (PC) or by the memory address, to infer more com-
plex patterns and increase prefetching coverage. As an
example, Shevgoor et al. [19] introduced the Variable Length
Delta Prefetcher (VLDP), which maintains multiple predic-
tion tables to store delta histories between subsequent cache
line misses within physical pages. Ishii et al. [9] proposed the
AMPM stride prefetcher to identify hot zones in memory. It
uses a dynamically constructed bitmap to infer strided pat-
terns in the access stream. Somogyi et al. [22] proposed the
SMS prefetcher to identify code-correlated spatial access pat-
terns and stream predicted blocks to the cache. Despite their
attained coverage, these approaches assume that memory
accesses maintain a regular behaviour over time, struggling
to deal with highly complex and non-sequential patterns.

Correlation Prefetching. Modern prefetchers overcome
such limitations by exploiting structural and temporal cor-
relation heuristics, attaining high prediction accuracies and
data coverage. For example, [12] proposes a context-based
memory prefetcher that approximates spatial and temporal
locality using reinforced learning. Recently, Bakhshalipour
et al. [7] proposed the Bingo prefetcher, which associates
observed spatial patterns to both short and long events to
improve prefetching coverage and accuracy.

Yu et al. [21] proposed IMP, targeting indirect memory
accesses. The detection mechanism correlates the values
obtained by an index stream with subsequent cache misses
to infer indirection. The IMP provided a breakthrough in
this domain (which previously required the use of software
prefetching approaches [15], [16]).

Offset Prefetching. Current prefetching methods have
attained such a precision that the focus has shifted from the
detection and prediction of indexing patterns to the timeliness
of the prefetching procedure [11]. Michaud [10] proposed the
BO prefetcher, implementing a selection mechanism that
dynamically sets the prefetching offset depending on applica-
tion behavior.

Despite their successful approach, the performance gain
for each new generation of prefetchers has saturated (see
Fig. 1), particularly on highly regular code structures (see
Fig. 2), which dominate the majority of applications. In fact,
the regularity and deterministic nature of most of these pat-
terns can be detected by simple prefetching schemes.

Structural Representation and Data Streaming. By exploiting
such deterministic nature, recent studies have shown that it
is possible to obtain accurate representations of complex

Fig. 1. L1 cache behaviour (in misses per kilo-instruction - MPKI) for reg-
ular code structures, for the state-of-the-art AMPM [9] and Best-Off-
set [10] prefetchers, compared to a traditional stride prefetcher.

484 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 3, MARCH 2021



and deterministic access patterns to substantially accelerate
data acquisition in application-specific domains. Hussain [26]
proposed an Advanced Pattern-based Memory Controller
(APMC) that supports up to 3D regular data-fetching mecha-
nisms, such as scatter-gather and strided accesses with pro-
grammable tiling. The Hotstream framework [24] adopts a
programmable approach that eases the description of regular
data-patterns. A dynamic descriptor graph specification was
proposed in [8] to encode arbitrarily complex (but determin-
istic) data-patterns. However, such strategies have been lim-
ited to regular data patterns and, since no compiler support is
given, they require amanual encoding of the pattern.

Compiler-Assisted Methods. Notwithstanding, alternatives
have been considered based on compiler-aided approaches.
Guo et al. [13] utilize compiler information to reduce pre-
fetch-related energy consumption by filtering prefetching
requests with very small strides and prefetching only
selected memory accesses identified by the compiler, and
by applying different prefetching schemes depending on
the predicted memory access patterns. Ebrahimi et al. [17]
target pointer-based applications with compiler-guided pre-
fetch filtering to inform the hardware about which pointer
addresses to prefetch.

Several other compiler tools have also emerged in the
scope of code static analysis. In particular, memory access
tracing [28], [29], complexity [30] and polyhedral [1], [2]
analysis or memory access profiling [3] have been used to
analyze and optimize data indexation [4], [5].

Opportunity. To overcome the ever smaller gains associ-
ated to each new prefetcher generation for regular code
structures, and surpass the currently observed performance
plateau, alternative solutions are necessary. Hence, by
observing that the memory access pattern in such applica-
tions is often known at compile-time (as it can be observed
in Fig. 2 by the percentage of affine data patterns), there is
an opportunity to explicitly extract and generate runtime
data streams (even when these depend on the runtime value
of one or more variables).

Proposed Solution. Based on this key idea, the proposed
approach exploits data streaming schemes as a viable alter-
native to predictive prefetchers for data patterns generated
by regular code structures. Instead of solely providing hints
to prefetching hardware such as other compiler-assisted
methods, it takes a step further by explicitly exposing and
extracting the memory access pattern (directly from the
source code) to provide support for data streaming. To do
so, the proposed approach performs static analysis to
extract the memory access pattern and to encode it with a
dedicated representation, which is only fully decoded at

runtime, when the value of depending variables is known.
This mechanism is combined with a code transformation
step that leverages the explicit detachment of memory
accesses from computation, providing code reductions and
accelerating the execution.

3 COMPILER-ASSISTED STREAMING

The block diagram of the proposed compiler-assisted data
streaming mechanism is depicted in Fig. 3. It comprises a
compile-time tool (see Section 4) and a data-streaming mod-
ule, colocated with the L1 data cache (see Section 4.5). The
compile-time tool was integrated in the LLVM framework
to perform static analysis over an annotated region of code.
It starts by parsing the Clang Abstract Syntax Tree (AST) to
identify the context of each data access in the region of inter-
est (indicated in the annotation directive, as in Fig. 4 A). The
context of each access is translated to a Context Representa-
tion Language (CRL) that gathers all the information
regarding each access (see Fig. 4 C and Section 4.3). Such
information includes all the dependencies for the address
generation, including nested loop context (providing tem-
poral information), indexing ranges and data dimensional-
ity (for address calculation) and data-dependent access
hierarchies (for indirect memory access representation).

A code transformation mechanism is also proposed to
convert each extracted memory access into a data stream
access (see Fig. 4 D and Section 4.5). This is possible because
the memory addressing sequence is fully and exactly
encoded, making the corresponding application code redun-
dant. Such a transformation results in an explicit detachment
of the memory access generation from the computational
operations, and a consequent reduction in the number of
instructions per loop.

The extracted data-pattern is encoded with a Context
Descriptor (see Fig. 4 E and Section 4.4) and embedded in the
application code. At runtime, the Context Descriptor is loaded
into a dedicated DSC hardware module (see Fig. 3 and Sec-
tion 5), collocated with the L1 data cache. The DSC autono-
mously handles the stream generation and data fetching
procedure. Each generated stream is stored in internal buf-
fers and it is subsequently read by the core and/or used by
the DSC to generate data-dependent streams.

Fig. 2. Analysis of regular code structures, regarding (top) the fraction of
code corresponding to memory accesses and (bottom) the characteriza-
tion of compile-time detectable memory accesses.

Fig. 3. Overview of the proposed compiler-assisted data streaming
mechanism. It comprises a compile-time code analysis and transforma-
tion tool and an on-chip data streaming module.

NEVES ETAL.: COMPILER-ASSISTED DATA STREAMING FOR REGULAR CODE STRUCTURES 485



Hence, the key advantage of the proposed scheme arises
from not requiring any predictive schemes and access moni-
toring for stride detection. Instead, it relies on a static analysis
performed at compile-time to encodememory access patterns
in Context Descriptors, ensuring an exact coverage of the
memory access sequence and avoiding redundant and over-
prefetching scenarios that occur in predictive approaches.
Moreover, its data streambuffering capabilitiesminimize pre-
mature cache evictions of prefetched data, resulting in an
implicit increase of the timeliness of the acquired data. Hence,
it results in a two-fold advantage over conventional prefetch-
ers: (1) it accelerates the execution of code by reducing the
total number of executed instructions; and (2) it minimizes
latency in thememory access stream.

4 ACCESS PATTERN DETECTION

The proposed compile-time method for memory access pat-
tern extraction and code transformation was built on the
Clang LibTooling library [32]. This C++ interface provides
full control over the compiler’s front-end resources, as
described in the following sections.

4.1 Compiler Module Overview

The compile-time method is divided in five steps, as
depicted in Fig. 4: i) region extraction; ii) code translation to
AST; iii) AST static analysis and translation to CRL; iv) AST
to data streaming transformation; and v) Context Descriptor
generation and code injection.

The region extraction phase was devised to be as simple
as possible, requiring a programmer effort no higher than
that of adopting other mainstream annotation schemes
(such as the OpenMP library). It makes use of the pragma
handling routines from the LibTooling library, therefore
requiring any region-of-interest to be delimited by the direc-
tive (see Fig. 4 A):

#pragmastream� contextðvar : size½: size�; . . .Þ:
It allows to configure and make the tool aware of the tar-
geted array variables (and their size, per dimension) for
data stream description. Moreover, such a scheme ensures
that only relevant accesses are considered by the tool, avoid-
ing the blind encoding of bad candidates for data streaming
(e.g., an array that is often reused and is small enough to fit
in the L1 cache is not a good candidate for streaming).

The application code is then transformed in a Clang
translation unit, which is passed to the front-end tools to
generate the corresponding AST (see Fig. 4 B bottom). At
this point, the compilation flow slightly diverges from the
typical compiler, which would proceed to generate the
LLVM Intermediate Representation (IR) code.

Instead, the tool starts by generating its own internal
memory access high-level representation, through a dedi-
cated Context Representation Language (CRL), as detailed
in Section 4.3 (see Fig. 4 C). This is achieved through a direct
translation of the source code region-of-interest by parsing
the Clang AST with a typical depth-first tree analysis. The
translation mechanism is capable of inferring and represent-
ing deterministic and indirect array-based memory access
sequences, by detecting affine relations in the regular access
structures that result from typical for-loop coding schemes
for array indexation.

After parsing the initial AST, a transformation pass
modifies the AST subtree of each data access, to generate
stream accesses instead. This is done by creating an array
with a stream reference per extracted access, and by trans-
forming the n-dimensional array indexation (idx) with a
stream access (see Fig. 4 D), i.e.,

< array name > ½idx0�::½idxN� ! �stream < name > :

The address sequence of eachmemory access in the gener-
ated CRL is then translated to a low-level Context Descriptor

Fig. 4. Depiction of the several translations and code transformations performed by the proposed compilation tool, for a code snippet of the trisolv

benchmark, from the Polybench [31] suite.

486 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 3, MARCH 2021



and taggedwith a corresponding stream address. This trans-
lation is performed by extracting the access pattern from the
CRL and by encoding the necessary parameters to calculate
the address sequence of each memory access (see Section 4.4
and Fig. 4 E).

Finally, the Context Descriptor is embedded in the original
code by injecting a set of inline store instructions to send the
descriptor data to the DSC, through a memory mapped
interface. This allows sending information to the DSC that
can only be obtained in runtime, such as the base address of
the described array variables (see Section 5). From this point
on, the control is passed to the LLVM compiler and the typi-
cal compilation flow is resumed.

4.2 Memory Access Modeling

The performed analysis is based on a formal mathematical
model that captures the tagged deterministic memory
access patterns. The key idea is to provide an n-dimensional
(n-D) affine representation of the address sequence.

While existing predictive prefetchers make use of run-
time-detected strides to calculate the sequence of addresses
(with a unidimensional model based on near-temporal and
near-spatial locality - see Eq. (1)), the considered model
aims at describing the exact sequence of addresses. It works
by capturing nested loop-based indexation and loop- or
data-dependent (indirect) index dynamic ranges, where
current models fall short.

Accordingly, the following model to describe the address
sequence for a given memory access is proposed

yðXÞ ¼ ybase þ
Xdimy

k¼0

xk � stridek

with xk 2
�
ak; bk

�
; X ¼ fx0; . . .; xdimyg ;

(2)

where each stream access yðXÞ is described as the sum of
a base address value ybase, with dimy pairs of increment vari-
ables (or indexes) xk and stridek multiplication factors. Each
increment variable xk is represented by a integer range,
with limits ak and bk (see Fig. 5).

While the model in Eq. (2) already represents a broad
range of patterns, further complexity can still be achieved
by combining multiple functions. Such combinations can be
performed by determining the base address and/or the
upper and lower bounds of each increment variable with
another affine function (compare index ranges in Fig. 5).

4.3 Context Representation Language

TheContext Representation Language (CRL) was specifically
designed to gather and represent the information required to
calculate the address sequence of a given memory access (or
its context). The language is built on a basic instruction set
and three container structures: context, loop and access (see
Fig. 6). Each container is composed of a unique identification,
an header with configuration fields specific to each container
type, and a body with a set of instructions. A CRL translation
example is depicted in Fig. 4 C.

The context container serves as the entry point for the
encoding. It encapsulates all the information concerning the
indexing variables, base addresses, dimensionality and size
of the array variables within a nested loop. This allows
strides defined in different dimensions to be inferred and
multiplied by indexing variables, in order to calculate the
sequence ofmemory addresses based on themodel in Eq. (2).

All memory accesses to a given array variable (in the
same context) are encapsulated in an access container. Each
access is represented by a fetch instruction preceded by a
set of arithmetic instructions that calculate the address (see
Fig. 4), based on (see Fig. 6): i) a dimension vector (.dim), to
store the size of each dimension of the array; ii) the size of
the array data type (.type); and iii) the array base address
(.base), indicated by an address reference.

Each loop in the target region of code is encoded by a loop
container (see Fig. 6). The container body encapsulates: call
control instructions to the lower level loop and access con-
tainers; any necessary arithmetic instructions; and a con-
tainer header that stores the range of the loop iteration
variable (typically used as an indexing variable for array
structures). The latter includes: i) the variable initialization
(.init); ii) the iteration limit value (.limit); and iii) the
iteration step (.step). With this encoding, when the vari-
able is used in a subsequent instruction (e.g., for address
calculation), it is coded as a reference to the loop container
(c<i>.l<j>).

The CRL provides a simple instruction set (see Fig. 6),
with three instruction types (arithmetic, assignment and con-
trol) and up to three operands. Arithmetic instructions are
encoded in the format oR = opCode oA,oB, where opCode

Fig. 5. Affine representation of the memory accesses in a code snippet
of the trisolv benchmark, from the Polybench [31] suite.

Fig. 6. CRL reference sheet.

NEVES ETAL.: COMPILER-ASSISTED DATA STREAMING FOR REGULAR CODE STRUCTURES 487



specifies an integer arithmetic operation (add, sub, mul,
etc.) over operands oA and oB, and destination oR.

Assignment instructions allow a composed configuration
of container fields. They are encoded with one or two source
operands and an optional operation code (representing an
integer arithmetic operation or an inequality binary opera-
tor), in the format .field [opCode] oA[,oB], where .

field is the container field. This provides an encoding for
the initialization, condition and step of each iteration vari-
able, supporting the assignment of literals, variables, condi-
tions and instructions, to each field.

The workflow between containers and memory access
operations is encoded with control instructions, in the for-
mats call <ref> and fetch %idx<n>, where <ref> is
a reference to a loop container (c<i>.l<j>) or an access
container (c<i>.l<j>.a<k>), and %idx<n> is an index.

4.4 Context Descriptor Specification

After being generated, the CRL is parsed and encoded in a
low-level memory access Context Descriptor, which allows
resolving the addresses calculation based on the variables
defined in Eq. (2).

Fig. 7 presents the designed Context Descriptor specifica-
tion, with support for multi-dimensional data patterns. It is
composed of a top-level Context Header, which indicates the
number (acc) and memory locations (a_idacc) of a set of
Access Descriptors, each describing one memory access pat-
tern. It also contains a reference to a subsequent Context
Header (see below), allowingmultiple contexts to be described
and solved in sequence (mirroring the original loop order).

The Access Descriptor defines a data access pattern by
means of: i) an header tuple, containing a stream pointer
(stream), the base address (base), the descriptor dimension-
ality (dimk), and the number of modifier chains (mod - see
below); and ii) pairs ofxsizek andstridek fields, represent-
ing the xk range (in number of iterations) and stridek, respec-
tively (see Eq. (2)). These pairs have an implicit hierarchy (the
rightmost pair has the higher position), where each pair is
completely iterated (once) for each instance of the pair in the
upper position of the hierarchy level.

Since each xk range can be delimited by affine functions,
the Access Descriptor provides an optional modifier chain,
composed of multiple descriptors, in which the header indi-
cates the target field (targetmod) to be modified (see Fig. 7).
The modifier chain applies a field modifier descriptor to the
target field every time the corresponding pair is fully iter-
ated. As a result, the Access Descriptor is only fully iterated
after eachmodifier descriptor completes its iteration.

Fig. 8 depicts the resolution of an Access Descriptor encod-
ing of a N�N triangular matrix access pattern. The base
descriptor is composed of two {xsize, stride} pairs,

where the first ({1,1}) describes contiguous row accesses
(initially with size 1) and the second ({N,N}) applies a
stride to skip to the next row (N times). The descriptor relies
on a modifier chain (with a field modifier - [xsize0]:

{N,1}) that adds its own stride value to the xsize field
of the first pair (in the base descriptor) each time it is
completely iterated. As a result, each time the base descrip-
tor iterates to a new row, the number of contiguous accesses
is increased by 1, hence producing a triangular scan pattern.

The modifier chain can also represent data-dependent
patterns (in the format of indirect memory accesses - e.g.,
A[B[i]]) by encoding data-indexation dependencies bet-
ween Access Descriptors, through an indirection descriptor.
It is composed of pairs of target fields (targetn) and
descriptor identifications (a_idn) (see Fig. 7). The indirec-
tion descriptor applies the encoded data dependencies
similarly to a field modifier descriptor. However, it is
the actual data from the stream generated by the a_idn

descriptor that is used to modify the target field in the
Access Descriptor. An encoding example of indirect accesses
is depicted in Fig. 9.

4.5 Automatic Code Transformation

By detaching memory addressing and data accesses from
the original code, array indexing instructions become
redundant. Hence, they can be eliminated, by transforming
the array accesses into stream accesses.

The proposed code transformation pass is performed in two
steps. Initially, it transforms each extracted data access from
the former array subscript indexation into a stream access.
Such a procedure relies on the fact that an n-dimensional array
access is represented in Clang AST by a sub-tree, where the
root node represents the array subscript operator (i.e., [.]) for
the array’s first dimension (see Fig. 4 B). Accordingly, to trans-
form each extracted data access into a predefined data stream
reference, it is only necessary to replace the subscript sub-tree

Fig. 7. Context descriptor specification.

Fig. 8. Access Descriptor of a triangular matrix: the modifier chain
increases the matrix column id after each full iteration of the first pair in
the base descriptor, while the second pair adds a stride value to a subse-
quent matrix row.

488 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 3, MARCH 2021



by a pointer expression, as depicted in Fig. 4 D. This is done by
tracing each data access captured by the CRL in the original
AST and performing its in-situ transformation.

Finally, the Context Descriptor is embedded in the source
code. To mitigate the overhead of loading it from the main
memory, it is encoded by a set of inline store instructions
that send the descriptor data to the DSC through a memory-
mapped interface (see Section 5.1). This set of instructions is
injected in the code after all the descriptor configuration
parameters (e.g., array base addresses and sizes) are defined.

5 RUNTIME DATA STREAMING

To ensure the stream generation and data fetching, the DSC
(see Fig. 10) is implemented as an hardware module that
works in parallel with the L1 data cache.

To operate, the DSC starts by capturing the set of injected
stores that send the Context Descriptor through a memory
mapped interface, saving it in a local Descriptor Memory.
Afterwards, the DSC initiates the generation of the addresses
for each data stream, by fetching and buffering the corre-
sponding data. Such data is immediately served to the core,
by answering to requests to the stream references encoded in
theContext Descriptor.

5.1 Stream Communication and Interface

From the core perspective, a data stream retrieval is simply
represented by a read operation from a specific pointer.

However, the stream is explicitly represented in the DSC by
a structural address space (supported by buffering struc-
tures) that references data in a temporal sequence, detached
from the physical address of each data block.

Accordingly, to provide the cores with an effective inter-
face to transparently perform data stream accesses, the DSC
offers a programmable interface that is memory-mapped to
the core’s memory access channel (see Fig. 10). When a
request to a data stream reference is performed (corre-
sponding to an Access Descriptor), it is redirected to the DSC
(instead of the cache) and directly served with data from
the corresponding stream.

5.2 Stream Address Generation

The iteration state of each Access Descriptor is kept in a dedi-
cated Descriptor Table (see Fig. 10). This table is managed by
a Context Controller that generates the addresses of a given
context by solving the descriptor’s Context Headers.

The memory addresses are calculated in a dedicated
Address Generation Unit (AGU). It comprises two parallel
functional blocks, each composed of an adder and a register
set, responsible for iterating one {xsizek,stridek} pair.
The stride control block successively adds the stridek fields
of the descriptor to its base address, while the xsize control
block counts the iterations of each pair. When a base descrip-
tor is fully iterated, the AGU applies its modifier chain (if
available) and resets the descriptor with new field values.

The generated addresses are loaded into the Stream Buffer
that was assigned to that stream. Once the corresponding
data is fetched from memory, the generated address entries
are replaced with the data, and later sent to the core (upon
request). In the presence of data dependencies between
streams (indirect memory accesses), the necessary data is
read by the AGU, to iterate the dependent descriptor. The
data dependence path is sent to the AGU (by the Context
Controller), according to the Access Descriptormodifier chain.

5.3 Memory Access

In the CPU, each application data structure is usually allo-
cated over a contiguous virtual memory address range. This
contrasts with the operation of the DSC, which operates on
the physical memory space. While typical prefetchers avoid
this issue by stopping the address generation, waiting for the
CPU to resynchronize the physical address offset, this is not
possible with the introduced detachment of the address gen-
eration. Hence, the AGU is equipped with appropriate page
crossing detection logic and, upon detection, it consults the

Fig. 9. Indirection representation and descriptor encoding of a code snip-
pet of the spmv kernel, adapted from the HPCG [33] benchmark.

Fig. 10. Data stream controller architecture.

NEVES ETAL.: COMPILER-ASSISTED DATA STREAMING FOR REGULAR CODE STRUCTURES 489



CPU’s Translation Lookaside Buffer (TLB) to obtain the page
offset for the new address.

Moreover, whenever a new address is generated, it is
passed to the Request Filter (see Fig. 10). This module main-
tains the last data block that was previously fetched for
each stream (in a set of cacheline-sized registers) and serves
the generated address with the corresponding data, by fill-
ing the matching entry in the Stream Buffers. Then, whenever
a new address crosses the available data block address
range, the Request Filter autonomously issues a newmemory
access for the new line. The issued requests are inserted in a
Request Queue (also implemented by a buffer), and subse-
quently sent to the memory hierarchy.

6 METHODOLOGY

The proposed static analysis and code transformations were
implemented in LLVM 6.0 [34]. The DSC architecture was
prototyped in the Gem5 simulator [27], by considering the
setup presented in Table 1. It comprises a memory chain
similar to the one equipping Skylake microarchitecture,
based on information released by Intel [35].

6.1 Workloads

The implemented system was evaluated with a considerable
selection of benchmarks, characterized by memory access
patterns with regular code structures, from the C-Polybench
[31], SPEC CPU 2017 and Rodinia [36] suites, and kernels
from the HPCG [33] benchmark (see Table 2). This selection
took into consideration the aim of obtaining a representative
set of memory access patterns, kernels and real applications
from a vast set of signal processing application domains, as
described in the following paragraphs.

Polyhedral Loop Computation. Nested loop computations
in the affine domain are all-around. Their deterministic
nature is particularly suited for memory access pattern
description and data streaming. A subset of kernels was
selected from the C-Polybench [31] suite, comprising differ-
ent combinations of pattern complexity, data reutilization
and dataset dimensionality.

Sparse Linear Algebra. Sparse linear algebra algorithms
usually represent data structures in Compressed Sparse
Row (CSR) format, requiring operations between sparse and

dense arrays to be implemented through indirection (i.e., A
[B[i]]). Hence, the sparse matrix-vector multiplication
kernel and the symmetric Gauss-Seidel method (two conse-
cutive sparse triangular solvers) were adapted from the
HPCG [33] benchmark. Since the CSR representation is also
used in graph analytics, to store neighbouring vertices in
sparse arrays, the PageRank [37] algorithm was also consid-
ered to evaluate this class of applications.

Application-Specific. A particular demanding subset of sci-
entific applications were also used in this evaluation,
namely: the SRAD diffusion method (ultrasonic and radar
imaging), which exploits data access indirection; the Path-
Finder algorithm (search the shortest path of a 2D grid),
which uses large data sets and high data reutilization; and
the LBM algorithm (incompressible fluids simulation in
3D), characterized by a high dimensionality and computa-
tional intensity. The SRAD and PathFinder applications are
part of the Rodinia [36] benchmark suite and the LBM algo-
rithm was selected from SPEC CPU 2017. To support the
proposed compilation tool, all benchmarks were modified
by including the annotation scheme described in Section 4.1.
Accordingly, the main computational functions and kernels
of each benchmark were fully annotated for acceleration.

6.2 Reference Prefetching Setups

To validate the proposed data streaming mechanism, it was
compared against four state-of-the-art runtime prefetchers
(see Table 3 for the configuration parameters), namely:

Baseline (BASE). represents the most established prefetch-
ing scheme, i.e., a typical stride prefetcher, comprising a
stride/confidence table indexed by the PC.

AMPM Prefetcher [9]. combines a stride prefetcher at the
L1 cache (for fine-grained prefetching), with an L2 hard-
ware module that uses a memory access map and pattern
matching scheme to detect all possible strides in parallel.

Best-Offset (BO) Prefetcher [10]. relies on a stride prefetcher
at the L1 cache, but introduces a different module at the L2
cache (a generalization of next-line prefetching), that dynam-
ically sets the prefetching offset depending on the applica-
tion behavior, while accounting for prefetch timeliness.

Indirect Memory Prefetcher (IMP) [21]. combines a stream
prefetcher at the L1 cache with an indirect pattern detector

TABLE 1
Considered System Configuration, Comprising a Memory

Chain Similar to the One Equipping the Intel Skylake
Microarchitecture [35]

CORE
Frequency 3 GHz
Core Model x86-64, Out-of-Order

CACHE

CONFIGURATION

Cache line Size 64 bytes
L1 I/D Cache 32 KB, 8-way, 4-cycle lat.
L2 Cache 256 KB, 8-way, 20-cycle lat.
L3 Cache 2 MB, 16-way, 36-cycle lat.

MAIN MEMORY

Size 4096 MB
DRAM
Model

Micron MT41J512M8
11-11-11 DDR3-1600
8 banks/rank, 2 ranks/MC,
tRCD,tRP ,tCL=13.75 ns, tCK=1.25 ns

TABLE 2
Considered Evaluation Benchmarks

POLYHEDRAL LOOP

COMPUTATION

2mm MultipleMatrixMultiplications
cov Covariance Computation
mvt Matrix-Vector Product and

Transpose
seidel 2D Seidel Stencil
syr2k Symmetric Rank-2k Update
trisolv Dense Triangular Solver

SPARSE LINEAR

ALGEBRA

spmv(*) Sparse Matrix-Vector
Multiplication

symgs(*) Symmetric Gauss-Seidel
(Sparse Triangular Solvers)

rank(*) Graph-basedWebsite Ranking

APPLICATION SPECIFIC
lbm Computational FluidDynamics
path PathFinder - 2D Shortest Path
srad(*) SRAD Diffusion Method

(*) Benchmarks characterized by indirect memory accesses.

490 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 3, MARCH 2021



(IPD) that computes coefficients between memory accesses
to detect indirection between address pairs.

7 EVALUATION

The proposed compiler-assisted data streaming solution
was evaluated by first studying the impact of code transfor-
mation, followed by a performance evaluation.

7.1 Pattern Description and Code Reduction

Fig. 11 depicts the observed code transformation and mem-
ory access encoding results. Reductions as high as 26 percent
in the code size, and up to 28 percent in the number of comm-
ited instructions, are observed for the considered bench-
marks. Such a reduction is bound by both the number of
converted memory loads and by the complexity of their
address calculation. For instance, only 40 percent of the loads
in the cov benchmark were converted to streams; however,
since the majority of loads represent matrix accesses, the
removal of address calculation operations results in more
than 13 percent of code size reduction. On the other hand,
the seidel benchmark is characterized by a reduced per-
centage of address calculation instructions, resulting in only a
5 percent reduction.

Benchmarks with indirect memory accesses (spmv,
symgs, rank and srad) take the most advantage of the
code transformations. The conversion of indirect memory
accesses (in the A[B[i]] format) to single pointer referen-
ces (*stream) eliminates both indexing and memory access

instructions, resulting in a significant code reduction (up to
23 percent). Naturally, such a reduction imposes a larger
descriptor size (see Fig. 11), due to the necessary inter-
stream dependency encoding. For the srad, despite a con-
version of 90 percent of loads to data streams, there is not a
major reduction in the code size and commited instructions.
This is mainly due to the computational complexity of
srad, with a high percentage of code performing comput-
ing operations. Similarly, lbm is also characterized by a
high computing intensity. However, it is still possible to
attain a high reduction in code size (due to the elimination
of indexation code for high dimensional accesses).

7.2 Memory Access Optimization

Fig. 12 shows the impact of each considred prefetching
method in the L1 data cache behaviour (evaluated using the
hit-rate and the misses-per-instruction (MPKI) metrics). In
the evaluation of the proposed approach (DSC), both the
data cache and stream buffer hit-rates are considered. For
most polyhedral applications, the BASE stride prefetcher
already provides high hit-rates, due to the regularity of the
memory accesses. Nonetheless, the AMPM and BO are still
able to improve the cache performance, due to an L2 high
prefetching coverage. However, this is not the case when
the access pattern complexity increases, as it can be
observed in cov and mvt, where the datasets are large and
require data reutilization; and in spmv, symgs and rank,
where the memory accesses are irregular due to indirection.

The proposed DSC takes advantage over the other pre-
fetchingmethods thanks to itsmemory access generation pro-
cedure. Since the data stream acquisition initiates before the
execution of the corresponding requests and since data is not
eliminated until it is read by the processor (contrarily to even-
tual evictions from cache caused by prefetched data in the
other setups), data is promptly available ahead of time until it
is needed. Moreover, the ability to exactly describe the
sequence of addresses mitigates data locality issues. This is
highlighted by the observed average hit rate (and correspond-
ing MPKI improvement - see Fig. 12 B) of 95 percent with the
DSC, when compared to the average 79 and 80 percent hit-
rates observed in the AMPM and BO setups, respectively.

7.3 Performance Evaluation

Fig. 13 shows the observed average instructions-per-cycle
(IPC) metric for each setup. Despite the reduction of the

TABLE 3
Reference Prefetching and Proposed Setups

BASELINE SETUP
L1 Stride Prefetcher; 16x4-entry PC table
Confidence threshold: 4; Prefetch degree: 16

AMPM SETUP

L1 stride prefetcher (Baseline)
L2 AMPM prefetcher [9]
256-entry access map; 5.2KB storage

BO SETUP

L1 stride prefetcher (Baseline)
L2 Best-Offset prefetcher [10]
256-entry RR table; 4KB storage

IMP SETUP
L1 IMP prefetcher [21]; 16-entry PT table
4-entry IPD table; Max. prefetch degree: 16

DSC SETUP (PROPOSED)
16-entry Descriptor Table
16 32x8-Byte Stream Buffers
1KB Descriptor Memory

Fig. 11. Context descriptor size; percentage of streamed accesses and
code reduction; and resulting impact in runtime-commited instructions.

Fig. 12. L1 cache behaviour comparison in (A) hit-rate and (B) misses
per kilo-instruction (MPKI).

NEVES ETAL.: COMPILER-ASSISTED DATA STREAMING FOR REGULAR CODE STRUCTURES 491



number of executed instructions, the proposed scheme still
allows for a significant IPC increase (up to 2.4x and 1.7x
when compared to BASE and AMPM/BO, respectively).

The acceleration due to code reduction is particularly evi-
dent in the polyhedral benchmarks (see Fig. 14). Since the
memory access patterns are easily detected by the BASE

stride prefetcher, the improvements provided by AMPM and
BO are limited to their ability to move data to the L2 cache
in a more timely manner (as it occurs in mvt due to its poor
data locality). However, due to the elimination of redundant
array indexation (accounting for up to 40 percent of the
achieved speedup - see Fig 14 B), the DSC is capable of fur-
ther boosting the performance up to 2.63x over BASE.

The advantages of data streaming are also reflected in the
overall system performance (see Fig. 14 A). This is espe-
cially evident when the application is characterized by large
data sets, such as in 2 mm and cov, which operate over mul-
tiple and large matrices. While the AMPM and BO prefetchers
can easily detect the patterns and feed the L2 cache, the data
set size inherently results in a large amount of L1 evictions.
However, the DSC is capable of fetching and buffering data
streams ahead of time, resulting in 1.5x and 2x speedups
over the other setups, respectively in 2 mm and cov.

Performance gains are also evident when reusing data
structures larger than the L1 cache capacity (as in mvt, lbme
and path, where a large dense matrix is read multiple
times). It can also be observed the gains resulting from the
coarse data movement into the L2 cache by AMPM and BO,
making it available for reutilization. However, the data
acquisition timeliness of theDSC still provides a performance
boost of 10 percent for lbm and path, when compared to the
other prefetchers. In the case of mvt, the matrix is also

accessed in transposed order, resulting in L1 data-locality-
related issues. However, the combination of the pattern
description and code reduction provided by the proposed
data streaming mechanism results in 1.9x and 1.5x speedups
(in mvt) over the AMPM and BO setups, respectively.

The results obtained with spmv, symgs and rank show
the capability of the proposed data streaming mechanism to
deal with indirect memory accesses. While the BO correlation
heuristics provide visible performance gains when compared
to the base stride and AMPM prefetchers, it is still limited by
the irregularity present in the data accesses. However, the
DSC is capable of producing the exact sequence of addresses
(after indirection) ahead of time and without polluting the L1
with unnecessary data. Such an advantage (accounting for
about 80 percent of the achieved speedup - see Fig 14 B),
when combined with the performed code reductions, results
in 45/37/60 percent performance increases for spmv/
symgs/rank, when compared to the BO setup.

7.4 Indirect Memory Access Streaming

Despite the ability of the BO prefetcher to deal with data
access irregularity caused by indirection, the proposed DSC

was also compared with the IMP [21] prefetcher, since it
represents a state-of-the-art in memory access indirection
(see Fig. 15). To achieve a fair comparison, only the spmv,
symgs, rank and srad benchmarks were considered, since
only these include indirect memory accesses.

According to the obtained results, the IMP and the DSC

show similar performance when comparing the impact in
the L1 data cache behaviour (see Fig. 15 A). This result is con-
sistent with the fact that, upon detecting an indirection, the
behaviour of IMP [21] becomes similar to that of the DSC

when streaming an indirect pattern. As a result, when not
considering the impact of code reduction in the proposed
data streaming, the throughput gains of both approaches is
similar, when compared to the BASE setup. However, when
considering the additional impact of the introduced code
reduction (representing an average 17 percent performance

Fig. 13. Absolute IPC comparison.

Fig. 14. Execution time speedup comparison (using BASE as reference)
and breakdown of performance gains in streaming and code reduction.

Fig. 15. Indirect memory access streaming comparison regarding (A) L1
cache behaviour, (B) absolute IPC and (C) execution speedup.

492 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 3, MARCH 2021



increase for the four benchmarks), the DSC provides an over-
all IPC improvement over IMP of up to 1.7x, and a conse-
quent average performance gain of 30 percent (see Fig. 15 C).

Finally, the performance gains of the DSC are still visible
when compared with a setup combining the IMP (L1) and
the BO (L2) prefetchers (IMP+BO). Despite a 5 percent per-
formance improvement over IMP, resulting from an
improved L2 cache behaviour, the proposed mechanism is
still capable of achieving a 1.24x speedup (see Fig. 15 C).

7.5 Discussion

7.5.1 Performance Gains

The considered AMPM [9], BO [10] and IMP [21] setups show
significant performance improvements when compared to
BASE. This is a direct result of their greater prefetching cov-
erage and accuracy and, in the particular case of BO [10], of
the timeliness of the prefetching procedure. However,
when comparing the proposed DSC with such highly effec-
tive approaches, it is observed that the DSC still provides an
increased memory access throughput (resulting from the
exact data acquisition and implicit timeliness of the data
streaming), matching and improving their performance.
This gain is stretched through the acceleration that is intro-
duced by the code reduction, providing further 20 percent
improvements (see Fig 14.B) over predictive prefetching.

Moreover, by comparing the obtained results, and consid-
ering the performance wall that is currently observed in the
offered gains of the newest generations of prefetchers, it is
possible to predict that for regular code structures the pro-
posed method would still be able to match and improve the
performance over other recent prefetching methods, such as
the Bingo prefetcher [7]. In fact, even against a mechanism
with ideal accuracy and timeliness, the code reduction of the
proposedmethodwould still allow improvements.

7.5.2 Resource Overhead

Despite the performance gains offered by the proposed
approach, it requires simpler hardware structures when
compared to the other reference prefetchers. While the
amount of storage for data streams (4 KB stream buffering)
and pattern description (1 KB descriptor memory) is similar
to the storage required by AMPM (5.2 KB) and BO (4 KB), the
required logic complexity is much smaller. In particular, the
DSC only requires 2 adders for the AGU and compare logic
to detect cacheline crossing in the address generation proce-
dure. In contrast, the AMPMprefetcher [9] requires a signifi-
cant amount of logic to match up to 256 stride patterns to
find prefetch candidates on each access. On the other hand,
the BO prefetcher [10] requires 3 adders to compute the posi-
tion of a cacheline inside a page, while the recent request
table is accessed through a hash function. When compared
to IMP [21], the DSC requires a larger amount of resources
(IMP requires less than 1KB of storage and lower logic com-
plexity). However, its architecture was solely designed for
detecting indirection in the memory access stream and is not
suited for other types of data patterns.

7.5.3 L1 Cache Bypass Limitations

In the particular case of the srad benchmark, the proposed
approach has a similar performance to all the other

considered setups. This is a consequence of the used data set,
which is small enough to fit in the L1 cache. Since the data
accesses that are performed by the DSC are currently done
directly to the L2, it increases the access latency. While this
impact is mitigated by the provided code reduction and data
stream pre-acquisition, there is still room for improvement.
Future implementations of the DSCwill consider a snoop-like
access to the L1 cache tags (i.e., without causing demand
misses) to directly copy data from the L1 and speedup the
data access. Such an approach can further improve the gains,
specially in the presence of high L1 data reutilization.

8 CONCLUSION

A new compiler-assisted data streaming mechanism for reg-
ular code structures was proposed in this paper as an alter-
native to current predictive prefetching mechanisms. It is
based on the notion that particular application memory
access patterns can be explicitly extracted at compilation
time and used to generate the corresponding data streams
for the processor. To attain this objective, it relies on a com-
pilation tool that performs static analysis over an annotated
region of code to identify, describe and encode the memory
access patterns, supporting both affine complex patterns
and indirect memory accesses. The encoded memory
accesses are then automatically converted to data stream
accesses, ultimately resulting in a reduced number of
instructions and accelerating the execution of the code. At
runtime, a dedicated DSC is used to generate data streams
from the encoded representation.

The obtained results show that the implemented compila-
tion tools achieve significant code reductions and consequent
IPC improvements in the processor. As a consequence, the
proposed data streaming method showed to improve perfor-
mance by up to 2.6x, when compared to a typical stride pre-
fetcher. Moreover, it showed to outperform state-of-the-art
prefetchers by 40 percent (on average).

ACKNOWLEDGMENTS

This work was supported in part by national funds
through Fundaça~o para a Ciência e a Tecnologia (FCT)
under projects UIDB/50021/2020 and PTDC/EEI-HAC/
30485/2017, and in part by funds from the European
Union Horizon 2020 research and innovation programme
under Grant 826647.

REFERENCES

[1] T. Grosser, H. Zheng, R. Aloor, A. Simb€urger, A. Gr€oßlinger, and
L.-N. Pouchet, “Polly-polyhedral optimization in LLVM,” in Proc.
1st Int. Workshop Polyhedral Compilation Techn., 2011, vol. 2011.

[2] S. Pop,A.Cohen, C. Bastoul, S. Girbal, G.-A. Silber, andN.Vasilache,
“GRAPHITE: Polyhedral analyses and optimizations for GCC,” in
Proc. GCCDevelopers Summit, 2006, pp. 179–197.

[3] Z. Majo and T. R. Gross, “Matching memory access patterns and
data placement for NUMA systems,” in Proc. 10th Int. Symp. Code
Gener. Optim., 2012, pp. 230–241.

[4] A. Venkat, M. Hall, andM. Strout,“Loop and data transformations
for sparse matrix code,” ACM SIGPLAN Notices, vol. 50, no. 6,
pp. 521–532, 2015.

[5] V. Kiriansky, Y. Zhang, and S. Amarasinghe, “Optimizing indirect
memory references with milk,” in Proc. Int. Conf. Parallel Archit.
Compilation Techn., 2016, pp. 299–312.

NEVES ETAL.: COMPILER-ASSISTED DATA STREAMING FOR REGULAR CODE STRUCTURES 493



[6] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “An
efficient temporal data prefetcher for L1 caches,” IEEE Comput.
Archit. Lett., vol. 16, no. 2, pp. 99–102, Jul.–Dec. 2017.

[7] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and
H. Sarbazi-Azad, “Bingo spatial data prefetcher,” in Proc. IEEE
Int. Symp. High Perform. Comput. Archit., 2019, pp. 399–411.

[8] N. Neves, P. Tom�as, and N. Roma, “Adaptive in-cache streaming
for efficient data management,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 25, no. 7, pp. 2130–2143, Jul. 2017.

[9] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching
for high performance data cache prefetch,” J. Instruction-Level Par-
allelism, vol. 13, pp. 1–24, 2011.

[10] P. Michaud, “Best-offset hardware prefetching,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit., 2016, pp. 469–480.

[11] S. H. Pugsley et al., “Sandbox prefetching: Safe run-time evalua-
tion of aggressive prefetchers,” in Proc. IEEE 20th Int. Symp. High
Perform. Comput. Archit., 2014, pp. 626–637.

[12] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality
and context-based prefetching using reinforcement learning,” in
Proc. 42nd Annu. Int. Symp. Comput. Archit., 2015, pp. 285–297.

[13] Y. Guo, P. Narayanan, M. A. Bennaser, S. Chheda, and C. A.Moritz,
“Energy-efficient hardware data prefetching,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 19, no. 2, pp. 250–263, Feb. 2011.

[14] K.-A. Tran et al., “Clairvoyance: Look-ahead compile-time sched-
uling,” in Proc. IEEE/ACM Int. Symp. Code Gener. Optim., 2017,
pp. 171–184.

[15] I. Hadade, T. M. Jones, F.Wang, and L. di Mare, “Software prefetch-
ing for unstructured mesh applications,” in Proc. IEEE/ACM 8th
Workshop Irregular Appl. Archit. Algorithms, 2018, pp. 11–19.

[16] S. Ainsworth and T. M. Jones, “Software prefetching for indirect
memory accesses,” in Proc. Int. Symp. Code Gener. Optim., 2017,
pp. 305–317.

[17] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching
systems,” in Proc. IEEE 15th Int. Symp. High Perform. Comput.
Archit., 2009, pp. 7–17.

[18] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Practical off-chip meta-data for temporal memory
streaming,” in Proc. IEEE 15th Int. Symp. High Perform. Comput.
Archit., 2009, pp. 79–90.

[19] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson,
S. H. Pugsley, and Z. Chishti, “Efficiently prefetching complex
address patterns,” in Proc. 48th Int. Symp. Microarchitecture, 2015,
pp. 141–152.

[20] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in Proc. 10th Int. Symp. High Perform. Comput.
Archit., 2004, pp. 96–96.

[21] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect
memory prefetcher,” in Proc. 48th Int. Symp. Microarchit., 2015,
pp. 178–190.

[22] S. Somogyi, T. Wenisch, M. Ferdman, and B. Falsafi, “Spatial mem-
ory streaming,” J. Instruction-Level Parallelism, vol. 13, pp. 1–26, 2011.

[23] S. Kondguli and M. Huang, “Division of labor: A more effective
approach to prefetching,” in Proc. ACM/IEEE 45th Annu. Int.
Symp. Comput. Archit., 2018, pp. 83–95.

[24] S. Pai�agua, F. Pratas, P. Tom�as, N. Roma, and R. Chaves,
“HotStream: Efficient data streaming of complex patterns to mul-
tiple accelerating kernels,” in Proc. 25th Int. Symp. Comput. Archit.
High Perform. Comput., 2013, pp. 17–24.

[25] Y. Wang et al., “SPREAD: A streaming-based partially reconfigura-
ble architecture and programming model,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 21, no. 12, pp. 2179–2192, Dec. 2013.

[26] T. Hussain, O. Palomar, O. Unsal, A. Cristal, E. Ayguad�e, and
M. Valero, “Advanced pattern based memory controller for FPGA
based HPC applications,” in Proc. Int. Conf. High Perform. Comput.
Simul., 2014, pp. 287–294.

[27] N. E. A. Binkert, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[28] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and
improving the use of demand-fetched caches in GPUs,” in Proc.
26th ACM Int. Conf. Supercomputing, 2012, pp. 15–24.

[29] M. Amilkanthwar and S. Balachandran, “CUPL: A compile-time
uncoalesced memory access pattern locator for CUDA,” in Proc.
27th ACM Int. Conf. Supercomputing, 2013, pp. 459–460.

[30] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen,“Complexity
analysis and algorithm design for reorganizing data to minimize
non-coalesced memory accesses on GPU,” ACM SIGPLAN Notices,
vol. 48, no. 8, pp. 57–68, 2013.

[31] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos, “Auto-tuning a high-level language targeted to GPU
codes,” inProc. Innovative Parallel Comput., 2012, pp. 1–10.

[32] Clang. LibTooling, Accessed: Jul. 30, 2018. [Online]. Available:
http://http://clang.llvm.org/docs/LibTooling.html

[33] J. Dongarra, M. A. Heroux, and P. Luszczek, “HPCG benchmark:
A new metric for ranking high performance computing systems,”
Univ. Tennessee, Knoxville, TN, Tech. Rep. UT-EECS-15–736, 2015.

[34] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Gener. Optim., 2004, Art. no. 75.

[35] I. Corporation, “Intel 64 and IA-32 architectures optimization ref-
erence manual,” Intel Corporation, Santa Clara, CA, Tech. Rep.
248966–040, Apr. 2018.

[36] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44–54.

[37] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” Stanford InfoLab,
Stanford, CA, Tech. Rep. 1999–66, 1999.

Nuno Neves (Member, IEEE) received the PhD
degree in electrical and computer engineering from
Instituto Superior T�ecnico (IST), University of Lis-
bon (UL), Lisbon, Portugal, in 2019. He is currently
an invited assistant professor with the Department
of Electrical and Computer Engineering of Instituto
Superior T�ecnico and a junior researcher of the
HPCAS Group of INESC-ID. His main research
interests include high-performance and reconfigur-
able computing, domain-specific architectures,
languages, and compilers. He is a member of the
IEEECircuits and SystemsSociety.

Pedro Tom�as (Senior Member, IEEE) received
the PhD degree in electrical and computer engi-
neering (ECE) from Instituto Superior Tecnico
(IST), Technical University of Lisbon, Portugal,
in 2009. He is an assistant professor with
the Department of ECE, Instituto Superior Tec-
nico, and a senior researcher at Instituto de
Engenharia de Sistemas e Computadores R&D
(INESC-ID). His research activities include
computer microarchitectures, specialized compu-
tational structures, and high-performance com-

puting. He is also interested in artificial intelligence models and
algorithms. He is a member of the IEEE Computer Society and has con-
tributed to more than 60 papers to international peer-reviewed journals
and conferences.

Nuno Roma (Senior Member, IEEE) received the
PhD degree in electrical and computer engineering
from Instituto Superior T�ecnico (IST), Technical
University of Lisbon, Portugal, in 2008. He is cur-
rently an assistant professor with the Department
of Electrical and Computer Engineering of Instituto
Superior T�ecnico and an integrated researcher of
INESC-ID, working on High-Performance Comput-
ing Architectures and Systems (HPCAS). His
research interests include specialized computer
architectures for digital signal processing, parallel

processing, and high-performance computing. He has contributed to more
than 100 papers to journals and international conferences. He is a senior
member of both the IEEECircuits and SystemsSociety and ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 3, MARCH 2021

http://doi.acm.org/10.1145/2024716.2024718
http://http://clang.llvm.org/docs/LibTooling.html

