
Signal Processing: Image Communication 62 (2018) 93–105

Contents lists available at ScienceDirect

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image

Highly parallel HEVC decoding for heterogeneous systems with CPU and
GPU✩

Biao Wang a,*, Diego Felix de Souza b, Mauricio Alvarez-Mesa c, Chi Ching Chi c, Ben Juurlink a,
Aleksandar Ilić b, Nuno Roma b, Leonel Sousa b

a AES, Technische Universität Berlin, Berlin, Germany
b INESC-ID Lisboa, IST, Universidade de Lisboa, Lisbon, Portugal
c Spin Digital Video Technologies GmbH, Berlin, Germany

a b s t r a c t

The High Efficiency Video Coding HEVC standard provides a higher compression efficiency than other video coding standards but at the cost of an increased
computational load, which makes hard to achieve real-time encoding/decoding for ultra high-resolution and high-quality video sequences. Graphics Processing Units
GPU are known to provide massive processing capability for highly parallel and regular computing kernels, but not all HEVC decoding procedures are suited for
GPU execution. Furthermore, if HEVC decoding is accelerated by GPUs, energy efficiency is another concern for heterogeneous CPU+GPU decoding. In this paper,
a highly parallel HEVC decoder for heterogeneous CPU+GPU system is proposed. It exploits available parallelism in HEVC decoding on the CPU, GPU, and between
the CPU and GPU devices simultaneously. On top of that, different workload balancing schemes can be selected according to the devoted CPU and GPU computing
resources. Furthermore, an energy optimized solution is proposed by tuning GPU clock rates. Results show that the proposed decoder achieves better performance
than the state-of-the-art CPU decoder, and the best performance among the workload balancing schemes depends on the available CPU and GPU computing resources.
In particular, with an NVIDIA Titan X Maxwell GPU and an Intel Xeon E5-2699v3 CPU, the proposed decoder delivers 167 frames per second (fps) for Ultra HD 4K
videos, when four CPU cores are used. Compared to the state-of-the-art CPU decoder using four CPU cores, the proposed decoder gains a speedup factor of 2.2×.
When decoding performance is bounded by the CPU, a system wise energy reduction up to 36% is achieved by using fixed (and lower) GPU clocks, compared to the
default dynamic clock settings on the GPU.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The HEVC [1] standard represents the current state of the art in video
coding technology. It provides 50% bitrate reduction with the same
subjective quality when compared to H.264/MPEG-4 AVC (H.264) [2].
However, such improvement in bitrate compression is achieved at the
cost of an increase in the computational requirements. Furthermore, the
main applications of HEVC are delivery of Ultra High Definition (UHD)
videos, including 4K and 8K. Emerging video quality enhancements on
those UHD videos, such as High Dynamic Range (HDR) [3], Wide Color
Gamut (WCG) [4], and High Frame Rate (HFR) [5], add even more
computing requirements. Fortunately, HEVC has been designed with
parallelism in mind. Coding tools such as Wavefront Parallel Processing
(WPP) [6] and Tiles [7] have been added in order to take advantage
of parallel architectures. Parallel processing for HEVC decoding has
been analyzed and implemented in several homogeneous architectures.
For example, the state-of-the-state CPU decoder [8] exploiting SIMD

✩ Extension of Conference Paper: ‘‘Efficient HEVC decoder for heterogeneous CPU with GPU systems,’’ 2016 IEEE 18th International Workshop on Multimedia Signal Processing
(MMSP), Montreal, QC, 2016, pp. 1–6. The paper is extended with (i) additional workload balancing scheme (ii) integrated energy measurement module for CPU and GPU devices. (iii)
energy optimized decoding for heterogeneous system by setting the GPU at fixed clock rates.

* Corresponding author.
E-mail address: biaowang@win.tu-berlin.de (B. Wang).

instructions and advanced multi-threading is able to decode 4K UHD
video on contemporary desktop CPUs.

In addition to CPUs, modern computer systems often include Graph-
ics Processing Units (GPUs), resulting into a class of heterogeneous
architectures. Such heterogeneous CPU+GPU systems can potentially
provide the computing capability needed for the next generation of UHD
HEVC decoding. In order to extract the maximum performance, HEVC
decoding has to be mapped appropriately onto such heterogeneous
architectures. First, the decoding sub-modules need to be distributed
properly between the CPU and GPU according to their computing
characteristics. Second, the assigned decoding tasks on both the CPU and
GPU sides have to be parallelized and optimized. Besides, the decoding
operations between the CPU and GPU requires efficient communication
and pipeline consideration. Finally, multiple load balancing schemes are
desired when the available computing resource changes on the CPU and
GPU devices.

https://doi.org/10.1016/j.image.2017.12.009
Received 2 August 2017; Received in revised form 16 December 2017; Accepted 21 December 2017
Available online 30 December 2017
0923-5965/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.image.2017.12.009
http://www.elsevier.com/locate/image
http://www.elsevier.com/locate/image
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2017.12.009&domain=pdf
mailto:biaowang@win.tu-berlin.de
https://doi.org/10.1016/j.image.2017.12.009

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

In this paper, a highly parallel design of the HEVC decoding for
heterogeneous CPU+GPU systems is proposed. The HEVC procedures
have been redesigned so that the sequential entropy decoding stage is
executed on the CPU, while the remaining parallel kernels are offloaded
onto the GPU. In addition to the data parallelism exploited on the
GPU, the available wavefront parallelism for the CPU task is also
exploited. Furthermore, the decoding tasks on the CPU and GPU have
been designed to execute in a pipelined fashion, with an efficient one-
direction data transfer. On top of the parallel design, different workload
balancing strategies have been developed, in order to deliver the best
performance according to the exploited set of computation resources.
Finally, an energy measurement solution has been integrated within
the heterogeneous CPU+GPU decoder, with which the energy efficiency
of the proposed decoder is evaluated and analyzed. To summarize, the
contributions of this paper are the following.

∙ A highly parallel HEVC decoder for heterogeneous CPU+GPU
systems is proposed, where multiple levels of parallelism are
exploited simultaneously. On the CPU, it exploits both the intra-
and inter-frame parallelism. On the GPU, it allows concurrent
kernel execution, in addition to the data-level parallelism within
a frame. Between the CPU and GPU devices, pipelining is also
exploited at the frame level.

∙ On top of the proposed design, different workload balancing
schemes are implemented, in order to find the most efficient
workload distribution depending on the available CPU and GPU
computing resources. In particular, with an NVIDIA Titan X
Maxwell GPU and an Intel Xeon E5-2699v3 CPU, average frame
rates of 167 frames per second (fps) and 60 fps are achieved for
4K and 8K videos, respectively.

∙ An energy efficiency analysis is performed for the proposed
CPU+GPU decoder with the integrated energy measurement
module. Compared to the default clock settings of the GPU, the
energy efficiency of the heterogeneous decoding can be further
optimized by tuning GPU clocks, with a system wise energy
reduction up to 36%.

This paper is organized as follows. Section 2 discusses the related
work. Section 3 provides a parallelism analysis for the HEVC decoding.
Section 4 elaborates on the proposed decoding design. Section 5 de-
scribes the energy measurement module for the CPU and GPU devices. In
Section 6, the performance and energy efficiency results of the proposed
heterogeneous CPU+GPU decoding are presented and analyzed. Finally,
the conclusions are drawn in Section 7.

2. Related work

This section provides a review of HEVC decoding implementations
on different architectures, such as CPUs, GPUs, and dedicated hard-
wares. Furthermore, a brief review of energy optimized GPU computing
and video decoding is presented.

On the general-purpose CPU processor, the open-source HEVC Test
Model (HM) [9] is often used as a baseline. However, HM was developed
mainly for validation of the HEVC standard, being not optimized for
real-time decoding. In contrast, an optimized decoder with Single
Instruction, Multiple Data (SIMD) and multi-threading was developed
in [10]. On an Intel i7-2600 3.4 GHz quad-core CPU, the optimized
decoder delivers 40–75 fps for 4K videos. Another SIMD and multi-
threaded decoder with additional memory optimizations was proposed
in [8]. This decoder delivers 134.9 fps on an Intel i7-4770S 3.1 GHz
quad-core CPU for 4K videos.

Regarding software-based GPU acceleration for video decoding, most
of previous work targets only single HEVC decoding modules, such as
Inverse Transform (IT) in [11,12], Motion Compensation (MC) in [13],
Intra Prediction (IP) in [14], Deblocking Filter (DBF) in [15,16], and
in-loop filters in [17]. In particular, Souza et al. [18] presented a set of
optimized GPU kernels, where they optimized and integrated individual

HEVC modules. The set of GPU kernels, however, did not cover all
HEVC decoding modules, i.e., the Entropy Decoding (ED) is excluded.
Experimental results show these GPU-based kernels (i.e. excluding ED)
deliver a frame rate of 145 fps for the 4K videos using an NVIDIA TITAN
X Maxwell GPU.

Apart from the above software approaches, hardware implemen-
tations of HEVC decoding have been proposed as well. Abeydeera
et al. [19] presented an HEVC decoder based on Field-Programmable
Gate Array (FPGA). With a Xilinx Zynq 7045 FPGA, their decoder deliv-
ers 30 fps for 4K videos. Tikekar et al. [20] implemented an Application-
Specific Integrated Circuit (ASIC) in 40 nm CMOS technology with
a set of architectural optimizations. Their ASIC decoder is also able
to decode at 30 fps for 4K videos. In addition, modern commercial
GPUs often provide dedicated hardware accelerators for video decoding,
such as NVIDIA’s PureVideo [21], Intel’s Quick Sync Video [22], and
AMD’s Unified Video Decoder [23]. Most of the hardware-based HEVC
accelerators, however, are limited to specific architectures and further
constrain their support to certain HEVC profiles. For example, NVIDIA
adds complete HEVC hardware acceleration until GM206 architectures,
and constrains its decoding capability to HEVC Main profile up to Level
5.1 [24]. In contrast, the set of software-based solutions that are adopted
by this paper can provide HEVC real-time decoding capabilities for
nowadays heterogeneous systems, even when the considered GPUs are
not equipped with HEVC hardware acceleration.

When considering energy optimized GPU computing/video decod-
ing, Mei et al. [25] exploited the impact of up-to-date GPU Dynamic
Voltage and Frequency Scaling (DVFS) [26] techniques on the ap-
plication performance, power consumption, and energy conservation.
Their results showed that the energy saving not only depends on
GPU architectures but also characteristic of GPU applications. For
video decoding application, two approaches were exploited in [27] for
achieving low-power and high-efficiency real-time video decoding on
different CPU architectures. Results showed that the ‘‘exploiting slack’’
approach is more power efficient than the ‘‘race to idle’’ strategy on all
evaluated CPUs. However, both of the above studies investigated energy
optimization strategies only on homogeneous architectures, either on
CPUs or on GPUs.

Compared to the software-based approaches, in this paper a com-
plete HEVC decoder for heterogeneous system consisting of CPU and
GPU devices is presented. We exploit available parallelism on the
CPU, GPU and between the CPU and GPU devices simultaneously.
Furthermore, different workload distributions between the CPU and
GPU devices are implemented, and hence the proposed decoder can
achieve the best performance under different computing resource con-
figurations. Finally, we analyze the energy efficiency of HEVC decoding
on heterogeneous architectures. By tuning clocks of the more power
hungry GPU device, a system wise energy consumption is reduced by
up to 36%, when compared to the default GPU clock settings.

3. Parallelism analysis for the HEVC decoding

This section starts with the discussion of the parallelization oppor-
tunities within the HEVC decoding that were exploited in the proposed
design. Afterwards, an analysis of the parallelism within all decoding
tasks is performed by considering GPU architectures.

3.1. Parallel decoding in the HEVC standard

There are two forms of parallelism available in the HEVC decoding:
intra- and inter-frame parallelism. The intra-frame parallelism is avail-
able when WPP [6] is enabled at the encoder side. WPP allows multiple
threads to decode several lines of Coding Tree Units (CTUs) in parallel,
as shown in Fig. 1. Each decoding thread processes CTUs in the same
row from left to right. Due to data dependencies, each CTU can only
be decoded if its top right CTU is decoded, which leaves a distance of
two CTUs between neighboring threads. To fulfill this dependency, WPP

94

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

Fig. 1. Intra- and inter-frame parallelism exploited in HEVC decoding. Each cell in the grid of a frame represents a CTU.

Table 1
Qualitative analysis of the HEVC decoding stages in terms of data parallelism and branch divergence.

suffers from a low thread utilization at the start and the end of each
frame, when only a single frame’s decoding task is considered.

Such inefficiency can be relieved by also exploiting inter-frame
parallelism when multiple frames-in-flight (FiF) are available, where
CTUs from different frames can be decoded in parallel. As it is shown in
Fig. 1, the decoding thread (T4) no longer remains idle as the workload
from the next frame can be scheduled. In addition, the decoding task
for CTUs in the next frame does not have to wait for the completion of
the reference frame, but it can start as long as its dependent area in the
previous frame is decoded. This strategy that exploits the inter-frame
parallelism and relieves the WPP inefficiency was firstly proposed in
[28], termed as the Overlapped Wavefront (OWF) approach.

In addition to WPP, slices and tiles are the other two parallel coding
tools in HEVC that can increase the intra-frame parallelism. By dividing
a frame into multiple independent slices/tiles, the decoding task for
each slice/tile can be processed in parallel. Comparing all methods, WPP
(OWF) has been proven the most efficient way to exploit the parallelism
in the HEVC decoding, as evaluated in [28]. When WPP, tiles, and slices
are all disabled, only inter-frame parallelism can be exploited.

3.2. Suitability of GPU acceleration for HEVC decoding

HEVC decoding can be divided into six steps: Entropy Decoding (ED),
Inverse Transform (IT), Motion Compensation (MC), Intra-Prediction
(IP), Deblocking Filter (DBF), and Sample Adaptive Offset (SAO) filter.
However, not all of these decoding kernels are suitable for GPU architec-
tures. Only kernels that exhibit a high degree of data level parallelism
and a low degree of branch divergence can lead efficient GPU execution.

Table 1 presents a qualitative analysis for the HEVC decoding
kernels, when they are performed at the frame level. In particular,
the ED exposes little data level parallelism and is highly divergent
due to its bit-level dependency in the decoding path. The IT can be
performed independently for each transform block in a frame, where
thousands of transform blocks are available. Such independent block
processing can also be applied for the decoding procedures of MC,
DBF, and SAO. However, the IP cannot be applied in parallel for all
blocks within a frame, due to its block-level data dependency. For
one block’s prediction, depending on its prediction mode, the samples
of other blocks from the top-right, top, top-left, left, and bottom-left
directions might need to be predicted first, as exemplified by one 4 × 4
block’s prediction in Fig. 2. Hence, the number of blocks that can be
predicted in parallel in IP is reduced. Meanwhile, the IP has a total of
35 prediction modes, while other kernels, except ED, in general exhibit
a low execution divergence.

Fig. 2. The potential dependent samples in HEVC intra prediction, exemplified by a 4 × 4
block with one prediction mode.

4. Proposed decoding design for heterogeneous systems with CPU
and GPU

In this section, a general design for parallel HEVC decoding on
heterogeneous platforms is presented first. After that, different workload
balancing schemes on top of the proposed design is elaborated. With
them, a more balanced workload distribution can be achieved for dif-
ferent input sequences, according to the available computing resources
on the CPU and GPU devices.

4.1. HEVC decoding task distribution for heterogeneous CPU+GPU systems

Based on the decoding procedure analysis in Section 3.2, a purely
task-based workload distribution between CPU and GPU is proposed, as
shown in Fig. 3. For every frame, the ED task is executed on the CPU, due
to its sequential and irregular processing pattern, while the remaining
decoding procedures are offloaded onto the GPU. The tasks targeted for
the GPU are sometimes referred to together as reconstruction kernels,
since they are responsible for reconstructing the frames.

Among the reconstruction kernels, the IP has a medium level of data
parallelism and branch divergence, which can be executed either on the
CPU or the GPU. Executing IP on the CPU, however, will introduce two
extra data transfers between the CPU and the GPU, which are a well-
known source of bottleneck for heterogeneous CPU+GPU computing.
Due to data dependency, the reconstructed samples derived from the IT
and MC on the GPU have to be firstly transferred back to the CPU, as the
input for the IP. After the IP is processed on the CPU, the reconstructed
samples from the intra-predicted blocks need to be uploaded to the GPU
again, as the input for the DBF performed on the GPU. In contrast, we
assign the IP on the GPU to reduce the data dependency between the
CPU and GPU devices. As a result, the data transfer between the CPU
and the GPU is minimized to once only, as shown in Fig. 3.

In our baseline multi-core CPU decoder [8], all decoding procedures
are applied at block-level in order to exploit data locality. In the

95

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

Fig. 3. Work flow overview of task based partition for CPU+GPU decoding on one specific frame. The entropy decoding module is assigned on the CPU and the remaining kernels are
offloaded onto the GPU. Thread block level mapping is presented at the bottom, within the GPU block.

herein proposed CPU+GPU decoding, however, reconstruction kernels
are applied at frame-level, in order to increase the data parallelism
for GPU execution. Hence, from a high-level perspective, three steps
are performed based on the baseline decoder to achieve the workload
distribution in Fig. 3. First, the ED is decoupled from the decoding
loop that fuses all decoding procedures. Second, the reconstruction
kernels are changed from the block-level processing to the frame-level
processing. Third, all reconstruction kernels are parallelized for GPU
execution.

After this redesign for heterogeneous CPU+GPU processing, the
decoding task for a single frame is performed as follows. First, while
the ED is executed on the CPU, the input data for the reconstruction
kernels is collected at the frame level. The collected data includes the
coefficients (Coeff.) and block control flags for IT, the motion vector
(MV) and the reference index (RefIdx) for MC, the prediction modes
(P. Modes) for IP, the boundary strength (BS) for DBF, and the offset
types for SAO, as shown on the top in Fig. 3. After an entire frame is
processed by the ED, the collected data is transferred from the Host to
Device (labeled as H2D). As soon as such data is transferred to GPU
Global Memory, the reconstruction kernels are launched in the following
order to fulfill the HEVC standard specifications: IT, MC, IP, DBF, and
SAO. Along with prediction kernels (i.e., MC and IP), the suffix ‘‘+’’
indicates that the reconstruction output (predicted samples + residual
data) is computed within the GPU kernel. After all GPU kernels have
been executed, the decoding task for one frame is complete. The decoded
frames can remain in the GPU global memory as the reference frame
for the MC, which is also performed on the GPU. In this way, the data
dependency of MC is addressed completely on the GPU, and the decoded
frames do not have to be transferred back to the CPU, as shown in Fig. 3.

4.1.1. Parallel decoding on the CPU and GPU devices
On the CPU side, when WPP and multiple FiFs are available, the

ED task exploits both intra- and inter-frame parallelism with the OWF
approach, as shown in Fig. 1. For the entropy decoding of one frame,
multiple threads are allowed to process the frame in parallel, each
corresponding to one row of CTUs. Meanwhile, the ED task can start
across multiple frames. The motion vector prediction that integrated
within the ED stage can start as long as its reference area (instead of the
complete frame) is ready. When the CTU rows from the same frame and
other frames are both available, the ED processes the CTU lines that
come from the same frame first, in order to minimize the frame-level
decoding latency.

On the GPU side, all reconstruction kernels have been parallelized
using Compute Unified Device Architecture (CUDA) [29]. In CUDA, the
threads are organized in three bottom-up levels: thread, thread block,
and grid. Moreover, the threads are executed in groups of 32 threads,
termed as warps. Hence, the thread block size is usually configured as
multiple warps to avoid thread waste. Herein, all kernels are applied
on the frame basis, and the thread mapping at the thread block level is
summarized per kernel at the bottom of Fig. 3. The selected thread block
configurations are derived either by tuning thread block sizes (such as
MC and IP, as presented in [18]), or by further optimizing data mapping
of the thread block (such as DBF and SAO, as presented in [30]).

For the IT, 8 warps are configured for processing a block of 32 × 32
samples. When there are multiple transform blocks within the mapped
thread block, the warps are assigned according to the transform block
partition. The thread block for MC is composed of 4 warps, and they
are assigned to perform the inter prediction of a block consisting of
64×32 samples. In MC, the on-chip shared memory is used to buffer the
reference samples that will be further used, thus reducing the required
memory bandwidth to the global memory. The IP kernel is performed
after the MC due to the intrinsic data dependencies on its neighboring
predicted samples. In total 8 warps are allocated for one thread block in
IP, and they are responsible for an area in a frame width with a height
of 64 samples (FW × 64), thus accomplishing a wavefront approach for
the whole frame. For the in-loop filters, the DBF and SAO, each thread
block contains 2 warps, but they are assigned to a block of 256 × 8 and
64×64 samples, respectively. The more detailed parallelization strategies
for the IT, MC, IP, and the in-loop filters (i.e. DBF and SAO) have been
elaborated in [11,13,31], and [30], respectively.

For the decoding tasks on the GPU, besides the frame-level data
parallelism exploited by CUDA kernels, inter-frame parallelism is also
exploited when multiple FiFs are configured. Fig. 4 presents an example
with two independent FiFs. For each frame, its corresponding GPU
kernels are issued in the same CUDA stream: a sequence of GPU
operations that execute in issue order. In the proposed design, one
CUDA stream is created per each frame and all GPU operations are
issued asynchronously, which allows a concurrent execution on the
GPU for different CUDA streams [32]. Two types of concurrency are
exploited on the GPU. First, the host to device memory copy (H2D) is
performed by the copy engine on the GPU, which can be overlapped
with the kernel execution from other frames. Second, if the GPU has idle
computing resources when executing one given kernel, the kernels from
other streams can be concurrently executed. For example, the execution
of IP is overlapped with one other kernel for most of the time, since
its limited amount of parallelism leads to a low utilization of the GPU
resources. Kernel concurrency is also observed in the execution of SAO
(from stream 1) and DBF (from stream 2), but for another reason. Both
SAO and DBF expose massive parallelism but they are lightweight for a
powerful GPU, and hence can be concurrently executed.

4.1.2. Pipelined decoding between the CPU and the GPU
Besides the parallelism exploited on the CPU and GPU devices,

pipelining is exploited as well in the proposed design. Fig. 5 presents
an example of pipelined execution between the CPU and the GPU
when multiple FiFs and WPP are available. In total three threads are
configured, together with three FiF, each labeled with a different color
that represents the associated frame buffer. For each frame, the task
assigned to the CPU is labeled in the form Frame No.: ED, while the
reconstruction kernels assigned to the GPU are labeled as Frame No.:
Rec. For the sake of easier explanation, it is assumed that every two
frames (Frame 1 and 2, 3 and 4, etc.) can be decoded independently.
Moreover, the first frame in the independent frame pair is assumed as
the one (and the only one) reference frame of the second frame. Hence,
the MC of Frame 2 shall wait until Frame 1 is completely decoded, Frame
4 shall wait for Frame 3, and so on.

96

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

Fig. 4. Parallel decoding on the GPU with two independent frames in flight (and hence two CUDA streams), assuming that the considered GPU has enough resources to execute multiple
kernels concurrently.

Fig. 5. Pipelined decoding between the CPU and the GPU with three frames in flight and three threads, assuming that the considered GPU has enough resources to execute multiple
kernels concurrently.

The entire decoding process starts on the CPU, with entropy decoding
of Frame 1 (F1: ED). Since the decoding task within the same frame
has a higher priority, each thread on the CPU takes a row of CTUs
in Frame 1 and decodes the frame in a wavefront scheme. When they
are approaching the end of the frame, the CTU rows of Frame 2 are
scheduled for these CPU threads. Hence, the ED tasks at the end of
Frame 1 and the beginning of Frame 2 are decoded in parallel. If the
WPP is disabled, then the configured three threads will spread over the
available FiF, and hence the decoding of Frame 2 and Frame 3 will start
sooner. After the CPU accomplishes all the entropy decoding of Frame
1, the reconstruction kernel inputs are transferred to the GPU side, and
hence the GPU kernels of Frame 1 can be executed. Meanwhile, the
ED task of Frame 2 is also processed on the CPU side in a wavefront
approach. When the CPU complete the decoding of Frame 2, however,
due to the motion compensation data dependency, GPU kernels cannot
start until Frame 1 is completed decoded. Therefore, no concurrent GPU
execution is observed between Frame 1 and 2. However, the GPU kernels
on Frame 2 and 3 are independent of each other, and hence concurrent
execution is exploited between them. When Frame 2 is completely
decoded on the GPU, the frame buffers for Frame 2 and its reference
frame (Frame 1) are freed. The freed frame buffers can accommodate
new frames (Frame 4, 5), and the overall process is repeated.

The synchronization between the CPU and the GPU is performed
as follows. When the decoding task on the CPU is completed for a
given frame, a flag is set for this frame’s GPU decoding task. GPU
kernels will not be scheduled without this flag set. Furthermore, all
reference frames of the current frame are checked before launching
its GPU kernels, to assure that its motion compensation dependency is
fulfilled. Finally, after all GPU kernel launches of one frame, the callback
function cudaStreamAddCallback is appended in the same CUDA stream.
As soon as all kernels are complete, this callback function is activated by
the CUDA runtime, informing the CPU to start decoding a new frame.

4.2. Different workload balancing schemes

Depending on the ratio of computational power between the CPU
and the GPU (e.g., the number of CPU cores/the number of GPU cores),

different workload distribution must be employed in order to achieve
better performance. If more GPU than CPU computing resources are
available, it is better to submit all frames to the GPU for reconstruc-
tion kernels’ execution. However, if more CPU than GPU computing
resources are available, the GPU might not be able to process all the
frames at the desired rate and can become the bottleneck. In this case,
it is better to send fewer frames for reconstruction to the GPU and
reconstruct more in the CPU.

The presented decoding scheme in Section 4.1, termed as scheme I
afterwards, divides the workload between the CPU and the GPU based
only on the decoding procedures. For a given video with lightweight
entropy decoding workload, this task-based distribution can lead to
workload imbalance when a high number of CPU cores are employed.
To mitigate this problem, fewer frames shall be sent to the GPU for the
reconstruction tasks. Instead, these reconstruction tasks are executed on
the CPU, and hence a better workload balancing between the CPU and
GPU devices is achieved.

However, one pending issue is the selection of frames that do not
offload the reconstruction kernels onto the GPU anymore. One option
to accomplish the new frame distribution is based on reference and
non-reference frames. A reference frame is used by other frames as the
input for motion compensation, while a non-reference frame is not used
by any other frames. Fig. 6 presents an example of reference and non-
reference frames in a Group Of Pictures (GOP) with a size of 8 frames.
The numbers labeled within the frames represent their displaying order,
and the frame-level dependencies between these frames are indicated
by the arrows. For example, frame 4 can only be decoded after the
completion of frame 0 and 8.

In the newly proposed workload distribution scheme, termed as
scheme II afterwards, all decoding tasks for the reference frames are
preserved on the CPU, and the corresponding GPU kernels are disabled.
Meanwhile, the CPU decodes these reference frames at the CTU line
level, in order to exploit both inter- and intra-parallelism, as presented
in Fig. 1. The workload distribution for non-reference frames remains
the same as presented in Fig. 3, i.e., ED is assigned on the CPU and
other kernels are assigned on the GPU. In this way, no memory transfer

97

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

Fig. 6. Inter-frame dependency in a group of pictures (GOP) with a size of 8 frames.

Table 2
Workload distribution in decoding scheme I and II.

Frame types Scheme I Scheme II

Entropy Others Entropy Others

Non-reference frames CPU GPU CPU GPU
Reference frames CPU

from the GPU to the CPU is required because the dependency between
the reference frames on the CPU are self-contained, and dependency be-
tween the reference frames and non-reference frames can be addressed
by transferring the decoded reference frames from the CPU to the GPU.
The main differences in the considered workload distributions of the
decoding scheme I and II are summarized in Table 2. The proposed
decoding scheme II applies for all input sequences using hierarchical
GOP structures, which is a common choice when encoding videos for
consumer applications.

In addition to avoiding extra direction of memory copy (from the
GPU to the CPU), the decoding scheme II also brings other benefits.
First, the inter-frame parallelism exploited by the GPU is usually limited
by the frame-level motion compensation dependencies. However, under
the new decoding scheme, such dependency will not occur, since non-
reference frames are independent of each other and can be processed in
parallel by the GPU. Moreover, the tasks on the GPU are synchronized
at the frame level, while the tasks on the CPU are synchronized at the
CTU line level. Hence, the GPU can start a new decoding task only
when the entire reference frame is completed. In contrast, the finer
synchronization granularity on the CPU allows the decoding task to start
without the completion of the entire reference frame, thus improving
overall performance scalability.

5. Energy measurement for heterogeneous CPU+GPU decoding

In order to analyze the energy efficiency of heterogeneous CPU+GPU
decoding, an energy measurement module is developed and integrated
within the proposed decoder. The energy measurement module consists
of two parts: the one used for measuring energy of Intel CPUs using
the Running Average Power Limit (RAPL) [33] interface, and the other
for measuring NVIDIA GPUs using the NVIDIA Management Library
(NVML) [34].

5.1. Energy measurement of Intel CPUs

Since Sandy Bridge microarchitecture, RAPL interface is imple-
mented to monitor and control the power consumptions of Intel CPUs.
Its internal circuitry can estimate current energy usage based on a
model driven by hardware counters, temperature, and leakage informa-
tion [35]. The results of this power model have been validated with
high accuracy [36] and are available to users via a set of Machine
Specific Registers (MSRs). For fine grained report and control, RAPL
interface provides sensors that allow measuring energy of the CPU-
level components, referred to as a RAPL domain. In total there are
four RAPL domains, namely, package, pp0, pp1, and DRAM. Package

domain reports power consumption of the whole CPU package, pp0 and
pp1 domains respectively refer to the power consumed by the core and
uncore devices, and DRAM domain provides the power consumption of
memory controller. These domains, however, are not always available.
The domain availability depends on the processor models [37]. The
server processor used in this paper (i.e. Haswell-EP Xeon E5-2699v3),
for instance, only supports the package and DRAM domains [38].

For package domain, the energy usage can be read from the MSR
register MSR_PKG_ENERGY_STATUS, and the energy usage of DRAM
domain is read from the MSR_DRAM_ENERGY_STATUS register. These
two registers are read-only and the energy value stored in them is
updated every 1 ms [37]. The raw energy values from these two
registers are counted in energy units, which are defined in register
MSR_RAPL_POWER_UNIT.

The energy of CPU is measured by putting two reads for the package
and DRAM domains at the beginning and the end of the decoding
process. The consumed energy for each domain is then obtained by
subtracting the value from the two reads, with overflow taken into
account. The subtracted energy values for package and DRAM domain
are then multiplied by their corresponding energy units, and finally
added together.

5.2. Energy measurement of NVIDIA GPUs

The NVML library provides C-based Application Programming In-
terfaces (APIs) for monitoring and managing various states of NVIDIA
GPUs [34]. These states include power, clocks of memory and Streaming
Multiprocessors (SMs), performance state, temperature, fan speed, etc.

In contrast to RAPL interface, the NVML library does not provide a
direct interface to read the energy usage of GPUs. To address this issue,
the energy of the GPU device is estimated by the multiplication of power
and execution time. A power sampling thread is forked at the beginning
and joined at the end of the decoding process. It reads the current power
consumption by nvmlDeviceGetPowerUsage API at a frequency of 62.5
Hz, which is the maximum power measurement frequency according to
[39]. Then, the sampled power values are averaged and multiplied by
the execution time. In order to understand the power management of
NVIDIA GPUs better, we also query the performance state and clocks of
memory and SM within the sample thread.

In addition to APIs to query state of GPUs, NVML also provides
APIs to modify the settings of GPU execution, such as the clocks of
graphics and memory. These APIs provide a way to limit the GPU power
consumption by changing its operating clocks. The GPU power includes
static and dynamic components. The static power is due to current
sources and to leakage current when a transistor is nominally off. The
dynamic power conventionally accounts for the majority of the total
power, and can be determined by Eq. (1):

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑎𝐶𝑉 2𝑓 (1)

where 𝑎 represents the activity factor, 𝐶 denotes the total capacitance,
𝑉 is the supply voltage, and 𝑓 stands for the operating frequency [40].
The higher clock rates of graphics and memory allow GPU to consume
more power, and vice versa.

98

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

The default power management approach of NVIDIA GPUs is auto
boost mode with DVFS, namely, changing the clock/voltage dynami-
cally during the applications’ runtime. This strategy, however, might not
be the optimal choice of power management in the scenario of heteroge-
neous CPU+GPU HEVC decoding. To exploit the optimization opportu-
nities of energy efficiency, the GPU clock setting utility is implemented
and integrated within the decoder, with which the GPU can perform at
the specified clocks. The clock setting utility is achieved in two steps.
First, the auto boost mode needs to be disabled by calling nvmlDevice-
SetAutoBoostedClocksEnabled with NVML_FEATURE_DISABLED as the
parameter. Second, the memory and graphic clocks can be set by calling
nvmlDeviceSetApplicationsClocks, with the desired memory and graphic
clocks.

6. Experimental results

To evaluate the performance and energy efficiency of the proposed
CPU+GPU decoder, it was executed on a system equipped with an Intel
Xeon CPU and an NVIDIA GTX Titan X Maxwell GPU. The host CPU
Xeon E5-2699v3 integrates 18 physical cores and has a Thermal Design
Power (TDP) of 145 Watt (W). It was configured with both turbo boost
and hyperthreading disabled. The device GPU GTX TITAN X has 3072
CUDA cores that work between 1 to 1.2 GHz when auto boost is enabled.
It has a power limit of 250 W and is configured with auto boost enabled
unless stated otherwise. The host and the device are connected via a
PCIe bus 3.0 × 16. Table 3 summarizes the specifications of the test
platform. The proposed CPU+GPU decoder was compiled with GCC
4.8.4 compiler with −O3 optimization level and ran on Kubuntu 14.04
Linux distribution using kernel 3.16. GPU kernels were developed using
CUDA Toolkit 7.5, with graphic driver version 352.63.

The proposed heterogeneous decoder fully supports the HEVC
Main10 profile [41]. Five 4K sequences from EBU UHD-1 sequence set
[42] and two 8K sequences from NHK [43] were encoded with four
distinct QP values. Their corresponding bitrates are presented in Table 4.
Each 4K sequence consists of 500 frames with a GOP size of 8 frames,
while the 8K sequences are 3600 frames each and with a GOP size of 16
frames. Both 4K and 8K videos were encoded with random access 10-
bit configuration under 4:2:0 chroma sub-sampling format, with WPP
enabled. For a given set of videos (e.g., belonging to the same QP or the
same resolution, such as 4K and 8K), the frame rate was measured as
the total number of frames of the test video sequences divided by the
corresponding decoding time. Unless otherwise stated, the results that
will be presented below are based on this set of videos (encoded with
random access configuration, GOP size 8, rate control off).

The experimental results are presented in two sub-sections, with
performance results presented first and then the energy efficiency evalu-
ation. Moreover, the proposed CPU+GPU decoder was compared against
the CPU decoder in [8], since it presents complete HEVC decoding
performance and represents the state-of-the-art software decoder.

6.1. Performance results

A comprehensive performance evaluation has been conducted for
the proposed decoding schemes. Firstly, the single-threaded CPU+GPU
decoding performance is presented to evaluate the impact of the GPU
kernel acceleration. Afterwards, the multi-threaded CPU+GPU decoding
performance is evaluated, followed by an evaluation of the potential
peak performance and a bottleneck analysis.

6.1.1. CPU+GPU decoding time profiling
The decoding time breakdown per frame of the baseline CPU decoder

and of the proposed CPU+GPU decoding scheme I (CPU–GPU-I) are
presented in Fig. 7. Only a single CPU core is employed in both decoders,
and they are compared against each other across different QP values.
Their decoding time is divided into seven stages: ED, H2D, IT, MC, IP,
DBF, and SAO.

(a) 4K GTX Titan X.

(b) 8K GTX Titan X.

Fig. 7. Decoding time breakdown for 4K and 8K per QP value, where CPU stands for the
state-of-the-art CPU decoder and CPU–GPU-I the CPU+GPU decoding scheme I, both with
a single CPU core.

For both 4K and 8K videos, the CPU–GPU-I implementation outper-
forms the baseline CPU decoder across all QP values. When compared
to CPU, the reconstruction kernels represented with green bars shrink
dramatically in the CPU–GPU-I implementation. This reduction of the
decoding time is achieved even in the presence of two unavoidable
overheads in the CPU–GPU-I decoder. First, the H2D time penalty occurs
due to the required data transfer between the CPU and the GPU. Second,
the ED part grows because it also includes the time to collect the inputs
for the GPU kernels. Moreover, a larger speedup factor is achieved at
higher QP values, where the reconstruction kernels in the CPU decoder
account a higher fraction of the total decoding time. Overall, the fraction
of execution time for the reconstruction kernels in 4K is 67% and in
8K is 51%. Although 4K has a higher fraction of reconstruction kernels
than 8K, a same (total) speedup of 1.6× is achieved for both of them at
the applications level. Due to the 4× more data volume per frame, the
8K setup has a higher acceleration factor of 8.4× for the reconstruction
kernels, while for the 4K the acceleration factor is reduced to 4.9×.

6.1.2. Parallel CPU+GPU decoding performance
The proposed decoding schemes allow parallel decoding with mul-

tiple CPU cores, allied with the CPU+GPU pipelining, as presented
in Section 4. Fig. 8 depicts the overall performance of the proposed
decoding schemes when executing on multiple CPU cores with the Titan
GPU. The performance of the baseline CPU decoder is also included for
comparison purposes.

In general, the performance of all considered decoders improves by
increasing the number of CPU cores. When a greater number of CPU
cores is used, however, the performance of the proposed CPU+GPU
decoding scheme I stops scaling. In particular, for 4K sequences (Fig. 8a),
the CPU–GPU-I implementation saturates from 8 cores. This is justified
by the fact that most decoding computations have been migrated to
the GPU. As a result, the increased number of CPU cores can hardly be
efficiently exploited by this decoding scheme I, despite of being faster
than the CPU -only implementation. The performance of the baseline
CPU decoder, on the other hand, scales continuously. As a consequence,
the CPU–GPU-I implementation is eventually outperformed by the CPU

99

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

Table 3
Summary of the test platform hardware specifications.

CPU: Intel Xeon E5-2699v3 (Haswell) Host Memory

Cores Clock $L1/core (I/D) $L2/core $L3 TDP Size Bandwidth
18 2.3 GHz 32 KB/32 KB 256 KB 45 MB 145 W 32 GB 68 GBps

GPU: NVIDIA GTX TITAN X (Maxwell) Device Memory

Cores Clock Compute capability $L2 TDP Size Bandwidth
3072 1(1.2) GHz 5.2 3 MB 250 W 12 GB 336 GBps

Connection bus: PCIe 3.0 × 16

Table 4
Bitrates in megabit per second [Mbps] of the main encoded video sequences with random access configuration.

Random access 4K, 10-bit, 4:2:0 Random Access 8K, 10-bit, 4:2:0

QP Fountain
Lady

Lupo
Confetti

Rain
Fruit

Studio
Dancer

Waterfall
Pan

QP Helicopter Berlin

22 51.1 52.2 28.0 41.5 64.0 22 1164.5 250.1
27 23.3 18.5 11.7 11.7 25.6 26 341.9 140.4
32 10.7 9.5 5.9 6.0 10.3 30 95.5 86.4
37 5.0 5.5 3.2 3.3 4.2 34 39.7 52.1

(a) CPU vs. CPU+GPU decoding, 4K videos with all QP values considered.

(b) CPU vs. CPU+GPU decoding, 8K videos with all QP values considered.

Fig. 8. Performance of the proposed CPU+GPU decoding scheme I, scheme II, and the
baseline CPU decoder for 4K and 8K videos, with all QP values considered.

decoder when more than 12 CPU cores are employed. Nevertheless,
when only 4 CPU cores are used, which is one of the most common
configurations in desktop PCs, the CPU -only implementation achieves
77 fps, while CPU–GPU-I achieves a performance of 167 fps, resulting
into a speedup of 2.2× at the application level.

To address the GPU overloading issue when a high number of CPU
cores are employed, the decoding scheme II offloads less workload onto
the GPUs. Table 5 presents the workload distribution between the CPU
and the GPU under the two proposed decoding schemes for 4K and 8K
videos, when considering all QP values. The presented percentage is
obtained by including the execution time of the entropy decoder and
the remaining kernels using the baseline CPU decoder executing on a
single CPU core.

For 4K videos, only 29% of workload is offloaded onto the GPU in
decoding scheme II, while in scheme I the corresponding workload is
67%. As a result, the performance of scheme II is significantly improved
at high number of CPU cores for 4K videos (see Fig. 8a). For example,

Fig. 9. CPU vs. CPU+GPU decoding, 4K videos encoded with low-delay P (IPPP)
configuration.

Table 5
Decoding workload distribution in two task partitions of CPU+GPU decoding for 4K and
8K videos, with all QP values considered.

Videos 4K 8K

Workload fraction CPU vs. GPU CPU vs. GPU

Decoding scheme I 33% 67% 49% 51%
Decoding scheme II 71% 29% 80% 20%

CPU–GPU-II achieves 303 fps with 16 CPU cores, while CPU–GPU-I only
attains 239 fps. Hence, by selecting appropriate decoding schemes, the
proposed decoder is able to stride the workload balance between CPU
and GPU according to their available computational resources. For 8K
sequences (see Fig. 8b), the decoding scheme I outperforms scheme II
even with more CPU cores because the workload distribution is more
balanced between the CPU and the GPU for scheme I, with 49% vs. 51%,
respectively. Compared to 4K, the heavier workload on CPU requires
more CPU cores to match the computational capability of the GPU, and
thus the performance of CPU–GPU-I scales well, even when 16 CPU
cores are used. It outperforms CPU across all core configurations except
18, where both CPU and CPU–GPU-I achieve 60 fps.

6.1.3. Decoding performance on videos with more encoding configurations
The previously presented results only consider videos configured in

random access mode (GOP size 8 and rate control off). To evaluate
the performance of proposed decoders for a wider range of encoding
modes, the five considered 4K sequences were further encoded with
three more encoding configurations: the low-delay P (IPPP) encoding
mode, the random access with rate control turned on, and the random
access encoding mode with various GOP sizes.

Fig. 9 presents the obtained performance of the proposed decoders
when applied on the IPPP videos. Compared to the results of the random

100

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

Fig. 10. CPU vs. CPU+GPU decoding, 4K videos encoded with random access mode and
rate control turned on. All three decoders use 8 CPU cores.

access mode in Fig. 8a, the performance scalability of the three decoders
is rather similar. However, the acceleration effect of CPU–GPU-I is lower
than that in Fig. 8a, mainly because the workload for GPUs in the IPPP
video encoding mode is lighter. Kernels targeted for GPUs account for
57% of the overall decoding time when using a single core CPU, while
in the random access configuration the corresponding fraction reaches
67%, as presented in Table 5.

The performance of the proposed decoders for random access videos
encoded with rate control turned on is presented in Fig. 10. All three
decoders are executed using eight CPU cores. Compared to the CPU-only
decoder, the proposed decoding schemes CPU–GPU-I and CPU–GPU-II
both deliver higher frame rate when covering the whole range of the
bitrate. Furthermore, it can be observed that CPU–GPU-I achieves better
decoding performance than CPU–GPU-II, since reconstruction kernels
of all frames are accelerated in CPU–GPU-I, while CPU–GPU-II only
exploits GPU-acceleration for non-reference pictures.

By default, all previous 4K bitstreams with random access configu-
rations are encoded with a GOP size of 8. If each frame is assumed to be
decoded in a fixed time slot, defined as a cycle, Fig. 11 depicts that at
least five cycles are required to complete a GOP with a size of 8 frames,
since the GPU operates at frame level and some of the frames have to be
serially processed, e.g., 0 → 8 → 4. To evaluate the performance impact
when GOP size changes, the five 4K considered videos were encoded
with GOP sizes of 2, 4, 8, 16, and 32, using a QP value of 32.

Fig. 12 presents the decoding performance of proposed decoders
using eight CPU cores when changing the GOP size configuration. In
general, the decoding performance of the proposed decoders remain
constant across different GOP sizes. Naturally, with a smaller GOP
size, the number of cycles that is required to resolve the frame-level
dependency inside a GOP decreases. For a given number of frames,
however, the frame-level dependencies between GOPs increases. Taking
the GOP size 2 as an example (which is not shown in Fig. 11), frame-
level dependency across GOPs exists between frames 2 → 4 → 6 → 8
when considering four GOPs. As a result, changing the GOP size lays
little influence on the decoding performance.

Fig. 12. CPU vs. CPU+GPU decoding, 4K videos encoded with random access mode and
with GOP size of 2, 4, 8, 16, 32. All three decoders use 8 CPU cores.

6.1.4. Performance gap to potential peak performance and bottleneck anal-
ysis

Taking into account that interconnection networks can be easily
bandwidth-bound for parallel processing [44], the peak performance
of the proposed CPU+GPU decoder is potentially limited by the host
to device data transfer. Since the transferred data size for the kernel
inputs and the decoded frames can be calculated, the potential peak
performance of the proposed decoding schemes can be quantified based
on the available bandwidth between the CPU and the GPU. Assuming
(i) the peak bandwidth between the CPU and the GPU is 𝐵𝑊𝑝𝑒𝑎𝑘 bytes
per second, (ii) the amount of data that is transferred from the CPU to
the GPU is 𝑆𝑖𝑧𝑒𝑓𝑟𝑎𝑚𝑒 bytes per frame, and (iii) the required time for
transferring the data of one frame is 𝛿𝑡, then the potential peak frame
rate 𝐹𝑃𝑆𝑝𝑒𝑎𝑘 can be derived as:

𝐹𝑃𝑆𝑝𝑒𝑎𝑘 = 1
𝛿𝑡

=
𝐵𝑊𝑝𝑒𝑎𝑘

𝑆𝑖𝑧𝑒𝑓𝑟𝑎𝑚𝑒
(2)

𝐵𝑊𝑝𝑒𝑎𝑘 is fixed for each specific connection between the CPU and
the GPU. For PCIe bus 3.0 × 16, the theoretical peak bandwidth is 16
GB/s [45]. In practice, however, a maximum bandwidth of 12 GB/s is
eventually achieved using benchmarking [46]. On the other hand, the
𝑆𝑖𝑧𝑒𝑓𝑟𝑎𝑚𝑒 value depends on the resolution of the input videos, the kernel
input data structures, and the selected decoding schemes.

Table 6 summarizes the data volume that is transferred per frame
under the proposed decoding schemes I and II for the considered 4K
(3840×2160) and 8K (7680×4320) video sequences. The transferred data
size is independent of bitrates because the kernel input data structure
is static for a given frame size. The peak performance for scheme I is
straightforwardly estimated with Eq. (2), while scheme II needs to take
into account the distribution of the reference and non-reference frames.
For both 4K and 8K videos, the reference and non-reference frames are
evenly distributed (50% each) for the chosen encoding configurations.
Therefore, the data transferred per frame is the average of the reference
and non-reference frame sizes. According to Table 6, the proposed
decoder can achieve 75% of the peak performance for 4K (with scheme
II) and 59% for 8K (with scheme I).

Fig. 11. Decoding order that addresses the inter-frame dependency in a GOP with a size of 8 frames.

101

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

Table 6
Transferred data size per frame in megabytes [MB] and the corresponding peak frame rate of 4K and 8K videos for the decoding
schemes I and II.

4K, 10-bit, 4:2:0 8K, 10-bit, 4:2:0

Scheme I Scheme II Scheme I Scheme II

Each frame Reference Non-Ref. Each frame Reference Non-Ref.

𝑆𝑖𝑧𝑒𝑓𝑟𝑎𝑚𝑒 29.43 MB 28.30 MB 29.43 MB 117.70 MB 106.28 MB 117.70 MB
𝐹𝑃𝑆𝑝𝑒𝑎𝑘 408 fps 415 fps 102 fps 107 fps

(a) 4K videos, CPU vs CPU+GPU decoding.

(b) 8K videos, CPU vs CPU+GPU decoding.

Fig. 13. Energy efficiency results of CPU only and CPU+GPU decoding, compared with
energy per frame in Joules.

When a high number of CPU cores are used, the main bottlenecks
of the GPU execution are the intra-prediction and motion compensation
procedures. The low degree of wavefront parallelism in intra-prediction
leads to a low resource utilization on GPU. The inter-frame dependency
introduced by the motion compensation reduces the frame-level par-
allelism, which compromises the concurrency on the kernel execution
from different CUDA streams. When CPU+GPU decoding scheme I is
executed without an individual GPU kernel (but with all other GPU
kernels on), switching off intra-prediction leads to the most significant
performance gain, with a speedup factor of 1.38× compared to the
decoding scheme I with all GPU kernels on. The second most significant
speedup factor 1.27× comes from disabling motion compensation.

6.2. Energy efficiency results

With the help of energy measure module presented in Section 5, we
firstly compare the energy efficiency of the baseline CPU decoder and
the proposed CPU+GPU decoder. Afterwards, we show how to use the
clock setting utility to exploit energy optimization opportunities.

6.2.1. Energy analysis of CPU+GPU decoding
Fig. 13 illustrates the average energy consumed per frame of the

proposed decoding schemes when using a different number of CPU
cores (C1–C18). The energy consumption of baseline CPU decoder is
also presented for comparison purpose. For all decoding configurations
(CPU baseline, decoding scheme I and II), the energy consumption per
frame is reduced with the increase of CPU cores, but stops reducing
approximately beyond 12 cores. In particular, the baseline CPU decoder
consumes the least energy at 12 cores, with 0.24 J for 4K and 1.22 J

for 8K. The proposed decoding scheme I consumes significantly more
energy than the CPU baseline. Although its energy consumption is
reduced on the CPU side, due to offloaded decoding workload, the
energy consumed on GPU is higher than the reduction. The optimal
CPU core configuration consuming the least energy for scheme I is 8
for 4K and 16 for 8K, with an energy of 0.92 J and 3.76 J, respectively.
When compared to decoding scheme I, the decoding scheme II’s energy
consumption on the GPU is reduced significantly at high CPU cores for
4K but not for 8K. Such a difference occurs mainly due to the decoding
time, as for 4K decoding scheme II has a significant better performance
than scheme I while for 8K not.

The GPU energy efficiency for HEVC decoding is compromised by
its high power consumption and the constrained performance due to
the PCIe bus bandwidth. The energy per frame of GPU can be derived
with power (joule per second) divided by performance (frames per
second). This approach is used because the performance in heteroge-
neous CPU+GPU decoding is potentially bounded by the data transfer.
The least GPU energy per frame is obtained with the maximum frame
rate and the minimum power consumption. The maximum potential
frame rate of the proposed decoder has been identified in Table 6,
and the minimum power consumption of the GPU can be estimated
by measuring the power when executing a benchmark with extremely
lightweight workload. We design a benchmark with only one thread
assigned in each SM, and each thread performs a single addition
to represent the lightweight workload. By running this benchmark
repeatedly for five seconds, the power consumption queried by the
nvmlDeviceGetPowerUsage API keeps at 90 W. This measured power
corresponds to a minimum energy per frame of 0.22 J (90 W/408 fps)
for 4K and 0.88 J (90 W/102 fps) for 8K under decoding scheme I.
In contrast, even with the decoding workload, the respective minimum
energy of the CPU using the CPU only decoder is merely 0.24 J for 4K
and 1.22 J for 8K.

6.2.2. Energy optimized decoding by tuning GPU clocks
The previous results show that the high GPU power consumption

hinders the energy efficiency of the proposed decoder. Hence, the GPU
power reduction shall be our prime concern. On the other hand, the
proposed decoder sometimes provides a higher frame rate than required
by a target application, when the auto boost mode is enabled on the
GPU. Decoding scheme I, for instance, provides 167 fps with 4 CPU
cores for 4K videos, while in practice 120 fps is sufficient for envisioned
UHD HFR applications [47]. In such cases, it is possible to trade the
performance with power so that eventually a lower energy per frame
is achieved. We exploit the power reduction opportunities on the more
power hungry GPU device by setting its memory and graphics clocks to
different clock rates.

With NVML APIs, the GPU clocks of memory and graphics have to
be set together, and each memory clock associates with a set of allowed
graphics clocks. Table 7 presents the available values of memory and
graphics clocks of the used Titan X GPU, in which the selected clock
rates are labeled in boldface. The first two memory clocks associate with
a same set of 64 graphics clocks. Additional 21 lower graphics clocks are
available for memory clock 810 MHz. The lowest memory clock 405
MHz has the smallest number of graphics clocks, with only six values
available. In particular, tests show that when the graphics clock is set
larger than 1215 MHz, the queried graphics frequency is always 1215
MHz. Based on this test, we pick up seven graphics clocks (with a step

102

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

Table 7
Allowed clocks for memory and graphics of NVIDIA GTX Titan X in [MHz]. The selected clocks are in boldface.

Memory Graphics (64 clocks for 3505 for 3304, 85 clocks for 810, and 6 clocks for 405)

3505

3304

1392 1380 1367 1354 1342 1329 1316 1304 1291 1278 1266 1253 1240
1228 1215 1202 1190 1177 1164 1152 1139 1126 1114 1101 1088 1076
1063 1050 1038 1025 1013 1002 987 975 962 949 937 924 911 899 886
873 861 848 835 823 810 797 785 772 759 747 734 721 709 696 683 671
658 645 633 620 608 595. Allowed 64 clocks.

810 64 clocks above plus 582 570 557 544 532 519 507 494 482 469 457 444
432 419 407 405 324 270 202 162 135. Allowed 85 clocks. Selected:1215
1114 1013 911 810 709 608

405 405 324 270 202 162 135. Allowed 6 clocks.

(a) CPU+GPU decoding scheme I with 4 CPU cores for 4K.

(b) CPU+GPU decoding scheme I with 16 CPU cores for 8K.

Fig. 14. Energy efficiency when changing GPU memory and graphics clocks, compared
to the default auto boost mode.

of 100 MHz) that cover most of allowed graphics clock ranges for the
first three memory clocks. For the lowest memory clock, all associated
six graphics clocks are selected. In this way, a total of 27 different clock
settings are chosen to exploit the energy optimization space.

Two particular decoding configurations are selected for GPU clock
tuning experiments, because their performance are close to standard
frame rates, such as 60 fps and 120 fps [47]. By average, the first
configuration (4K, decoding scheme I, 4 CPU cores) has a frame rate 167
fps and the second (8K, decoding scheme I, 16 CPU cores) has a frame
rate 60 fps, as shown in Fig. 8. With GPU clocks set at different fixed
rates, Fig. 14 illustrates the energy consumption per frame as well as the
corresponding frame rates under the optimal mode (i.e. the clock settings
leading to the least energy consumption) and the auto boost mode with
the two configurations.

For 4K videos (see Fig. 14a), an obvious gap of energy is observed
between the auto boost and optimal modes, thus showing the energy can
be further optimized by using fixed clock rates. The energy reduction
is mainly achieved by the reduced power consumption on GPU using
lower operating clocks. Although reducing clock rates decreases the
GPU performance, it has an insignificant impact on the overall decoding
performance, since the heterogeneous decoding is CPU-bound with a
configuration of only four CPU cores. For example, when compared
to auto boost mode, an energy reduction of 36% is achieved at 64.0
Mbps by setting memory and graphics clocks to 810 MHz and 709 MHz,

respectively. By contrast, in the auto boost mode, the GPU memory clock
works at 3304 MHz and the graphic clock varies from 1001 MHz to 1202
MHz. The decoding performance at 64.0 Mbps, on the other hand, is
merely reduced from 84.7 fps in auto boost mode to 78.9 fps in optimal
mode.

In general, the energy reduction in high-bitrate videos (from 28.0
to 64.0 Mbps) is more obvious than in the low-bitrate videos (from
3.2 to 25.6 Mbps), for two reasons. First, the optimal clocks for high
bitrate videos can be set at lower rates (memory: 810 MHz; graphics:
709 or 810 MHz) than that of the low bitrate videos (memory: 3304
MHz; graphics: 911 or 1013 MHz), thus resulting into a more significant
power reduction. Second, the decoding time for high-bitrate videos are
longer than low-bitrate videos. In fact, all low-bitrate videos are decoded
at higher frame rates than 120 fps, while the high-bitrate videos are
above 60 fps only. It is worth noting that even in optimal mode with
lower clock rates, the decoding performance of low-bitrate and high-
bitrate videos still exceeds the standard frame rates of 120 fps and 60
fps, respectively.

For 8K videos, because 16 cores are employed most of the input
sequences’ decoding is GPU-bound, and thus boosting GPU to high
clocks is the optimal choice for overall performance. Therefore, the
optimal clock settings with the minimum energy are mostly aligned with
the auto boost mode, except the video with the highest bitrate at 1164.5
Mbps. The frame rate of this video is below 60 fps and represents an
extraordinary encoding configuration. Entropy decoding of this video
accounts for 66.1% and therefore the heterogeneous decoding is still
CPU-bound. By setting both memory and graphics clocks to 810 MHz,
an energy reduction of 23% is achieved for this video’s decoding.

To visualize the power reduction in optimal mode, the real-time
GPU power profiling of two representative 4K videos in high-bitrate and
low-bitrate categories are depicted in Fig. 15a and b, respectively. The
GPU power is obtained using a power sampling thread querying power
consumption at the frequency of 62.5 Hz. For the high-bitrate sequence
(Fig. 15a), there is a clear ramp-up phase for the power consumption
at the beginning in auto boost mode. Initially, the GPU waits for kernel
execution and thus the power stays at the lowest level (78 W). With
more and more reconstruction kernels are prepared by the CPU, the
GPU increases its power to adapt the heavier workload, and saturates at
around 150 W. At the end, an average power of 138 W is consumed. In
contrast, the power consumption under the optimal mode is constrained
below 85 W, and with an average power of 72 W only. Although auto
boost achieves a slightly shorter decoding time, its power consumption
compromises its energy efficiency to a great extent.

For the low-bitrate video (Fig. 15b), a higher average power con-
sumption in auto boost mode (158 W) is observed than that of the high-
bitrate video (138 W), because the decoding of the low-bitrate video
is less CPU-bound due to its lower fraction of entropy decoding (see
Fig. 7). In this case, the overall decoding performance is more sensitive
to the GPU performance, and therefore its optimal clocks (memory: 3304
MHz; graphics: 911 MHz) are higher than that of the high-bitrate video
(memory: 810 MHz; graphics: 709 MHz). As a result, the average power
consumption in optimal mode (126 W) is much higher than that of the
high-bitrate video (72 W). The average power reduction from the auto
boost mode to the optimal mode, on the other hand, shrinks to 32 W

103

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

(a) 4K WaterfallPan QP 22, 64.0 Mbps, CPU+GPU scheme I with 4 CPU cores.

(b) 4K WaterfallPan QP 27, 25.6 Mbps, CPU+GPU scheme I with 4 CPU cores.

Fig. 15. GPU power consumption under clock settings with minimal energy consumption
and default auto boost configuration for two 4K videos, where a high-bitrate video is
presented in Fig. 15(a) and a low-bitrate video in Fig. 15(b).

(158 W – 126 W) only, compared to 66 W (138 W – 72 W) in high-
bitrate video. The less significant power saving as well as the shorter
decoding time for low-bitrate videos results into less energy reduction.

7. Conclusions and future work

A highly parallel design for the HEVC decoding on heterogeneous
architectures consisting of the CPU and GPU devices has been presented.
It allows exploiting multiple levels of parallelism on the CPU, GPU,
and between the CPU and GPU devices simultaneously, for achieving
maximum performance. On top of that, different workload balancing
schemes were proposed, in order to exploit the best performance
depending on the employed CPU and GPU computing resources. In
addition, we implemented an energy measurement approach for the
heterogeneous CPU+GPU decoder with the RAPL interface and NVML
library. Furthermore, the performance and energy efficiency of the pro-
posed decoder were evaluated on a workstation desktop and compared
to the state-of-the-art CPU decoder.

The obtained experimental results show that the offloaded kernels
are accelerated significantly by the GPU device, with a factor of 4.9×
for 4K and 8.4× for 8K. Moreover, the proposed CPU+GPU decoder
provides application-level acceleration when compared to the state-of-
the-art CPU decoder. In particular, when a low number of CPU cores
are used, it is better to offload the reconstruction kernels of all frames.
For example, the proposed decoder with four CPU cores under this
task-based workload partition achieves 167 fps for Ultra HD 4K videos,
suggesting a speedup of 2.2× at the application level. When a higher
number of CPU cores are employed, only the reconstruction kernels
of the non-reference frames are offloaded, in order to achieve a better
workload balance. This new decoding scheme delivers 303 fps for 4K
when 16 CPU cores are used, in contrast to 239 fps under the task-
based partition. Overall, to achieve a better performance, the selection
of the proposed decoding schemes depends on the ratio of the CPU and
GPU computing resource, as well as the workload distribution within
the input videos. Finally, we show that energy optimization can be
applied by setting fixed and lower GPU clocks when the CPU+GPU

decoding performance is bounded by the CPU, cases often observed
in high bitrate videos. In particular, an energy reduction up to 36% is
achieved when compared to the auto boost mode. Energy wise, however,
GPU architecture is not as efficient as the CPU for HEVC decoding, due
to its high power consumption and the constrained performance from
the PCIe data transfer.

Under the current implementation, the proposed decoding schemes
and GPU clocks are selected statically for a given hardware and video
configuration. In future, a dynamic workload allocator can be developed
as the next step to deal with the input variations.

Acknowledgments

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No.
688759 (LPGPU2). This work was partially supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT) under project
number UID/CEC/50021/2013.

References

[1] G.J. Sullivan, J. Ohm, W. Han, T. Wiegand, Overview of the high efficiency video
coding (HEVC) standard, IEEE Trans. Circuits Syst. Video Technol. 22 (12) (2012)
1649–1668.

[2] J. Ohm, G.J. Sullivan, H. Schwarz, Thiow Keng Tan, T. Wiegand, Comparison of the
coding efficiency of video coding standards–including high efficiency video coding
(HEVC), IEEE Trans. Circuits Syst. Video Technol. 22 (12) (2012) 1669–1684.

[3] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, High Dynamic Range Imaging:
Acquisition, Display, and Image-Based Lighting (The Morgan Kaufmann Series in
Computer Graphics), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2005.

[4] K. Masaoka, T. Yamashita, Y. Nishida, M. Sugawara, Color management for wide-
color-gamut UHDTV production, SMPTE Motion Imaging J. 124 (3) (2015) 19–27.

[5] L. Wilcox, R. Allison, J. Helliker, B. Dunk, R. Anthony, Evidence that viewers prefer
higher frame-rate film, ACM Trans. Appl. Percept. (TAP) 12 (4) (2015) 15:1–15:12.

[6] F. Henry, S. Pateux, Wavefront Parallel Processing. Technical Report JCTVC-E196,
March 2011.

[7] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, M. Zhou, An overview of tiles
in HEVC, IEEE J. Sel. Top. Sign. Proces. 7 (6) (2013) 969–977.

[8] C.C. Chi, M. Alvarez-Mesa, B. Bross, B. Juurlink, T. Schierl, SIMD acceleration for
HEVC decoding, IEEE Trans. Circuits Syst. Video Technol. 25 (5) (2015) 841–855.

[9] Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T and ISO/IEC. HM-16.7
Reference software, 2015, https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
tags/HM-16.7.

[10] Y. Duan, J. Sun, L. Yan, K. Chen, Z. Guo, Novel efficient HEVC decoding solution on
general-purpose processors, IEEE Trans. Multimed. 16 (7) (2014) 1915–1928.

[11] D.F. de Souza, N. Roma, L. Sousa, Opencl parallelization of the HEVC de-quantization
and inverse transform for heterogeneous platforms, in: 2014 Proceedings of the 22nd
European Signal Processing Conference (EUSIPCO), IEEE, 2014, pp. 755–759.

[12] L. He, S. Goto, A high parallel way for processing IQ/IT part of HEVC decoder
based on GPU, in: 2014 International Symposium on Intelligent Signal Processing
and Communication Systems (ISPACS), IEEE, 2014, pp. 211–215.

[13] D.F. de Souza, A. Ilic, N. Roma, L. Sousa, GPU acceleration of the HEVC decoder
inter prediction module, in: 2015 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), IEEE, 2015, pp. 1245–1249.

[14] D.F. de Souza, A. Ilic, N. Roma, L. Sousa, Towards GPU HEVC intra decoding: Seizing
fine-grain parallelism, in: 2015 IEEE International Conference on Multimedia and
Expo (ICME), June 2015, pp. 1–6.

[15] A.F. Eldeken, R.M. Dansereau, M.M. Fouad, G.I. Salama, High throughput parallel
scheme for HEVC deblocking filter, in: 2015 IEEE International Conference on Image
Processing (ICIP), September 2015, pp. 1538–1542.

[16] W. Jiang, H. Mei, F. Lu, H. Jin, L. Yang, B. Luo, Y. Chi, A novel parallel deblocking
filtering strategy for HEVC/H.265 based on GPU, Concurr. Comput.: Pract. Exper.
28 (16) (2016) 4264–4276. CPE-15-0134. R1.

[17] D.F. de Souza, A. Ilic, N. Roma, L. Sousa, HEVC in-loop filters GPU parallelization
in embedded systems, in: 2015 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), IEEE, 2015, pp. 123–
130.

[18] D.F. de Souza, A. Ilic, N. Roma, L. Sousa, Ghevc: An efficient hevc decoder for
graphics processing units, IEEE Trans. Multimed. 19 (3) (2017) 459–474.

[19] M. Abeydeera, M. Karunaratne, G. Karunaratne, K. De Silva, A. Pasqual, 4K real-time
HEVC decoder on an FPGA, IEEE Trans. Circuits Syst. Video Technol. 26 (1) (2016)
236–249.

[20] M. Tikekar, C.T. Huang, C. Juvekar, V. Sze, A.P. Chandrakasan, A 249-Mpixel/s
HEVC video-decoder chip for 4K ultra-HD applications, IEEE J. Solid-State Circuits
49 (1) (2014) 61–72.

104

http://refhub.elsevier.com/S0923-5965(17)30263-1/sb1
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb1
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb1
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb1
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb1
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb2
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb2
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb2
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb2
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb2
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb3
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb3
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb3
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb3
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb3
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb3
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb3
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb4
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb4
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb4
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb5
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb5
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb5
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb7
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb7
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb7
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb8
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb8
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb8
https://hevc.hhi.fraunhofer.de/svn/svn%5FHEVCSoftware/tags/HM-16.7
https://hevc.hhi.fraunhofer.de/svn/svn%5FHEVCSoftware/tags/HM-16.7
https://hevc.hhi.fraunhofer.de/svn/svn%5FHEVCSoftware/tags/HM-16.7
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb10
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb10
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb10
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb11
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb11
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb11
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb11
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb11
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb12
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb12
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb12
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb12
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb12
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb13
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb13
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb13
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb13
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb13
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb16
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb16
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb16
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb16
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb16
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb17
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb17
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb17
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb17
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb17
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb17
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb17
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb18
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb18
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb18
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb19
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb19
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb19
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb19
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb19
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb20
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb20
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb20
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb20
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb20

B. Wang et al. Signal Processing: Image Communication 62 (2018) 93–105

[21] NVIDIA. NVIDIA PureVideo HD Technology, July 2007, http://www.nvidia.com/
page/purevideo_hd.html.

[22] Intel. Intel Quick Sync Video, 2017, http://www.intel.com/content/www/us/en/
architecture-and-technology/quick-sync-video/quick-sync-video-general.html.

[23] AMD. White Paper, AMD Unified Video Decoder (UVD), July 2007, https://www.
amd.com/Documents/UVD3_whitepaper.pdf.

[24] NVIDIA. NVDEC Support Matrix, 2016, https://developer.nvidia.com/video-encode
-decode-gpu-support-matrix#Encoder.

[25] X. Mei, Q. Wang, X. Chu, A survey and measurement study of GPU DVFS on energy
conservation, Digit. Commun. Netw. 3 (2) (2017) 89–100.

[26] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi, S. Dwarkadas, M.L.
Scott, Energy-efficient processor design using multiple clock domains with dynamic
voltage and frequency scaling, in: Proceedings Eighth International Symposium on
High Performance Computer Architecture, February 2002, pp. 29–40.

[27] Ching Chi Chi, Mauricio Alvarez-Mesa, Juurlink Ben, Low-power high-efficiency
video decoding using general-purpose processors, ACM Trans. Archit. Code Optim.
11 (4) (2015). 56:1–56:25.

[28] C.C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux, T. Schierl,
Parallel scalability and efficiency of HEVC parallelization approaches, IEEE Trans.
Circuits Syst. Video Technol. 22 (12) (2012) 1827–1838.

[29] NVIDIA. NVIDIA CUDA C Programming Guide v7.5, September 2015, http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[30] B. Wang, D.F. de Souza, M. Alvarez-Mesa, C.C. Chi, B. Juurlink, A. Ilic, N. Roma, L.
Sousa, GPU parallelization of HEVC in-loop filters, Int. J. Parallel Program. (2017)
1–21.

[31] D.F. de Souza, A. Ilic, N. Roma, L. Sousa, GPU-assisted HEVC intra decoder, J. Real-
Time Image Process. 12 (2) (2016) 531–547. Springer.

[32] NVIDIA. CUDA Concurrency & Streams, 2011, https://developer.nvidia.com/gpu-
computing-webinars.

[33] Srinivas Pandruvada, Running average power limit, 2014, https://01.org/blogs/
2014/running-average-power-limit----rapl.

[34] NVIDIA. NVML API Reference Guide, 2015, http://docs.nvidia.com/deploy/nvml-
api/index.html.

[35] V.M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra,
S. Moore, Measuring energy and power with PAPI, in: 2012 41st International
Conference on Parallel Processing Workshops, September 2012, pp. 262–268.

[36] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, D. Rajwan, Power-
management architecture of the intel microarchitecture code-named sandy bridge,
IEEE Micro 32 (2) (2012) 20–27.

[37] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume
3B: System Programming Guide, Part 2, September 2016, http://www.intel.
de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-vol-3b-part-2-manual.pdf.

[38] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, R. Geyer, An energy
efficiency feature survey of the intel Haswell processor, in: 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop, May 2015, pp. 896–904.

[39] K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore, G.D. Peterson, power
aware computing on GPUs, in: 2012 Symposium on Application Accelerators in High
Performance Computing, July 2012, pp. 64–73.

[40] R. Gonzalez, B.M. Gordon, M.A. Horowitz, Supply and threshold voltage scaling for
low power CMOS, IEEE J. Solid-State Circuits 32 (8) (1997) 1210–1216.

[41] JCT-VC. High Efficient Video Coding (HEVC). ITU-T Recommendation H.265 and
ISO/IEC 23008-2, ITU-T and ISO/IEC JTC1, April 2013.

[42] European Broadcasting Union. EBU UHD-1 Test Sequences, 2012, http://tech.ebu.
ch/testsequences/uhd-1.

[43] Japan Broadcasting Corporation. 8K content sequences, 2015, http://www.nhk-
mt.co.jp/kouseisai/sales/8k.html.

[44] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patterson,
W. Plishker, J. Shalf, S. Williams, K. Yelick, The landscape of parallel computing
research: A view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, December 2006.

[45] Jason Lawley, Understanding Performance of PCI Express Systems White Paper, Oc-
tober 2014, http://www.xilinx.com/support/documentation/white_papers/wp350.
pdf.

[46] NVIDIA. Bandwidth Test Sample Benchmark Under the CUDA Toolkit v7.5, Septem-
ber 2015.

[47] ITU Radio communication Sector. RECOMMENDATION ITU-R BT.2020: Parameter
values for ultra-high definition television systems for production and international
programme exchange. ITU-T Recommendation Broadcasting service (television),
August 2012.

105

http://www.nvidia.com/page/purevideo%5Fhd.html
http://www.nvidia.com/page/purevideo%5Fhd.html
http://www.nvidia.com/page/purevideo%5Fhd.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://www.amd.com/Documents/UVD3_whitepaper.pdf
https://www.amd.com/Documents/UVD3_whitepaper.pdf
https://www.amd.com/Documents/UVD3_whitepaper.pdf
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix%23Encoder
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb25
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb25
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb25
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb27
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb27
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb27
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb27
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb27
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb28
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb28
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb28
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb28
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb28
http://docs.nvidia.com/cuda/pdf/CUDA%5FC%5FProgramming%5FGuide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA%5FC%5FProgramming%5FGuide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA%5FC%5FProgramming%5FGuide.pdf
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb30
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb30
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb30
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb30
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb30
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb31
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb31
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb31
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars
https://01.org/blogs/2014/running-average-power-limit----rapl
https://01.org/blogs/2014/running-average-power-limit----rapl
https://01.org/blogs/2014/running-average-power-limit----rapl
http://docs.nvidia.com/deploy/nvml-api/index.html
http://docs.nvidia.com/deploy/nvml-api/index.html
http://docs.nvidia.com/deploy/nvml-api/index.html
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb36
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb36
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb36
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb36
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb36
http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb40
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb40
http://refhub.elsevier.com/S0923-5965(17)30263-1/sb40
http://tech.ebu.ch/testsequences/uhd-1
http://tech.ebu.ch/testsequences/uhd-1
http://tech.ebu.ch/testsequences/uhd-1
http://www.nhk-mt.co.jp/kouseisai/sales/8k.html
http://www.nhk-mt.co.jp/kouseisai/sales/8k.html
http://www.nhk-mt.co.jp/kouseisai/sales/8k.html
http://www.xilinx.com/support/documentation/white%5Fpapers/wp350.pdf
http://www.xilinx.com/support/documentation/white%5Fpapers/wp350.pdf
http://www.xilinx.com/support/documentation/white%5Fpapers/wp350.pdf

	Highly parallel HEVC decoding for heterogeneous systems with CPU and GPU
	Introduction
	Related work
	Parallelism analysis for the HEVC decoding
	Parallel decoding in the HEVC standard
	Suitability of GPU acceleration for HEVC decoding

	Proposed decoding design for heterogeneous systems with CPU and GPU
	HEVC decoding task distribution for heterogeneous CPU+GPU systems
	Parallel decoding on the CPU and GPU devices
	Pipelined decoding between the CPU and the GPU

	Different workload balancing schemes

	Energy measurement for heterogeneous CPU+GPU decoding
	Energy measurement of Intel CPUs
	Energy measurement of NVIDIA GPUs

	Experimental results
	Performance results
	CPU+GPU decoding time profiling
	Parallel CPU+GPU decoding performance
	Decoding performance on videos with more encoding configurations
	Performance gap to potential peak performance and bottleneck analysis

	Energy efficiency results
	Energy analysis of CPU+GPU decoding
	Energy optimized decoding by tuning GPU clocks

	Conclusions and future work
	Acknowledgments
	References

