
Dynamic Fused Multiply-Accumulate Posit Unit
With Variable Exponent Size For Low-Precision

DSP Applications
Nuno Neves

INESC-ID
Instituto de Telecomunicações

Lisbon, Portugal
nuno.neves@inesc-id.pt

Pedro Tomás
INESC-ID, Instituto Superior Técnico

Universidade de Lisboa
Lisbon, Portugal

pedro.tomas@inesc-id.pt

Nuno Roma
INESC-ID, Instituto Superior Técnico

Universidade de Lisboa
Lisbon, Portugal

nuno.roma@inesc-id.pt

Abstract—The current processing power and energy efficiency
demands have been pushing the research on low-precision
floating-point formats alternative to the IEEE-754 standard. One
such alternative is the Posit format, which has demonstrated to
provide improved accuracy and larger dynamic ranges with lower
precision arithmetic (when compared to the IEEE-754 standard).
Such advantages are achieved by adopting a dynamic encoding of
the value’s scale factor, which combines a variable-sized regime
field with a parameterized exponent field. Current hardware
implementations are based on fixed exponent sizes. However,
this limits the range of values that can be represented by the
format for a given precision. Alternatively, this paper proposes
a new posit Dynamic Fused Multiply-Accumulate (DFMA) unit
with support for variable exponent sizes, capable of encoding an
extended representation range, from values with high decimal
precisions to very large integer numbers, within the same
hardware. When compared to other posit implementations, the
proposed DFMA unit shows that the overheads imposed by the
improved representation range are marginal, making it suitable
to a wide range of application domains.

Index Terms—Fused multiply-accumulate, Posit number sys-
tem, Low-precision arithmetic, DSP applications

I. INTRODUCTION

Driven by the end of Moore’s Law and Dennard scal-
ing, the current computing paradigm has been shifting the
industrial and academic research focus to domain-specific
architectures [1], [2]. In particular, recent advances in Deep
Neural Networks (DNNs) have provided important algorithmic
breakthroughs in many domains. However, the ever-increasing
availability of data, allied with the complexity of these algo-
rithm, have pushed the computational capacity of off-the-shelf
processing architectures to their limit.

As a result, renewed attention has been given to dedi-
cated architectures [3]–[7], and classical design paradigms
have been revisited to cope with the computing demands
of several application domains. In particular, recent research
studies realized that the adoption of alternative floating-point
formats with reduced precision (i.e., number of bits) may
provide straightforward computing acceleration [5]–[10]. They

This work was partially supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) under projects UIDB/50021/2020 and
PTDC/EEI-HAC/30485/2017.

provide reductions in chip area for floating-point computation,
allowing the released area to be used for additional computing
and storage resources. As a result, less memory storage is
required per operand and higher computing bandwidths can be
achieved, while reaching lower power and energy consump-
tions. Some major computing market players, such as Intel [7],
[8], Google [9], NVIDIA [10], Xilinx [6], and IBM [5], have
already proposed or adopted such alternative formats in their
off-the-shelf Deep Learning platforms and accelerators.

Despite their success, most of the referred solutions have
been tailored for the Deep Learning domain. To that end, the
posit number system [11] is gaining attention as a possible
alternative (or complement) to the IEEE-754 floating-point
standard. In many cases, posits offer a wider dynamic range
and better accuracy. These are achieved by adopting a dynamic
encoding of the value’s scale factor, which combines a regime
field with variable size and a small exponent field (with a size
defined at design-time). Such an approach allows releasing
exponent bits to extend the precision of the fraction, effectively
allowing a higher accuracy, while lowering the operand width,
which also reduces the memory requirements of the applica-
tion. On the other hand, the posit format is particularly suited
for fused operations (e.g., multiply-add/sub operations), since
it does not require re-normalization of intermediate results, in
turn avoiding accuracy losses. Accordingly, when combining
the extended accuracy and reduced memory requirements, the
posit format can be a major asset to the bioinformatics and
signal processing application domains [12].

Most current posit implementations [12]–[16] strictly follow
the proposed posit standard formats [11], by adopting a fixed
exponent size, and/or being tailored to mirror the IEEE-754
dynamic range. This results in very small exponent sizes (e.g.,
2 bits for 32-bit posits), which in turn simplifies the underlying
hardware for posit arithmetic. However, the adoption of a fixed
exponent size limits the dynamic range that can be represented
by the posit format, not fully exploiting its capabilities. In fact,
by varying the exponent size, it is possible to encode a larger
dynamic range, capable of supporting (within the same hard-
ware) both values with high decimal precisions and very large
integer numbers. Such an approach allows the utilization of

978-1-7281-8099-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on November 06,2020 at 07:19:22 UTC from IEEE Xplore. Restrictions apply.

sign

exponent (expbits)

fraction

regime (regbits)

regbits

regbits + expbits

sign exponent fraction

IEEE-754 STANDARD POSIT FORMAT

fi
e

ld
 e

n
c

o
d

in
g

p
ri
o

ri
ty

Fig. 1. IEEE-754 standard (left) and Posit (right) formats. The posit regime
bit field has a dynamic width and can occupy the entire representation length
after the sign bit. The remaining bits (if any) are left to represent the exponent
and fraction fields (in that order).

very low-precision arithmetic hardware to perform operations
with numbers with large dynamic ranges. It also opens the
adoption of the posit format for scientific domains that deal
with very large numbers, such as mathematics, cosmology,
and cryptography, by allowing the deployment of efficient
accelerators with low-footprint units.

Accordingly, this paper proposes a new posit Dynamic
Fused Multiply-Accumulate (DFMA) architecture that takes
advantage of the whole dynamic range that can be encoded by
the posit format. The designed unit is configured at runtime by
specifying the maximum exponent size for the considered set
of input posit values. Not only does it support the ordinary ad-
dition, subtraction and multiplication arithmetic operations, but
also fused multiply-add and multiply-accumulate operations.
When compared to other posit hardware solutions, imple-
mentations of the proposed DFMA on a Field-Programmable
Gate Array (FPGA) device and in 45nm Application-Specific
Integrated Circuit (ASIC) technology show that the resource
overhead and delay impacts imposed by supporting a variable
exponent size are not only marginal, but they are also offset
by the flexibility of providing a very large dynamic range with
low-precision operators.

II. POSIT NUMBER SYSTEM

The posit number system was proposed in 2017 [11], being
the third iteration of unum, a numbering format to represent
floating-point values in computer arithmetic alternative to the
IEEE-754 standard. The posit format was introduced by relax-
ing some mathematical properties from the previous iterations
and by making its utilization more hardware-friendly.

A posit is formally defined as posit<n,es>, where n is
the total number of bits (precision) and es is the maximum
exponent size. A posit’s binary representation is given by:

sign︷︸︸︷
s

regime︷ ︸︸ ︷
r0 r1...rm+1

exponent︷ ︸︸ ︷
e0 e1...ees−1

f raction︷ ︸︸ ︷
f0 f1 f2...︸ ︷︷ ︸

posit (n bits)

(1)

Similarly to the IEEE-754, the structure of the posit format
(depicted in Fig. 1) includes a sign bit field, an exponent field,
and a fraction (or mantissa) field. However, the posit also adds
a variable-sized regime field (in the bit format rrr ...r) that
encodes a signed value k. Moreover, whenever the sign bit
corresponds to a negative number, it is necessary to take the
2’s complement before decoding the remaining fields.

Together with the exponent field, the regime (k) represents
the working range of the represented value (or scale factor).

The numerical value of k is determined by the run length (m)
of 1s or 0s in the regime bits, such that:

k =
{

m − 1 , if r0 = 1
−m , otherwise (2)

As a result of the variable width of the regime field, the
exponent and fraction contents are unknown before decoding
the regime (see Fig. 1). Depending on its width, they can be
partly (or fully) left out of the binary encoding. Accordingly,
the posit value (encoded by (1) and (2)) is given by:

(−1)s × 2exp+k2es × 1.fraction (3)

The posit format also provides two binary values that are
reserved to represent the zero value (000...0) and Not-a-Real
(100...0). The latter comprises all mathematical exceptions. In
the posit format, there are no subnormal numbers [11].

To implement fused operations (such as fused multiply-
accumulate), the posit format requires the utilization of a quire,
based on the Kulisch accumulator [17]. It is a fixed-point
2’s complement value of length n2/2, with enough fraction
precision to avoid cancellations. It is also dimensioned with a
carry guard size of n − 1 bits, allowing the accumulation of
up to 2n−1 − 1 products without overflowing.

Finally, despite the precision and exponent parameters of a
posit format being arbitrary, there are 4 standardized config-
urations (n = 64/32/16/8, es = 3/2/1/0) that correspond to
the most commonly adopted precisions and dynamic ranges
used in IEEE-754 floating-point arithmetic [18]. Accordingly,
for the standard 64/32/16/8-bit posit precisions, the quire
maintains a length of 2048/512/128/32 bits.

III. RELATED WORK

Recent studies showed that posits are consistently capable of
attaining similar accuracies to IEEE-754, with precisions (i.e.,
number of bits) as low as half of those used by the IEEE-
754 standard [12]–[14]. Moreover, posit arithmetic operators
(e.g., adders and multipliers) can be implemented with silicon
area and power costs comparable to the IEEE-754 counter-
parts [12]. However, the accuracy and non-overflow benefits
attained by the adoption of a quire for fused operations im-
poses a large area overhead [15]. While this overhead becomes
prohibitive for precisions larger than 32-bit posits [15], it is
particularly cheap for 8 and 16-bit posits, making them a
promising alternative for the next generations of accelerators.

Some hardware implementations have already been pro-
posed that seek the adoption of the posit format. Jaiswal
et al. [19] proposed one of the first parameterized algorith-
mic computational flows for posit addition/subtraction arith-
metic and modeled its architecture implementation. Forget et
al. [15] introduced a template library to implement operators
for custom size posits and their associated quire. Following
these initial approaches, Chaurasiya et al. [12] proposed a
parameterized pre-synthesis posit unit generator for adders
and multipliers of any bit-width. They observed that the area
and energy consumption of the operators are comparable to
their IEEE-754 compliant counterparts, and that they can
provide comparable accuracies to the IEEE-754 standard for

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on November 06,2020 at 07:19:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Proposed Posit DFMA unit.

FIR filter implementations. More recently, Charmichael et
al. [13] applied the posit format to DNNs. They proposed the
Deep Positron with ≤8-bit posit precisions for the inference
phase. By implementing a precision-adaptable FPGA soft-
core for the exact multiply-and-accumulate (MAC) operation,
they demonstrated that the 8-bit posit precision achieves an
accuracy comparable to those obtained with a 32-bit IEEE-
754 floating-point implementation. Zhang et al. [20] proposed
the first ASIC implementation of a posit-based accelerator,
by introducing a posit MAC unit generator for deep learning
applications. They presented a 5-stage pipeline design capable
of meeting the speed requirements of modern processors.

Despite their success, current posit hardware units adopt a
fixed exponent size (defined at design time), which limits the
dynamic range that can be represented by the posit format.
Contrarily, the solution proposed in this paper supports the
definition of the exponent size at runtime, in turn providing
enough flexibility to support the entire representable dynamic
range for a given posit precision, in a single compute unit.

IV. METHODOLOGY

As established by its format, a posit number is defined by
its precision (number of bits, n) and its maximum exponent
size (es) [11]. Most current hardware implementations [12]–
[16] define and fix both parameters at design-time. Although
fixing es provides simpler implementations, it also limits both
the represented dynamic range of the posit and the balance
between the value’s dynamic range and decimal precision.

Since the dynamic range of a posit is given by the interval[
2(2−n)∗2es : 2(n−2)∗2es] , a fixed es limits the dynamic range

by the scale factor provided by the number of bits that encode
the regime (at a proportional cost in fraction bits). However, it
is easy to observe that when es is increased by 1, the dynamic
range is doubled (in a log2 scale). As an example, for an 8-bit
precision posit, with es = 0 (standard) the dynamic range is[
2−6 : 26] , and with es = 1 it becomes

[
2−12 : 212] , at the

cost of 1 bit of fraction precision.
Accordingly, it is herein proposed a Dynamic Fused

Multiply-Accumulate (DFMA) posit architecture with support
for configurable exponent size. As a result, since a minimum
of three bits of the posit representation have to be reserved
for the sign and regime fields, the es parameter can be set
at runtime to any value within the range

[
0 : n − 3

]
. This

provides the programmer with enough flexibility to utilize
the entire representable dynamic range for a given posit
precision, by specifying the exponent size configuration of
the set of posit input values. Such an approach not only
maintains the support for standard posit configurations but also
allows arithmetic operations with very large numbers with low-
precision formats.

V. PROPOSED DFMA ARCHITECTURE

The proposed posit DFMA (see Fig. 2) comprises a fully
pipelined architecture, supporting addition, subtraction, and
multiplication operations, together with fused multiply-add
and multiply-accumulate operations. However, contrarily to
previous approaches, it introduces support for a configurable
exponent size by including a set of shifters throughout the
pipeline stages. The proposed architecture implements a 5-
stage pipeline compute unit, with the following stages: i) posit
decode; ii) multiply; iii) quire; iv) scaling; and v) posit encode.
The following sections describe each DFMA stage in detail.

A. Posit Decoding

The decode stage translates the tree input posit values
(posita, positb , and positc) to their corresponding sign (s),
scale factor (sf) and fraction (f) fields. For each input value
(see Fig. 3.A), it starts by taking the 2’s complement according
to the sign bit (s). Then, the regime is decoded by counting the
number of leading ones or zeroes after the sign bit. To avoid
the implementation of both a leading zero and a leading one
counter, the binary is first inverted according to the regime’s
first bit, and only a leading zero counter (LZC) is used. The
zero count is then used to shift out the regime from the binary
and calculate k (in 2’s complement), which is again shifted by
es. The binary value is also shifted by es, to split the exponent
value and the fraction. These shifters (highlighted in Fig. 3.A)
represent the main difference between a standard posit decoder
and the proposed architecture. Finally, the shifted k value
is added with the exponent to obtain sf, and a ’1’ bit is
concatenated with the fraction to obtain f (where f = 1.f).

B. Multiplier

The multiply stage performs the multiplication of two de-
coded posit values (posita and positb) and propagates the third
to the next stage (positc). The multiplication operator (see

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on November 06,2020 at 07:19:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Posit (A) decoding and (B) encoding modules of the proposed DFMA
unit. The highlighted shifters are required to support a variable exponent size
implementation.

Fig. 2) adopts a typical floating-point architecture, comprising
a sign bit XOR gate, a scale factor adder, and a fraction
multiplier. The multiplier is followed by an overflow protection
circuit, which adjusts the scale factor accordingly.

C. Quire Arithmetic Unit

The quire arithmetic unit is split in two stages: quire and
scaling. This design choice results from the critical path
that would otherwise incur from the added logic to support
a variable exponent size. In particular, with such an added
support, the scale factor maximum value is in the order of 22n .
Such a value easily overflows the quire’s fixed-point format if
a standard translation is adopted. Instead, the scale factor is
kept in a separate register, and typical floating-point fraction
alignment logic for addition/subtraction is adopted in the quire
stage (see Fig. 2). The acc input signal is used to choose one
of the adder inputs between the third posit input (positc) or
a registered quire value. The sub signal is used to choose
between addition and subtraction operations.

Finally, the scale factor extraction phase is moved to a sub-
sequent pipeline stage (scaling), due to the two’s complement,
LZC and shifting logic required to re-normalize the fraction
and the scale factor for output, according to the es signal.

D. Posit Encoding

The final encode stage (see Fig. 3.B) translates back the
s, sf, and f fields of the result to a posit binary format. It
starts by concatenating sf and f, and by taking out the k value
through a es-sized right shift (highlighted in Fig. 3.B), leaving
in the exponent and fraction fields (unrounded). The k value’s
2’s complement is taken and the regime is shifted-in to sf
and f, according to k’s sign. The resulting binary value is
then rounded using straightforward convergent rounding logic.
Finally, the 2’s complement of the value is taken according to
s, and the sign is concatenated, resulting the output posit value.

E. DFMA Operation and Control

The proposed DFMA architecture provides three control
signals es, sub and acc, to configure the exponent size,

to choose between addition/subtraction operations, and to
activate the quire accumulation. These control signals are
propagated to each DFMA stage with the corresponding posit
values, allowing the calculation, in each clock cycle, of posit
arithmetic operations with different configurations. On the
other hand, since the intermediate data formats used by the
multiply and quire stages are independent of the exponent size
(es), the DFMA is also capable of accumulating the results
of fused operations with different posit configurations.

VI. IMPLEMENTATION RESULTS

This section presents FPGA and ASIC implementation and
optimization results for the proposed DFMA architecture.

In particular, the proposed DFMA was implemented on
a Xilinx Virtex-7 FPGA device (xc7vx485t-2ffg1761). Syn-
thesis and place-and-route results were obtained with the
Vivado 2017.2 suite. An ASIC synthesis was also performed
for a 45nm technology, by considering the Nangate 45nm
PDK. Hardware resources and power estimation results were
obtained with Cadence Genus 19.11. The DFMA was also
functionally verified with the SoftPosit library.

To validate the proposed DFMA implementations, they were
compared with state-of-the-art posit MAC units. In particular,
the FPGA implementation is compared with the Deep Positron
(DP) [13] and the MAC units from [15]; and the ASIC
implementation is compared with the MAC units from [20].
Hence, although the proposed DFMA can be implemented
with any precision, implementation results for 8, 16, and 32-bit
DFMA configurations were herein considered solely to obtain
a fair comparison with the state-of-the-art references.

A. FPGA Implementation

The obtained FPGA implementation results (see Table I)
show that the proposed DFMA requires a reduced amount
of hardware resources for the considered precision config-
urations. As it could be expected, for the 8-bit and 16-bit
DFMA configurations, it was observed that the critical path
is imposed by the encode stage. This is mainly due to the
logic complexity of the required operations to translate the
intermediate data format to posit. However, when considering
the 32-bit configuration, the critical path is imposed by the
scaling stage, due to the logic required to normalize a 512-bit
quire. To counteract what would be a prohibitive delay, the
scaling stage is split after the LZC operation. This way the
critical path becomes the quire stage.

Accordingly, for the 8-bit configuration, the DFMA only
requires 667 LUTs, amounting to a 0.22% utilization of the
FPGA’s available resources. This, combined with an attained
maximum operating frequency of 200 MHz, makes the pro-
posed DFMA particularly suited for deployment in FPGA
accelerators. When considering the higher 32-bit precision,
the resource requirements increase to 4134 LUTs and the
operating frequency drops to 85 MHz, mainly due to the size
of the quire (512 bits).

When compared to DP [13], for an 8-bit configuration, the
proposed DFMA is capable of representing a dynamic range
32x larger, given by log2(2(n−2)∗2es/2(2−n)∗2es), as it can be

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on November 06,2020 at 07:19:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON OF FPGA IMPLEMENTATION RESULTS.

MAX. EXP. DYN. RANGE PIPELINE NO. NO. NO. FREQ OP. EXEC.
SIZE (es) (log2 SCALE) STAGES LUTS REGS. DSPS (MHZ) TIME (ns)

8-bit DFMA 5 384 5 667 205 0 200 25.0
8-bit DP [13] 0 12 4 400 n.a. 0 230 17.4
16-bit DFMA 13 2.2*105 5 1344 407 1 175 28.6
16-bit MAC [15] 1 56 28 1409 1763 1 311 90.0
32-bit DFMA 29 3.2*1010 6(1) 4134 1580 4 85 70.6
32-bit MAC [15] 2 240 40 5068 6256 4 112 357.1
(1) The scaling stage was split to cope with the delay imposed by the normalization of a 512-bit quire.

TABLE II
COMPARISON OF ASIC IMPLEMENTATION RESULTS.

MAX. EXP. DYN. RANGE PIPELINE ASIC DELAY AREA

SIZE (es) (log2 SCALE) STAGES TECH. (ns) (µm2)
8-bit DFMA 5 384 5 45nm 1.2 9601
8-bit DFMA 5 384 6 45nm 0.95 10153
8-bit MAC [20] 0 12 5 28nm 1.0 1800
8-bit MAC [20] 4 192 5 28nm 1.0 1116
16-bit DFMA 13 2.2*105 5 45nm 1.5 32649
16-bit DFMA 13 2.2*105 6 45nm 1.2 33903
16-bit MAC [20] 1 56 5 28nm 1.3 3850
16-bit MAC [20] 5 896 5 28nm 1.3 3533
32-bit DFMA 29 3.2*1010 5 45nm 1.8 95861
32-bit DFMA 29 3.2*1010 6 45nm 1.5 112350
32-bit MAC [20] 2 240 5 28nm 1.6 10550
32-bit MAC [20] 8 15360 5 28nm 1.6 8992

observed in Table I. This is achieved with a 1.6x resource
overhead (measured with the utilization of FPGA LUTs) and
a 30 MHz decrease in the maximum operating frequency.

Naturally, when comparing higher precision DFMA con-
figurations with the corresponding MAC [15] counterparts,
the observed difference between the representable dynamic
range becomes larger. It is increased by 4 and 8 orders of
magnitude for 16 and 32-bit precisions, respectively. Such an
improvement results in lower operating frequencies (80 MHz
on average), when compared to the MAC [15] implementations
(see Table I). However, the observed decrease is mostly
because the MAC [15] units are implemented by heavily
pipelined architectures. Hence, should the proposed DFMA
adopt a deeper pipeline architecture, the attained operating
frequency would easily match that of the MAC [15] units.

Accordingly, the MAC [15] units 16 and 32-bit config-
urations require significant greater latencies of 23 and 34
clock cycles, respectively, when compared to the DFMA. As
a result, the DFMA attains execution times per operation
that are 3x and 5x faster than the 16 and 32-bit MAC [15]
units, respectively. Moreover, such deep pipeline structures
(of the MAC [15] units) impose resource overheads up to
20% higher in the number of utilized LUTs, and as high
as 4.3x in the number of registers, when compared to the
DFMA. Furthermore, although power consumption values are
not available for the MAC [15] units, it is safe to assume that
the higher amount of hardware resources would also impose
increased power consumption when compared to the DFMA.

B. ASIC Synthesis

The DFMA was also implemented using a 45nm ASIC
technology. Although implemented in a much smaller process

(28nm), the MAC units from [20], with different exponent size
and precision configurations, are used as baseline references
to validate the proposed implementation (see Table II).

Similarly to the FPGA implementation, the critical path
of the ASIC implementation also lies in the encode stage.
Also, when compared to the reference MAC units, the major
architectural difference comes from the introduction of the
shifters to deal with the variable es parameter.

Accordingly, the DFMA was synthesized with timing con-
straints of 1.2, 1.5, and 1.8 ns for the 8-, 16-, and 32-bit
precision configurations, respectively. Although these setups
are close to the reference values presented by the MAC
units [20], by splitting the encode stage after the two’s
complement module (see Fig. 3.B) the critical path becomes
imposed by the quire stage. With such an optimization, it was
possible to outperform the reference MAC units by further
constraining the DFMA, in turn achieving minimum timing
delays of 0.95, 1.2, and 1.5 ns, for the 8-, 16-, and 32-bit
configurations, respectively. Such improvement is achieved at
a minimal cost of 6%, 4%, 17% area increase, due to the
introduction of additional registers.

C. Energy Efficiency Study

The obtained results for the FPGA and ASIC implementa-
tions showed that it is possible to adopt the proposed flexibility
and the offered high representation range with marginal over-
heads, especially for very-low precision hardware. To further
support such a conclusion, an energy efficiency study was
also performed for the presented DFMA implementations. For
such purpose, energy efficiency is hereafter characterized by an
energy-delay product (EDP) metric (Power ∗ Delay2), which
quantifies the trade-off between execution time and energy

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on November 06,2020 at 07:19:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Power consumption vs. bit-precision for the DFMA.

Fig. 5. Energy-delay product vs. bit-precision for the DFMA.

consumption. This study does not consider comparisons with
the reference setups since the FPGA solutions [13], [15] do
not provide power consumption values and the ASIC solution
[20] is implemented in a much smaller technology process.

The obtained power estimations (see Fig. 4) show that the
FPGA implementation results in power consumptions ranging
from 285 mW to 364 mW. This represents a 79 mW difference
between the 8-bit and 32-bit configurations. By considering the
static power of about 240 mW imposed by the FPGA device,
these results show that the deployment of the DFMA in FPGA
accelerators would present a minimal impact.

Naturally, the ASIC implementation reduces power con-
sumption, to 17 mW and 95 mW, for the 8-bit and 32-bit
configurations, respectively, when compared with the FPGA
implementation. On the other hand, when comparing the 5-
and 6-stage ASIC implementations, the addition of an extra
pipeline stage in the architecture to reduce the critical path
(and allow to increase operating frequency) imposes a 25%
power increase. However, this trade-off is compensated by an
increase in performance, which, in turn, results in 1.2x energy
efficiency improvements (see Fig. 5).

In conclusion, the obtained results highlight the viability
of adopting the proposed flexibility and the offered high
representation range with marginal overheads, especially for
very-low precision hardware. In that scenario, the proposed
approach becomes particularly suited for deploying energy-
efficient accelerators for a wide range of application domains.
This is further highlighted when comparing the energy effi-
ciency (through the EDP metric) of the implemented DFMA
configurations (see Fig. 5). For the considered setups, the 8-
and 16-bit DFMAs provide an energy-efficiency that is one
order of magnitude higher than that of the 32-bit configuration.

VII. CONCLUSIONS

While the posit format is still in its early stages, there is
still the question of whether it will replace or complement the

IEEE-754 floating-point standard. Nonetheless, its applicabil-
ity has already been demonstrated for low-precision arithmetic
accelerators. This paper extends such applicability by propos-
ing a new posit DFMA architecture that takes advantage of the
full dynamic range that can be encoded by the format, by sup-
porting a runtime-configurable exponent size. When compared
to other posit hardware solutions, the proposed implementation
presents marginal resource overheads and operating frequency
impacts, which are offset by the greater flexibility of providing
a very large dynamic range. An energy efficiency study further
validated the DFMA as a solution for low-precision hardware.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture.” Communications of the ACM, vol. 62, no. 2, pp. 48–60,
2019.

[2] J. Dean et al., “A new golden age in computer architecture: Empowering
the machine-learning revolution,” IEEE Micro, vol. 38, no. 2, pp. 21–29,
2018.

[3] N. P. Jouppi et al., “A domain-specific architecture for deep neural
networks,” Communications of the ACM, vol. 61, no. 9, pp. 50–59, 2018.

[4] J. Fowers et al., “A configurable cloud-scale dnn processor for real-
time ai,” in Proceedings of the 45th Annual International Symposium
on Computer Architecture. IEEE Press, 2018, pp. 1–14.

[5] E. Chung et al., “Serving dnns in real time at datacenter scale with
project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[6] E. Delaye et al., “Deep learning challenges and solutions with xilinx fp-
gas,” in Proceedings of the 36th International Conference on Computer-
Aided Design. IEEE Press, 2017, pp. 908–913.

[7] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep
neural network accelerators,” in 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2016, pp.
267–278.

[8] U. Köster et al., “Flexpoint: An adaptive numerical format for efficient
training of deep neural networks,” in Advances in neural information
processing systems, 2017, pp. 1742–1752.

[9] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2017, pp. 1–12.

[10] NVIDIA, “Nvidia tesla v100 gpu architecture.” White paper.
[Online]. Available: http://images.nvidia.com/content/volta-
architecture/pdf/voltaarchitecture-whitepaper.pdf, 2017.

[11] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its
own game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[12] R. Chaurasiya et al., “Parameterized posit arithmetic hardware genera-
tor,” in 2018 IEEE 36th International Conference on Computer Design
(ICCD). IEEE, 2018, pp. 334–341.

[13] Z. Carmichael et al., “Deep positron: A deep neural network using the
posit number system,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 1421–1426.

[14] F. De Dinechin et al., “Posits: the good, the bad and the ugly,” in
Proceedings of the Conference for Next Generation Arithmetic 2019.
ACM, 2019, p. 6.

[15] L. Forget et al., “Hardware cost evaluation of the posit number system.”
in Compas’2019 - Conférence d’informatique en Parallélisme, Architec-
ture et Système, Jun 2019, pp. 1–7.

[16] A. Podobas and S. Matsuoka, “Hardware implementation of posits and
their application in fpgas,” in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2018,
pp. 138–145.

[17] U. Kulisch, Computer arithmetic and validity: theory, implementation,
and applications. Walter de Gruyter, 2013, vol. 33.

[18] P. W. Group, “Posit standard documentation,” Release 3.2, Jun. 2018.
[19] M. K. Jaiswal and H. K.-H. So, “Architecture generator for type-3

unum posit adder/subtractor,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[20] H. Zhang et al., “Efficient posit multiply-accumulate unit generator for
deep learning applications,” in 2019 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2019, pp. 1–5.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on November 06,2020 at 07:19:22 UTC from IEEE Xplore. Restrictions apply.

