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a b s t r a c t

Discrete trigonometric transforms, such as the discrete cosine transform (DCT) and the

discrete sine transform (DST), have been extensively used in signal processing for

transform-based coding. The even type-II DCT, used in image and video coding, became

specially popular to decorrelate the pixel data and minimize the spatial redundancy.

Albeit this DCT tends to be the most often used, it integrates a broader family of

transforms composed of eight DCTs and eight DSTs. However, even though most

applications require little knowledge more than the actual DCT definition and its

inverse, it is often widely regarded that the implementation of more complex

operations on transformed data sequences (transcoding) requires a more in-depth

knowledge about its precise definitions and formal mathematical properties. One of

such relations is the multiplication-convolution property, often required to implement

more specific and complex manipulations. Considering that such information is still

spread into several documents and manuscripts, the main purpose of this article is to

provide a broad set of practical and useful information in a single and self-contained

source, embracing a wide range of definitions and properties related to the DCT and DST

families, with a special emphasis on its application to image and video processing.

& 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Transform-based coding has been extensively used in
image and video coding. The adoption of transform func-
tions to encode pixel data relies on the general premise
that adjacent pixels exhibit a significant level of spatial
correlation, which can be highly exploited to predict the
value of a given pixel from its corresponding neighbors.
As a consequence, most digital image and video coding
methods that have been proposed take advantage of these
transform functions to map the spatial correlated data
into a set of less correlated transform-domain coefficients.

As an illustrative example, in Fig. 1 it is depicted the
general structure of a digital image encoding and decod-
ing system. The main objective of the source encoder is to
exploit the spatial redundancies and the irrelevancies of
the pixel data, in order to obtain the highest possible
compression level. Such objective is attained by reducing
the contents entropy, thus decreasing the average number
of bits required to represent each image.

To maximize the compression, each component of this
particular encoder exploits a different redundancy level of
the pixel data:

� Transform module—decorrelates the pixel data in
order to minimize the spatial redundancy between
adjacent pixels. Several different transforms can be
adopted in the implementation of this module; a
thorough and detailed discussion about the transform
functions that are usually used by such module will be
provided in the following sections.
� Quantizer module—takes advantage of the inability

of the human visual system (HVS) to perceive small
differences between pixel values. Accordingly, such
small differences are often regarded as irrelevant and
can actually be discarded without introducing serious
visual artifacts. Such irrelevancy is often denoted by
psychovisual redundancy. This idea is often extended
and exploited in low bit rate transmission systems,
characterized by strict bandwidth restrictions, where

visual quality has to be sacrificed in order to reduce
the bit rate to the available bandwidth. Hence, even
though other sources of degradation may also have to
be considered, this module is usually the main source
of irreversible degradation in lossy encoding schemes.
� Entropy encoder—fulfills a final lossless compression

stage in the encoding scheme. Among the several
possible alternatives, Huffman and arithmetic run-
length encoders have been extensively adopted [1–4].
The main purpose of this module is to represent each
symbol of the quantizer output with the minimum
amount of bits as possible.

On the other hand, and contrasting to the described
image encoding structure, typical digital video transmis-
sion systems also incorporate a temporal prediction loop,
in order to decorrelate the pixel data and minimize the
temporal redundancies that exist between consecutive
frames of the video sequence (see Fig. 2). To implement
such prediction, an additional component needs to be
implemented in order to exploit this additional redun-
dancy level of the pixel data:

� Motion compensation module—compensates for the
displacement of moving objects, from one frame to
another, in order to minimize the magnitude of the
resulting difference signal. The implementation of this
module in the encoder side is tightly coupled to a
motion estimation module, which computes the motion
vectors that describe the relative displacement of a
given block of pixels.

Finally, to enhance the reliability of the transmission, the
channel encoder may add a certain redundancy level to the
output bit stream of the source encoder [5], in order to
allow the receiver to recover from eventual transmission
errors.

Independently of the target application, most trans-
form-based coding methods process the pixel data by
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Fig. 1. Block diagram of a general image encoding and decoding system.
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grouping the pixels in block structures. These blocks are
then transformed and mapped into the frequency domain.
By defining two (N�N) transformation matrices:

T c ¼ fT cðm,iÞg, m,i¼ 0,1, . . . ,N�1 ð1Þ

T r ¼ fT rðn,jÞg, n,j¼ 0,1, . . . ,N�1 ð2Þ

and by considering a two-dimensional (2-D) image block
x, defined in the spatial (pixel) domain, the corresponding
transform-domain representation X is obtained by apply-
ing the (N�N) linear transformation process:

X¼ T c x T T
r ð3Þ

The T c and T r matrices are usually referred to as the
transformation kernels or basis functions.

As it was previously referred, the main motivation for
applying this exchange of the signal domain and compute
the transform representation X of the pixel-domain signal
x is to obtain a more compact representation of the pixel
data. Nevertheless, not only should such transformation
process present a lossless nature, but also it has to be
reversible, so that x can be reconstructed from X in the
decoder side of the video/image transmission system.

Some of the most commonly used transforms that
have been considered for image and video coding are
the Karhunen–Lo�eve transform (KLT), the discrete Fourier
transform (DFT), the discrete cosine transform (DCT), the
discrete sine transform (DST), and the discrete wavelet
transform (DWT) [6–10].

The KLT is the most efficient, in terms of compaction
efficiency. The basis functions of this transform are
obtained from the statistical properties of the pixel data.
As a consequence, it gives rise to the optimum perfor-
mance in terms of energy compaction, thus placing as
much energy as possible in as few coefficients as possible.
However, since the transform kernel of this transform
depends on the image data under processing, it cannot be
computed using a fast matrix-multiplication form, based
on a separable and pre-computed matrix kernel. It also
requires a continuous update of the transform kernel
coefficients in the decoder, thus implying a subsequent
decrease of the compression rate. Moreover, for block-
based coding, the derivation of the basis kernel correspond-
ing to each image block introduces an extra computational
effort, which is an important issue in most current image
and video coding applications.

As a consequence, other less efficient but image
independent transforms have been preferred. Among
them, the DFT is characterized by a linear, separable and
symmetric definition. Contrary to the KLT it is represented
by fixed basis functions and also exhibits good decorrela-
tion and energy compaction characteristics. However, the
DFT is defined in the complex-domain and therefore
gives rise to both magnitude and phase components for
each sample. Furthermore, the implicit periodicity of
DFT introduces boundary discontinuities that result in a
significant high-frequency content [9].

As a result, discrete transforms characterized by
smoother basis functions have been preferred. In particular,
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Fig. 2. Block diagram of a general video encoding and transmission system.
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the output provided by the DCT usually leads to compaction
efficiency levels quite close to the optimum performance
provided by the KLT. As a consequence, after it was firstly
proposed by Ahmed et al. [11] and latter further described
by Wang [12,13], the DCT has been widely adopted in many
digital image and video standards, such as the JPEG [14],
H.261 [1], H.263 [2], MPEG-1 Video [3], MPEG-2 Video [4]
and MPEG-4 Visual [15].

Independently of the adopted standard, the computa-
tion of the transform coefficients usually implies the
usage of floating-point accuracy. Nevertheless, in many
practical implementations, the floating-point DCT and its
inverse are usually evaluated with finite precision. This
often leads to an accuracy mismatch in the computation
of these transforms at both the encoder and decoder ends
of the transmission system. These mismatch errors tend
to accumulate and often result in a non-negligible distor-
tion component with visible artifacts.

To circumvent this problem, the most recent video
standards have adopted alternative transforms. These
transforms can be accurately implemented with reduced
precision, at the cost of a slight decrease of the provided
decorrelation performance. Some examples of these
transforms are the Walsh–Hadamard transform (WHT)
[16], the slant transform (ST) [17] and the Haar transform
(HT) [18]. Another example of such transforms is the
Integer Discrete Cosine Transform (IntDCT) [19], that was
adopted by the H.264/AVC video standard [20]. It is
defined as

XI ¼ TI x TT
I ð4Þ

where the transform kernel matrix ðTIÞ is

TI ¼

1=2

1=
ffiffiffiffiffiffi
10
p

1=2

1=
ffiffiffiffiffiffi
10
p

0BBBB@
1CCCCA

1 1 1 1

2 1 �1 �2

1 �1 �1 1

1 �2 2 �1

26664
37775 ð5Þ

Since the scaling factors that are associated to this kernel
can be absorbed in the quantization process, all arith-
metic operations of this transform can be accurately
computed with 16-bit integers and using solely additions
and shift operations; there is no need to perform any
multiplication.

However, despite the orthogonal nature and the com-
putational simplicity that are offered by these transforms,
many important mathematical relations already pre-
sented for the DCT have not yet been extended to these
transforms. One such relation is the multiplication-

convolution property, whose formal definition, in the
DCT-domain, will be presented in Section 5.2. Such
limitations restrict the application of some signal proces-
sing operations (e.g., transform-domain transcoding [21])
to DCT-based video encoding systems, namely, those
based on JPEG [14], H.261 [1], H.263 [2], MPEG-1 Video
[3], MPEG-2 Video [4] and MPEG-4 Visual [15] standards.
Moreover, the extensive collection of encoded image and
video data that is currently stored all over the world
will keep the DCT as one of the most important and used
transforms, for a significant amount of time. As a con-
sequence, the general designation of image and video

standards which henceforward will be extensively
adopted in this tutorial, will only accommodate this broad
family of DCT-based standards and excludes those
based on integer transforms, such as the H.26L [22] and
H.264/AVC [20].

In the remaining of this document, it is presented a
tutorial description of the discrete cosine transform
family. After this introductory section it will be presented,
in Section 2, the formal definition and main properties of
generic discrete trigonometric transforms (DTTs) and
their extensions to multidimensional spaces (Section 3).
Section 4 particularizes the previous definitions and
presentations to the special case of the even type-II DCT,
which has been widely adopted in image and video
standards. The definition of the multiplication-convolu-
tion property, applied to this specific transform, will be
formally presented in Section 5, as well as some applica-
tions of this operation conducted in the pixel and trans-
form domains (Section 6). Finally, Section 7 will conclude
this tutorial.

From now on, the subscripts i and j will denote
coordinates in the spatial (pixel) domain, whereas the
subscripts m and n will denote coordinates in the trans-
form (frequency) domain. Likewise, lowercase symbols
will denote pixel-domain signal values, whereas upper-
case symbols will denote transform-domain values, e.g.,
Xðm,nÞ ¼DCTðxði,jÞÞ.

2. Definition

Similarly to what happens with other Fourier-related
transforms, the so-called discrete trigonometric trans-
forms (DTTs), such as the DCT and the DST, represent a
function or a signal as a sum of trigonometric terms
(cosine or sine), with different frequencies and ampli-
tudes. Just like the DFT, the DCT and the DST also operate
with a finite number of discrete data samples of a given
function. Nevertheless, while the DCT only makes use
of cosine functions, the DFT uses both cosines and sines
(in the form of complex exponentials) to represent each
signal [9]. However, this difference is a direct conse-
quence of a more important characteristic of these trans-
forms. As it will be seen in the following subsections,
the DCT and the DST imply different boundary conditions
on the sample data than the DFT or other related
transforms.

To simplify this description, the presentation that
follows will be focused on one-dimensional (1-D) data
sequences. Nevertheless, the same definitions can equally
be extended to 2-D signals, without any loss of
generalization.

2.1. Extension symmetry properties of sampled data beyond

original boundaries

Just like any other Fourier-related transform that
operates on a given function f ðnÞ over a finite discrete
domain, the DFT, the DCT or the DST can be thought of as
implicitly defining an infinite extension of that function
outside the original domain. Such implicit extension,
defined as a sum of trigonometric functions, will then

N. Roma, L. Sousa / Signal Processing 91 (2011) 2443–24642446
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allow the evaluation of that same function at any arbi-
trary point n, even for points where the original function
f ðnÞ was not defined. Nevertheless, while the DFT implies
a periodic extension of the original function, the extension
properties that are implicit in the DCT and DST imply
quite distinct characteristics that provide particularly
useful applications in image and video processing.

Since the DCT and the DST operate on finite and
discrete sequences, two issues arise concerning the sym-
metry properties of those extensions that are obtained
from the input samples, which do not arise for the
continuous cosine transform. Firstly, each boundary of
the input data set can be extended symmetrically (also
known as even extension) or anti-symmetrically (also
known as odd extension). Secondly, the symmetry or
anti-symmetry point of such extension must be specified.
As an example, by considering a symmetric (even) exten-
sion of the left boundary of a simple data sequence
composed of four equally spaced sampled points abcd,
two distinct possible solutions arise in terms of the
symmetry point: either the data is symmetrically
extended about sample a, in which case the even exten-
sion is dcbabcd; or the data is evenly extended about a
hypothetical point, halfway between a and the previous
point, in which case the symmetric extension is dcbaabcd

(a is repeated).
By adopting these different extension setups, infinite

sequences can easily be obtained by simply extending the
input data samples of a given finite signal. Such infinite
extensions are classified according to the types of sym-
metry that are adopted at each boundary of the original
signal. The four possible extension setups are illustrated
in Fig. 3 and can be enumerated as follows [23,24]:

� whole-sample symmetry (WS),
� whole-sample anti-symmetry (WA),
� half-sample symmetry (HS) and
� half-sample anti-symmetry (HA),

where the designations whole-sample and half-sample

refer to the position of the point of symmetry; either
coincident with one of the original samples or at a
theoretical halfway between two samples.

By following this simple procedure, a given finite
sequence f ðnÞ can be easily converted into an infinite
sequence by symmetrically extending each point of sym-
metry (POS) using any of the above four possible setups
and by continuing that extension indefinitely, in order to
obtain a symmetric-periodic sequence (SPS), according to

the following rules [23,24]:

HSHSðx1, . . . ,xnÞ ¼Pðx1, . . . ,xn,xn, . . . ,x2Þ ð6Þ

HAHAðx1, . . . ,xnÞ ¼Pðx1, . . . ,xn,�xn, . . . ,�x2Þ ð7Þ

WSWSðx1, . . . ,xnÞ ¼Pðx1, . . . ,xn�1,xn,xn�1, . . . ,x2Þ ð8Þ

WAWAðx1, . . . ,xnÞ ¼Pð0,x2, . . . ,xn�1,0,�xn�1, . . . ,�x2Þ ð9Þ

where PðjÞ denotes the periodic replication of sequence
j. The POSs may be either all of the same type or of two
different types. Whenever the adopted types are different,
they alternate along the length of the SPS. The obtained
extensions are then usually denominated by concatenat-
ing the mnemonics of the symmetry types that are used at
each of its ends (e.g., WSWS, HAHA, WAHS, etc.).

Independently of the adopted setup, two POS are
always associated with the base period: a left point of
symmetry (LPOS) and a right point of symmetry (RPOS);
between them lie the representative samples. At each
POS, one of the four defined types of symmetry is
implemented: WS, WA, HS or HA.

Four possible types of extension at each of the two
endpoints leads to a total of 16 distinct SPSs. All these
different setups characterize a broad set of standard
variants of discrete cosine and sine transforms. For each
of these two transforms, each of the two data set bound-
aries can be either symmetrically or anti-symmetrically
extended (two possibilities per boundary) and can be
extended about a data point or a point halfway between
two sample points (two choices per boundary), thus
giving rise to a total of 2�2�2�2¼16 different possi-
bilities. Half of these setups, corresponding to those
where the left boundary is symmetrically extended,
correspond to the eight different types of DCTs, while
the remaining half comprises the eight different types of
DSTs. In Table 1, it is presented a comprehensive descrip-
tion of the several properties that are implicit to both the
input and output extensions of the considered discrete
cosine ðCÞ and sine ðSÞ transforms [23,24].

At this point, it is worth recalling that any disconti-
nuity of the considered function potentially reduces the
rate of convergence of its Fourier series, so that more sine
or cosine terms are needed to represent it with a given
accuracy level. As a consequence, these different bound-
ary conditions lead to different but useful properties that
distinguish the several DCT and DST variants. In fact,
these different characteristics significantly influence the
actual usefulness of each particular DTT for signal com-
pression: the smoother an extension is, the fewer terms

n

WS

n

WA

n

HS

n

HA

0000

Fig. 3. Symmetric-periodic extensions of a finite sequence [23].
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are required to accurately represent a given function
using the DFT, DCT or DST, and the more it can be
compressed. However, the implicit periodicity of the input
sequence that characterizes each DTT often implies con-
siderable discontinuities at the signal boundaries, since any
random segment of a given signal is unlikely to have the
same pattern at both the left and right boundaries. In
contrast, when both boundaries of a given signal are
symmetrically extended, it naturally yields a continuous
and smooth extension at the boundaries. This is why some
types of DCT that have two symmetrically extended
boundaries (in particular, DCTs of types I, II, V, and VI, as
will be defined in the following subsections) generally
perform better for signal compression than the other DTTs.

2.2. Discrete cosine transforms

From a pure and rather simplistic mathematical point
of view, each DCT can be defined as a linear and invertible
trigonometric function F : RN-RN . However, by recalling
what was referred in the previous subsection, there are
several different variants of the DCT, presenting distinct
formal definitions and characteristics. Nevertheless, all of
them share a common important property: they all
process and output data sequences that are characterized
by symmetric extensions at their left boundary. Hence,
eight different variants of the DCT are available, corre-
sponding to all possible symmetry extension combina-
tions in both boundaries of the output sequence that
comply with this specific characteristic. A comprehensive

list of extension alternatives and their corresponding
variants of the DCT is presented in Table 1.

Among these transforms, those that also present the
same characteristic in terms of the symmetry point in both
boundaries (half-sample or whole-sample symmetry) are
often denoted by even DCTs. Such transforms are usually
denominated by DCT I, II, III and IV. On the other hand, those
transforms with distinct characteristics in terms of the
adopted point of symmetry in the two boundaries are
usually denoted by odd DCTs and are denominated by DCT
V, VI, VII and VIII. Hence, while one of the boundaries
presents a symmetry/anti-symmetry characteristic around
an original data point, the other is extended around an
implicit halfway point between two data samples. These
odd transforms, however, have been rarely used in practical
image and video processing and coding applications.

Independently of the specific type of DCT, the mathe-
matical definition of each of these transforms is repre-
sented as a sum of product terms that multiply a cosine
function Cðm,iÞ with the input sequence xðiÞ:

XðmÞ ¼
X

i
Cðm,iÞxðiÞ ð10Þ

According to the previously defined nomenclature, the
subscript i denotes the coordinate in the spatial (pixel)
domain, whereas the subscript m represents the coordi-
nate in the transform-domain.

Equivalent matrix definitions are often adopted in the
literature, which represent the DCT computation as a
simple matrix multiplication of a kernel matrix C by an

Table 1
Properties of the implicit input and output extensions of the considered discrete sine and cosine transforms [10].

C1e

C2e

C3e

C4e

C1o

C2o

C3o

C4o

S1e

S2e

S3e

S4e

S1o

S2o

S3o

S4o

C1e
−1

C3e
−1

C2e−1

C4e
−1

C1o
−1

C3o
−1

C2o
−1

C4o
−1

S1e
−1

S3e
−1

S2e
−1

S4e
−1

S1o
−1

S3o
−1

S2o
−1

S4o
−1
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input data vector x, in the form:

X¼C x ð11Þ

In such matrix formulations, an e or o subscript is often
appended to the kernel matrix definition ðCÞ, to denote
even or odd transforms (e.g., Ce,Co).

Independently of the adopted formalization, the term
Cðm,iÞ can be defined by the product:

Cðm,iÞ ¼ Aw1ðmÞw2ðiÞtðm,iÞ ð12Þ

where tðm,iÞ ¼ cosðf ðm,iÞÞ is the corresponding transform
kernel; the term w1ðmÞ is a weighting function that is
adopted by some transforms to make the column vectors
orthogonal to each other; the weighting function w2ðiÞ is
required by some transforms to make the row vectors
orthogonal; and the scalar A is a final multiplier that
normalizes the rows and columns in order to produce an
orthonormal matrix. Hence, the mutual contribution of all
these weighting functions leads to an orthonormal defini-
tion of each considered transform. These properties will
be further described in Section 2.5.

In Table 2, it is presented a comprehensive list of the
several orthogonal DCT kernel matrix definitions [10]. The
terms w1ðmÞ and w2ðiÞ are implemented by the orthogo-
nalization functions xðpÞ and zðpÞ, defined in Eqs. (13)
and (14), respectively.

xðpÞ ¼

ffiffi
1
2

q
for p¼ 0 or p¼N

1 for p¼ 1,2, . . . ,N�1

8<: ð13Þ

zðpÞ ¼
1 for p¼ 0,1, . . . ,N�2ffiffi

1
2

q
for p¼N�1

8<: ð14Þ

An interesting observation is that the denominator in
each kernel definition in Table 2 agrees with the distance
between the corresponding LPOS and RPOS of Table 1. It
can also be observed that the definitions of the odd DCTs
are quite similar to the corresponding even definitions,
where the denominators of the cosine arguments are
replaced by the value N71

2.

2.3. Discrete sine transforms

Similarly to the previously defined DCTs, each DST can
be defined as a linear and invertible trigonometric func-
tion F : RN-RN . Likewise, the several variants of the DST
also share a common and important property, since they
all process and output data sequences that are character-
ized by anti-symmetric extensions at their left boundary.
Consequently, eight different variants of the DST are also
available, corresponding to all possible extension combi-
nations in both boundaries of the output sequence that
comply with this specific characteristic. A comprehensive
list of extension alternatives and the corresponding var-
iants of the DST is also presented in Table 1.

Just like the cosine transforms, DSTs are also divided in
even and odd transforms, whenever they present the same
characteristic in terms of the symmetry point in both
boundaries (half-sample or whole-sample symmetry), or
when they have distinct characteristics in terms of the
adopted point of symmetry in the two boundaries,

respectively. Hence, even DSTs are also denoted by DST
I, II, III and IV, while odd DSTs are usually referred to as
DST V, VI, VII and VIII.

Similarly to the DCTs, the mathematical definition
of each DST is represented as a sum of product terms
that multiply a sine function Sðm,iÞ with the input
sequence xðiÞ:

XðmÞ ¼
X

i

Sðm,iÞxðiÞ ð15Þ

where the term Sðm,iÞ is defined by the product:

Sðm,iÞ ¼ Aw1ðmÞw2ðiÞtðm,iÞ ð16Þ

and tðm,iÞ ¼ sinðf ðm,iÞÞ is the corresponding transform
kernel.

The equivalent matrix definitions represent the com-
putation of each DST as a matrix multiplication of a kernel
matrix S by an input data vector x, in the form:

X¼S x ð17Þ

A comprehensive list of the several orthogonal DST
kernel matrix definitions is also presented in Table 2 [10].
Similarly to the DCT definitions, the transform kernel of
each odd DST are quite similar to the corresponding even
definition, where the denominators of the sine arguments
are replaced by the value N71

2.

2.4. Inverse transforms

The following expressions represent the relations
between each inverse kernel matrix and the respective
forward kernel matrix:

C�1
1 ¼C1 ð18Þ

C�1
2 ¼C3 ð19Þ

C�1
3 ¼C2 ð20Þ

C�1
4 ¼C4 ð21Þ

S�1
1 ¼S1 ð22Þ

S�1
2 ¼S3 ð23Þ

S�1
3 ¼S2 ð24Þ

S�1
4 ¼S4 ð25Þ

The designations for even or odd transforms were omitted
from these equations, since the same relation holds for
both the even and odd cases.

2.5. Main mathematical properties

Several useful properties can be derived from the
previously defined sine and cosine transforms. This sec-
tion presents a brief overview of the most important and
useful properties of these transforms applied for image
and video coding [5,7,8,10,25]. In such presentation, a
generic discrete cosine transform will be used for the sake
of illustration. Nevertheless, the presented properties are
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equally valid for the whole family of trigonometric trans-
forms defined in the previous subsections.

� Linearity: According to the several definitions summar-
ized in Table 2, any trigonometric transform can be
regarded as a linear combination of linear functions (sine
ðSÞ or cosine ðCÞ functions), which are added together

using the input signal samples as weighting factors:

XðmÞ ¼
X

i

xðiÞCðm,iÞ ð26Þ

As a consequence, by denoting by XðmÞ and YðmÞ

the cosine transforms of the input samples xðiÞ and yðiÞ,
the following statement defines the linearity property of

Table 2
Definition of the orthogonal DCT and DST kernel matrices, as defined by [10].

DTT Definition Length Index range

DCT-I

DCT-1e
½C1e�m,i ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

N�1

r
xðmÞzðmÞxðiÞzðiÞcos

mip
N�1

� � N m,i¼ 0,1, . . . ,ðN�1Þ

DCT-II

DCT-2e
½C2e�m,i ¼

ffiffiffiffi
2

N

r
xðmÞcos

m iþ1
2

� �
p

N

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DCT-III

DCT-3e
½C3e�m,i ¼

ffiffiffiffi
2

N

r
xðiÞcos

mþ1
2

� �
ip

N

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DCT-IV

DCT-4e
½C4e�m,i ¼

ffiffiffiffi
2

N

r
cos

mþ1
2

� �
iþ1

2

� �
p

N

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DCT-V

DCT-1o
½C1o�m,i ¼

ffiffiffiffiffiffiffiffiffiffi
2

N�1
2

s
xðmÞxðiÞcos

mip
N�1

2

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DCT-VI

DCT-2o
½C2o�m,i ¼

ffiffiffiffiffiffiffiffiffiffi
2

N�1
2

s
xðmÞzðiÞcos

m iþ1
2

� �
p

N�1
2

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DCT-VII

DCT-3o
½C3o�m,i ¼

ffiffiffiffiffiffiffiffiffiffi
2

N�1
2

s
zðmÞxðiÞcos

mþ1
2

� �
ip

N�1
2

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DCT-VIII

DCT-4o
½C4o�m,i ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

Nþ1
2

s
cos

mþ1
2

� �
iþ1

2

� �
p

Nþ1
2

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DST-I

DST-1e
½S1e�m,i ¼

ffiffiffiffi
2

N

r
sin

mip
N

� �
ðN�1Þ m,i¼ 1,2, . . . ,ðN�1Þ

DST-II

DST-2e
½S2e�m,i ¼

ffiffiffiffi
2

N

r
zðmÞsin

ðmþ1Þ iþ1
2

� �
p

N

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DST-III

DST-3e
½S3e�m,i ¼

ffiffiffiffi
2

N

r
zðiÞsin

mþ1
2

� �
ðiþ1Þp

N

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DST-IV

DST-4e
½S4e�m,i ¼

ffiffiffiffi
2

N

r
sin

mþ1
2

� �
iþ1

2

� �
p

N

 !
N m,i¼ 0,1, . . . ,ðN�1Þ

DST-V

DST-1o
½S1o�m,i ¼

ffiffiffiffiffiffiffiffiffiffi
2

N�1
2

s
sin
ðmþ1Þðiþ1Þp

N�1
2

 !
ðN�1Þ m,i¼ 1,2, . . . ,ðN�1Þ

DST-VI

DST-2o
½S2o�m,i ¼

ffiffiffiffiffiffiffiffiffiffi
2

N�1
2

s
sin
ðmþ1Þ iþ1

2

� �
p

N�1
2

 !
ðN�1Þ m,i¼ 0,1, . . . ,ðN�2Þ

DST-VII

DST-3o
½S3o�m,i ¼

ffiffiffiffiffiffiffiffiffiffi
2

N�1
2

s
sin

mþ1
2

� �
ðiþ1Þp

N�1
2

 !
ðN�1Þ m,i¼ 0,1, . . . ,ðN�2Þ

DST-VIII

DST-4o
½S4o�m,i ¼

ffiffiffiffiffiffiffiffiffiffi
2

N�1
2

s
zðmÞzðiÞsin

mþ1
2

� �
iþ1

2

� �
p

N�1
2

 !
N m,i¼ 0,1, . . . ,ðN�1Þ
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this transform for any scalar a and b 2 R:

DCT½axðiÞþbyðiÞ� ¼ aXðmÞþbYðmÞ ð27Þ

This particular property has provided several important
and interesting applications, by allowing the processing
and combination of pre-encoded image/video data
directly in the DCT-domain (e.g., transform-domain
transcoding [21]).
� Orthogonality: The row and column vectors that com-

pose each discrete sine and cosine transform kernel
matrix define a set of orthogonal basis functions. Let
C denote the (n�m) kernel matrix of a given cosine
transform:

C¼

a11 a12 . . . a1m

a21 a22 . . . a2m

^ ^ & ^

an1 an2 . . . anm

266664
377775 ð28Þ

This matrix is said to be orthogonal because all column
vectors ci ¼ ½a1,i a2,i . . . an,i�

T fulfill the following rela-
tion, denoted by ci ? cj:

cT
1c2 ¼ cT

1c3 ¼ � � � ¼ cT
i cj ¼ 0, 8iaj ð29Þ

with 1r i,jrm. As a consequence, these relations also
imply that

CT
¼C�1

ð30Þ

Entirely similar relations also apply for the row
vectors ri.
� Normalization: Each column vector ci of any discrete

sine and cosine transform kernel matrix presented in
Table 2 also fulfills the following property:

JciJ¼ 1, 8i : 1r irm ð31Þ

As a consequence, the kernel matrices defined in
Table 2 are also said to be normalized.
� Orthonormality: Considering that each column or row

vector of the presented discrete sine or cosine trans-
form kernel matrices are both orthogonal and normal-
ized, these matrices are also said to be orthonormal,
thus presenting the following important properties:

CT
¼C�1, CTC¼ I, CCT

¼ I ð32Þ

These relations lead to a quite important consequence,
since the matrix inversion operation is reduced to a
simple matrix transpose, resulting in a significant
computational cost reduction.
� Energy conservation (Parseval’s theorem): Another

important property of these discrete sine and cosine
transform kernel matrices is related to the conser-
vation of the signal energy after the computation
of its transform. This property (also denoted by
Parseval’s theorem) can be formulated by the following
expression:XN�1

m ¼ 0

jXðmÞj2 ¼ JXJ2
¼XTX¼ xTCTCx¼ xTx¼ JxJ2

¼
XN�1

i ¼ 0

jxðiÞj2 ð33Þ

Besides this, an important aspect about these trans-
forms is related to their capability to pack most of the

signal energy into the lower order coefficients. One
consequence of such characteristic is that the drop of
some high-order coefficients (through quantization and
truncation) usually leads to a marginal loss of the signal
energy, resulting in a minimal distortion level [9].
� Scaling: Since the DTTs deal with discrete sampled

points, a scaling in the pixel-domain has no direct
effect in the transform-domain, except for a change in
the frequency unit [10]. Hence, as the sampling inter-
val di changes to adi, the frequency unit dm changes to
dm=a, provided that the sequence length (N) remains
constant. As an example, in the particular case of the
DCT, this property can be stated as

DCT½xðaiÞ� ¼ X
m

a

� �
for a40 ð34Þ

� Shift: Let x¼ ½xð0Þ, . . . ,xðN�1Þ�T and xþ ¼ ½xð1Þ, . . . ,x
ðNÞ�T be two length-N sequences, where xþ denotes
the sequence x shifted by one sample point. Britanak et al.
presented a detailed formulation of the relation between
the corresponding transform-domain sequences for the
whole family of DTTs [10]. As an example, for the
particular case of the even type-II DCT, they have shown
that

XC2e
þ ðmÞ ¼ cos

mp
N

� �
XC2e ðmÞþsin

mp
N

� �
XS2e ðm�1Þ

þ

ffiffiffiffi
2

N

r
xðmÞcos

mp
2N

� �
½ð�1ÞmxðNÞ�xð0Þ� ð35Þ

where xðmÞ is given by Eq. (13) and XC2e ¼C2ex and
XC2e
þ ¼C2exþ are the even type-II DCT vectors of the pixel

sequence x and of its shifted version xþ , respectively.
Likewise, XS2e is used to denote the even type-II DST, as
defined in Table 2.

3. Multidimensional transforms

The 2-D nature of image data leads to the usual repre-
sentation of pixel data along the two spatial orthogonal
directions. Likewise, the representation of image data in the
frequency domain makes use of multidimensional exten-
sions of the several previously described sine and cosine
transforms, defined along the two corresponding spatial
frequencies. Such extensions can be straightforwardly
defined by considering separable decompositions along each
dimension. In fact, it can be easily shown that a 2-D trans-
form can be regarded as the application of the same 1-D
transform, performed firstly along the rows and then along
the columns (see Fig. 4), or vice-versa. As an example, by
considering the generic 1-D definition of the cosine trans-
form, the extension to two dimensions can be defined as

Xðm,nÞ ¼
X

i

X
j

Cðm,iÞCðn,jÞxði,jÞ ð36Þ

By re-arranging this equation, one can obtain

Xðm,nÞ ¼
X

i

Cðm,iÞ
X

j

Cðn,jÞxði,jÞ ð37Þ

Xðm,nÞ ¼
X

i

Cðm,iÞ ~X
1D
ði,nÞ ð38Þ
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where ~X
1D
ði,nÞ ¼ ½C xT�T ¼ x CT is a matrix whose lines are

the 1-D discrete cosine transform of the lines of xði,jÞ.
Hence, the 2-D discrete cosine transform of the input

matrix x¼ ½x�i,j can be represented in a matrix-product
form as follows:

X¼ ½X�m,n ¼C x CT
ð39Þ

The same formulation could equally be applied to any
other type of sine or cosine transform, as well as to their
2-D inverse transforms.

The corresponding inverse transform can then be
derived as

x¼ ½x�i,j ¼ ðCÞ
�1XðCT

Þ
�1

ð40Þ

By taking into account the orthogonality property of the
kernel matrices ðC�1

¼CT
Þ, defined in Subsection 2.5, the

following expression can be easily derived for the inverse
transform:

x¼ ½x�i,j ¼CTXC ð41Þ

This row-column decomposition defines an additional
property that is often referred to as separability property.
Such relation may provide a quite important computa-
tional advantage: Xðm,nÞ can be computed in two steps by
applying successive 1-D operations on the rows and
columns of the image data. From a dedicated implemen-
tation point of view, this row–column decomposition may
significantly simplify the hardware requirements, at the
expense of a slight increase in the overall operation-
count.

4. Application of the DCT to image and video encoding

Contrasting to the other DTTs, the even type-II discrete
cosine transform (DCT-II) has been widely adopted in
image and video processing applications and is currently
the basis of many image and video standards (e.g., JPEG
[14], H.263 [2], MPEG-2 video [4], etc.). As it was pre-
viously referred, such fact is mainly owed to its particu-
larly well suited characteristics to exploit the spatial
irrelevancies of a given pixels area, by concentrating most
of the pixels energy in a restricted set of DCT coefficients
[26]. Hence, most image and video standards transform
each (N�N) pixels block from the spatial-domain into a
(N�N) matrix of DCT-domain coefficients, where N is
typically set to eight pixels. The selection of this parti-
cular block size is historically related to several reasons.
In what concerns the hardware and software imple-
mentation point of view, an (8�8) block size does not

impose significant memory requirements and its DCT
computation is easily manageable in most computing
platforms. On the other hand, in what concerns the
compaction efficiency point of view, it has been observed
that block sizes larger than (8�8) pixels do not offer any
significantly better compression levels [26].

4.1. 1-D discrete cosine transform

According to the above definitions, the 1-D DCT
usually adopted in image and video coding can be
formulated as [7,8,10–12,27]

XðmÞ ¼

ffiffiffiffi
2

N

r
xðmÞ

XN�1

i ¼ 0

cos
m iþ1

2

� �
p

N

 !
xðiÞ()X¼ Tx ð42Þ

xðiÞ ¼

ffiffiffiffi
2

N

r XN�1

m ¼ 0

xðmÞcos
m iþ1

2

� �
p

N

 !
XðmÞ()x¼ TTX ð43Þ

with m,i¼ 0,1, . . . ,ðN�1Þ and xðmÞ as defined in Eq. (13).
The corresponding (8�8) kernel matrix T is defined as

½Tðm,iÞ�9½C2eðm,iÞ� ¼

ffiffiffiffi
2

N

r
xðmÞcos

m iþ1
2

� �
p

N

 !
ð44Þ

From a careful analysis of Eqs. (42) and (43), it can be
observed that the computations of the forward and
inverse DCT are nearly the same. Thus, from a dedicated
implementation point of view, the same computational
unit can be used for both the forward and the
inverse DCTs.

It can also be observed, from Eq. (42), that the first
transform coefficient ðXð0ÞÞ represents the average value
of the input sequence. As a consequence, this value is
often referred to as the DC coefficient, in analogy to what
happens with the circuit analysis theory in electrical
engineering. In accordance, all other transform coeffi-
cients are often denoted by AC coefficients.

The DCT decomposes each signal into a series of cosine
waveforms (basis functions), each one with a particular
frequency. In Fig. 5(a) it is depicted the set of eight basis
functions corresponding to the discrete cosine transform,
with N¼8. These waveforms actually correspond to the set

of functions defined by the sum
PN�1

i ¼ 0 cosðmðiþ 1
2Þp=NÞ,

with N¼8 and m varying from m¼0 to N�1. In accordance
with the previous paragraph, the bottom waveform (m¼0)
renders a constant (DC) value, whereas all other wave-
forms (m¼1,2,y,7) represent different basis for progres-
sively increasing frequencies. All these basis functions are

Row Transform Column TransformX 1D

Fig. 4. Row–column decomposition of a 2-D transform.
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orthogonal. Hence, the multiplication between any pair of
these waveforms followed by a summation over all sample
points yields a zero (scalar) value, whereas the multi-
plication of any of these waveforms with itself followed
by a summation operation yields a constant (scalar) value.
As a consequence, according to the orthogonal definition,
these waveforms are said to be independent: none of the
basis functions can be represented as a combination of the
other basis functions. Hence, the computation of the DCT
can be regarded as the process of finding the weight
sequence XðmÞ, corresponding to each waveform shown
in Fig. 5(a), so that the sum of the eight waveforms, scaled
by the corresponding weights X(m), yields the recon-
structed version of the original eight-point vector x(i).

For illustration purposes, it is also presented in
Fig. 5(b) the set of basis functions corresponding to a
N¼16-point DCT.

4.2. 2-D discrete cosine transform

The extension of the above defined transform to a
bidimensional space is straightforward [7,8,10,11,27]:

Xðm,nÞ ¼
2

N
xðmÞxðnÞ

XN�1

i ¼ 0

XN�1

j ¼ 0

xði,jÞcos
m iþ1

2

� �
p

N

 !

�cos
n jþ1

2

� �
p

N

 !
ð45Þ

3X¼ TxTT
ð46Þ

xði,jÞ ¼
2

N

XN�1

m ¼ 0

XN�1

n ¼ 0

xðmÞxðnÞXðm,nÞ

�cos
m iþ1

2

� �
p

N

 !
cos

n jþ1
2

� �
p

N

 !
ð47Þ

3x¼ TTXT ð48Þ

with m,n¼ 0,1, . . . ,ðN�1Þ; i,j¼ 0,1, . . . ,ðN�1Þ; and xðmÞ
and xðnÞ defined in Eq. (13).

Just like the definition of the 1-D DCT, the transform
coefficient X(0,0) represents the average value of the
input sequence and is denoted by DC coefficient, while
all other transform coefficients are denoted by AC coeffi-

cients. In Fig. 6, it is depicted the set of 64 basis functions
corresponding to the 2-D discrete cosine transform, with
N¼8. These 2-D basis functions can be generated by
multiplying the horizontally oriented 1-D basis functions
(shown in Fig. 5(a)) with a vertically oriented set of the
same functions. As it was observed for the 1-D case, these
basis functions exhibit a progressive increase of their
frequency component, both in the vertical and horizontal
directions. A particular case occurs with the top-left basis
function (DC coefficient), which results from the multi-
plication of two constant vectors, corresponding to the DC
component in Fig. 5(a). Hence, the computation of each
2-D DCT can be regarded as the process of finding the
weight sequence X(m,n), corresponding to each waveform
shown in Fig. 6, so that the sum of the 64 waveforms,
scaled by the corresponding weights X(m,n), yields the
reconstructed version of the original (8�8) pixels matrix
x(i,j).
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Fig. 5. 1-D DCT basis functions. (a) N ¼ 8. (b) N¼ 16.
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4.3. Fast computation of the discrete cosine transform

A significant effort has been devised, since the first
applications of the DCT, in order to obtain efficient 1-D
and 2-D implementations. In fact, it can be easily
observed that a direct computation of an 1-D eight-point
DCT (see Eq. (42)) requires up to 64 multiplications and
63 additions, while a 2-D eight-point DCT (see Eq. (45))
requires up to 4096 multiplications and 409 additions.
Although such computational cost can be trivially reduced
to 1024 multiplications and 1024 additions by using the
separability property, it still represents a significant
computational burden for most practical applications
and frequently compromises real-time requisites.

As such, a significant number of fast algorithms for the
computation of the DCT have been developed in the last
decades. Most of these processing approaches either
extensively exploit the properties of the transform kernel
matrix T or the final precision of the transform result,
in order to reduce the number of involved operations.
A possible classification of these algorithms is the follow-
ing (an extensive bibliography overview of these and
other efficient algorithms can be found in [10]):

� Factorization of the kernel matrix, in order to decom-
pose it into a set of sparse matrices; since only the
non-null terms of each of these matrices need to be
considered, a significant reduction of the involved
operations is achieved.
� Multiplication-free implementations, by expressing the

kernel matrix as a product of a diagonal matrix and a
matrix with very small integer weights, in order to
replace the multiplications by simple shift and add
operations; such implementations are particularly
attractive for low-cost processors that do not incorpo-
rate a multiplier unit, but introduce a small degrada-
tion at the attained precision.

� Partial scaling of the kernel matrix terms with the
quantization matrix weights, in order to further reduce
the number of non-null terms of the sparse decom-
position of the matrix kernel; however, such technique
assumes the use of a fixed quantization matrix, which
is not always the case (e.g., video coding).
� Pruning approximations, by only computing some low-

frequency DCT coefficients; such implementations are
particularly adopted in low bit-rate image/video cod-
ing, where only a small subset of the DCT coefficients
located at the top-left corner are evaluated.
� Use of MAC arithmetic units, by expressing the several

involved operations as a compound (multiply-and-
accumulate) form a¼ bcþd; such operations are effi-
ciently implemented in most digital signal processor
(DSPs) using a single clock cycle.

Either with the application of a single or of several of
these methods, a significant reduction of the computa-
tional cost can be achieved, when compared with the
direct implementations of the DCT.

Nevertheless, the algorithms based on factorization of
the kernel matrix have had a particular attention over the
last years, not only due to the universality of their
application, but also because they do not impose any loss
of the resulting precision. In Table 3, it is presented the
computational cost of some of such algorithms (see
further details in [10]). As an example, Feig and Winograd
established a theoretical lower bound on the multiplica-
tion complexity (#mult) of both the 1-D and 2-D N-point
DCT (with N¼ 2n), leading to an absolute minimum of 11
multiplications for the eight-point 1-D implementations
and 88 multiplications for the (8�8)-point 2-D DCT
[26,10,28]:

#mult1-D
¼ 2nþ1

�n�2 ð49Þ

#mult2-D
¼ 2n
ð2nþ1

�n�2Þ ð50Þ

Meanwhile, it was demonstrated that such optimal per-
formance can be achieved by applying Loeffler’s 1-D
eight-point algorithm together with Cho’s 2-D (8�8)-
point processing scheme [28]. Nevertheless, it is worth
noting that most of these rather optimized algorithms

Fig. 6. 2-D DCT basis functions.

Table 3
Computational complexity of several fast DCT algorithms based on

factorization of the kernel matrix.

Algorithm (N ¼ 8) 1-D 2-D

Mults. Sums Mults. Sums

Direct implementation 64 64 4096 4096

Chen (1977) 16 26 256 416

Lee (1984) 12 29 192 464

Leoffler (1989) 11 29 176 464

Chan (1991) 144 464

Kamangar (1982) 128 430

Cho (1991) 96 466

Feig (1992) 94 454

Wu (1998) 88 466
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may also impose some important disadvantages, from a
strict implementation point of view [26]:

� Data addressing is highly irregular, leading to an
additional overhead for address calculations (which is
not included in the performance metrics presented in
Table 3), as well as important cache miss penalties.
� Significant data storage requirements, to accommo-

date temporary results.

As such, many practical implementations usually adopt
simpler but still efficient row-column decompositions.

Meanwhile, with the recent advent of modern graphics
processing units (GPUs), the general-purpose computa-
tion on GPUs (GPGPU) paradigm has gradually been
applied in order to obtain highly parallel implementations
of the DCT [29]. With this programming model, a sig-
nificant number of parallel threads are concurrently
executed, in order to simultaneously process several
blocks of pixels of the image/frame under processing.
Such implementations usually exploit the separability
property and the symmetry characteristics of the DCT
kernel matrix, in order to implement single instruction
multiple data (SIMD) vectorization schemes that make
extensive use of the highly efficient multiplication, addi-
tion and MAC arithmetic units available at these
platforms.

5. Multiplication-convolution property: definition and
applications

Frequently, signal processing functions that directly
operate with the DCT coefficients of an encoded image or
video stream require the application of other more com-
plex properties, besides those presented in Section 2.5.
One of such properties concerns the relation between the
convolution operation and the corresponding point-by-
point multiplication.

The formulation of this type of relations is quite
common in other transform domains. As an example,
the DFT domain component-wise multiplication is widely
used to compute the spatial (or time) domain convolu-
tion, required by many feature extraction and filtering
operations. Nevertheless, a similar relation, but imple-
mented in the DCT-domain, is also required by several
other applications (e.g., linear filtering [30], static image/
video composition [21], etc.). However, although the DCT
is closely related to the DFT, the multiplication-convolu-
tion theorem for the DCT was formulated much after the
corresponding relationship for the DFT. In fact, despite the
several attempts to establish this relation [31], a complete
and more consistent formalization was only presented
relatively recently [23,24,32]. In particular, Martucci [23]
presented a formalized and detailed description of the
convolution operation for the entire family of discrete
sine and cosine transforms. In his presentation, the DCT
and the DST are regarded as special cases of the so called
generalized discrete Fourier transform (GDFT), which
operates on strictly periodic or antiperiodic (see Section
2.1) infinite sequences, with period N. Martucci denoted

such definition as symmetric convolution, since it proved
to be specially suited to convolve symmetrically extended
sequences. In practice, such type of convolution can be
regarded as a conventional convolution sum, that has
been suitably modified to incorporate the implicit sym-
metric extensions of both operands.

In this section, the formulation of the DCT-domain
multiplication-convolution property, in the particular
scope of encoded images and video processing will be
presented. Such property provides the means to imple-
ment several processing functions directly in the encoded
domain, by replacing the spatial-domain pixel-wise mul-
tiplication by a DCT-domain symmetric convolution
operation. A fast computational method to compute such
convolution will be presented in Section 5.3.

5.1. Generic discrete trigonometric transform

The definition of the discrete cosine transform that
was presented in the previous sections corresponds to the
first formulation of the DCT, reported by Ahmed et al. in
1974 [11] and latter categorized by Wang [12,13]. It is
also the most commonly used in image and video stan-
dards. As it was referred in Section 2, several other DTTs
have also been proposed, such as the eight types of DCT
and the eight types of DST defined in Tables 1 and 2
[10,23]. Since the kernel matrices of all these transforms
are orthogonal and invertible, the kernel matrices of their
inverses can be easily obtained by transposing them.

Meanwhile, Martucci [23] proposed a new formulation
for these DTTs, denoted by convolution form. In this formula-
tion, the orthogonality property of the kernel matrices was
waived for most DTT types. Such formulation was shown to
be more appropriate for applying the convolution-multiplica-

tion property than the above orthogonal form, derived by
Wang [12], since it avoids the need for adding any scaling
factors or other weighting functions to the convolution-
multiplication formula. The definition and formulation of
each of these alternative kernel matrices for the DCT ðCÞ and
the DST ðSÞ is presented in Tables 4 and 5 [23,30]. Never-
theless, direct relations between the orthogonal and convo-
lution forms of each DTT can be easily established. As an
example, the kernel matrices C2e and C2e can be related by a
(N�N) diagonal matrix R as C2e ¼RC2e, where Rð0,0Þ ¼
2
ffiffiffiffi
N
p

and Rðm,mÞ ¼
ffiffiffiffiffiffiffi
2N
p

, for m¼ 1, . . . ,ðN�1Þ [30]. Since the
kernel functions of some of these transforms evaluate to zero
for some values of the indices m and i, Martucci rearranged
some of their index ranges in order to avoid null values. As a
consequence, contrasting with the previous definitions pre-
sented in Tables 1 and 2, the index ranges of m and i for some
of these transforms are no longer the same. Nevertheless,
with this alternative formulation there is a direct link
between all DTTs and the GDFT.

The relations between each inverse kernel matrix and
its own (or another) forward kernel matrix, entirely similar
to those that were presented in Eqs. (18)–(25) for the
orthogonal DCT and DST definitions, can also be formu-
lated for these convolution-form transforms. Nevertheless,
it should be noted that the matrix inversion operation can
no longer be implemented through a matrix transposition,
since these definitions are not orthogonal any more.
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Moreover, a scaling factor, given by 1/M, should be applied
to each relation, where M¼2N for even transforms and
M¼2N�1 for odd transforms (e.g., C�1

2e ¼ ð1=MÞC3eÞ [23].

5.2. Definition of the multiplication-convolution property

The multiplication-convolution property relates the
convolution operation of two periodic sequences, defined
in a given trigonometric domain, with the element-by-
element multiplication operation of the corresponding
sequences’ coefficients, defined in their inverse trans-
formed trigonometric domains.

Martucci presented the formulation of this property for
all considered DTTs by stating that the inverse transform,
after element-by-element multiplication, gives the same
result as the convolution of the original sequences [23]:

Xn ¼ eafUng,ebfWng ¼ t�1
c ftafUng � tbfWngg ð51Þ

where Un and Wn are two input sequences of finite length
and Xn is the output convolved sequence. In this expres-
sion, ea and eb are two generic symmetric or anti-sym-
metric extension operators, as defined in Section 2.1, and�
denotes the element-by-element multiplication. The sym-
bol , denotes the symmetric convolution operation,
defined in terms of a conventional convolution sum that
has been suitably modified to incorporate the implicit
symmetric extensions of both operands. The operators ta,
tb and t�1

c define three invertible convolution-form DTTs,
as defined in Table 5, that transform from one trigono-
metric domain to another.

Martucci grouped such relations in several families of
three or four DTTs, whose input and output data sequences

share the same type of symmetry [23]. However, consider-
ing that most image and video standards make use of the
even type-II DCT ðDCT-IIeÞ, characterized by transforming
HSHS symmetric sequences into WSWA sequences (see
Table 1), two particular classes of convolution formulations
are specially relevant, in order to allow the processing of
encoded image/video blocks directly in the DCT-domain:

Class 1: HSHS convolution output; at least one HSHS

input sequence: XHSHS
¼ f ðUHSHS,WÞ.

Class 2: WSWA convolution output; at least one
WSWA input sequence: XWSWA

¼ f ðUWSWA,WÞ.
The main characteristics of such specific relations are

depicted in Table 6, where & and S denote the circular

and the skew-circular convolution operations, respec-
tively. Such particular forms of the symmetric convolu-

tion of two length-M sequences aðnÞ and bðnÞ, with
n¼ 0,1, . . . ,M�1 are defined as

aðnÞ & bðnÞ ¼
Xn

k ¼ 0

aðkÞbðn�kÞþ
XM�1

k ¼ nþ1

aðkÞbðn�kþMÞ

ð52Þ

aðnÞSbðnÞ ¼
Xn

k ¼ 0

aðkÞbðn�kÞ�
XM�1

k ¼ nþ1

aðkÞbðn�kþMÞ ð53Þ

Accordingly, the circular and the skew-circular convolu-
tion operations of two length-M sequences define an
output sequence that is equivalent to the corresponding
period of a periodic convolution of symmetric and anti-
symmetric sequences, respectively, with period M.

Table 4
Properties of the implicit input and output extensions of the convolution forms of the considered discrete sine and cosine transforms.
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The relation stated by the formulation of Class 1 is
particularly useful. By considering, as one of its inputs, a
HSHS symmetric extension to produce another HSHS
sequence, it can be shown that it provides the means
to compute the result of a symmetric convolution opera-
tion of two pixel-domain input sequences by simply

element-by-element multiplying the corresponding
DCT-domain coefficients. By applying such property to
the formulation stated in Eq. (51), the following relation is
obtained:

XHSHS
¼UHSHS & WWSWS

¼ C�1
2e fC2efUg � C1efWgg ð54Þ

Table 5
Definition of the convolution forms of the DCT and DST kernel matrices [23].

DTTa Definition Length Index range

cDCT-I

cDCT-1e
½C1e�m,i ¼ 2x2

ðiÞcos
mip

N

� �
(Nþ1) m, i¼0,1,y,N

cDCT-II

cDCT-2e ½C2e�m,i ¼ 2cos
m iþ1

2

� �
p

N

 !
N m, i¼0,1,y, (N�1)

cDCT-III

cDCT-3e ½C3e�m,i ¼ 2x2
ðiÞcos

m iþ1
2

� �
ip

N

 !
N m, i¼0,1,y, (N�1)

cDCT-IV

cDCT-4e ½C4e�m,i ¼ 2cos
mþ1

2

� �
iþ1

2

� �
p

N

 !
N m, i¼0,1,y, (N�1)

cDCT- V

cDCT-1o ½C1o�m,i ¼ 2x2
ðiÞcos

min

N�1
2

 !
N m, i¼0,1,y, (N�1)

cDCT-VI

cDCT-2o ½C2o�m,i ¼ 2z2
ðiÞcos

m iþ1
2

� �
p

N�1
2

 !
N m, i¼0,1,y, (N�1)

cDCT-VII

cDCT-3o ½C3o�m,i ¼ 2x2
ðiÞcos

m mþ1
2

� �
ip

N�1
2

 !
N m, i¼0,1,y, (N�1)

cDCT-VIII

cDCT-4o ½C4o�m,i ¼ 2cos
mþ1

2

� �
iþ1

2

� �
p

N�1
2

 !
(N�1) m, i¼0,1,y, (N�2)

cDST-I

cDST-1e
½S1e�m,i ¼ 2sin

mip
N

� �
(N�1) m, i¼1,2,y, (N�1)

cDST-II

cDST-2e ½S2e�m,i ¼ 2sin
m iþ1

2

� �
p

N

 !
N m¼1,2,y,N, i¼0,1,y, (N�1)

cDST-III

cDST-3e ½S3e�m,i ¼ 2x2
ðiÞsin

m iþ1
2

� �
ip

N

 !
N m, i¼0,1,y, (N�1), i¼1,2,y,N

cDST-IV

cDST-4e ½S4e�m,i ¼ 2sin
mþ1

2

� �
iþ1

2

� �
p

N

 !
N m, i¼0,1,y, (N�1)

cDST-V

cDST-1o ½S1o �m,i ¼ 2sin
mip
N�1

2

 !
(N�1) m, i¼1,2,y, (N�1)

cDST-VI

cDST-2o ½S2o �m,i ¼ 2sin
m iþ1

2

� �
p

N�1
2

 !
(N�1) m¼1,2,y, (N�1), i¼0,1,y, (N�2)

cDST-VII

cDST-3o ½S3o �m,i ¼ 2sin
m iþ1

2

� �
ip

N�1
2

 !
(N�1) m, i¼0,1,y, (N�2), i¼1,2,y, (N�1)

cDST-VIII

cDST-4o ½S4o �m,i ¼ 2z2
ðiÞsin

mþ1
2

� �
iþ1

2

� �
p

N�1
2

 !
N m, i¼0,1,y, (N�1)

a A prefix ‘c’ has been appended to the denomination of each transform to distinguish these convolution definitions from the orthogonal definitions

defined in Tables 1 and 2.
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If we denote the generic data sequences X and U by
the half-sample symmetrically extended sequences of
pixels hðiÞ and f ðiÞ and the data sequence W by the
whole-sample symmetrically extended sequence of pixels
gðiÞ, the type-II DCT coefficients HðmÞ (corresponding to
the pixels vector hðiÞ) that are obtained by the symmetric
convolution operation of sequences f ðiÞ and gðiÞ, can be
computed by the element-by-element multiplication of
the corresponding convolution form of the even type-II
DCT coefficients FðmÞ and the even type-I DCT coefficients
GðmÞ of sequences f ðiÞ and gðiÞ, respectively:

HðmÞWSWA
¼ C2efhðiÞ

HSHS
g ¼ C2eff

HSHSðiÞ & gWSWSðmÞg

¼ C2eff ðiÞg � C1efgðiÞg

¼ FðmÞ � GðmÞ ð55Þ

As it will be shown in section 6, this property allows the
implementation of linear filtering directly in the trans-
form-domain, by considering a pre-computed matrix
filter given by GðmÞ ¼ C1efgðiÞg.

The relation stated by the formulation of Class 2 is also
particularly useful. By relating two input WSWA sym-
metric extensions to produce one WSWA extension, it can
be shown that it provides the means to implement an
element-by-element multiplication of two pixel-domain
sequences by performing a symmetric convolution of the
corresponding DCT-domain coefficients. In fact, by apply-
ing such property to the formulation stated in Eq. (51), the
following relation is obtained:

XWSWA
¼UWSWA

S WWSWA
¼ C�1

3e fC3efUg � C3efWgg ð56Þ

By recalling the relation between the forward and inverse
definitions of the C2e and the C3e transform kernels,
stated in Eqs. (19) and (20), the above equation comes as
follows:

XWSWA
¼UWSWA

S WWSWA
¼ C2efC�1

2e fUg � C�1
2e fWgg ð57Þ

Under this assumption, if we denote the generic WSWA
data sequences U, W and X by the corresponding con-
volution form of the even type-II DCT coefficients FðmÞ,
GðmÞ and HðmÞ, it comes

HðmÞWSWA
¼ FWSWAðmÞ S GWSWAðmÞ ¼ C2eff ðiÞ � gðiÞg ð58Þ

According to Eq. (58), the DCT coefficients HðmÞ (corre-
sponding to the pixels vector hðiÞ) that are obtained by the
element-by-element multiplication of the pixels sequences
f ðiÞ and gðiÞ, can be computed with a skew-circular convolu-
tion operation of the DCT coefficients FðmÞ and GðmÞ, corres-
ponding to the pixel sequences f ðiÞ and gðiÞ, respectively.

Chang and Messerschmitt [32] presented an equiva-
lent formulation of this definition that directly operates
with the orthogonal form of the even type-II DCT ðDCT-IIeÞ
of the input signals. According to such formulation,
the DCT of hðiÞ can be computed by applying the sym-
metric convolution operation to the DCT coefficients of
the two length-N WSWA sequences F¼DCT-IIeðfÞ and
G¼DCT-IIeðgÞ, as defined as follows:

HðmÞ ¼ FðmÞ,GðmÞ ¼WNðmÞð ~F ðmÞ S ~GðmÞÞ ð59Þ

The vectors ~F ðmÞ and ~GðmÞ correspond to symmetric
length-2N WSWA extended sequences of FðmÞ and GðmÞ,
defined as

~X ðmÞ ¼

0, m¼ 0

X̂ ðN�mÞ, m¼ 1 . . . ðN�1Þ

X̂ ðm�NÞ, m¼N . . . ð2N�1Þ

8><>: ð60Þ

where X̂ ðmÞ ¼ XðmÞ=xðmÞ, with XðmÞ ¼DCT-IIe½xðiÞ� and
xðmÞ as defined in Eq. (13). The skew-circular convolution
S, defined in Eq. (53), is computed as follows:

~F ðmÞ S ~GðmÞ

¼
1ffiffiffiffiffiffiffi
2N
p xðmÞ

Xm

n ¼ 0

~F ðnÞ ~Gðm�nÞ�
X2N�1

n ¼ mþ1

~F ðnÞ ~Gðm�nþ2NÞ

" #
ð61Þ

~F ðmÞ S ~GðmÞ

¼
1ffiffiffiffiffiffiffi
2N
p xðmÞ

X2N�1

n ¼ 0

~F ðnÞ ~Gðmod2Nðm�nÞÞSðm�nÞ

" #
ð62Þ

where

Sðm�nÞ ¼
1, ðm�nÞ 2 0, 2N�1ð Þ½ �

�1, otherwise

(
ð63Þ

and WNðmÞ is a length-N rectangular window, which is
used to extract the representative samples out of the base
period of the convolution result.

The extension of the above definition to the 2-D
domain can be easily formulated as shown in Eq. (64),
where xðmÞ and SðmÞ were defined in Eq. (13) and (63),
respectively, and ~X ðm1,m2Þ is a (2N�2N) symmetric
WSWA extended sequence defined as shown in Eq. (65).

Fðm1,m2ÞSGðm1,m2Þ ¼
1

2N
xðm1Þxðm2Þ

�
X2N�1

n1 ¼ 0

X2N�1

n2 ¼ 0

~F ðn1,n2Þ
~Gðmod2Nðm1�n1Þ,

"

mod2Nðm2�n2ÞÞSðm1�n1ÞSðm2�n2Þ

#
ð64Þ

Table 6
Multiplication-convolution properties of DTT extensions applied in encoded image and video processing.

ea eb Output extension , Input index ranges Output index range ta tb tc

Fn Cn

HSHS WSWS HSHS & 0-N�1 0-N 0-N�1 C2e C1e C2e

WSWA WSWA WSWA S 0-N�1 0-N�1 0-N�1 C3e C3e C3e
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~X ðm1,m2Þ

¼

0, m1 ¼ 0 or m2 ¼ 0

X̂ ðN�m1,N�m2Þ, m1 ¼ 1 . . . ðN�1Þ, m2 ¼ 1 . . . ðN�1Þ

X̂ ðm1�N,N�m2Þ, m1 ¼N . . . ð2N�1Þ, m2 ¼ 1 . . . ðN�1Þ

X̂ ðN�m1,m2�NÞ, m1 ¼ 1 . . . ðN�1Þ, m2 ¼N . . . ð2N�1Þ

X̂ ðm1�N,m2�NÞ, m1, m2 ¼N . . . ð2N�1Þ

8>>>>>><>>>>>>:
ð65Þ

5.3. Fast computation of the convolution operation in the

DCT-domain

By analyzing the definition of the convolution opera-
tion, expressed in Eq. (59)– (63), it can be observed that the
total number of multiplications required to perform the
convolution between two length-N sequences is propor-
tional to ð2NÞ2 ¼ 4N2. By extending this analysis to the 2-D
domain, one can conclude that ½ð2NÞ2�2 ¼ 16N4 multiplica-
tions are required to evaluate the convolution between
two (N�N) bidimensional sequences (see Eq. (64)).

To avoid such computational burden, Shen et al. [33]
proposed a different approach in order to compute the
DCT-domain convolution operation, by exploiting its
symmetry and orthogonality properties. They started
their formulation from the length-N 1-D DCT-II transform
definition, as follows:

XðmÞ ¼
XN�1

i ¼ 0

C2eðm,iÞxðiÞ ð66Þ

where C2eðm,iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=NÞ

p
xðmÞcosðmðiþ 1

2Þp=NÞ, defined in
Table 2, with xðmÞ defined in Eq. (13). Each element of the
pixel-domain sequence xðiÞ can be reconstructed using the
inverse discrete cosine transform (IDCT) as follows:

xðiÞ ¼
XN�1

m ¼ 0

C2eðm,iÞXðmÞ ð67Þ

Hence, each hðiÞ value, obtained by the element-by-
element multiplication between f ðiÞ and gðiÞ, can be
expressed as

hðiÞ ¼ f ðiÞ � gðiÞ

¼
XN�1

m1 ¼ 0

XN�1

m2 ¼ 0

C2eðm1,iÞC2eðm2,iÞFðm1ÞGðm2Þ ð68Þ

where vectors F and G are the discrete cosine transforms
of the pixel-domain sequences f and g, respectively. Since
only these transform data sequences are actually available
from an image or video compressed bitstream, there is a
considerable interest in computing H directly from F and
G. The discrete cosine transform of hðiÞ, expressed as HðmÞ,
is stated from Eq. (66) as follows:

HðmÞ ¼
XN�1

i ¼ 0

C2eðm,iÞhðiÞ ð69Þ

HðmÞ ¼
XN�1

i ¼ 0

C2eðm,iÞ
XN�1

m1 ¼ 0

XN�1

m2 ¼ 0

C2eðm1,iÞC2eðm2,iÞFðm1ÞGðm2Þ

 !
ð70Þ

By performing some simple manipulations, Eq. (70) can be
expressed as

HðmÞ ¼
XN�1

m1 ¼ 0

XN�1

m2 ¼ 0

Wðm,m1,m2ÞFðm1ÞGðm2Þ ð71Þ

where

Wðm,m1,m2Þ ¼
XN�1

i ¼ 0

C2eðm,iÞC2eðm1,iÞC2eðm2,iÞ ð72Þ

Hence, Eq. (71) expresses the DCT-domain convolution
operation corresponding to the spatial-domain pixel-wise
multiplication. Nevertheless, by comparing these two
approaches in what concerns the computational cost, the
pixel-domain approach seems to require significantly less
operations ðOðNÞÞ than the DCT-domain counterpart, which
implies a computational cost proportional to OðN3Þ (disre-
garding the cost of performing two IDCTs and one direct DCT
in the pixel-domain approach). However, by considering that
many high-frequency DCT coefficients of most compressed
image and video streams are zero, the DCT-domain convolu-
tion between F and G requires, in practice, only NF � NG � N

multiplications, where NF and NG represent the number of
nonzero coefficients in F and G, respectively. Consequently,
since only the nonzero DCT coefficients actually need to be
used in the convolution process, the convolution operation
in the DCT-domain may have, in practice, a lower computa-
tional cost than the spatial-domain approach.

Besides these observations, Shen et al. [33] have also
shown that the computation cost inherent to this operation
can still be significantly reduced if the sparse nature of the
Wðm,m1,m2Þmatrix is taken into account. They proved that
each cross product between any two arbitrary elements of F
and G (e.g., Fðm1Þ and Gðm2Þ), contributes to no more than
two different elements HðaÞ and HðbÞ of the resulting DCT
output vector H, where these indexes a and b are given by

a¼

m1þm2 if m1þm2oN

2N�ðm1þm2Þ if m1þm24N

| ðemptyÞ if m1þm2 ¼N

8><>: ð73Þ

and

b¼ jm1�m2j ð74Þ

The proof of this statement comes from the orthogonality
property of the DCT, formulated asXN�1

m ¼ 0

C2eðm,iÞ � C2eðm,jÞ ¼
1, i¼ j

0, iaj

(
ð75Þ

In fact, from Eq. (72),

Wðm,m1,m2Þ ¼
XN�1

i ¼ 0

C2eðm,iÞ½C2eðm1,iÞC2eðm2,iÞ� ð76Þ

By using simple trigonometric relations, it can be shown
that the term C2eðm1,iÞC2eðm2,iÞ of the previous equation
can be formulated as follows:

C2eðm1,iÞC2eðm2,iÞ ¼

ffiffiffiffi
2

N

r
xðm1Þcos

m1 iþ1
2

� �
p

N

 !

�

ffiffiffiffi
2

N

r
xðm2Þcos

m2 iþ1
2

� �
p

N

 !
ð77Þ
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C2eðm1,iÞC2eðm2,iÞ ¼
xðm1Þxðm2Þ

N
cos

ðm1þm2Þ iþ1
2

� �
p

N

 !
þ
xðm1Þxðm2Þ

N
cos

ðm1�m2Þ iþ1
2

� �
p

N

 !
ð78Þ

C2eðm1,iÞC2eðm2,iÞ ¼
xðm1Þxðm2Þ

N

C2eðm1þm2,iÞffiffiffi
2
N

q
xðm1þm2Þ

264 þ
C2eðm1�m2,iÞffiffiffi

2
N

q
xðm1�m2Þ

375
ð79Þ

C2eðm1,iÞC2eðm2,iÞ ¼

ffiffiffiffiffiffiffi
1

2N

r
xðm1Þxðm2Þ

xðm1þm2Þ
C2eðm1þm2,iÞ

þ

ffiffiffiffiffiffiffi
1

2N

r
xðm1Þxðm2Þ

xðm1�m2Þ
C2eðm1�m2,iÞ ð80Þ

Hence, Eq. (76) can be re-written as

Wðm,m1,m2Þ ¼

ffiffiffiffiffiffiffi
1

2N

r
xðm1Þxðm2Þ

xðm1þm2Þ

XN�1

i ¼ 0

C2eðm,iÞC2eðm1þm2,iÞ

þ

ffiffiffiffiffiffiffi
1

2N

r
xðm1Þxðm2Þ

xðm1�m2Þ

XN�1

i ¼ 0

C2eðm,iÞC2eðm1�m2,iÞ ð81Þ

By taking Eq. (75) into account, one concludes that the
first term on the right side of Eq. (81) is non-null
only when m¼m1þm2. Similarly, the second term
will be nonzero when m¼m1�m2. However, since
cosðm1�m2Þ ¼ cosðm2�m1Þ, one realizes that this term
will be nonzero whenever m¼ jm1�m2j. A detailed proof
of this formulation can be found in [33].

Shen et al. also proposed a rather efficient algorithm
for computing HðmÞ, by observing that the entries in
Wðm,m1,m2Þ take only three possible nonzero values:ffiffiffiffiffiffiffiffiffi

1=N
p

and 7
ffiffiffiffiffiffiffiffiffiffiffiffi
1=2N

p
.

(1) If m1 ¼ 0 and m2 ¼ 0 then m¼ ðm1þm2Þ ¼ jm1�m2j ¼

0. From Eqs. (75) and (81), it comes that

Wðm,m1,m2Þ ¼
1ffiffiffiffiffiffiffi
2N
p

ffiffiffiffiffiffiffiffiffi
1=2

p
�
ffiffiffiffiffiffiffiffiffi
1=2

pffiffiffiffiffiffiffiffiffi
1=2

p � 1

þ
1ffiffiffiffiffiffiffi
2N
p

ffiffiffiffiffiffiffiffiffi
1=2

p
�
ffiffiffiffiffiffiffiffiffi
1=2

pffiffiffiffiffiffiffiffiffi
1=2

p � 1 ð82Þ

Wðm,m1,m2Þ ¼ 2
1ffiffiffiffiffiffiffi
2N
p

ffiffiffiffiffiffiffiffiffi
1=2

p
¼

ffiffiffiffi
1

N

r
ð83Þ

(2) If m1 ¼ 0 or m2 ¼ 0, it comes that m¼ ðm1þm2Þ ¼

jm1�m2ja0 and

Wðm,m1,m2Þ ¼
1ffiffiffiffiffiffiffi
2N
p

1 �
ffiffiffiffiffiffiffiffiffi
1=2

p
1

� 1

þ
1ffiffiffiffiffiffiffi
2N
p

1 �
ffiffiffiffiffiffiffiffiffi
1=2

p
1

� 1¼

ffiffiffiffi
1

N

r
ð84Þ

(3) If m1a0 and m2a0, it comes that ðm1þm2Þa
jm1�m2j. Hence, two different cases should be taken
into account: m¼ a or m¼ b (see Eqs. (73) and (74)):

m¼ a :

� If m¼ ðm1þm2ÞoN, then

Wðm,m1,m2Þ ¼
1ffiffiffiffiffiffiffi
2N
p

1:1

1
� 1þ0¼

ffiffiffiffiffiffiffi
1

2N

r
ð85Þ

� If ðm1þm2Þ4N, then m¼ 2N�ðm1þm2Þ; consid-
ering that C2eðm1þm2,iÞ ¼�C2eð2N�ðm1þm2Þ,iÞ,
it comes

Wðm,m1,m2Þ ¼
1ffiffiffiffiffiffiffi
2N
p

1:1

1
� ð�1Þþ0¼�

ffiffiffiffiffiffiffi
1

2N

r
ð86Þ

m¼ b :

� If m¼ jm1�m2ja0, then

Wðm,m1,m2Þ ¼ 0þ
1ffiffiffiffiffiffiffi
2N
p

1:1

1
� 1¼

ffiffiffiffiffiffiffi
1

2N

r
ð87Þ

� If m¼ jm1�m2j ¼ 0, then

Wðm,m1,m2Þ ¼ 0þ
1ffiffiffiffiffiffiffi
2N
p

1:1ffiffiffiffiffiffiffiffiffi
1=2

p � 1¼

ffiffiffiffiffiffiffi
1

2N

r
ð88Þ

The weighting factors W(a,m1,m2) and W(b,m1,m2) for
each cross product F(m1)G(m2), applied in the computa-
tion of the two elements H(a) and H(b) of the resulting
DCT output vector H(m) (see Eqs. (73) and (74)) are
shown in Table 7, with a¼

ffiffiffiffiffiffiffiffiffi
1=N

p
and b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2NÞ

p
. As it

was shown from the previous description, when either
m1 or m2 are zero, the product F(m1)G(m2) contributes to
exactly one output component. Otherwise, at most two
components are required in the evaluation.

By adopting this method, the computational cost is now
reduced to NF�NG�NW multiplications, with NW repre-
senting the number of nonzero W(m,m1,m2) elements for
each fixed m (1 or 2). Actually, this computational cost can
be further reduced by exploiting the symmetry property of
the DCT operation (in particular, the symmetry of the
Wðm,m1,m2Þ matrix) in the mapping of m1, m2 to m, in
order to reduce the number of multiplications required to
compute Eq. (71). In fact, Eq. (71) can be computed as

Table 7

Weighting factors Wða,m1 ,m2Þ and Wðb,m1 ,m2Þ, with N ¼ 8, a and b

given by Eqs. (73) and (74) and a¼
ffiffiffiffiffiffiffiffiffi
1=N

p
and b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2NÞ

p
.

m1 m2

0 1 2 3 4 5 6 7

0 a, a a, a a, a a, a a, a a, a a, a a, a
1 a, a b, a b, b b, b b, b b, b b, b –, b
2 a, a b, b b, a b, b b, b b, b –, b �b, a
3 a, a b, b b, b b, a b, b –, b �b, a �b, a
4 a, a b, b b, b b, b –, a �b, a �b, a �b, a
5 a, a b, b b, b –, b �b, a �b, a �b, a �b, a
6 a, a b, b –, b �b, a �b, a �b, a �b, a �b, a
7 a, a –, b �b, a �b, a �b, a �b, a �b, a �b, a
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follows [33]:

HðmÞ ¼
XN�2

m1 ¼ 0

XN�1

m2 ¼ m1þ1

Wðm,m1,m2Þ½Fðm1Þ Gðm2Þ

þFðm2Þ Gðm1Þ�þ
XN�1

m1 ¼ 0

Wðm,m1,m1ÞFðm1ÞGðm1Þ

ð89Þ

Hence, if Fðm1ÞGðm2Þ and Fðm2ÞGðm1Þ are both nonzero,
their multiplications with the weighting factor Wðm,m1,m2Þ

can still be merged, thus reducing the amount of required
multiplications.

By adopting an entirely similar procedure, the formulation
described above to fasten the computation of the convolution
operation in the DCT-domain can be easily extended to the
2-D case. It can be shown [33] that, in such a case, each
element of the W matrix takes on one of five possible
nonzero values: 1/N, 71/(2N) and 7

ffiffiffi
2
p

=ð2NÞ. Each cross
product contributes to no more than four output values. Just
like the 1-D case, this fast algorithm provides the means to
significantly reduce the computational load; instead of 16N4

multiplications, only about 4N4 operations are now required.

6. Example applications of the DCT properties for
image/video transcoding

Some of the most common applications of the several
DCT properties that were formulated in the previous sec-
tions are frequently found in the implementation of trans-
coding architectures, in order to process pre-encoded image
or video data directly in the compressed DCT-domain. With
such schemes, not only is avoided (i) the calculation of the
inverse DCT of each block, (ii) the implementation of the

intended processing (in the pixel-domain), and (iii) the
calculation of the transform operation over the resulting
pixels block back to the DCT-domain; but they also fre-
quently take advantage of the presence of a large number of
null quantized DCT coefficients to heavily reduce the data
manipulation rate. Furthermore, a quality improvement is
often achieved mainly due to the absence of arithmetic
round-off errors introduced by the DCT and IDCT computa-
tional blocks, leading to average peak signal to noise ratio
(PSNR) gains as high as 1–2 dB.

In this section, three particular applications of the
above stated properties of the even type-II DCT will be
illustrated: linear filtering, image masking/segmentation

and video composition in the transform domain.

6.1. Linear filtering

The multiplication-convolution property of the even
type-II DCT provides a systematic way to convolve linear
phase symmetric FIR filters with symmetrically extended
pixel data [23]. According to Eq. (55), the element-by-
element multiplication of the DCT coefficients X(m) of a
given image/video block by an appropriate filter matrix
H(m) is equivalent to the computation of a symmetric
(circular) convolution operation between a half-sample
symmetrically extended sequence xHSHSðiÞ of the N-pixel
data sequence xðiÞ and a whole-sample symmetrically
extended sequence hWSWSðiÞ of the L-tap filter sequence
hðiÞ (see Fig. 7(a)):

YðmÞ ¼ XðmÞ � HðmÞ ¼ C2efx
HSHSðiÞ & hWSWSðiÞg ð90Þ

where X(m) and Y(m) are the coefficients of the convolu-
tion form type-II DCT (e.g., XðmÞ ¼ C2e½xðiÞ�). The length L of

i
0 N - 1 M- 1

i
0 M- 1

x

i
0 N - 1

i
0L - 1

2
L - 1

2

i
0 N - 1

i
0 N - 1

i
0 N - 1

Fig. 7. Application of the multiplication–convolution property in the implementation of linear filtering in the transform-domain.

N. Roma, L. Sousa / Signal Processing 91 (2011) 2443–2464 2461



Author's personal copy

the effective filter must satisfy LrM, where M¼ 2N is the
period of the sequence being convolved xHSHSðiÞ, which
means that L=2rN.

According to this formulation [23], hðiÞ can be regarded
as an L-tap zero-phase FIR filter (spanning the interval
i¼�ðL�1Þ=2, . . . ,ðL�1Þ=2), which is convolved with ~xðiÞ,
a HSHS symmetric extention of xðiÞ performed at both of
its ends, to the extent needed to perform the summation
(see Fig. 7(b)):

yðiÞ ¼ hðiÞ � ~xðiÞ ¼
XðL�1Þ=2

k ¼ �ðL�1Þ=2

hðkÞ ~xði�kÞ ð91Þ

with i¼ 0,1, . . . ,N�1.
In practice, the matrix filter HðmÞ, used in the transform-

domain element-by-element multiplication of Eq. (90), is
obtained by computing the convolution form of the even
type-I DCT of sequence hrðiÞ, defined as the right-half of
the filter sequence hðiÞ (see Fig. 7(c)):

hrðiÞ ¼
hðiÞ, i¼ 0,1, . . . ,ðL�1Þ=2

0, i¼ ðLþ1Þ=2, . . . ,N�1

(
ð92Þ

Nevertheless, a particular attention should be taken to the
involved index ranges. Since the input and output index
ranges of the N-point C1e are both i,m¼ 0, . . . ,N (see
Tables 5 and 6), an appropriate adjustment of its index
ranges to the interval 0, . . . ,ðN�1Þ should be considered in
the implementation of the transform-domain operation:

YðmÞ ¼ XðmÞ � ½dC1e hr
� ð93Þ

where dC1e is the truncation of the matrix kernel C1e to
index ranges m,i¼ 0, . . . ,ðN�1Þ. It is also worth noting that
although the C1e transform is not commonly adopted by
current image and video standards, HðmÞ corresponds to a
fixed filter matrix, which can be pre-computed and stored
in memory.

Fig. 7 exemplifies the application of this method in the
1-D domain, considering N¼8 and L¼7. In Fig. 8, it is
illustrated the usage of this multiplication-convolution
property in the scope of image processing in the com-
pressed domain. In particular, it is depicted the imple-
mentation of a low-pass FIR filtering scheme (with
impulse response defined by h(i,j)) as a simple element-
by-element multiplication of the DCT encoded blocks and
the corresponding filter DCT coefficients (Hrðm,nÞ).

Kresch and Merhav [30] presented an extensive study
about the application of this formulation by using matrix
diagonalization properties that may be applied not only
for symmetric and anti-symmetric filtering, but also for
the implementation of non-symmetric filters (see [30] for
more details).

6.2. Image masking and segmentation

Another application of the multiplication-convolution
property is found in the implementation of masking
schemes directly in the transform-domain, applied in
transcoding structures for the insertion of non-regular
shaped visible objects (such as logos and subtitles) in pre-
encoded image and video sequences [21].

When stated in the pixel-domain, object insertion can
be performed by combining the pixels of the background
scene bði,jÞ with the object ‘ði,jÞ to obtain the output
image f ði,jÞ. This operation is usually expressed as a linear
combination of the form

f ði,jÞ ¼ ½ayði,jÞ� � ‘ði,jÞþ½1�ayði,jÞ� � bði,jÞ ð94Þ

where a denotes the transparency level, � represents the
element-by-element multiplication and yði,jÞ is a segmen-
tation mask, required to isolate the pixels corresponding
to the background scene from the pixels of the object to
be inserted, and defined as yði,jÞ ¼ 1 for (i,j) in the fore-
ground object area and set to zero otherwise. Hence,
Eq. (94) becomes

f ði,jÞ ¼fði,jÞþcði,jÞ � bði,jÞ ð95Þ

In this equation, fði,jÞ and cði,jÞ represent constant
matrices that are solely dependent on the considered
foreground object. Consequently, they can be pre-com-
puted and stored in memory.

This pixel-domain insertion algorithm can be directly
applied in the compressed domain by using the pre-
viously stated linearity and multiplication–convolution
properties of the DCT. In fact, since ½ayði,jÞ� and
½1�ayði,jÞ� of Eq. (94) are not scalars, the element-by-
element multiplications will have to be replaced by skew-
circular convolutions in the DCT-domain. Consequently,
the application of Eq. (95) in the compressed DCT-domain
is stated as follows:

Fðm,nÞ ¼Fðm,nÞþCðm,nÞSBðm,nÞ ð96Þ

Fig. 8. Application of the multiplication–convolution property to implement a compressed DCT-domain low-pass FIR filtering scheme.
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where F ¼DCTðf Þ, F¼DCTðfÞ, C¼DCTðcÞ, B¼DCTðbÞ
and the convolution operation S is implemented as
stated in Eq. (64). In Fig. 9(c), it is illustrated the result
of the application of this method, considering the fore-
ground object illustrated in Fig. 9(a) using a¼ 0:5.

6.3. Video composition

Picture-in-picture (PIP) and picture-and-picture (PAP)
video composition schemes, where two or more sequences
obtained from multiple video sources are combined into a
single scene, either at the same scale, side-by-side (PAP),
or by scaling all but one of the sequences (foreground
scenes) and inserting them over the background scene
(PIP), are often required by surveillance systems, multi-
point videoconferencing and interactive network video. In
particular, the PAP compositing layout can be regarded as
a particular case of the PIP layout (with unitary scaling
factor). These manipulations can be implemented either at
the client side or at the server side. Nevertheless, specia-
lized network transcoding systems at the server side not
only provide significant advantages in terms of bandwidth,
but also allow the implementation of much simpler and
cost effective receiver terminal devices. As a consequence,
several different transcoding approaches, either in the
pixel-domain or in the DCT-domain, have been proposed
[34]. One possible architecture of a DCT-domain PIP/PAP
compositing transcoder is presented in Fig. 10.

The composition of one or more foreground sequences
with the background video sequence at arbitrary posi-
tions may lead to mismatches of the corresponding
encoding block grids [32], as it is illustrated in Fig. 11.

In such a situation, each (N�N) DCT coefficients block of
the involved foreground scenes (Yi) has to be re-segmen-
ted and translated with respect to the block structure of
the background scene (X). The output block B will then
contain the contributions from each original scene:

B¼X�
X

i

Xsegi
þ
X

i

Ysegi
ð97Þ

The mathematical model to obtain the DCT coefficients
of a given extracted and translated sub-block ðYsegi

Þ can
be defined with the linearity properties described in
Section 2.5 [32,34]. According to the example shown in
Fig. 11(a):

Xseg ¼Hx
1 � X �H

x
2, Yseg ¼Hy

1 � Y �H
y
2 ð98Þ

where H¼DCTðhÞ are pre-computed and stored matrices,

with hx
1 ¼

0
0

0
Ih

h i
hx

2 ¼
0
0

0
Iw

h i
, hy

1 ¼
0
Ih

0
0

h i
, hy

2 ¼

h
0
0

Iw
0

i
.

Ih and Iw are (h� h) and (w�w) identity matrices, where
h and w are the number of rows and columns to be
extracted, respectively.

In Fig. 11(b), it is presented the result of the applica-
tion of this method by considering a single foreground
video sequence that is scaled by a factor of 3 and
positioned over a CIF format background sequence at
coordinates ðl,cÞ ¼ ð11,223Þ. This particular setup corre-
sponds to a common layout used by many television
applications [34].

7. Conclusion

In this tutorial it was presented a general overview
about discrete trigonometric transforms, with a special
emphasis to the presentation of the main properties and
characteristics of the even type-II discrete cosine trans-
form. This transform has been particularly adopted in
image and video standards, due to its high suitability to
exploit inter-pixel redundancies, rendering excellent dec-
orrelation for most image data. Moreover, since this
particular DCT efficiently packs the energy content in a
reduced number of low-frequency coefficients, it also
provides the capability to discard some high-frequency
coefficients without significantly degrading the output

Fig. 9. Transform-domain object insertion. (a) Foreground object ‘ði,jÞ.

(b) Segmentation mask yði,jÞ. (c) Output scene.
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Fig. 10. DCT-domain PIP/PAP compositing transcoder architecture.
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image quality. With this implicit coarse quantization
scheme, a significant reduction of the resulting signal
entropy is usually provided, as well as a consequent
reduction of the average number of required bits to
encode each pixel.

By following the context usually adopted in the scope
of encoded image and video processing, the formulation
of many of the presented properties was based on the
boundary characteristics of the data sequences under
processing and on the implicit symmetric extensions of
those sequences outside the original domain. Among the
several properties that have been presented, a special
attention was devoted to the formalization of the multi-
plication-convolution property. This property is often
used by linear filtering [30] and static composition appli-
cations [21] and concerns the relation between the sym-
metric convolution operation, implemented in one
trigonometric domain, and the corresponding element-
by-element multiplication, implemented in the corre-
sponding inverse trigonometric domain.
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Fig. 11. DCT-domain PIP/PAP compositing. (a) Segmentation and translation layout. (b) PIP composition example.
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