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Abstract—Designing accelerating kernels is a comprehensive
task that requires efficient coupling of hardware and software. In
particular, the structures responsible for handling data transfers
in multi-core accelerator-based systems play a crucial role in
the resulting performance. This paper proposes a data streaming
accelerator framework that provides efficient data management
facilities that are easily tailored for any application and data
pattern. This is achieved through an innovative and fully pro-
grammable data management structure, implemented with two
granularity levels. The obtained results show that the proposed
framework is capable of efficient address generation and data
fetch for complex streaming data patterns, while significantly
reducing the size occupied by the pattern description. A large
matrices multiplication case-study, based on a streaming architec-
ture with four sub-block multiplication cores, demonstrates that,
by enabling data re-use, the proposed framework increases the
available bandwidth by 4.2×, resulting in a performance speedup
of 2.1×. Furthermore, it reduces the Host memory requirements
and its intervention by more than 40×.

Keywords—Stream Computing, Programmable Data (pre-)fetch
Controller, Many-Core Heterogeneous Architectures

I. INTRODUCTION

One of the most critical aspects in the development of
custom multi-core accelerators is in the handling of data
transfers between the various Processing Elements (PEs). The
architecture of the memory subsystem and of the communi-
cation data channels has a significant impact on the memory
bandwidth available to the PEs, and therefore on the over-
all system performance. In fact, an efficient management of
the data transfers is important not only due to PEs having
different processing characteristics and capabilities, but also
because applications often present distinct memory footprints
and bandwidth requirements.

While traditional solutions (such as hierarchical cache
structures) try to reduce the data access latency, they do not
allow exploiting all levels of available data parallelism. As a
result, there was an increasing interest in stream computation
models, which focuses on decoupling communication from
computation, by exposing an additional level of concurrency.
This type of concurrency is especially important in hardware
accelerators, due to the slow communication channels (e.g.,
buses) typically used to connect with the host device. More-
over, while regular streaming patterns are easy to handle,
complex memory accesses require more radical strategies to
avoid long memory access times and to keep a high system
performance. Also, when data streams produced by a given
kernel are consumed by several other kernels and at different
paces, intermediate buffering is required. This further increases
the pressure on the memory subsystem. To minimize the

impact of these problems, dedicated Address Generation Units
(AGUs) can be employed, which (pre-)fetch the data with the
specific pattern required by the target application. Moreover,
data reuse mechanisms can reduce the number of effective
memory accesses by sharing some of the streams through
alternative channels or by rearranging a stream before it is
consumed by the next kernel.

The HotStream accelerator framework herein proposed
consists of a Host Interface Bridge (HIB), and a Multi-Core
Processing Engine (MCPE), which is capable of simultane-
ously processing an arbitrary number of stream-based kernels.
These two major elements provide pattern-based data accesses
with two granularity levels: a coarse-grained data access from
the Host to the MCPE, to maximize the transmission effi-
ciency; and a fine-grained data access between PEs within
the MCPE, to maximize data reuse. The latter makes use of
an innovative Data Fetch Controller (DFC), which extracts
the data streams from an address-based shared memory, by
using access patterns of arbitrary complexity. Moreover, in-
stead of accomplishing the pattern description by traditional
descriptor-based methods, the proposed framework relies on an
innovative micro-coded approach, supported on a compact but
rich Instruction Set Architecture (ISA). This allows efficiently
describing data streams with complex memory access patterns,
without compromising the address issuing rate.

The evaluation of the proposed framework shows that
the embedded DFCs offer significant memory savings on the
pattern description code. Compared to the existing related art,
the proposed solution can achieve code size reductions above
1500×, with identical address generation rates. Considering
block-based matrix multiplication as case study, experimental
results suggest that the data-reuse offered by the proposed
HotStream framework allow achieving a 2× speed-up, rela-
tively to the state of the art implementation. Moreover, the
proposed solution is able to reduce the Host intervention in
the acceleration by up to 45×, while requiring significantly
less Host buffering.

II. RELATED WORK

The popularity increase of stream-computing models have
led to the development of specialized architectures that tackle
the efficient fetching and management of data streams. Exam-
ples such as the IMAGINE stream processor [1][2] and the
MERRICAM stream-based supercomputer [3][4], which are
based on clusters of PEs and Stream Register Files (SRF),
offer simple data pre-fetch mechanisms which, in the case of
the IMAGINE processor, transfer entire streams between the
SRF and an off-chip SDRAM. As stated by the authors, only
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Fig. 1: Structure and organization overview of the HotStream framework

50% of the optimal performance is achieved, which motivates
the development of more efficient data management structures.

Having also identified this bottleneck, other researchers
have focused on improving the generation of data streams.
After demonstrating that dataflow computing can lead to
significant performance improvements in a wide range of
applications, Pell et al [5] developed the MaxCompiler, which
maps the computing kernels to an FPGA. To generate the
streams, a set of commands is provided, which instructs the
developed tool-chain to automatically generate simple 1D, 2D
or 3D data patterns. However, more complex patterns can
only be described by using multiple commands, which is both
time-consuming and results in a large configuration overhead.
The same shortcomings are experienced by the Programmable
Pattern-based Memory Controller (PPMC) [6], which eases the
programming of regular 1D, 2D or 3D patterns through a set of
function calls, integrated in an API. Again, this solution falls
short when long and/or complex patterns must be described.

The above data fetching solutions are actually very similar
to modern DMA engines. For example, the Xilinx AXI DMA
controller offers independent read and write channels that
provide high-bandwidth communication between memory and
PEs [7]. With its scatter-gather capabilities and the support for
2D transfers, it can actually be used as a pattern-generator.
The configuration is done by setting up a chain of descriptors
that are then read by the engine, making this a rather similar
solution to the PPMC [6]. Moreover, multichannel support is
offered through stream identifiers that accompany the data.

Both the PPMC and the AXI DMA are designed for
moving large and regular data chunks and can fall short with
complex access patterns.In contrast, the DFC herein proposed
is capable of handling arbitrary patterns of varying complexity
without significant penalties. Also, since the pattern description
is not descriptor-based, there is essentially no limit to the
length of the pattern to be generated.

III. HOTSTREAM FRAMEWORK

The proposed HotStream framework, depicted in Fig. 1, is
a comprehensive solution for the development of stream-based
architectures, composed of a software layer and a hardware
layer. The software layer integrates: i) a convenient API that
allows the programmer to specify any arbitrarily complex
streaming patterns, as well as ii) a Device Driver to map the
user-specified memory buffers, allocated on the user space,
to the physical address space. This device driver also serves
as the data transfer peer, on the software side, that assures
appropriate integration mechanisms with the hardware layer.

The hardware layer is composed of: i) the Host Interface

Bridge (HIB), to handle data transfers between the host pro-
cessor and the accelerator; and ii) the Multi-Core Processing
Engine (MCPE), to manage the data streams between the PEs
within the accelerator. The proposed architecture is designed
to be fully scalable and adaptable (by supporting a variable
number of data streams and PEs), as well as flexible enough
to support applications with different and arbitrarily complex
streaming patterns with minimal effort. Moreover, one of
its main features is the support for efficient data fetch and
reuse within the accelerator architecture. This is achieved
by providing two distinct levels of data access patterns. The
first level is implemented within the HIB and allows simpler
patterns of a more coarse-grained nature like those supported
by the PPMC [6]. The second and more fine-grained level
of granularity is implemented within the MCPE and supports
more complex streaming patterns.

A. Host Interface Bridge

Copying data from the Host processor memory system to
the MCPE is a complex procedure. It requires the intervention
of: i) the device driver, on the host side; and ii) a specific
hardware structure, the HIB, that is able to autonomously issue
data transfers (read/write requests) between the main memory
of the host and the MCPE. The HIB mainly consists of two
modules: the Data Stream Bridge (DSB), responsible for inter-
facing with the host GPP (e.g., using the PCIe protocol), and
the Direct Memory Access (DMA) controller, which manages
the transfer of data between the host GPP and the hardware
accelerator using coarse-grained data access patterns.

Despite the implementation efficiency of the entities in-
volved in a single data transaction, an unavoidable overhead
is expected, which limits the effective channel bandwidth.
While transferring large data chunks lead to a more efficient
data channel utilization, complex streaming patterns often
require accessing data that is not laid out linearly in the Host
memory, but spread over a regular pattern of contiguous blocks
separated by non-unit strides. In such cases, transferring the
smallest data chunk that composes each set of contiguous
blocks results in a waste of bandwidth. Thus, the proposed
solution implements coarse-grained patterned data transfers
between the Host and the MCPE, such that the HIB transfers
only useful data but in large data chunks. This is accomplished
by setting up the DMA controller to transfer each of the
contiguous data blocks that constitute the pattern, according
to the regions mapped by the device driver. The set up phase
consists of creating scatter-gather DMA descriptors, arranged
in a chain, and defining the starting position and size of the
memory blocks to be read from or written to.

As the number of contiguous blocks described by a given
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pattern increases, the number of required descriptors also
increases in the same proportion. Hence, in order to minimize
the impact of this increase, the simple and traditional DMA
engine could be replaced by a more efficient alternative capable
of performing, at least, the most regular 2D memory accesses,
i.e., each memory transaction can be described by the tuple
{OFFSET, HSIZE, STRIDE, VSIZE}, specifying the starting
address of the first memory block, the size of each contiguous
block, the starting position of the next contiguous block with
relation to the previous, and the number of repetitions of the
two previous parameters, respectively. This reduces the total
number of descriptors needed to describe a given pattern.

While the size and nature of the patterns applied to the data
transfers between the Host and the MCPE are only limited by
the available space to store the descriptors, these should not
be too fine-grained in order to avoid a detrimental impact on
throughput. Therefore, in the proposed HotStream Framework,
the API provided to the programmer includes a special call to
gather an arbitrary sequence of data segments stored across the
memory space into one, larger and contiguous buffer that can
then be transferred at once. This gathering operation takes a
non-negligible time to complete, thus it is only useful when the
incurred penalty does not exceed the overheads of transferring
the smaller non-contiguous individual data chunks.

B. Multi-Core Processing Engine

The MCPE is where the actual computation takes place and
is designed to support multiple independent and heterogeneous
cores that collaboratively execute the multiple streaming ker-
nels. Moreover, each kernel can span several Cores, to further
exploit data parallelism. As depicted in Fig. 1, it consists of:
i) multiple Cores, each composed of a PE, responsible for the
computation, and one or more Data Fetch Controllers (DFCs),
responsible for data management; ii) a high-speed Backplane
Interconnection, able to dynamically route the data streams be-
tween the Cores, promoting the required data reusage schemes;
iii) a shared memory, which allows rearranging the stream
access patterns and data reutilization; and iv) a Data Stream
Switch (DSS), to route the data streams coming from the host
to either the backplane or to the shared memory. Accordingly,
the data streams transferred from the host via the DSS or those
produced by an individual Core can be routed to other Cores
in the MCPE via the backplane interconnection or stored in
the shared memory for later reuse.

The high-speed stream-oriented Backplane Interconnection
must ensure that each Core can communicate with any other
with a minimum routing delay. In addition, multiple con-
nections may need to be active at any given time. Taking
into account these requirements, a high-speed interconnection
network is required. Sophisticated Network-on-Chip (NoC)
solutions are likely to provide higher system scalability and
better support for heterogeneity among the Cores in terms of
data interfaces. However, one must also ensure that the amount
of hardware resources required by the interconnection network
is minimal, saving space for extra computing Cores.

The shared memory is particularly important in appli-
cations that require multiple access patterns or when data
reusage is exploited between the PEs. Whenever a stream
needs to be rearranged before it is consumed by another Core
or streamed back to the Host machine, it can be buffered

on the shared memory. As such, the shared memory must
be accessible by all the Cores. A simple work-conserving
round-robin arbitration mechanism makes sure that all read and
write requests are served with equal priority and no starvation
occurs. In addition, being an address-based element in an
otherwise stream-oriented architecture, reading and writing
operations require the inbound or outbound data streams to
be accompanied by a stream of addresses. The generation
of these addresses is carried out by the DFC unit, within
each Core (further detailed in Section IV). These generate
fine-grained data access patterns through small programmable
units directly coupled with the PEs (one for each outbound
or inbound stream). It results in pattern descriptions using
much less memory space than the typical descriptor-based
data-fetching mechanisms in the state-of-the-art approaches,
such as the PPMC [6].

IV. DATA FETCH CONTROLLERS AND SHARED MEMORY

The DFCs are undoubtedly the central and the most im-
portant elements of the MCPE. These units are responsible
for single-handedly extracting the data from the (address-
based) shared memory with arbitrarily complex patterns, and
for forming the data streams that are presented to each Core’s
PE, while the latter remains completely oblivious as to the
origin of the data that it is consuming. In particular, each DFC
is responsible for generating the corresponding read and write
data transactions, according to the defined streaming pattern.

Each DFC has its own instruction memory that is pro-
grammed from the Host machine through a compact but
complete ISA, by using a custom assembler with syntax val-
idation. This instruction memory can be dynamically updated
and its size represents the only limitation to the complexity
of the considered pattern. However, as long-running patterns
can be described by common loop structures, the size of the
instruction data is kept relatively small and independent of the
extension of the pattern. In addition, the DFCs are optimized
to take advantage of the features provided by the considered
bus protocol (e.g. AMBA AXI), such as burst commands to
minimize the inevitable overheads.

In order to handle these tasks, the DFCs incorporate
two fundamental blocks that operate together: i) the Address
Generation Core (AGC); and ii) a custom small-footprint 16-
bit microcontroller (Micro16). The AGC is a small specialized
processor that autonomously generates addresses in a linear,
2D or 3D fashion. On the other hand, the Micro16 micro-
controller is capable of generating combinations of linear,
2D and 3D patterns that are sequentially requested to the
AGC in order to construct more complex stream patterns.
The two units interact via a small and shared register file,
the External Register File (ERF). This way, while the AGC
is generating a sequence of addresses, the microcontroller
concurrently modifies the ERF with all the required parameters
for the next regular pattern. The combination of these two
units makes it possible to describe complex patterns, without
compromising the address generation rate.

A. Address Generation Core (AGC)

The AGC effectively emulates traditional nested loops, as
found on most programming languages, by specifying, for each
loop level, the number of iterations to be executed. Each level
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Fig. 2: AGC in a 3-level nested loop configuration.

is implemented through a Loopcontrol unit that independently
counts down from a starting value to zero, generating an inter-
rupt upon completion. In addition, each of these Loopcontrol
units holds the necessary parameters to determine the starting
address of the AGC during the next iteration of the loop level.
By combining multiple Loopcontrol units in a daisy chain
structure and by routing the interrupt signal of the innermost
levels to the enable input of the outermost ones, an N-level
nested loop can be designed. Figure 2 illustrates the required
configuration to implement a 3-level loop. It should be noted
that, regardless of the involved Loopcontrol units, the AGC
is able to automatically configure all the necessary internal
connections, based on a Generic VHDL parameter.

The body of the loop is emulated by the Loopbody unit,
which generates one address per clock cycle based on three
basic configuration parameters: increment, multiplication, and
initial value. This trio makes it possible to generate any affine
linear access pattern, i.e., patterns of the type yn=yn−1×m+i,
which represent the great majority of the indexing needed by
most scientific applications [8]. Hence, the Loopbody address
generation is controlled by the associated Loopcontrol units,
which interrupt the former whenever the iteration limit in any
of the nested loop levels is reached. This results in a two clock
cycle delay to compute the next starting address.

Considering that any delay in the data fetching procedure
may potentially slow down multiple PEs, it is of the utmost
importance for the address generation to be essentially continu-
ous. While this is a reasonable requirement when the supported
patterns are restricted to 2D or even 3D sequential accesses,
supporting arbitrarily complex patterns with changing starting
positions requires a more sophisticated approach. Therefore,
for more complex patterns the configuration of the AGC
relies on a double-buffered scheme, which is accomplished by
duplicating the configuration registers used by the Loopbody
and Loopcontrol units. With this architecture, the Micro16 is
able to compute and configure the loop parameters for the
following portions of the pattern, concurrently with the AGC
execution, i.e., without interrupting the address generation.

B. Micro16 microcontroller

The Micro16 is a custom microcontroller designed to
configure and control the AGC. While the overall architecture
follows a single-cycle RISC, it also comprises customized
features aimed at easing the integration with the AGC. One
such feature is the incorporation of an ERF, which is composed
of the local register files from the Loopcontrol and Loopbody
units within the AGC. Despite its external nature, any of the
registers can be used as sources and destinations during ALU-
based operations, with no additional latency. Additionally, two
control bits (Wait and Done) are provided, to inform the

Micro16 whether the ERF is ready to be modified and to report
the AGC that the new parameters are ready to be used.

In light of the custom nature of the machine code defined
by the Micro16 ISA, an assembler was developed to assist its
programming. This tool offers syntax validation, label support,
and overflow checking (when loading immediate constants
either in base-10 or base-16). While the performance of the
DFC is not directly influenced by these features, they greatly
facilitate the pattern specification process, thereby increasing
the ease-of-use of the HotStream framework, which is un-
doubtedly a key aspect of the proposed system. By taking ad-
vantage of such user-friendly assembly language, configuring a
pattern is just a matter of populating the ERF with the relevant
parameters and using the custom interface instructions to start
and stop the address generation.

C. Access to the Shared Memory

The buffering capabilities of the HotStream framework are
ensured by a single large-capacity shared memory, usually
implemented by an external DRAM. This leads to complex
timing characteristics, as the need for periodic refreshing and
the cost of charging of data lines result in variable access
times for arbitrary memory positions. To maximize bandwidth,
modern Double Data Rate (DDR) memories offer special
access modes to maximize the achievable data throughput.
These are essentially burst-based accesses that retrieve a fixed
number of sequential data beats from the DDR with one
single command. Exploiting burst-based accesses to the DDR
memory is, therefore, paramount to get the most out of the
available memory bandwidth. Accordingly, the address stream
that is generated by the developed AGC was shaped with this
particular objective in mind.

As an arbitrary number of cores may be requesting data
from the shared memory, a scalable and robust arbitration
solution is also required. This may be achieved by adopting
any of the currently available industrial-standard interfaces,
specifically targeted at high-performance systems, e.g., the
AXI4 specification, maintained by ARM, or the CoreConnect
bus architecture, defined by IBM.

To comply with the specific bus architecture adopted for
each particular application, a Bus Master Controller (BMC)
was developed and integrated in the streaming framework.
The purpose of this unit is to perform the conversion between
the stream-based interface used by the DFC and the Memory-
Mapped (MM) protocol used by the bus interface (see Fig. 3).
To avoid placing additional pressure on the shared memory,
each bus controller features a Stream-to-MM and an MM-to-
Stream interface. These independent channels are arbitrated
internally so that only one stream accesses the bus at a time.

This BMC also comprises convenient write and read con-
trol units, featuring appropriate internal buffers that enable the
issuing of incremental burst-based transactions and, in the case
of the latter, perform data pre-fetching by requesting data that
will be buffered until the Core is ready to consume it (see
Fig. 3). To accomplish this, both the write and read control
units consume the address stream up until the point that an
increment pattern is broken. In the particular case of the write
channel, no data can be output until it is actually marked valid
by the Core. Thus, a synchronizer block is also used, which
forces the data and address stream to flow at the same pace.
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V. HOTSTREAM ARCHITECTURE EVALUATION

The proposed HotStream framework represents a generic
design that can be implemented in different environments. To
evaluate the proposed framework, a Virtex 7 FPGA connected
to a PC through a PCI Express interface was chosen as a proto-
typing vehicle. This configuration includes a high-throughput
interface between the Host processor and the MCPE in the
form of a PCI Express ×8 connection, and a high-performance
DDR 3 memory device, with 512 MB of capacity and a peak
bandwidth of 12.8 GB/s. The HIB module was implemented
by a Xilinx AXI DMA IP core and the Backplane Interconnect
was implemented by means of a high-speed network in a
crossbar topology, where all the network interfaces use the
AXI4 protocol. The obtained results were compared with the
most relevant related art, namely the PPMC [6]. However,
since the PPMC implementation was not publicly available,
the Xilinx AXI DMA engine was used as baseline, as its
functionalities are identical to the PPMC [6].

A. Resources Overhead

Considering the strong focus on scalability that was given
to the proposed streaming framework, it is paramount that its
core elements do not significantly impact the overall resource
usage. This goal was achieved by designing the DFC with
a low area footprint in mind, as this is bound to be the
most replicated unit in this framework. Table I summarizes
the resource utilization by the key elements composing the
framework when implemented on a XC7VX485T Virtex-7
FPGA. It is important to note that the DFC is fully configurable
with relation to the number of Loopcontrol units used. Thus,
its resource occupation varies with the chosen configuration,
as shown in Table I where DFC configurations with 1 to 3
Loopcontrol units are presented.

It is important to note that, while the resource utilization of
the Backplane Interconnect (implemented in a Crossbar topol-
ogy) seems rather high, it represents a worst-case scenario,
configured to support full connectivity and 16 independent
nodes. On the other hand, each DFC accounts for only 1.6%

TABLE I: Resource usage for each component in the MCPE (16 cores)

Available DFC Streaming Backplane
HIB

Resources (1-3 Loopcontrol units) Bus (AXI) Interconnect

Slices 75,900 1,014 - 1,216 3,273 4,875 6,848
LUTs 303,600 1,743 - 2,225 5,305 8,882 16,208
Regs 607,200 1,553 - 2141 4,922 8,656 13,288
DSPs 2,800 4 0 0 0
BRAM 3,090 1 0 0 6

Max.Freq. 160 MHz 167 MHz 146 MHz 136 MHz

of the total resources available in the device, which ensures the
addressed scalability goal. While competitive for FPGA-based
designs, the maximum operating frequency of the DFC is lim-
ited by the simple pipelined nature of the used microcontroller.
By adopting a more aggressively optimized architecture, higher
processing frequencies can be achieved.

B. Stream Generation Efficiency

Given the relation between the complexity and nature of
the considered patterns and the address generation rate and size
of the pattern descriptor, a proper evaluation of the proposed
DFC and overall framework can only be achieved through a
representative benchmark. Therefore, five distinct patterns of
varying complexity were considered: Linear; Tiled; Diagonal;
Zig-Zag; and Greek Cross. While the first two are usually
found in a wide range of applications, the remaining three
are somewhat more exotic in nature. Nevertheless, they are
still of great importance in the context of stream-computing:
the Diagonal access pattern is extensively used by the Smith-
Waterman algorithm for DNA sequences alignment [9]; the
Zig-Zag scanning is a key element in the entropy encoding of
the AC coefficients in the JPEG and MPEG standards [10]; and
the Greek Cross is often used by a vast class of diamond search
motion estimation algorithms adopted in video encoding [11].
Figure 4 shows a representation of the described access pat-
terns, including their size and evolution over time, as well as
the pseudo-code for their generation using the proposed API.

The considered metrics for this evaluation are the size
of code to describe each pattern and the address generation
rate, defined as the average number of addresses generated per
clock cycle. As stated above, the AXI DMA engine is used as
the baseline for this comparison, representing the characteris-
tics of most descriptor-based pattern generation mechanisms
that have been proposed in the related art. Table II depicts
the obtained results. It can be concluded that the proposed
controller achieves a similar address generation rate but with
significantly lower code-memory requirements. Moreover, the
related art does not offer any form of scalability, as the size of
the descriptor increases with the length of the pattern. This is
particularly emphasized for the Diagonal and Cross patterns:
for an 1024×1024 pattern, the conventional DMA descriptor
occupies about 1500× more memory than the proposed DFC
approach. For larger matrices this discrepancy will be even
greater. Due to the larger code size, the conventional DMA
approach requires either a significantly larger internal memory
or an external processor to dynamically generate the patterns,
which further increases the required hardware resources and
decreases the attained performance.

For some cases such as the Zig-Zag access pattern, the
execution time of the pattern description code in the DFC
cannot be entirely overlapped with the address generation,

TABLE II: Address generation rate and descriptor size of the considered access
patterns (the pattern length results from the parameterization in Fig. 4)

Pattern Length
DFC DMA

Size Addr/cycle Size Addr/cycle

Linear 1024 24 1 32 0.96

Tiled 128×721 40 0.99 32 1
Diagonal 1024×1024 44 1 65k 1
Zig-Zag 8×8 48 (132*) 0.36 (0.71*) 480 0.63
Cross 1024×1024 132 0.89 228k 1

* Values obtained after loop unrolling 1 Within a memory block of 512×512
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Fig. 4: Access patterns, with varying complexity degrees, adopted for the DFC evaluation

resulting in a low address generation rate. To circumvent this
problem, the loop that sets the AGC parameters for each
diagonal can be unrolled, at the cost of a slightly larger code
size. This technique effectively provides a duplication of the
address generation rate for the Zig-Zag pattern (values marked
with an * in the table).

Naturally, the actual performance gains that can be
achieved by accelerating a given data streaming application
with the proposed framework depend not only on the amount
of parallelism that can be exploited, but also on the involved
computational complexity (i.e., the number of operations per-
formed on a single data element). The latter is especially
important, as it effectively defines the amount of data reuse
that can take place within the framework. In order to provide
an insight of the speed-up magnitudes that can be expected
by utilizing the HotStream framework, the following section
presents a case study for the particular case of the block-
based matrix multiplication. While this is a relatively simple
example, the discussed concepts are general enough to be
applied to more complex applications.

VI. CASE STUDY: MATRIX MULTIPLICATION

In this section, a block-based matrix multiplication example
is used to evaluate and compare the proposed framework
with other usual approaches based on hardware accelerators.
The proposed framework provides efficient data streaming
mechanisms between the host and the accelerating hardware, as
well as extensive data (re-)usage and (pre-)fetching capabilities
within the MCPE. This increases the effective data bandwidth
available to each processing core and maximizes the processing
throughput. In contrast, traditional implementations use a host
GPP or a conventional DMA engine to centralize the data
management, at a detrimental cost of being limited by the data
bandwidth of the underlying communication interface between
the host and the accelerating hardware.

Block-based matrix multiplication, is typically used be-
cause it improves data locality and allows operating on matri-
ces much greater than would be possible if the multiplication
was performed in a single step. The considered implementation
is divided into two steps: i) the multiplication of the sub-
blocks; and ii) the accumulation (reduction) step, to compose
the final matrix with the computed partial sub-matrices [12].

Three different approaches were considered for this eval-
uation. The first, hereinafter denoted as conventional, sim-
ply streams the matrix data over the PCI Express link into
the accelerator, where a single matrix multiplication core is
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Fig. 5: HotStream implementation of the block multiplication algorithm, with
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on the shared memory to overlap communication with computation

consuming the incoming data and producing the results that
are streamed back to the Host. The second approach, which
we refer to as conventional+buffering, features an additional
memory in the accelerator, which is large enough to buffer one
of the input matrices, so that it can be reused over the course
of the entire computation. Finally, the third approach makes
use of the HotStream framework, which maximizes the data
re-usage by including reduction (accumulation) modules on the
MCPE that run concurrently with the multiplication cores (see
Figure 5), as well as overlapping the data communication with
the computation by employing double-buffering techniques. It
should be noted that to implementing a 4096×4096 matrix
multiplication with 32×32 sub-blocks, a 128:1 reduction step
is required. This is achieved by using two addition kernels: one
to perform a 16:1 reduction and the other to perform an 8:1
reduction. Thus, while the conventional approaches perform
the reduction step on the host CPU, the proposed framework
only streams the final resulting matrix back to the Host.

In addition to these three basic implementations, corre-
sponding parallel versions were considered, by replicating the
structure depicted in Fig. 5. The level of exploited parallelism
is limited either by the available hardware resources or by the
data bandwidth capacity of the communication channels.

A. Computing Cores

Since the main focus of this case study is on the HotStream
framework and not on the matrix multiplication cores, off-
the-shelf Xilinx IP Cores were used to implement both the
matrix multiplication and the accumulation cores. To make the
comparison fair, the same multiplication units are used in the
conventional solutions. These soft cores run at a conservative
frequency of 100 MHz, support matrices of up to 32 × 32,
and output a 2 byte matrix element per clock cycle, after
a significant initial latency (although it is effectively hidden
by the large data set that composes the stream). Therefore, a
constant rate of 100 MOps (Million Operations per Second) is
maintained by each core.
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Fig. 6: Roofline model for the matrix multiplication example: Cx and Hx
denote the actual performance of the Conventional and HotStream implemen-
tations, respectively; while the conventional solutions C2× and C4×, with 2×
and 4× parallelism, respectively, are limited by the PCIe link (communication-
bounded), all other implementations are computation-bounded

B. Roofline Model

To evaluate the available design space and correlate the
exploited processing performance with the throughput of the
involved communication channels, the Roofline model [13]
was applied to the considered case-study. Figure 6 depicts
the peak performance of the conventional implementations,
using parallelism levels of 1×, 2× and 4×, which result from
using 1, 2 or 4 Multiplication Cores, respectively, to implement
the matrix multiplication kernel (data parallelism). For the
1× parallelism level, the conventional solution is limited by
the matrix multiplication XILINX IP Core performance. By
increasing the number of cores to 2 or 4, 2× or 4× parallelism
can be achieved. However, these implementations become
limited by the PCIe, thus resulting in a performance of only
190 MOps, i.e, a speed-up of only 1.9 with 4× parallelism.

It is possible to increase the communication roofline and
overcome the previous limitation by simply enabling data
re-use within the accelerator. Accordingly, by just applying
the proposed HotStream framework to implement the same
kernels, a speed-up of about 2.1 is achieved, corresponding
to a performance of 400 MOps. However, the HotStream
framework also allows to easily develop more aggressive
solutions that use addition kernels to perform the sub-block
accumulation on the accelerator. This has the advantage of
increasing the accelerator operational intensity from 0.5 op-
erations per byte (OPS/Byte) to 1.5 OPS/Byte. By using the
Xilinx IP Cores to also implement sub-block matrix addition,
it is possible to observe a peak performance of 300 MOps
for the dataflow illustrated in Fig. 5. Furthermore, this value
can still be increased if data parallelism is added to this
implementation: by replicating each of the kernels in Fig. 5
4×, a peak performance of 1200 MOps is observed (see the
HotStream roofline with 4× parallelism in Fig. 6).

C. Performance and Memory Usage

Another key advantage of the HotStream framework when
compared to conventional solutions is the reduction of data
traffic on the PCI Express link. These savings can be rather
significant for large data sets, allowing the application to run
faster while reducing the intervention of the Host GPP. In
fact, as the amount of transferred data over the PCI Express
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Fig. 8: Core scalability of the three matrix multiplication implementations

connection decreases, so does the number of DMA descriptors
that must be setup by the Host. While this operation can be
overlapped with the actual data transfer, it wastes valuable Host
processing time. Moreover, the accelerator computation time is
also improved when utilizing the HotStream framework, as the
processing Cores benefit from the increased throughput of the
shared memory, when compared to the PCI Express link. Thus,
the overall throughput is less likely to become communication
bound, as it occurs in the conventional solutions with a
parallelism level of 2× or greater. Figure 7 depicts the execu-
tion times stripped into different communication/computation
domains for the considered matrix multiplication implemen-
tations, using a 4096×4096 matrix. To achieve a comparable
performance to what is possible with the proposed HotStream
framework, the conventional implementations must be able to
completely overlap communication with computation. How-
ever, this comes at the cost of an higher intervention of the
Host GPP, to manage the communication with the accelerator.
Figure 7 clearly shows that the HotStream implementation is
able to reduce the Host processor occupation by 45× for a
4096×4096 matrix multiplication.

The three bars on the left of Fig. 8 represent single-
kernel configurations of the three considered implementations.
In this particular setup, the total execution time of the con-
ventional+buffering implementation is very similar to the one
provided by the HotStream implementation (whose Host pro-
cessing time is not considered, since it can be overlapped with
the computation). The slight performance gap that is observed
in the conventional+buffering implementation is mainly due to
the overhead introduced by the need to perform the reduction
step in the Host. For the considered 4096×4096 matrix multi-
plication, this step corresponds to more than 2×109 operations,
which take about 486 ms to execute in a state of the art Intel
Core i7-3770K@3.5 GHz (8 MB of L3 cache). Furthermore,
as was concluded from the conducted Roofline analysis (see
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Fig. 9: Host memory requirements for matrix multiplication implementations

subsection VI-B), the HotStream implementation is never
communication bounded, whereas the conventional approaches
become so at 2× parallelism. This is well demonstrated in the
remaining columns of the graph, where almost linear speed-up
values are achieved with the proposed framework and not with
the conventional ones.

The last fundamental parameter that was considered refers
to the memory that is required in the host to store the matrices
and intermediate results. This is a very important scalability
measure, as it effectively determines the maximum matrix
size that can be handled by the accelerator. It is expected
that all implementations (except the HotStream solution) fall
short in this domain. In particular, the conventional solutions
require a Host buffer that is several times larger than the whole
matrix size, in order to hold all the block-based intermediate
results of the multiplication operation. As depicted in Fig. 9,
for 4096 × 4096 matrices, the conventional implementations
require storing the full input and output matrices, as well as
an additional 4GB buffer to store the intermediate results. In
contrast with the HotStream implementation, the matrix size is
only limited by the total capacity of the Host memory, which
must be capable of holding the three full matrices, i.e., 96MB,
leading to a 42× memory requirement reduction. Naturally, to
enable data re-use within the accelerator, the shared memory
must be large enough to hold three sub-blocks of the input
and output matrices, as well as a small subset of extra sub-
blocks, that guarantee the overlapping of the communication
and computation. This is easily achieved with the 512MB of
DDR memory available on the Virtex 7 FPGA board.

Finally, the scaling of the operation for larger matrices can
be considered. The conventional implementations are not able
to multiply 8192×8192 matrices, since a buffer of about 32
GB would be needed. In contrast, less than 1 GB is required
with the proposed framework (storing of the input and output
matrices), clearly demonstrating the ability of the HotStream
framework to scale and deal with large data sets.

VII. CONCLUSIONS

This paper proposes the HotStream framework, featuring a
novel architecture for the development of efficient and high-
performance stream-based accelerators. When compared to
existing pattern generation mechanisms, such as the PPMC [6],
the HotStream framework proposes programmable Data Fetch
Controller structures to implement fine-grained pattern descrip-
tions. It provides considerable gains in terms of the hardware
resources, as well as in what concerns the storage requirements

of the pattern description code. This is achieved without any
imposed compromise in the address issuing rate, while still
allowing for a compact and simple pattern description code.

While the HotStream framework was designed to be plat-
form independent, it was prototyped in a Virtex 7 development
board, to properly evaluate the proposed solution. A block-
based matrix multiplication, operating over large matrix sizes,
was adopted as the evaluation case-study. Experimental results
show that conventional solutions that do not exploit data-reuse
can be easily constrained by the PCIe communication link.
On the other hand, by using the proposed framework, it is
possible to increase the core available bandwidth by 4.2× thus
leading to a 2.1 performance speedup in a 4× data parallelism
approach. Furthermore, by easing the implementation of more
complex solutions, further speed-ups can still be achieved. In
particular, it allows to implement the matrix reduction step
directly on the accelerator and to alleviate the computational
requirements of the Host processor. The final solution allows
for a reduction in Host Memory requirements by 42×, conse-
quently allowing for processing much larger matrices.
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