
System-Level Prototyping Framework for

Heterogeneous Multi-Core Architecture applied to

Biological Sequence Analysis

Nuno Roma

Instituto Superior Técnico / INESC-ID

Rua Alves Redol, 9 - 1000-029 Lisboa, Portugal

Email: Nuno.Roma@inesc-id.pt

Pedro Magalhães

Instituto Superior Técnico / INESC-ID

Rua Alves Redol, 9 - 1000-029 Lisboa, Portugal

Abstract—An event-driven prototyping and simulation frame-
work to support the design and early development stages of an
heterogeneous multi-core processing architecture is presented in
this manuscript. The main focus of this parallel structure is to
efficiently execute a set of widely used bio-informatics algorithms
for DNA sequences alignment and processing. The conceived
framework was entirely developed using the SystemC description
language and allows a full parametrization of the prototyped
multi-core architecture, such as the amount of computing nodes,
the effective alignment throughput of each node, and the capacity
and access time of the memory devices. The presented experimen-
tal results demonstrate that the conceived framework provides
the system designer with a very useful preliminary evaluation of
the prototyped architecture. In particular, the included evaluation
demonstrates the relation between the number and performance
of the computing nodes and the resulting alignment performance
gain (speedup), as well as the inherent bus contention losses in
the shared resources (bus and shared memory).

I. INTRODUCTION

With the latest developments in computer architecture, mod-

ern computational systems are often composed by multiple

processors, memories and dedicated hardware structures (ac-

celerators) integrated either in embedded systems or even in

System on Chip (SoC) devices. However, as the complexity of

these systems increases and the design time is shortened due to

market demands, it is extremely important to thoroughly pro-

totype these systems before their design achieves the manufac-

turing process. Furthermore, several difficulties usually arise in

the pre-design stage, when the system’s characteristics need to

be specified before it is actually implemented. Not rarely, the

system specification may be incomplete and inconsistent, and

often there is not any feasible way to verify the correctness of

such specification [1], [2].

All these facts have pushed the usage of hardware de-

scription languages (e.g. VHDL and Verilog) and of system

description languages (e.g. SystemC) [3] a lot further, in order

to make them applicable to system design and behavioral

simulation. With such development frameworks, the designers

are immediately able to benefit from some of the advantages

traditionally offered by programming languages. Firstly, they

provide the control and data abstraction layers that are nec-

essary to develop compact and efficient system descriptions,

allowing to divide the project into pieces and to separate

them in a logical way, in order to allow each member of

the development team to concentrate on each module design.

Secondly, they allow to effectively and accurately simulate

and prototype complex systems containing both hardware

and software components. Finally, they usually provide the

designers with the same developing environment that it is

usually offered by state of the art programming frameworks

and tools, thus significantly improving the efficiency of the

design stage [3].

In particular, the SystemC description language was built

based on standard C++, by extending the language with

specific class libraries, and by providing an event-driven

simulation kernel in C++. With this environment, the designer

is able to simulate concurrent processes using plain C++

syntax. Moreover, SystemC processes can communicate in a

simulated real-time environment, by using signals of all data

types offered by C++ and some additional ones offered by

the SystemC library, as well as those that are user defined.

In certain aspects, SystemC deliberately mimics VHDL and

Verilog hardware description languages, but is more aptly

described as a system-level modeling language.

By taking advantage of these computer-aided design tools,

several processing structures have already been extensively

simulated and prototyped by using this language specifica-

tion [4], [5], allowing a preliminary identification and an

early correction of design flaws in the prototyped designs.

In particular, it was already demonstrated the viability of

using this design approach to accurately prototype complex

interconnection structures to sustain the implementation of

high-performance parallel processing architectures [6].

In this scope, an integrated simulation and prototyping

framework targeting the design of an optimized heterogeneous

multi-core architecture applied to biological sequence analysis

is presented in this paper. When compared with current general

purpose Central Processing Units (CPUs), this dedicated and

heterogeneous parallel architecture will allow to significantly

accelerate the execution of a broad set of highly demanded

algorithms for biological and genome analysis, such as De-

oxyribonucleic acid (DNA) alignment and mapping.

II. PROTOTYPING AND SIMULATION FRAMEWORK

The design and definition of a dedicated parallel platform

usually comprises several distinct and correlated phases:

Phase 1- Initial specification of the parallel processing struc-

ture, comprising the enumeration of the several

elements (computing nodes, memory devices, buses,

etc.) and their interconnection topology;

Phase 2- Preliminary evaluation of the requirements of the

several elements and identification of possible con-

tention points, targeting a given scalability potential;

Phase 3- Definition of the internal architecture of the several

processing nodes, memories and bus infrastructures,

according to the requisites evaluated in Phase 2;

Phase 4- Formal parallel programming of the targeted set of

algorithms in the conceived parallel structure;

Phase 5- Final evaluation of the conceived system.

Accordingly, the main goal of the presented framework is to

provide an integrated prototyping and simulation environment

to support the evaluation procedures corresponding to Phase 2

of this design cycle, targeting a specific heterogeneous multi-

core processing structure for bio-informatics applications. In

particular, considering the co-existence of several processing

nodes that will have to communicate and cooperate with

each other, the main aim of this simulator is to prototype

and evaluate a broad set of characteristics in a very early

development stage. This will influence the final processor

design, in order to achieve the desired performance and

offered scalability potential in what concerns the number of

instantiated processing nodes. Among this set of evaluated

characteristics, it is worth mentioning:

• Number of computing nodes;

• Minimum processing throughput to be offered by the

several computing nodes;

• Data-transfer throughput of the shared memory device;

• Arbitration policy to access the shared resources.

With the gathered information, it will be possible to prosecute

with the formal definition of the several elements of the multi-

core structure, namely, the selection of the internal architecture

of the computational nodes, the definition of the communica-

tion structures, the selection of the most appropriate memory

devices, etc.

Due to the higher abstraction level that is considered in this

developing stage, the implementation of such a prototyping

framework follows a pure transactional level approach, where

the conducted simulations provide feedback about the main

events that concurrently take place inside the processing units,

memories, buses, etc. Fig. 1 illustrates the several components

that integrate the developed system. Two co-existing parts

can be identified. The first one is the simulation environment,

which contains the simulated device and the modules that are

responsible to support the programmer during and at the end

of the simulation (monitor and stimulus). The second one is

the simulated device, which incorporates the actual processing

��� Arbiter

Communication Hub

Monitor

Master
Shared

Memory Simulated

Device

DNA
Stimulus

Slave

0

Memory

Slave

1

Memory

Slave

2

Memory

Slave

N-1

Memory

Local Memory

Simulation

Environment

Log

Fig. 1. Simulation framework block diagram.

units, memory devices and communication infrastructure. All

of them are meant to be configured and simulated.

A. Simulation Environment

The simulation environment is composed by the stimulus

and the monitor modules. These will be used by the program-

mer in order to: i) provide the data to be processed by the

simulated device, and ii) monitor its activity. The simulated

device can be seen as an independent module, that is inserted

into the simulation framework for the specific purpose of

testing and evaluation.

Stimulus Module - The stimulus module is the starter of

the system. When the operation of the simulator is initiated,

the stimulus module is the only one that is awake, except for

the shared memory that is always active and only reacts to

write and read operations. Its job is focused on providing the

system with test data.

Monitor Module - The monitor is in charge of tracing the

status of the simulated device. The computing devices/nodes

involved in this operation are the master and slave nodes.

Every time a module changes its status, an event is sent to the

monitor and recorded in a log file. The status of each module

changes depending on the operation that is going through. In

particular, the simulated processing nodes can be in one of the

following five states:

• Yield status;

• Read status;

• Write status;

• Executing status;

• Communication waiting status.

B. Simulated Device

The simulated device is composed of one master processor,

a variable number of slave processors, one shared memory,

one communication hub to interconnect all the modules, and

a mailbox message exchange system connecting all the nodes.

In the following, it will be presented a brief description of

each device.

Master - The master node is the manager of the simulated

device. It sends commands to the slave nodes and they answer

back with the corresponding results. This way, all the data

that is produced in the device is a consequence of a set of

commands issued by the master node.

In order to improve the efficiency of the communication in-

frastructure, the master node is always aware of the commands

that were sent to each slave. When a command is sent to a

slave, this one is considered as busy until an answer message

arrives, with the results of the ordered command. Hence, the

slaves will receive new commands only when they are not

busy and as long as there is still some data to be processed.

Slave - The slave nodes are in charge of most of the

computational demanding job carried out by this prototyped

multi-core system. Nevertheless, their job is characterized by a

passive position, since they only start working after receiving

commands from the master node.

Memory - Besides the scratchpad local memory that is

available in each of the slaves and master nodes, the simulated

device also has a built-in shared global memory, which is

used for data transfer between the master and the slaves.

This memory can be regarded as a DNA data repository,

where the sequences are stored before being transferred to the

slave devices’ local memory, where they will be subsequently

processed.

Communication Hub - The communication hub is the

entity that makes data transfers possible within the simulated

device. It is the bridge for data and command messages traffic

between the master, the slaves and the shared memory. Master

and slave nodes use it as an interface to access the shared

memory and to send messages between each other. Its internal

implementation (single/multiple-bus paths, crossbar switch,

Network on Chip (NoC), etc.) can be adjusted to the target

application needs.

Mailboxes - While the data under processing is transferred

from one processor to another via the shared memory, the

command messages are sent and received through an individ-

ual mailbox that is attached to each processing node. Such

messages usually represent commands that the master node

sends to the slaves. Therefore, these messages tend to be

short and contain only important parameters that are used

by the receiving processor to execute a specific operation.

This way, command messages often transport address and size

parameters, so that the receiving processor can subsequently

read the intended data from the shared memory and execute

the related tasks from the implemented algorithm.

A final note is worth mentioning concerning the addressing

space that is seen by each processing node of this multi-

core system. Every node (master or slave) is able to address

the system’s shared memory, its own internal local memory

and its own mailbox. The shared memory, with an exclusive

access policy defined by an arbiter, is mapped within the first

half of the addressing space and is usually used to exchange

data between nodes. Consequently, these addresses are seen by

all the computing nodes of the system. The local scratchpad

memory of each device, used during the execution of the

000...0h

FFF...Fh

800...0h

SHARED Memory

Address Range

LOCAL Memory

Address Range

�������	
����� ����

empty

empty

Controlled by

an Arbiter

���	���	
�����

�����

Fig. 2. Considered addressing space in each processing node.

intended processing algorithm, is addressed starting from the

second half of the addressing map. Finally, the last positions

of the addressing space are used to access the local mailbox,

required to transfer command messages. Fig. 2 shows the

addressing space that is made available to each node. The

dimension of the addressing space that is considered by this

prototyping framework is highly configurable, depending on

the requisites of the considered simulation and evaluation.

III. FRAMEWORK CLASS STRUCTURE

The whole prototyping framework was implemented using

SystemC description language, adopting a programming style

that considered a careful hierarchy of classes and methods,

and by extensively exploiting inheritance mechanisms among

the several modules of the system.

In particular, the stimulus module and the master and slave

nodes of the simulated device module perform common actions

in the framework, such as reading/writing data from/to the

shared memory through the communication hub or send-

ing/receiving command messages to other nodes. Their main

cycle is constantly checking for new commands and reacts

accordingly. As a consequence, the structure of their source

code is similar and was implemented with a common class:

ModuleStruct. Its source code is divided into four parts:

Ports - It includes three types of ports: i) a clock input

port, used to keep the main_action cycle of the module

running; ii) a communication interface, used to read and write

data; and iii) a monitor port, representing the channel used to

keep the monitor up with the status of the module.

Constructor - The constructor of the module incorporates

the main settings that are established during modules initial-

ization. Some examples of such settings are the size and access

time of its internal memory, a message counter of the received

messages (used for log purposes) and the capacity of each

node’s mailbox.

Methods - The main_action is the procedure that is

constantly active within the module, checking for tasks that

need to be attended. The msgRecv_process method is

fired every time the module receives a command message.

The check_incoming_message is run inside the main

cycle, to check whether there are command messages that

have not yet been fulfilled. The msgSend_process method

takes the responsibility for sending command messages. The

access to the local/shared memory device is implemented

with the read_data and write_data methods. Finally,

the log_status method is responsible for reporting to the

monitor the status of the module whenever there is some

change.

Class variables - Among the set of variables declared

within each module, there is an internal local memory,

represented by mem, which is characterized by the param-

eters mem_size and mem_delay, regarding to its size

and access time, respectively. The my_id variable spec-

ifies the id of the module. The mailbox of each node

is implemented through an sc_fifo data structure, pro-

vided by SystemC. The first and last addresses of the in-

ternal memory are defined by LOCAL_MEM_ADDRESS and

LOCAL_MEM_ADDRESS_RANGE, respectively.

Another important method that is present in both the master

and slave nodes is the one where the user of the prototyping

platform will be able to introduce the actual program of the

processing algorithm that should be executed by each of these

nodes. Such program, implemented in C/C++ programming

language, will invoke the several provided methods to: i)

read/write from/to the local and shared memory devices;

ii) send/receive command messages through the respective

mailbox. Besides these programs, the user should also supply

a parameter that represents the processing time that models

the execution of each step of the implemented algorithm. The

value assigned to such parameter is tightly related to the type

of architecture (and corresponding throughput) being modeled

for the master and slave nodes.

IV. MODULES IMPLEMENTATION

A. Stimulus

The stimulus first mission is to fill the shared memory

with the data-set to be processed. This procedure is done via

three different stages: i) reads the data from the input file; ii)

writes the data in the shared memory; and iii) fills the address

value where the data-set was saved in memory in the master’s

local structure data, together with an unique identifier. This

information will be used by the master to locate in the memory

the data-set to be processed. This process is repeated for every

data instance that is read from the input file(s).

The process of starting the simulation of the simulated

device is done via 2 steps: the first step is to wake up the

slaves and monitor modules, and the second step is to wake up

the master module, by unlocking its main_action method.

B. Monitor

The monitor structure is completely based on dedicated

interfaces to the modules of the simulated device. All modules,

except the shared memory, use these monitor’s interfaces, so

that the entire activity of the system is tracked down.

A start port is used only once, when the stimulus wakes

up the monitor. This event triggers the activate thread,

so that it can start receiving log events from the simulated

device by using its log method. Through this channel, the

simulated device’s modules are able to report the monitor its

status changes at the specific time that they occur.

In addition to registering the status tracking in a log

file, the monitor also stores all the log data in a local

array (OP_TABLE). This table stores the identification, sta-

tus, start/end time-stamps and duration of every status that

each module has been through the simulation. This way, the

programmer may easily perform statistical calculations during

and/or at the end of the simulation.

C. Simulated Device

1) Master: The master implementation inherits most of the

ModuleStruct class structure (see section III), although

some of its methods are locally implemented. Its main action

procedure is constantly checking for events and tasks that

need to be performed. In this case, it concerns the arrival of

messages and the distribution of the data-set under processing

to the several slave nodes.

Furthermore, it is also in charge of managing the several

slave nodes. To accomplish this task, it keeps a two-dimension

array which stores the identifier of each slave and its cur-

rent condition: free or busy. Each time a slave finishes its

processing or initiates its computation, its status is changed

accordingly. This slave management procedure is accom-

plished through three dedicated methods: next_destiny,

isjobFree and finishjob.

2) Slave: Just like the master, the slave structure is entirely

built on ModuleStruct class. The only difference is a

variable (work_time), which parametrizes the time that such

node should take to execute each step of the data processing

algorithm, according to the considered execution model.

The main_action process is permanently active and its

job is to check for incoming messages. Usually, the execution

of each received command requires transferring data from the

shared memory into the local memory, processing it according

to the command, writing the result back in the shared memory

and informing the master about the completion of the job.

3) Memory Devices: Memory is a key point of the system,

since it is the principal communication means between the

master and the slaves. The prototyped architecture includes

several memory units, such as the shared memory, the in-

ternal local memory of each slave/master node (see Fig. 1)

and their corresponding mailboxes. All these memories are

fully parametrized in the parameters file of the prototyping

framework, in what concerns their capacity, read/write access

times, etc. Likewise, the capacity of the mailboxes is defined

through a set of constants.

Either the shared memory or the local memories residing in

the master and slave nodes were implemented with a vector of

characters within the same memory_unit class, which also

provides suitable read/write methods. In order to perform these

operations, it is necessary to provide the parameters regarding

to the address where the data will be read (written) from (to)

and the length of the corresponding data.

4) Communication Hub: As it was referred before, the

communication hub was structured in order to allow the im-

plementation of a wide set of communication infrastructures,

including single or multiple-bus paths, crossbar switches,

NoCs, etc.. This allows to easily adapt the prototyped platform

to the needs of the underlying application. In the presented

prototype, it was considered the implementation of a single

bus communication link, in order to evaluate its influence in

the resulting scalability of the multi-core architecture.

The bus module (see Fig. 1) is composed by a main action

method and built-in ports that communicate with all the nodes

within the simulated device. Every node that requests the

access to the bus has to be previously granted by an arbiter.

For such purpose, the arbiter has a built-in interface that allows

the bus to query the status of every node that places a request

in the bus.

The bus module has three independent queues implemented

with the SystemC sc_fifo data type. Each one is used to

store the requests according to their priority (high, normal

and low). When a node requests the access to the bus and

is not granted to access it, it is inserted into the queue that

corresponds to its assigned priority. Hence, as long as high

priority requests exist, the normal and low priority requests

will not be attended. Mailbox messages are always transmitted

with the highest priority. Whenever the main action of the bus

is executed, a routine check is run in all the request queues,

executed by the arbitrate method provided by the arbiter.

The is_owner method is used by the bus to ask the arbiter

if a specific node is owning the bus at a given instant. Every

time a new request arrives at the bus, the arbiter is inquired

about the status of the requester node, so that the request may

or may not be immediately attended or inserted into the queue

line. The ownership of the bus is executed in two steps: i) the

bus queries the arbiter about the current owner; ii) only if there

is not any current owner will the requester node be allowed

to become the new owner of the bus.

V. CASE-STUDY: DNA SEQUENCE ALIGNMENT

Among the vast set of algorithms and tools extensively

adopted to process and analyze biological sequence data

(e.g. DNA and proteins), the Smith-Waterman (SW) dynamic

programming algorithm [7] is widely used to determine the

optimal local alignment between two given sequences. Con-

sidering any two strings S1 and S2 of an alphabet ε with sizes

n and m, respectively, the local alignment of strings S1 and S2

reveals which pair of sub-strings of S1 and S2 optimally align,

such that no other pairs of sub-strings have a higher alignment

score. Let G(i, j) represent the best alignment score between a

suffix of strings S1[1..i] and a suffix of string S2[1..j]. The SW
algorithm allows the computation of G(n,m), by recursively

calculating G(i, j), which will reveal the highest alignment

score between the sub-strings of strings S1 and S2.

TABLE I
EXAMPLE OF AN ALIGNMENT SCORE MATRIX.

0 1 2 3 4 5 6 7 8 9 10 11 12

G ø A A T G C C A T T G A C

0 ø 0 0 0 0 0 0 0 0 0 0 0 0 0

1 C 0 0 0 0 0 3 3 0 0 0 0 0 3

2 A 0 3 3 0 0 0 2 6 2 0 0 3 0

3 G 0 0 2 2 3 0 0 2 5 1 3 0 2

4 C 0 0 0 1 1 6 3 0 1 4 0 2 3

5 C 0 0 0 0 0 4 9 5 1 0 3 0 5

6 T 0 0 0 3 0 0 5 8 8 4 0 2 1

7 C 0 0 0 0 2 3 3 4 7 7 3 0 5

8 G 0 0 0 0 3 1 2 2 3 6 10 6 2

9 C 0 0 0 0 0 6 4 1 1 2 6 9 9

10 T 0 0 0 3 0 2 5 3 4 4 2 5 8

The recursive relation to calculate the local alignment score

G(i, j) is given by Eq. 1, where Sbc(S1(i), S2(j)) denotes the
substitution score value obtained by aligning character S1(i)
against character S2(j) and α represents the gap penalty cost.

An example of an alignment score matrix is shown in Table I.

The substitution scores are usually positive for characters that

match, thus denoting some similarity level between them.

Mismatching characters may have either positive or negative

scores, depending on the alignment type that is being per-

formed.

G(i, j) = max

G(i− 1, j − 1) + Sbc(S1(i), S2(j)),
G(i− 1, j)− α,

G(i, j − 1)− α,

0

G(i, 0) = G(0, j) = 0
(1)

The main difficulty to efficiently implement this algorithm is

concerned with the strict data dependencies in the computation

of the several cells of the score matrix, as defined in Eq. 1,

since each cell depends on the score obtained for its upper,

left and upper-left neighbors. Such difficulty, allied with the

tremendous demand for efficient processing structures, has

pushed the development of several architectures specifically

optimized for the implementation of this algorithm [8] and nat-

urally justified its adoption as a proof-of-concept application

to evaluate the proposed prototyping framework. Naturally,

other different algorithms, from either the bio-informatics or

other applications domains, could equally be used to evaluate

the performance of the modeled multi-core architecture with

the proposed prototyping framework, in what concerns several

different design parameters.

VI. EXPERIMENTAL EVALUATION

The evaluation of the proposed prototyping framework was

conducted by simulating the execution of a parallel imple-

mentation of the SW alignment algorithm. The considered

evaluation was based on the application of the widely adopted

High Throughput Short Read (HTSR) technologies [9], where

the DNA query sequences under analysis are cut in shorter

fragments (reads), which are individually aligned against a

reference sequence. The considered data-set comprises one

1000 nucleotides long reference sequence extracted from the

Homo Sapiens chromosome 1 GRCh37 primary reference

assembly, and 500 query sequences (reads), each one with 35

nucleotides, extracted from the Homo Sapiens genome (Run

ERR004756 of study ERP000053).

Along this procedure, the master distributes the reads and

the reference sequence to the slaves and these become in

charge of executing the DNA alignment algorithm and of

sending back the scoring result, corresponding to the best

matching score value between the two analyzed sequences.

The SW instances in each slave node are completely indepen-

dent from each other and there is no data dependency. Hence,

the master node is the one in charge of issuing the commands

to the slaves, specifying the query (read) that each slave should

fetch from the shared memory and align against the reference

sequence.

Within this application context, the main aim of the pre-

sented experiment was to evaluate the ability of the developed

framework to assess the parallelization scalability that is of-

fered by the prototyped multi-core architecture, by evaluating

not only the speedup values that may be achieved, but also

the possible degradation losses that arise due to the inherent

contention in the bus when the several nodes concurrently try

to access the shared memory. Such degradation will depend

not only on the number of slave nodes that will be incorporated

in the multi-core processor, but also on their specific perfor-

mance (achieved through software optimizations or dedicated

architectures) to implement the alignment procedure.

For such purpose, it was defined a processing-balance

parameter (K) in the considered model of the multi-core

architecture, in order to model the alignment performance of

the slave nodes. This parameter represents the relation between

the amount of time (clock cycles) that each slave node needs

to compute one single cell-update in the scoring matrix (see

eq. 1) and the time that it needs for a single local memory

access (one read or write operation). Slave configurations with

a K parameter lower than 1.0 represent highly optimized

implementations that are capable of computing more than one

cell-update per clock cycle, achieved either by using SIMD

programming models [10] or dedicated VLSI architectures [8].

By introducing this parameter in the prototyped model, the

system designer will be offered the possibility of evaluating

different alternatives to implement the slave computing nodes,

trying to obtain, in an early design stage, the best compromise

between the resulting overall performance and the correspond-

ing implementation cost.

A. Alignment performance (speedup)

The chart presented in Fig. 3 depicts the alignment time and

the speedup (using a single-slave configuration as reference)

offered by the prototyped multi-core architecture to process

the benchmarked DNA data-set by considering a variable

number of slave nodes. As it was expected, the alignment

performance (speedup) increases linearly with the number

of slaves. To illustrate the relation between the processing-

balance parameter (K) and the resulting contention in the

bus, this chart represents two distinct scenarios, for K=1 and

K=0.2. From the obtained results, it can be observed that not

only is the conceived framework able to accurately model

the parallel scalability offered by the prototyped multi-core

architecture, but it can also represent the bus contention effect

when the access rate to the shared bus increases for lower

values of K.

�

�

�

�

�

��

��

��

��

���

���

���

���

���

����

����

� � � � � � � � � � �� �� �� �� �� �� ��

S
p

e
e

d
u

p

D
N

A

a

li
g

n
m

e
n

t
 t

im
e

 [
m

s]

Number of slave computing nodes

 !"# $%&���'

 !"# $%&���'

()##*+) $%&���'

()##*+) $%&���'

Fig. 3. Evaluation of the prototyped multi-core performance scalability, by
using the conceived simulation framework.

B. Bus contention

To demonstrate the relation between the inherent bus con-

tention and the resulting performance loss of the prototyped

architecture, the conceived framework also provides a time-

diagram that represents the state of each processing node

(master and slaves) for any instant of the simulation (see Fig. 4,

for 8 slave nodes). In this chart, it can be observed that as soon

as the master issues the first set of commands to the slaves

(left side), the processing cycle initiates (right side) and the

slaves start executing the alignment algorithm as soon as they

fetch the DNA data from the shared memory. Then, each slave

Fig. 4. Time diagram provided by the conceived framework with the state
of the processing nodes (master (M) and slaves (Sn)) along the simulation.

writes the alignment scoring result in the shared memory and

waits for another command, to be issued by the master.

This diagram clearly illustrates the bus contention effect.

Whenever more than one processing node requests the access

to the bus, the arbiter only grants access to one single node,

thus making all the others remain in the Bus waiting state.

C. Effect of the processing-balance parameter (K)

The chart presented in Fig. 5 illustrates the relation between

the considered performance level for the slaves computing

architecture (modeled by the K parameter) and the resulting

speedup that is offered by the prototyped multi-core architec-

ture, when using 8 slave nodes. The presented variation clearly

demonstrates the influence of the data-transfers when the

alignment time required to process each query is shorter. This

information is most useful for the system designer, in order

to allow him to anticipate the adoption of better technologies

for the communication hub and more efficient data-transfer

mechanisms when higher performance slave architectures are

considered, thus avoiding undesired speedup penalties.

,-.

,-,

/-.

/-,

0-.

0-,

1-.

1-,

.-2 2 2. 2..

S
p
e
e
d
u
p

K

Fig. 5. Influence of the processing-balance parameter (K), relating the
computing time and the bus contention penalty arisen from the data transfers,
evaluated by the conceived framework.

D. Framework simulation time

Table II presents the simulation time when the conceived

prototyping framework was used to evaluate the performance

of the underlying multi-core architecture, by considering

K=10, 500 query sequences and a variable number of slave

nodes. These simulations were executed in an off-the-shelf

computer, equipped with an Intel Core 2 Quad Q6600 proces-

sor, running at 2.8 GHz with 1GB of RAM. The obtained

results demonstrate that any of the considered simulations

was executed in less than one minute, which evidences the

practicability of the prototyping framework to accelerate this

preliminary design stage of the multi-core architecture.

TABLE II
FRAMEWORK SIMULATION TIME.

Number of slave nodes 1 2 4 8 16

Simulation time [s] 47.7 29.2 15.7 10.8 10.3

VII. CONCLUSION

A prototyping simulation framework to support the design

and early development stages of an heterogeneous multi-core

architecture for DNA sequences processing was proposed.

The conceived framework was entirely developed using the

SystemC description language and offers a wide flexibility

to customize and parametrize several characteristics of the

prototyped architecture, such as the number of computing

nodes, the effective processing throughput of each node, the

capacity and access time of the memory devices, etc.

The included experimental evaluation demonstrated that the

conceived framework provides the system designer with a very

useful preliminary characterization of the prototyped archi-

tecture. In particular, the presented evaluation demonstrates

the relation between the number and performance of the

computing nodes and the resulting alignment performance gain

(speedup), as well as the inherent bus contention losses in the

shared resources (bus and shared memory). Such information

is usually regarded with uttermost importance, in order to

assist the system architect in the selection of the most suitable

communication technologies and data-transfer mechanisms.

With such support, not only will be possible to avoid undesired

speedup penalties, but the best compromise between the result-

ing overall performance and the corresponding implementation

cost will be achieved in a earlier design stage.

ACKNOWLEDGMENTS

This work was partially supported by national funds through

FCT – Fundação para a Ciência e a Tecnologia, under the

project ”HELIX: Heterogeneous Multi-Core Architecture for

Biological Sequence Analysis” with reference PTDC/EEA-

ELC/113999/2009, and project PEst-OE/EEI/LA0021/2011.

REFERENCES

[1] J. Gerlach and W. Rosenstiel, “System level design using the SystemC
modeling platform,” in Workshop on System Design Automation, 2000,
pp. 185–189.

[2] Çağkan Erbaş, “System-level modelling and design space exploration
for multiprocessor embedded system-on-chip architectures,” Ph.D. dis-
sertation, Advanced School for Computing and Imaging, Turkey, 2006.

[3] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in
Proc. International Conference on Hardware/Software Codesign and

System Synthesis. ACM, 2003, pp. 19–24.
[4] M. Alassir, J. Denoulet, O. Romain, and P. Garda, “A SystemC AMS

model of an I2C bus controller,” in Proc. Int. Conf. Design and Test of

Integrated Systems in Nanoscale Technology (DTIS), 2006, pp. 154–158.
[5] G. B. Defo, C. Kuznik, and W. Muller, “Verification of a CAN bus model

in SystemC with functional coverage,” in Proc. Int. Symp. Industrial

Embedded Systems (SIES). IEEE, 2010, pp. 28–35.
[6] J. Booth and J. Kulick, “SystemC modeling of a parallel processor

broadcast interconnection system,” in Proc. of SoutheastCon. IEEE,
2002, pp. 76–81.

[7] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” J. Molecular Biology, vol. 147, no. 1, pp. 195–197, 1981.

[8] N. Sebastião, N. Roma, and P. Flores, “Integrated hardware architecture
for efficient computation of the n-best bio-sequence local alignments in
embedded platforms,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 20, no. 7, pp. 1262–1275, Jul. 2012.
[9] M. J. Chaisson and P. A. Pevzner, “Short read fragment assembly of

bacterial genomes,” Genome Research, vol. 18, no. 2, pp. 324–330, 2008.
[10] M. Farrar, “Striped smith-waterman speeds database searches six times

over other SIMD implementations,” Bioinformatics, vol. 23, no. 2, pp.
156–161, 2007.

