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28.1 INTRODUCTION

Among the several multimedia applications that have emerged along the past
decade, video encoding has gained a particular relevance in a vast set of do-
mains. However, it is also one of the most computational demanding. In
particular, the recognized success of the latest generation of video standards,
such as the H.264/MPEG-4 Part 10 (or AVC), is mainly due to its remark-
able encoding performance in what concerns the relation between the output
video quality and resulting bit-rate, at the cost of a significant increase of
the computational complexity. As a consequence, real-time encoding by ex-
ploiting the whole set of offered encoding mechanisms is still far beyond the
capabilities of most computational systems.
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To cope with such difficulties, several approaches have been proposed that
try to take advantage of current parallel platforms to accelerate the encod-
ing [6, 10, 5, 18]. Nevertheless, most of such proposals represent specific op-
timizations to the considered platforms, requiring the rewrite of the encoder
software (SW) whenever a new target hardware (HW) platform or paralleliza-
tion model is considered.

To circumvent such limitations, a new parallel programming framework is
presented. This framework allows to easily and efficiently implement high
performance H.264/AVC video encoders in a wide set of different parallel
platforms. The offered modularity and flexibility make this framework partic-
ularly suited for efficient implementations either in homogeneous or heteroge-
neous parallel platforms, providing a suitable set of fine-tuning configurations
and parameterizations that allow a fast prototyping and implementation, thus
significantly reducing the developing time of the whole video encoding system.

28.1.1 H.264/AVC video standard

The H.264/AVC standard has been widely adopted by most recent video ap-
plications to address the consumers’ needs and the most demanding encoding
requirements. The standard is divided in several profiles to define the applied
encoding techniques, targeting specific classes of applications. For each pro-
file, several levels are also defined, specifying upper bounds for the bit stream
or lower bounds for the decoder capabilities, such as processing rate, capacity
of multi-picture buffers, video rate, motion vector range, etc. [21].

To achieve the offered encoding performance, this standard incorporates
a set of new and powerful techniques (see Fig. 28.1), namely: 4 x 4 integer
transforms, variable block-size inter-frame prediction, quarter-pixel motion
estimation (ME), in-loop deblocking filter, improved entropy coding based
on context-adaptive variable-length coding (CAVLC) or on content-adaptive
binary arithmetic coding (CABAC) and new intra-frame prediction modes.
Moreover, the adoption of bi-predictive frames (B-frames), along with the
previous features, provides a considerable bit-rate reduction with negligible
quality losses. As a result, when compared with other previous standards
(such as H.263, MPEG-1/2 Video or MPEG-4 Visual), the H.264/AVC has
proved to provide greater coding efficiency levels, with an excellent tradeoff
between the output video quality and bit-rate.

However, the simultaneous exploitation of those new features significantly
increased the encoder computational cost. As an example, a direct execution
of a straight compilation of the JM reference software [14] in a latest generation
processor (running at 2.7 GHz), leads to frame-rate performance levels as low
as a single or at most a couple of 4CIF frames per second. At this respect,
several complexity analysis have shown that the Inter prediction module is
usually the most time consuming - about 80% - followed by the Interpolation
module [1].
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Figure 28.1 H.264/AVC encoding loop.

28.1.2 Parallel architectures and platforms for video coding

To account for the complexity problem of the H.264/AVC video standard,
several different approaches have been adopted, either from the SW point of
view (e.g. application of low complexity ME algorithms [13]), or from the
HW point of view. In particular, with the vast set of parallel processing
platforms that are now available, further levels of parallelism are now worth
exploiting, either on homogeneous parallel platforms composed by multi-core
processing systems with several identical CPUs sharing the same chip (see
Fig. 28.2(a)), or on heterogeneous platforms [12]. These last alternatives are
often implemented either with dedicated processing structures integrated in an
embedded system on chip (SoC) [8] (see Fig. 28.2(b)) or even with accelerators
composed by graphics processing units (GPUs) interconnected to off-the-shelf
general purpose processors (GPPs) (see Fig. 28.2(c)).

In the particular domain of video coding, homogeneous parallel platforms
are usually applied in the exploitation of data-level parallelism techniques,
by distributing the video data to be encoded/decoded across several simi-
lar parallel computing nodes. Moreover, with the advent of single-instruction
multiple-data (SIMD) vector extensions to the ISA of current processors, these
techniques have been even complemented with the exploitation of a sub-word
parallelism level, by simultaneously processing several data elements with a
single instruction. In contrast, heterogeneous platforms often adopt func-
tional/task parallelism techniques, where the several modules of the video
encoder/decoder are independently implemented by the different parallel com-
puting nodes. In particular, many of such architectures adopt a pipeline pro-
cessing scheme, where the video data is sequentially processed by the several
different and independent stages of the pipeline.

Until very recently, most parallelization efforts around the H.264 standard
have been mainly focused on the decoder implementation [20, 5, 2, 3|, where
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Figure 28.2 Parallel video coding architectures.

the complex data dependencies that characterizes the encoding loop are not
observed. When the most challenging and rewarding goal of parallelizing the
encoder is concerned, it has been observed that a significant part of the efforts
were devised in the design of specialized and dedicated systems [16, 9, 15].
Most of these approaches are based on parallel or pipeline SoC topologies, us-
ing dedicated HW structures to implement some of the most demanding parts
of the encoder, and leaving the remaining sequential and less complex code
to be executed in a GPP. In most of such implementations, the correspond-
ing segments of the original SW code are simply replaced by instantiations
of the accelerated procedures in the proper HW structures. Other similar
approximations make use of heterogeneous structures composed by Digital
Signal Processors (DSPs) or very long instruction word (VLIW) processors to
accelerate the implementation of the encoding procedure. Some examples of
such approach are the TriMedia processors from NXP Semiconductors (for-
mer Philips Semiconductors™) [20] and the OMAP processors from Texas
Instruments™™ [3]. Nevertheless, and independently of the adopted accelerat-
ing structure, difficult challenges still often arise in what concerns the transfer
of the processed data, as well as the concurrent access to the shared frame
memory by the GPP and the several accelerators, usually requiring complex
and platform-specific implementation issues and optimizations.

On the other hand, when pure-SW approaches are considered, fewer paral-
lel solutions have been proposed. Most of them are based on the exploitation
of data-level parallelism, in order to simplify the schedule and the synchro-
nization of the several processing cores. One popular parallelization approach
is based on the massive use of similar and concurrent threads, by exploiting
the several CPUs that are currently available in multi-core chips [5]. As it
will be seen in section 28.2.1, frames can be divided in several independent
slices and an individual thread is assigned to each slice. Some of such strate-
gies even make use of Intel™hyper-threading (HT) technology to increase
the number of concurrent threads [6, 10]. Furthermore, some proposals have
even complemented the exploited parallelization by also using SIMD multi-
media vector instructions currently available in MMX and SSE extensions [5].
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Other parallelization approaches based on a heavy exploitation of similar and
concurrent threads make use of the OpenMP pragmas for their implementa-
tion [19]. They mostly combine the use of thread queues to process the several
segments of pixels, together with the exploitation of HT to further speedup
the encoding.

Another approach is based on the use of message passing communication
protocols (e.g.: MPI), namely on clusters composed by several independent
computers [18]. One common strategy is to implement the encoder archi-
tecture in parallel, where an independent group-of-pictures (GOP) can be
assigned to each cluster node. Furthermore, each node can even be imple-
mented by a multi-core CPU, allowing further parallelization. However, these
solutions often present, as their main disadvantage, significant communica-
tion overheads that can even surpass the computation time. Moreover, they
also require greater amounts of memory to accommodate the several encoded
sub-streams at the same time.

Meanwhile, other parallelization approaches have also arisen by exploit-
ing some recent heterogeneous architectures that emerged in the market [11,
17]. Ome of such proposals includes the implementation of a pipeline en-
coding structure in the Cell Broadband Engine [11]. In such implementa-
tion, the SPEs are used to exploit both slice-level and macroblock-level (see
section 28.2.1) parallelism, achieving real-time processing for high-definition
image formats.

Other acceleration approaches have also emerged by using the capability
of current GPUs to speedup certain parts of the encoder with data-level par-
allelism [7]. As an example, in [4] it is presented the implementation of the
ME module by using the GPU support and providing a speedup of about 12.

Independently of the adopted strategy, the innumerous data dependen-
cies imposed by this complex video standard frequently inflict a very difficult
challenge to efficiently take advantage of the several possible parallelization
strategies that may be applied. Moreover, the use of the vast set of pow-
erful parallel platforms that are now available has been often refrained by
the absence of an unified parallel encoding framework that easily adapts to
and efficiently exploits the set of variable resources offered by such concurrent
platforms. In this scope, a flexible and highly modular parallel programming
framework for pure-SW or HW-accelerated H.264/AVC encoders is now pre-
sented. The aimed challenge is to speedup the encoding procedure without
sacrificing the output video quality or increasing the resulting bit-rate. The
conducted evaluations, by using different instantiations of the framework, have
shown that linear and close to optimal speedup values, in what concerns the
achieved frame-rate, can be obtained in current homogeneous parallel plat-
forms. Moreover, the provided modularity and flexibility attested its config-
urable attributes, in order to easily and better adapt it to the targeted parallel
platform.
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28.2 PARALLEL PROGRAMMING FRAMEWORK FOR H.264/AVC
VIDEO ENCODING

To circumvent the recognized need for a generic and highly modular SW ar-
chitecture that can be used to efficiently implement H.264/AVC encoders in
a vast set of different parallel structures, an innovative parallel programming
framework is presented. With such framework, it is given the programmer or
system integrator the capability to easily configure and adapt the SW archi-
tecture to several different platforms, ranging from the homogeneous solutions
composed by several GPPs that extensively exploit data-level parallelism, to
distinct heterogeneous solutions where functional-level concurrency can be ex-
ploited in different pipeline/data-flow topologies (see Fig. 28.2).

28.2.1 Data-level parallelism

Several parallelization models have been considered to improve the perfor-
mance of H.264/AVC encoders [5, 10, 18]. Due to the encoder’s nature, many
of these parallelization approaches exploit concurrent execution at: frame-
level, slice-level, macroblock-level. However, careful design methodologies in
what concerns its parameterization and modularity have to be considered, in
order to avoid the introduction of performance losses in terms of the final
bit-rate and peak signal to noise ratio (PSNR).

At frame-level, the input video stream is usually divided in GOPs. Since
GOPs are usually made independent from each other, it is possible to de-
velop a parallel architecture where a controller is in charge of distributing
the GOPs among the available cores (see Fig. 28.3(a)). The advantages of
this model are clear: PSNR and bit-rate do not change and it is easy to im-
plement, since GOPs’ independency is assured with minimal changes in the
SW code. However, the memory requisites significantly increase, since each
encoder must have its own decoded picture buffer (DPB), where all GOPs’
references are stored. Moreover, real-time encoding is hard to implement us-
ing this approach, making it more suitable, for example, for video storage
purposes. As a consequence, this solution has been mainly used in cluster
systems [18]. Other parallelism levels usually have to be exploited in order to
further improve the speedup.

In slice-level parallelism, frames are divided in several independent slices,
making the processing of macroblocks (MBs) from different slices completely
independent (see Fig. 28.3(b)). In the H.264 standard, a maximum of sixteen
slices are allowed in each frame. This approach allows to exploit parallelism
at a finer granularity, which is suitable, for example, for multi-core comput-
ers where parallel encoding of the several defined slices may be concurrently
executed in multiple threads for each individual frame [10]. Moreover, the
resulting increase of the allocated memory is smaller, because only one DPB
is required. The main issues of this alternative are concerned with the lim-
ited number of slices per frame (sixteen in the H.264 standard), together with
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Figure 28.3 Exploited data-level parallelism models.

a greater parallelization effort in order to ensure a good performance and
the need to redesign some data structures and algorithms in order to avoid
caching of unnecessary data. Furthermore, this model often restricts the ex-
ploited spatial prediction within a frame, thus leading to a moderate increase
of the resulting bit-rate.

The parallelism at macroblock-level allows independent MBs to be encoded
at the same time [2]. According to the standard, a given MB is predicted us-
ing its left and upper three neighbors, which can be performed by following a
wave-front approach, as depicted in Fig. 28.3(c). Any two MBs are said to be
independent if there isn’t any data dependency in their prediction. As it will
be seen in section 28.4.3, this strategy may be used as a viable alternative to
complement the exploited parallelism level. The main design issues of this ap-
proach are concerned with the need of a centralized control, to guarantee that
only independent MBs are processed in parallel, and with the non-uniform
distribution of the computational weight that may arise among the cores.
However, in middle and high resolution video sequences, as well as when a
great number of processors is available, this model may be preferable to the
slice-level, since the parallelism is only limited to [ N/2], where N denotes the
number of MBs in the diagonal of the frame/slice (see Fig. 28.3(c)).
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28.2.2 Functional-level parallelism

To ensure the maximum flexibility of the framework, the several modules
of the encoder were carefully structured and implemented in independent
routines. With such approach, it becomes possible to easily exploit functional-
level parallelism, by using pipeline or data-flow topologies where each available
core/accelerator may implement a different encoder module. Such feature is
particularly important in heterogeneous configurations, where distinct parts of
the encoder may be easily migrated to dedicated or specialized architectures.

With such SW architecture, three different topologies are made available:

e Pipeline
e Straight parallel
o Mized

In the pipeline topology, illustrated in Fig. 28.4(a), the encoding proce-
dure is divided in several different stages. Each of these stages implements
an individual or a particular set of encoding modules. The number of concur-
rent stages is determined by the number of cores/accelerators available in the
system. Nevertheless, for each specific concretization of this topology, three
main issues need to be carefully analyzed: how the stages communicate, how
they are synchronized and how the several modules are distributed among the
stages.
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Figure 28.4  Parallel topologies to implement the encoding modules depicted in
Fig. 28.1 by using functional-level parallelism.
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Table 28.1  Example configuration using a pipelined architecture to
implement the eight inter-prediction modes in a variable number of cores.

Number Number of Pipeline Stages
of Cores 1 2 3 4 5 6 7 8
16 x 16 8x 8
9 16 x 8 8 x4
8 x 16 4x8
DIR 4 x4
16 x 16 8 x 16, 4 x 8,
3 16 x 8 DIR,8 x 8 4 x4
8 x4
4 16 x 16 16 x 8 8x8, 4x8,
8 x 16 8 x4 4 x4
DIR
6 16 x 16 16 x 8 8 X 16 DIR, 8x8, 4x4
8x8 4x8
8 16 x 16 16 x 8 8x16 DIR 8x8 8x4 4x8 4x4

Since it is impossible to guarantee that all stages have the same processing
time, it is important to ensure that this SW pipeline only advances when all
stages have finished their processing. To achieve this synchronization, barrier
instances have been adopted in the SW architecture. As soon as all parallel
execution flows reach these barriers, they resume executing in parallel the code
that follows the barrier. Hence, to better balance the pipeline stages, it is also
important to evaluate the processing time corresponding to all sub-functions.
Only then should they be grouped in pipeline stages.

Table 28.1 depicts one example configuration. Considering that inter-frame
prediction represents the most demanding part of the encoder, this example
illustrates one possible configuration where the ME corresponding to the eight
possible prediction modes were implemented in a homogeneous architecture
using a pipeline topology, by considering the usage of 2, 3, 4, 6 and 8 cores.

The design principle corresponding to the straight parallel topology is par-
ticularly targeted for the exploitation of data-level parallelism, where the slices
are assigned to similar concurrent threads that are independently executed.
By assuming that slices approximately have the same size, it can be expected
that all threads finish their tasks at the same time in homogeneous systems.

Fig. 28.4(b) illustrates one possible configuration of this topology. In this
setup, each available core implements the whole encoding loop, in order to
process one particular slice of the video frame. Subsequently, all slice buffers
are joined together to supply an external entropy encoding (CABAC/CAVLC)
module, in order to form the output stream packet.

The mized topology can be seen as an extension of the pipeline solution,
where more than one single core is assigned to implement the most demanding
modules of the encoder. Fig. 28.4(c) illustrates one hypothetical configuration
of this topology. In this setup, the eight available cores were distributed among
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the several modules of the encoder, according to their relative computational
requirements: 4 cores to implement the prediction module, 2 cores to compute
the transform and quantization (and their corresponding inverses), 1 core
to implement the deblocking filter and interpolation modules and 1 core to
implement the entropy encoding (CABAC) module.

28.2.3 Scalability

As it was referred before, while pipeline topologies can be particularly adapted
to heterogeneous architectures, straight parallel configurations, based on a
massive exploitation of slice-level parallelism, are often more suited to be
implemented in homogeneous systems, composed by several identical CPUs.
Nevertheless, according to the H.264/AVC standard such parallelism is limited
by a maximum of 16 slices (threads). Hence, to further increase the exploited
concurrency, this SW framework allows to complement the applied slice-level
parallelism with a simultaneous exploitation of macroblock-level parallelism.
In such configuration (illustrated in Fig. 28.5(a)), a team of threads is allocated
to the processing of each slice. For each team, independent macroblocks are
distributed among the set of cores that were assigned to the processing of that
slice. At the end, entropy coding is performed separately and at slice level.

Multi-core system

GroupA GroupB GroupC
E €0 cL c2 Thread0 Threadl Thread2 MaSter
Thread
i Ty ! l
Barrier [ + ]
MB
i assignment
Slice0 control
Slicel I I I
Slice2 Barrier [ ¢ ¢ ¢ ¢
(a) Thread allocation. (b) Thread synchronization.

Figure 28.5  Simultaneously exploitation of slice and macroblock parallelism levels.

The synchronization between the several concurrent threads is guaranteed
by using appropriate synchronization barriers. Only threads belonging to the
same team are blocked in these barriers. This mechanism is used before and
after the execution of the control mechanism that assigns the set of MBs pro-
cessed by each slice (Fig. 28.5(b)). While the first barrier guarantees that
all threads have finished their tasks, the last barrier assures the correct MB
assignment. Only after the team master thread has executed the assignment
procedure that controls the set of MBs that will be processed in the next run,
can the re-running threads of the team start executing. No further synchro-
nization is needed.
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Another considered option to increase the exploited concurrency is to adopt
slice scattering, where slices are divided into several sub-slices located in non-
adjacent areas of the frame (see Fig. 28.6). The application of this technique
introduces an added level of data independency among the MBs of different
sub-slices, allowing them to be processed in different threads. When com-
pared with the previously referred approaches, the extra parallelization level
provided by slice-scattering is offered at the cost of an eventual degradation
characterized by a slight increase of the resulting bit-rate and a reduction of
the output PSNR levels (due to the presence of more blocking effect). As a
consequence, this parallel approach is regarded to be more appropriate to en-
code higher video resolutions, where the spatial redundancy can be exploited
without seriously compromising the resulting encoding efficiency.

Multi-core system

Slice Partition

Slice B Slice B

Sub 0 Sub 1
Slice B SliceB | SliceC | SliceD | Slice C | Slice D SsllucbeOC Sslllf:(? SsllucbelC Sslllfbef
Sub 0 Sub 1 Sub 0 Sub 0 Sub 1 Sub 1

Figure 28.6  Possible slice-scattering distribution in a multi-core architecture.

28.2.4 Software optimization

The presented parallel SW framework is based on JM [14] reference SW, thus
maintaining full compliancy with the original encoder. In order to achieve an
efficient parallel execution, the conducted research was focused on: i) code
profiling; ii) performance improvement through structures redesign and code
optimization; #4) definition of the concurrent modules set; iv) parallelization.

Code profiling was extensively performed in the first step, in order to iden-
tify the most time consuming operations. Several 4CIF standard test video
sequences were used for more accurate results (see Fig. 28.7): Soccer and
Crew, characterized by higher amounts of movement; Harbour and City, with
a higher spatial detail. As expected, and according to the results presented in

(a) Soccer. (b) Harbour. (c) Crew.

Figure 28.7 Considered set of test video sequences.
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Table 28.2 gprof profiling results of the H.264/AVC reference SW.
Video Sequences (4CIF)

Soccer Harbour Crew  City

Inter Prediction 89.1%  86.0%  88.4% 87.7%

Intra Prediction 0.9% 1.1% 0.9% 1.1%
Transf. & Quant.  1.4% 1.7% 1.6%  1.7%

Function

Interpolation 2.3% 2.9% 24%  2.7%
Deblocking Filter  0.4% 0.7% 0.5%  0.5%
CABAC 0.4% 0.8% 0.6% 0.3%
Others 6.9% 8.5% 7.2%  7.8%

Table 28.2, Inter Prediction is the most computational demanding component
of the encoder [1], making it the must suited target for parallelization.

An important step to increase independency and improve the flexibility
was the redesign of the original data structures, not only to provide more
efficient ways to manipulate and correlate information, but also to save time
when fetching them from the memory system, by efficiently exploiting the
cache access patterns. On one hand, spatial locality can be further exploited
by appropriately resizing the structures, since the probability to store the
whole processed data in cache is higher, thus reducing the conflict and ca-
pacity misses. On the other hand, temporal locality can also be exploited
by data resizing and by joining together the information needed to process
wide data sets in each particular module of the encoder. Such resizing was
mainly accomplished by removing non-used or duplicated parameters in cer-
tain modules and by adjusting their size to their effective range. As it will
be seen in section 28.4, when compared with the original data structures, the
mutual combination of the conducted optimizations allows a reduction of the
required memory space as high as 85.5%.

The conducted code optimization also took into account that many signal
processing functions of the encoder can be decomposed into a set of vector
operations [5], where the same operation is simultaneously applied to several
data elements. By considering that most current processor families and em-
bedded cores already include some multimedia extensions to the instruction
set (e.g.: MMX, SSE1, SSE2, SSE3, etc.), such optimization allows to exploit
an added degree of SIMD parallelization. In the presented framework, the
optional usage of SSE2 SIMD instructions can be activated through a sim-
ple compilation option. The usage of these instructions was mainly exploited
in the implementation of the most demanding modules, namely, the compu-
tation of the sum of absolute differences (SAD) in MB prediction by ME,
the Transformation-Quantizer (and corresponding inverses) modules and the
Interpolation module (see Fig. 28.1).
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To allow the implementation of the presented framework in HW restricted
platforms, some additional optimizations and optional configurations were
also made available. In this scope, all data structures were statically allo-
cated in memory, allowing this framework to be easily executed in embedded
systems that do not necessarily include a dynamic memory allocation system.
Furthermore, to ease the implementation in systems with strict memory re-
strictions, another optimized configuration was also made available, which in-
terchanges the order of the DPB and the Interpolation modules (see Fig. 28.1)
for the half-pixel resolutions (keeping the original order for the quarter-pixel
resolution frames), thus conferring an extra configurable tradeoff between the
required memory resources and the involved computational cost. Such op-
tion is particularly suited for pipeline topologies implemented with dedicated
accelerators in heterogeneous platforms.

28.3 PROGRAMMING PARALLEL H.264 VIDEO ENCODERS

28.3.1 Framework parameterization

The modularity and flexibility provided by this framework allows an easy cus-
tomization in order to suit it to distinct types of multi-computer, multi-core or
even embedded systems. Such customization can be easily accomplished dur-
ing source compilation (through the supplied Makefile) by properly choosing
the most suitable options to the target system. As an example, the following
parameters define the type of data-level parallelism that is exploited:

e CORES - number of considered parallel slices;
e NESTED_CORES - number of considered parallel MBs within each slice.

Likewise, the desired optimization can be selected by the following options:

e SSE_SUPPORT - enables the exploitation of SIMD SSE instructions;
e LOW_MEMORY - enables low memory usage.

Furthermore, thanks to the performed code simplification and division of the
encoder into functional modules, the end user can still easily add, remove and
modify the sources with minimum effort.

28.3.2 Implementation platforms and APlIs

The main aim of the presented framework was to develop a highly modular SW
architecture to implement parallel encoders of the latest generation of video
standards. To achieve such objective, the several modules of the encoder
were implemented with “objects” of self-contained code segments and data
structures, in order to provide an easy and efficient migration of such “objects”
to several homogeneous or heterogeneous parallel platforms.

A direct consequence of such strict premise is the provided easiness to im-
plement a vast set of different parallel video encoding structures, by using any
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of the several parallel Application Programming Interfaces (APIs) currently
available, such as MPI, POSIX Threads, OpenMP, OpenCL and CUDA.

Hence, after selecting the data-level and functional-level parallel topology
that is most suitable for the considered HW platform, the programmer only
has to take care of the migration of the parallelized modules and of the data
transfer mechanisms, according to the selected API. Then, proper concretiza-
tions of the restricted set of adopted communication structures should be
selected. At this respect, several alternatives can be adopted, such as ex-
plicit shared memory systems with uniform memory access (UMA) (e.g.:
homogeneous multi-core systems implemented either with POSIX Threads
or OpenMP), distributed memory systems with non-uniform memory access
(NUMA) (e.g: cluster encoding systems implemented with MPI), heteroge-
neous or non-shared memory systems (e.g.: GPU accelerating systems imple-
mented with CUDA or OpenCL) or even dedicated embedded architectures,
implemented with specialized HW structures. Finally, all implicit synchro-
nization mechanisms that are integrated within the framework should be im-
plemented according to the adopted API.

28.4 EVALUATION OF PARALLEL H.264 VIDEO ENCODERS

To demonstrate the feasibility and the advantages provided by the presented
framework, several parallel instantiations based on currently available multi-
core structures were considered and compared with a sequential implementa-
tion of the reference SW running in one core. In particular, considering the
specificity and the wide variability presented by most heterogeneous architec-
tures, eventually composed by possibly different accelerating structures, it was
decided to adopt a homogeneous structure to demonstrate the performance
offered by the proposed framework in an easily reproducible parallel platform.
Table 28.3 depicts the characteristics of the considered computational systems.
Furthermore, considering that most SW-based and non-dedicated parallel en-
coders that have been presented up until now make use of homogeneous solu-
tions implemented with POSIX Threads or OpenMP APIs [19, 6, 10, 5], it was
decided to evaluate the proposed framework by using a similar environment, in
order to achieve fair and correlatable comparisons. As such, straight-parallel
configurations, exploiting either slice-level and macroblock-level parallelism
will be considered. The whole evaluation procedure was conducted by con-
sidering the encoding parameters presented in Table 28.4.

To achieve the most efficient parameterization of the framework, the time
consumption profiling results presented in Table 28.2 were carefully consid-
ered. From such analysis, it was clear that the Inter Prediction module, which
includes motion estimation and motion compensation functions, represents
the most computational demanding block. As a consequence, the conducted
parallelization approach primarily focused on this particular module. Nev-
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Table 28.3  Specifications of the considered parallel computational platform.

Platform  Intel™ AMD™

Processor 2 x Intel Xeon Quad-Core E5530 8 x AMD Quad-Core 8384

#Cores 8 32

Frequency 2.40 GHz 2.7 GHz

Caches Individual L1 with 128 KB Individual L1 with 512 KB
Individual L2 with 256 KB Shared L2 with 6 MB
Shared L3 with 8 MB -

Memory 24 GB 64 GB

0.S. 64-bits SUSE Linux 64-bits Ubunto Linux

API OpenMP OpenMP

Table 28.4 Considered H.264/AVC encoding parameters.

Parameter Value

GOP structure One I frame followed by thirty B-B-P frames
Intra prediction All prediction modes

Inter prediction All prediction modes

Reference frames 3 backward and 1 forward references

ME search algorithm Simplified UMHexa

ME precision Quarter-pixel precision

ME error metric SAD

Entropy coding CABAC

In-loop deblocking filter Enabled

ertheless, the whole end-to-end encoder structure was implemented in each
instantiation.

28.4.1 Baseline optimizations

As it was referred in section 28.2.4, extensive SW optimizations were consid-
ered in order to increase the efficiency of the presented framework. When the
memory resources of a particular instantiation of the presented H.264 par-
allel framework are compared with those of the reference (original) SW, the
result of such code improvements becomes clear, leading to a global memory
usage reduction of about 93% (see Table 28.5). Such reduction is particularly
important when the encoding system is implemented in embedded systems
with memory and power consumption restrictions, as well as in parallel con-
figurations that require replication of data in the memory system. Moreover,
such optimizations (including the conducted cleaning of the code, reutiliza-
tion of shared functions and static allocation of data structures) provided a
baseline speedup by a factor of 2, even without the exploitation of any level
of parallelism.
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Table 28.5 Memory allocation for the reference and optimized SW versions.

Optimized Software

Data Structure Reference Software Regular Low Memory
Image Parameters 82433 B 248 B 248 B
Input Parameters 5.9 kB 6.1 kB 6.1 kB
Picture Parameters Set 248 B 152 B 152 B
Sequence Parameters Set 2.1 kB 1.7 kB 1.7 kB
Slice 23MB 24 MB 2.4 MB
Macroblock 171.7 kB  74.3 kB 74.3 kB
Decoded Picture Buffer 203.1 MB 22.4 MB 6.6 MB
Intra Processing — 2.0 MB 2.0 MB
Inter Processing — 2.8 MB 2.8 MB
Total 205.7 MB  29.7 MB 13.9 MB
Memory Saved - 85.5% 93.2%

Besides such optimizations, some of the most computational intensive mod-
ules were wholly re-designed in order to also exploit a SIMD parallelism level,
by simultaneously processing several data elements with a single instruction.
As an example, the application of MMX vector instructions to the motion
estimation (SAD) and the transform modules (DCT) led to partial speedup
values of about 1.56 and 1.54, respectively.

28.4.2 Exploiting slice-level parallelism

To evaluate the performance that is offered by the presented framework when
slice-level parallelism is exploited, each frame of the video sequence under
processing was divided into several slices, which were subsequently assigned
to an individual core, as described in Fig. 28.4(b).

The results obtained with the Intel platform are illustrated in Fig. 28.8
for the several different parameterizations that are offered by this framework.
With the exception of the setup that made use of 16 threads, all the con-
sidered cases evidence a speedup gain very close to the theoretical optimal
acceleration. In fact, considering that this platform only incorporates 8 in-
dependent CPUs, the observed exception corresponds to a particular setup
where the number of running threads was extended by using the HT technol-
ogy. Nevertheless, all the observed results are entirely similar to those that
were also obtained with dedicated SW frameworks [6, 10].

In the whole, it is observed that the slices independency allows a parallel
execution with little data sharing between the several threads, thus minimiz-
ing the inherent segmentation and scheduling overheads. However, since the
H.264 standard limits this frame division to a maximum of 16 slices, other
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Figure 28.8  Provided speedup in Intel platform using slice-level parallelism.

levels of parallelization will have to be applied in order to avoid this constraint
and allow greater levels of scalability.

28.4.3 Exploiting macroblock-level parallelism

As it was observed by Gerber et al. [10], the data independency that is
achieved by dividing the frame into several slices often introduces a nega-
tive impact on the amount of spatial prediction that is exploited within a
frame, with a consequent decrease of the resulting encoding efficiency. A di-
rect consequence of such effect is a natural increase of the output bit-rate and
a subsequent decrease of the resulting video quality, as a result of the appli-
cation of the output buffer control mechanism. According to [10], such effect
is particularly observed as soon as the number of slices is greater than 4 (see
Fig. 18.6 of [10]). Hence, not only is the maximum number of independent
slices low, but its increase gives rise to a consequent decrease of the encoding
efficiency (see shaded region in Fig. 28.8).

To circumvent such undesirable effect, the added level of parallelism at
macroblock-level (see Fig. 28.5(a)) that is also offered by the presented frame-
work allows the several cores from the same group to cooperate in the concur-
rent processing of independent MBs, in order to further accelerate the encod-
ing of the same slice without sacrificing the resulting bit-rate and encoding
quality.

In the presented evaluation of this topology, this extra level of concurrency
was implemented with nested threads. As soon as the slices are assigned to
the primary threads, they are responsible to create other threads, in order to
form teams of threads. Then, the set of independent MBs within each slice
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Table 28.6  Provided speedup using slice and macroblock parallelism levels,
by considering a maximum of 4 slices (to avoid bit-rate degradation [10]).

Number of concurrent
Macroblocks within each Slice
1 2 4 8
Intel™ Number of 1 10! 1.7 3.0" 4.48
E5530 concurrent 2 1.92 3.34 5.08 4.6
(8 cores) Slices 4 3.6 5.3% 6.31¢
AMD™ Number of | 1| 10"  1.6° 2.5 3.28
8384 concurrent 2 2.32 4.1* 3.78 4,510
(32 cores) Slices 4 3.7 4.6 5.3'6 6.8%2
NOTES:

(1) - Number of concurrent threads represented in superscript, above the speedup value;
(2) - Intel’s configurations using 16 threads make use of Hyper-Threading technology.

is distributed among the remaining available cores in each team. At the end,
entropy encoding is performed separately and at slice level, to avoid memory
bottlenecks and the usage of shared data.

The results presented in Table 28.6 illustrate the speedup levels that can
be obtained either by an isolated or mutual exploitation of the slice and
macroblock parallelism levels. Contrasting with the close-to-optimal results
that were obtained with the slice-level model, the speedup values that are
provided with an exclusive exploitation of the macroblock-level (Slice = 1)
are somewhat more modest, achieving a maximum value of about 4.4 and 3.2
when using 8 threads in Intel’s platform and 32 threads in AMD’s platform,
respectively. Data sharing between the several cores of these multi-processors
is the main reason for this limitation, leading to a memory bottleneck and
higher latency times.

An evaluation of the conceived capability to enhance the scalability of
the parallel framework is also presented in Table 28.6. The simultaneous
exploitation of slice and macroblock parallelism levels was assessed by using a
set of configurations characterized by a different (but fixed) amount of threads:
1, 2, 4, 8, ... When compared with the previous results, it can be observed
that the macroblock parallelism level, that is now possible to exploit as a
complement to the slice-level parallelism, provides an extra speedup space
beyond the slice-level baseline. Contrary to other highly specific and dedicated
SW implementations [6, 10, 5, 18], such capability is now easily exploited by
simply parameterizing the presented SW framework.

28.5 CONCLUDING REMARKS

A new open-software framework to implement parallel H.264/AVC encoders
was presented in this chapter. Such framework significantly eases the exploita-
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tion of the parallel processing capabilities offered by current homogeneous and
heterogeneous multi-core architectures, as an efficient means to increase the
resulting encoding performance.

Three different functional-level topologies are supported and easily parame-
terized by the presented SW framework: pipeline, straight parallel and mixed.
In what concerns the exploitation of data-level parallelism, two models are
particularly supported, besides the trivial frame-level partition model: slice
level and macroblock level.

Despite the limitations imposed by the H.264 standard, slice-level paral-
lelism proved to be the most efficient approach, with speedup gains quite close
to the theoretical maximum. On the other hand, the macroblock-level par-
allelism model has shown to offer an extra and quite viable speedup margin
that can be exploited as a complement to the slice-level parallelism, in order
to improve the scalability of the parallel implementation, in particular, when
the number of available cores is greater than 16.
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