
Transform Domain Transcoding Systems for

Static and Dynamic Video Composition

Q-1

+

+

Frame Mem.MC-DCT

VLD

0

P

I

MVi
B

DCT-Domain
Downscaler Q-1

+

+

Frame Mem. MC-DCT

VLD
Foreground
Sequence 1

0

P

I

MVi
F1

Q-1

+

+

Frame Mem. MC-DCT

VLD

0

P

I

MVi
Fn

Foreground
Sequence n

+QVLC

Q-1

+

+MVo

P

I

0
P

I

DCT-Domain
Downscaler

DCT-Domain Frame
Composition

Motion Vector
Composition

DCT-Domain
Motion Re-EstimationMC-DCT

Frame Mem.

Background
Sequence

Output
Sequence

Motion Vector
Downscaler

Motion Vector
Downscaler

UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Nuno Filipe Valentim Roma
(Mestre)

Dissertação para obtenção do Grau de Doutor em
Engenharia Electrotécnica e de Computadores

Orientador: Doutor Leonel Augusto Pires Seabra de Sousa

Júri
Presidente: Reitor da Universidade Técnica de Lisboa
Vogais: Doutor Arlindo Manuel Limede de Oliveira

Doutor Lúıs António Pereira de Meneses Côrte-Real
Doutor Fernando Manuel Bernardo Pereira
Doutor Leonel Augusto Pires Seabra de Sousa
Doutor Vı́tor Manuel Mendes da Silva

Maio de 2008

This thesis is dedicated to my wife Cristina,

for her love, endless support

and encouragement.

Abstract

Video delivery systems and service providers often face the need to manipu-

late compressed video-streams. As a consequence, video transcoding has emerged

as a new research area. It concerns a broad set of processing, manipulation and

adaptation techniques to convert one video bit stream into another, with a more

convenient set of parameters targeted to a given application. The prime focus of the

conducted research was the development of efficient and flexible transcoding algo-

rithms and architectures for video composition in the DCT-domain. Two distinct

applications were targeted: static video composition, consisting on the insertion of

stationary visible data over the received video sequence; and dynamic video compo-

sition, consisting on the composition of one or more foreground video sequences over

the displaying area corresponding to the background video sequence. To support the

implementation of the proposed transcoding structures, several common video pro-

cessing operations had to be adapted and transposed into the DCT-domain, such as

video space-scaling by an arbitrary integer scaling factor, and motion estimation us-

ing the blocks of DCT-coefficients obtained from the received video-streams. When

compared with the corresponding pixel-domain counterparts, the proposed DCT-

domain transcoders have shown to provide significant advantages, both in terms of

the video quality, coding efficiency and computational cost.

i

ii

Keywords

• Discrete Cosine Transform;

• Video Transcoding;

• Insertion of video objects;

• Video composition in the DCT-domain;

• Motion Estimation in the DCT-domain;

• Space-scaling in the DCT-domain.

iii

iv

Resumo

Na distribuição e fornecimento de serviços de v́ıdeo é frequentemente necessário

proceder à manipulação das tramas de v́ıdeo comprimidas. Consequentemente,

a transcodificação de v́ıdeo tem vindo a emergir como uma nova área de inves-

tigação, abarcando um conjunto vasto de técnicas de processamento, manipulação

e adaptação, para converter uma trama de v́ıdeo numa outra, com uma gama de

parâmetros ajustada a uma dada aplicação. O objectivo principal da investigação

realizada foi o desenvolvimento de algoritmos e arquitecturas de transcodificação efi-

cientes e flex́ıveis, para realizar a composição de v́ıdeo no domı́nio da DCT. Focaram-

se, principalmente, dois tipos de aplicações: composição de v́ıdeo estática, em que

informação fixa e viśıvel é sobreposta à sequência de v́ıdeo recebida; e composição

de v́ıdeo dinâmica, consistindo na composição de uma ou mais sequências de v́ıdeo

sobre a área correspondente à sequência de fundo. Para permitir a implementação

das estruturas de transcodificação propostas, várias operações t́ıpicas de processa-

mento de v́ıdeo tiveram de ser adaptadas e transpostas para o domı́nio da DCT,

tais como: o escalamento espacial de v́ıdeo por um factor inteiro arbitrário, e a

estimação de movimento usando os blocos com coeficientes DCT obtidos a partir

da trama de v́ıdeo. Quando comparados com implementações correspondentes no

domı́nio do ṕıxel, os transcodificadores propostos no domı́nio da DCT oferecem van-

tagens significativas em termos de qualidade de v́ıdeo, da eficiência da codificação e

do custo computacional.

v

vi

Palavras Chave

• Transformada de Coseno Discreta;

• Transcodificação de V́ıdeo;

• Inserção de Objectos de V́ıdeo;

• Composição de V́ıdeo no Domı́nio da Transformada DCT;

• Estimação de Movimento no Domı́nio da Transformada DCT;

• Escalamento Espacial no Domı́nio da Transformada DCT.

vii

viii

Acknowledgments

Along all these years, a significant number of people have directly or indirectly

contributed, in several different ways, to the successful completion of this research

work. I would like to take this opportunity to thank each of them.

First and foremost, I would like to express my deepest gratitude to my ad-

viser, Prof. Leonel Sousa, for giving me the opportunity and confidence to pursue

this work. It wouldn’t have been possible to finish this dissertation without his

reviewing and thorough critical comments, targeting its permanent improvement

and refinement. But he was certainly more than an adviser to me. I must thank

him for his kind friendship, infinite patience, invaluable suggestions and advises, as

well as for the constant motivation that he has provided me in order to drive this

dissertation until this point. His guidance, generous support, constant assistance

and encouragement have definitely helped me to overcome tough times. He has al-

ways shown a full respect for my individual choices and tried to guarantee the best

working environment.

I would like also to extend my appreciation to my colleagues Tiago Dias and

Pedro Tomás, for their invaluable help in the revision of this thesis, as well as for

the constructive and enlightened discussions that provided me valuable feedback to

improve this dissertation.

I would like to thank all my colleagues at the Signal Processing Systems group

(SiPS) for their friendship, with a particular appreciation to Oliver Sinnen, Gonçalo

Tavares, José Germano, Ricardo Chaves and Nuno Sebastião, with whom I have

shared unforgettable moments and who truly contributed to provide a really nice and

friendly working environment. I could not forget to express a special appreciation

to Prof. Moisés Piedade, for his permanent friendship and encouragement.

I must also extend my gratitude to the following individuals and institutions,

from which I have received important support and that significantly helped me to

accomplish this research:

• To Instituto de Engenharia de Sistemas e Computadores: Investigação e De-

senvolvimento em Lisboa (INESC-ID), for supporting me with the necessary

working conditions along all these years, with a particular appreciation for

ix

providing me the possibility to use the GRID computational platform that is

available at its facilities and that significantly helped me in the experimental

procedures that were conducted along this research;

• To all my colleagues at the Department of Computer Science and Engineering

(DEI) of Instituto Superior Técnico (IST), with a special thank to those of

the Architectures and Operating Systems group (ASO), for their support and

permanent encouragement;

• To the Portuguese Foundation for Science and Technology, for the financial

support provided by the Ph.D. grant that was given to me during the first

years of this research.

I would like also to express a special thank to all my family and, in particular,

to my parents and my brother, for their encouragement and support along all these

years.

And last, but certainly not least, I would like to express a special gratitude to

my wife, Cristina, not only for showing me that life is much more than work, but

particularly for all the love, dedication, support and encouragement that she gave

me during all these years and for allowing me to insistently exploit her generous

patience. Finally, it is now time to start that long list of things that we have

postponed until “after the thesis is finished”.

Nuno Roma

Lisbon, May 2008

x

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Main objectives . 6

1.3 Summary of original contributions . 8

1.4 Computational framework . 11

1.5 Organization of the thesis . 14

References . 15

2 The Discrete Cosine Transform 19

2.1 Introduction . 20

2.2 Definition . 24

2.2.1 Extension properties of sampled data beyond original boundaries 25

2.2.2 Discrete cosine transforms . 27

2.2.3 Discrete sine transforms . 31

2.2.4 Inverse transforms . 32

2.2.5 Main properties . 32

2.3 Multidimensional transforms . 34

2.4 Application of the DCT to image and video coding 35

2.4.1 One-dimensional discrete cosine transform 36

2.4.2 Two-dimensional discrete cosine transform 38

2.5 Multiplication-convolution property 38

2.5.1 Generic discrete trigonometric transform 40

2.5.2 Definition . 43

2.5.3 Fast computation of the convolution operation in the DCT-

domain . 46

2.6 Conclusion . 51

References . 52

xi

Contents

3 Video Transcoding in the DCT-Domain 55

3.1 Introduction . 56

3.1.1 Computational efficiency . 56

3.1.2 Reduced influence of degradation effects 56

3.2 Video transcoding architectures . 59

3.2.1 Pixel-domain transcoding architectures 59

3.2.2 DCT-domain transcoding architectures 64

3.3 Video processing algorithms in the DCT-domain 65

3.3.1 Motion compensated temporal prediction 67

3.3.2 Bit rate and quality adaptation 82

3.3.3 Space scaling . 93

3.3.4 Motion vector composition . 101

3.3.5 Motion estimation . 106

3.3.6 Time scaling . 122

3.4 Conclusions . 128

References . 129

4 Static Video Composition 137

4.1 Introduction . 138

4.2 Objects insertion . 139

4.2.1 Insertion of irregular shaped objects in the pixel-domain . . . 140

4.2.2 Insertion of objects in the compressed DCT-domain 142

4.3 Transcoding architectures for insertion of non-regular shaped objects 144

4.3.1 Pixel-domain transcoder with re-estimation of motion vectors 144

4.3.2 Pixel-domain transcoder without re-estimation of motion vectors145

4.3.3 Compressed DCT-domain transcoder 146

4.3.4 Computational-reduced compressed DCT-domain transcoder . 149

4.3.5 Open-loop compressed DCT-domain transcoder 155

4.4 Conclusions . 160

References . 160

5 Dynamic Video Composition 163

5.1 Introduction . 164

5.2 Space scaling algorithm by an arbitrary integer scale factor 166

5.2.1 Downscaling algorithms by an arbitrary scale factor 167

5.2.2 Proposed downscaling approach 170

5.2.3 Algorithm . 176

5.3 Block-based motion re-estimation in the DCT-domain 180

xii

Contents

5.3.1 Linear least squares estimation 182

5.3.2 Least squares motion estimation 183

5.3.3 Least squares motion estimation in the DCT-domain 185

5.4 Dynamic picture composition in the DCT-domain 189

5.4.1 Proposed transcoder architecture 194

5.4.2 Frame scaling . 196

5.4.3 DCT-domain frame composition 198

5.4.4 Motion vector re-estimation 201

5.5 Conclusions . 204

References . 205

6 Experimental Results 209

6.1 Introduction . 210

6.2 Static video composition . 212

6.2.1 Quality of the encoded video sequences 213

6.2.2 Bit rate of the encoded video sequences 217

6.2.3 Efficiency of the NRSO insertion transcoders 220

6.2.4 Drift introduced in INTER type images 226

6.3 Dynamic video composition . 231

6.3.1 Space scaling algorithm by an arbitrary integer scale factor . . 231

6.3.2 Block-based motion re-estimation in the DCT-domain 245

6.3.3 Dynamic video composition in the DCT-domain 259

6.4 Conclusions . 272

References . 273

7 Conclusions and Future Research Directions 277

7.1 Conclusions . 278

7.2 Future research directions . 282

References . 285

Appendices 287

A Application of the pseudo-phases shift estimation to 2-D signals 289

B Computational cost efficiency of the NRSO insertion transcoders 299

Bibliography 303

xiii

Contents

xiv

List of Figures

1.1 Evolution of the main video standards along the past few years. . . . 2

1.2 Grid infrastructure available at INESC-ID. 13

2.1 Block diagram of a general video transmission system. 20

2.2 Symmetric-periodic extensions of a finite sequence. 25

2.3 Row-Column decomposition of a 2-D transform. 34

2.4 1-D DCT basis functions. 37

2.5 2-D DCT basis functions. 39

3.1 Degradation effect in pixel-domain transcoding nodes. 57

3.2 Cascaded transcoder. 59

3.3 Typical pixel-domain cascaded transcoder architecture. 60

3.4 Reduced computational cost pixel-domain transcoder architecture. . . 64

3.5 Transform-domain transcoder architecture. 64

3.6 Motion compensation procedure. 68

3.7 Sub-pixel resolution using bilinear interpolation. 70

3.8 Bilinear interpolation using four adjacent blocks. 71

3.9 Macroblock composited by four luminance blocks. 75

3.10 Bandwidth constrained motion-compensation: block x̃1. 76

3.11 Bandwidth constrained motion-compensation: block x̃2. 76

3.12 Bandwidth constrained motion-compensation: block x̃3. 76

3.13 Bandwidth constrained motion-compensation: block x̃4. 76

3.14 Bandwidth constrained motion-compensation: prediction block x̂ . . 77

3.15 Bandwidth constrained motion-compensation algorithm: prediction

block x̂ . 79

3.16 DCT-domain motion compensation using the full-precision and the

bandwidth constrained methods. 81

3.17 Architecture I: Truncation of high frequency DCT coefficients. 84

3.18 AC bit usage profile. 85

3.19 Architecture II: Requantization of the DCT coefficients. 86

xv

List of Figures

3.20 Architecture III: Recoding with old motion vectors and old coding

modes. 87

3.21 Test video sequences adopted in the evaluation of the bit rate and

quality adaptation architectures. 89

3.22 Frequency domain bit rate and quality adaptation architecture. . . . 91

3.23 Requantization error. 92

3.24 Cascaded pixel-domain space-scaling transcoder. 93

3.25 Downsampling four adjacent blocks to obtain a single (8× 8) block. . 96

3.26 Cascaded pixel-domain motion estimation transcoder. 108

3.27 Cascaded transform-domain motion estimation transcoder. 109

3.28 Application of the sinusoidal orthogonal principle to DST pseudo-

phases. 116

3.29 Shift estimation using the 1-D pseudo-phases technique. 116

3.30 Adopted 2-D translation motion model. 117

3.31 Motion estimation using the 2-D pseudo-phases technique. 118

3.32 Backward motion vector composition. 123

3.33 Forward dominant motion vector selection method. 125

3.34 Activity dominant motion vector selection method. 126

4.1 Pixel-domain insertion of an NRSO 141

4.2 Considered set of NRSOs . 143

4.3 Object insertion in the compressed DCT-domain. 144

4.4 Pixel-domain transcoder for object insertion with re-estimation of

motion vectors. 145

4.5 Pixel-domain transcoder for object insertion without re-estimation of

motion vectors. 146

4.6 Pixel-domain insertion algorithm. 146

4.7 Compressed DCT-domain transcoder for object insertion. 147

4.8 Compressed DCT-domain insertion algorithm. 148

4.9 Computational-reduced insertion algorithm in the compressed DCT-

domain. 153

4.10 Computational-reduced compressed DCT-domain transcoder for ob-

ject insertion. 154

4.11 Open-loop compressed DCT-domain insertion algorithm. 158

4.12 Open-loop compressed DCT-domain transcoder for object insertion. . 158

5.1 Discarded DCT coefficients in arbitrary downscale DCT decimation

algorithms. 169

xvi

List of Figures

5.2 Contributions of the several blocks of the original image to the final

value of each pixel of the sampled block. 173

5.3 DCT-domain frame scaling procedure. 175

5.4 Proposed hybrid pixel/transform-domain scaling algorithm. 176

5.5 Iterative LSE algorithm for the computation of the motion vectors in

the DCT-domain. 188

5.6 Considered video composition setups. 190

5.7 Video compositing transcoder based on an intermediary meta-format

representation. 195

5.8 DCT-domain video compositing transcoder architecture. 196

5.9 Block segmentation and translation for DCT-domain video compositing.199

5.10 Computation of the MV prediction and of the search area preliminary

measure that will be considered in the MV re-estimation module. . . 202

6.1 Considered test video sequences. 211

6.2 Considered set of NRSOs. 212

6.3 Obtained PSNR level after the NRSOs insertion with Q=4. 214

6.4 Obtained PSNR level after the NRSOs insertion with Q=15. 215

6.5 Variation of the PSNR level with the transparency factor α after the

NRSOs insertion. 216

6.6 Average number of bits required to encode each pixel of the input

video sequences with Q=4. 218

6.7 Average number of bits required to encode each pixel of the input

video sequences with Q=15. 219

6.8 Number of operations required to insert the considered NRSOs in the

Akiyo video sequence with Q=4. 221

6.9 Number of operations required to insert the considered NRSOs in the

Akiyo video sequence with Q=15. 221

6.10 Number of operations required to insert the considered NRSOs in the

Table-Tennis video sequence with Q=4. 222

6.11 Number of operations required to insert the considered NRSOs in the

Table-Tennis video sequence with Q=15. 222

6.12 First frames (INTRA) and last frame (INTER) of two consecutives

GOPs of the Table-Tennis video sequence, using Q=4 and the PDIT-

MV architecture. 227

xvii

List of Figures

6.13 Last frame (INTER) of the Table-Tennis video sequence GOP, pro-

cessed using: the PDIT-nMV, the TDIT-CL, the TDIT-FCL and the

TDIT-OL architectures, with Q=4. 227

6.14 First frames (INTRA) and last frame (INTER) of two consecutives

GOPs of the Table-Tennis video sequence, using Q=15 and the PDIT-

MV architecture. 230

6.15 Last frame (INTER) of the Table-Tennis video sequence GOP, pro-

cessed using: the PDIT-nMV, the TDIT-CL, the TDIT-FCL and the

TDIT-OL architectures, with Q=15. 230

6.16 Last frame (INTER) of the Akiyo and Silent-Voice video sequences,

processed using the TDIT-OL architecture with a GOP length G=8

and Q=8. 231

6.17 Integration of the proposed DCT-domain downscaling algorithm in a

H.263 video transcoder. 232

6.18 Space scaling of the CIF Mobile & Calendar video sequence. 233

6.19 PSNR measure obtained by downscaling the Akiyo video sequence,

considering Q=4 and GOP=8 frames. 239

6.20 PSNR measure obtained by downscaling the Mobile & Calendar video

sequences, considering Q=4 and GOP=8 frames. 240

6.21 Experimental estimation of the optimal number of considered DCT

coefficients for different scaling factors using the proposed space-

scaling algorithm. 244

6.22 Downsampling four adjacent blocks to obtain a single (8× 8) pixels

block. 246

6.23 Block diagram of the DCT-domain video downscaler with MV re-

estimation in the DCT-domain. 247

6.24 MV fields obtained with the considered ME algorithms. 250

6.25 Obtained PSNR level for the video sequences Carphone and Mobile

& Calendar, using Q=8. 253

6.26 Obtained bit rate for the video sequences Carphone and Mobile &

Calendar, using Q=8. 255

6.27 Average number of operations required to process each pixel of the

Carphone and Mobile & Calendar CIF video sequences, using Q=8. . 258

6.28 Experimental results obtained with the considered compositing se-

tups, using the Mobile & Calendar + Carphone CIF video sequences,

with Q=4. 260

xviii

List of Figures

6.29 Experimental results obtained with the considered compositing se-

tups, using the Coastguard + Silent-Voice CIF video sequences, with

Q=4. 260

6.30 Obtained PSNR level for the considered compositing setups using the

Mobile & Calendar + Carphone video sequences, with Q=8. 263

6.31 Obtained PSNR level for the considered compositing setups using the

Coastguard + Silent-Voice video sequences, with Q=8. 264

6.32 Obtained bit rate for the considered compositing setups using the

Mobile & Calendar + Carphone video sequences, with Q=8. 266

6.33 Obtained bit rate for the considered compositing setups using the

Coastguard + Silent-Voice video sequences, with Q=8. 267

6.34 Obtained operation-count for the considered compositing setups using

the Mobile & Calendar + Carphone video sequences, with Q=8. . . . 270

6.35 Obtained operation-count for the considered compositing setups using

the Coastguard + Silent-Voice video sequences, with Q=8. 271

A.1 Adopted translation motion model. 290

A.2 Application of the sinusoidal orthogonal principle to DCS and DSC

pseudo-phases. 295

B.1 Considered set of NRSOs. 300

B.2 Silent-Voice and Carphone test video sequences. 300

B.3 Number of operations required to insert the considered NRSOs in the

Silent-Voice video sequence with Q=4. 301

B.4 Number of operations required to insert the considered NRSOs in the

Silent-Voice video sequence with Q=15. 301

B.5 Number of operations required to insert the considered NRSOs in the

Carphone video sequence with Q=4. 302

B.6 Number of operations required to insert the considered NRSOs in the

Carphone video sequence with Q=15. 302

xix

List of Figures

xx

List of Tables

2.1 Properties of the implicit input and output extensions of the consid-

ered discrete sine and cosine transforms. 28

2.2 Definition of the orthogonal DCT and DST kernel matrices. 30

2.3 Properties of the implicit input and output extensions of the convolu-

tion formulations of the considered discrete sine and cosine transforms. 41

2.4 Definition of the convolution formulation of the DCT and DST kernel

matrices. 42

2.5 Multiplication-convolution properties of WSWA DTT extensions. . . 44

2.6 Weighting factors for fast computation of the convolution operation

in the DCT-domain . 51

3.1 Intersected regions and the corresponding bilinear interpolation weights. 71

3.2 Processing modules required by the several considered bit rate and

quality adaptation transcoders. 88

3.3 PSNR measure when transcoding from 15 Mbps to 4 Mbps. 89

4.1 Required number of operations to process each pixels block using the

DCT-domain transcoder. 150

4.2 Required number of operations to process each pixels block using the

pixel-domain transcoder. 150

5.1 Number of DCT coefficients considered by arbitrary downscale DCT

decimation algorithms. 169

5.2 Comparison of the several considered downscaling approaches in what

concerns the involved computational cost. 179

5.3 Filtering matrices used by the translation and segmentation opera-

tions for dynamic video composition. 200

6.1 Computational cost comparison between TDIT-CL and PDIT-nMV

architectures. 223

xxi

List of Tables

6.2 Computational cost comparison between TDIT-FCL and PDIT-nMV

architectures. 223

6.3 Computational cost comparison between TDIT-OL and PDIT-nMV

architectures. 223

6.4 Computational cost comparison of the several considered downscaling

algorithms. 235

6.5 Comparison of the PSNR quality level obtained with the considered

downscaling algorithms. 237

6.6 Video quality gains provided by the proposed HDT algorithm over

the DDT approach, for different scaling factors and considering the

same number of DCT coefficients. 241

6.7 Bit rate gains provided by the proposed HDT algorithm over the

DDT approach, for different scaling factors and considering the same

number of DCT coefficients. 241

6.8 PSNR gains provided by the proposed HDT approach over the DDT

algorithm, when they use of the same computational resources. 243

6.9 Considered figures of merit when the usage of the DCT-domain pre-

filtering stage is considered in the proposed algorithm for reduction

of the computational cost. 245

6.10 Average PSNR measures obtained with the considered motion re-

estimation approaches. 251

6.11 Bit rate measures obtained with the considered motion re-estimation

approaches. 254

6.12 Average number of operations required to process each pixel of the

original CIF format frame. 257

6.13 Average PSNR results obtained with the considered video composit-

ing setups. 262

6.14 Average bit rate results, obtained with the considered video com-

positing setups. 265

6.15 Experimental average operation-count results, obtained from the con-

sidered video compositing setups. 269

A.1 Methodology to determine the direction of the displacement from the

signs of DSC and DCS in the observable region. 296

xxii

List of Acronyms

1-D one-dimensional

2-D two-dimensional

ADVS Activity Dominant Vector Selection

AWA Area Weighted Average

CDRS Constrained Dynamic Rate Shaping

CIF Common Intermediate Format

CPAT Cascaded Pixel Averaging Transcoder

DCT Discrete Cosine Transform

DDT DCT Decimation Transcoder

DFT Discrete Fourier Transform

DST Discrete Sine Transform

DTT Discrete Trigonometric Transform

DWT Discrete Wavelet Transform

FDVS Forward Dominant Vector Selection

FFT Fast Fourier Transform

FPS Frames per Second

FSBM Full-Search Block-Matching

FT Fourier Transform

GDFT Generalized Discrete Fourier Transform

xxiii

List of Acronyms

GDRS Unconstrained Dynamic Rate Shaping

GOP Group of Pictures

GPU Graphics Processing Unit

HA Half-Sample Anti-symmetry

HDT Hybrid Downscaling Transcoder

HS Half-Sample Symmetry

HT Haar Transform

IDCT Inverse Discrete Cosine Transform

IEC International Electrotechnical Commission

IntDCT Integer Discrete Cosine Transform

INTER Interframe

INTRA Intraframe

ISO International Organization for Standardization

ITU International Telecommunications Union

JVT Joint Video Team

KLT Karhunen-Loève Transform

LOG Logarithmic Search

LPOS Left Point of Symmetry

LSE Least Squares Estimation

LSME Least Squares Motion Estimation

MB Macroblock

MC-DCT Transform-Domain Motion Compensation

MC Motion Compensation

MDN Median

xxiv

List of Acronyms

ME-DCT Transform-Domain Motion Estimation

ME Motion Estimation

MITD Modified Inverse Transformation and Decimation

MPEG Moving Pictures Experts Group

MQBA Maximum Quantization step-size times number of Bits-Area

MSE Mean Squared Error

MVCS Motion Vector Compositing and Scaling

MV Motion Vector

NPR Non-Peak-to-Peak Ratio

NRSO Non-Regular Shaped Object

NZ number of Non-Zero quantized DCT coefficients

PAP Picture-And-Picture

PDA Personal Digital Assistant

PD-FSBM Pixel-Domain Full-Search Block-Matching

PDIT-MV Pixel-Domain Insertion Transcoder with MV Re-Estimation

PDIT-nMV Pixel-Domain Insertion Transcoder without MV Re-Estimation

PDVCT Pixel-Domain Video Compositing Transcoder

PIPCT Picture-In-Picture Cascaded Transcoder

PIP Picture-In-Picture

POP Picture-Over-Picture

POS Point of Symmetry

PRET Partial Re-Encoding Transcoder

PSNR Peak Signal-to-Noise Ratio

QB Quantization step-size times number of Bits

xxv

List of Acronyms

QCIF Quarter Common Intermediate Format

RDRE Rate-Distortion Re-Encoding

RPOS Right Point of Symmetry

SAAWA Spatial Activity-Area Weighted Average

SAD Sum of Absolute Differences

SA Simple Average

SMES Simple Motion Estimation Scaling

SOB System-On-Board

SOC System-On-Chip

SPMD Single-Program Multiple-Data

SPS Symmetric-Periodic Sequence

ST Slant Transform

SUB Subsampled Search

TDIT-CL Closed-Loop Transform-Domain Insertion Transcoder

TDIT-FCL Fast Closed-Loop Transform-Domain Insertion Transcoder

TDIT-OL Open-Loop Transform-Domain Insertion Transcoder

TD-LSME Transform-Domain Least Squares Motion Estimation

TDVCT-MRE Transform-Domain Video Compositing Transcoder with Motion

Re-estimation

TDVCT Transform-Domain Video Compositing Transcoder

TSS Three Step Search

VLC Variable Length Coder

VLD Variable Length Decoder

WA Whole-Sample Anti-symmetry

WHT Walsh-Hadamard Transform

WS Whole-Sample Symmetry

xxvi

Nomenclature

Matrix related symbols:

In×n - (n× n) identity matrix;

0n×n - (n× n) null matrix;

A (l, :) - lth line of matrix A;

A (:, c) - cth column of matrix A;

A (lx : ly, :) - submatrix of A, composed by the range of lines between lx and ly;

A (:, cx : cy) - submatrix of A, composed by the range of columns between cx and

cy;

Matrix related operations:

AT - matrix transpose;

· - matrix multiplication†;

⊙ - element-by-element matrix multiplication;

⊛ - symmetric convolution;

s - skew-circular convolution;

Set related symbols:

∅ - empty set;N - set of all natural numbers;Z - set of all integer numbers;

†This symbol is suppressed in many equations.

xxvii

NomenclatureQ - set of all rational numbers;R - set of all real numbers;

Set related operations:

#{A} - number of elements of a given set A;

max{A} - maximum value of a given set A;

min{A} - minimum value of a given set A;

Transform related symbols:

Cne - kernel matrix of even type-n discrete cosine transform (orthogonal

formulation);

Cno - kernel matrix of odd type-n discrete cosine transform (convolution

formulation);

Sne - kernel matrix of even type-n discrete sine transform (orthogonal

formulation);

Sno - kernel matrix of odd type-n discrete sine transform (convolution

formulation);

T - Even type-II DCT kernel matrix (C2e);

Miscellaneous functions:

⌊x⌋ - greatest integer less or equal to x;

⌈x⌉ - smallest integer greater or equal to x;

modN(x) - integer division remainder of x by N ;

δ(n) - discrete impulse function;

O (f(x)) - class of algorithms that grow no faster than f(x) (worst case com-

plexity);

M - number of arithmetic operations;

xxviii

Nomenclature

Video processing related symbols:

x - block of pixel values;

X - block of DCT coefficient values;

SF - scale factor;

v - motion vector.

xxix

Nomenclature

xxx

1
Introduction

Contents
1.1 Motivation . 2

1.2 Main objectives . 6

1.3 Summary of original contributions 8

1.4 Computational framework 11

1.5 Organization of the thesis 14

References . 15

1

1. Introduction

1.1 Motivation

In the last few years there has been a general proliferation of advanced video ser-

vices and multimedia applications. However, despite the fast technological growth in

the semiconductor industry, efficient compression algorithms and technologies had

to be devised in order to bridge the gap between the huge amount of data that is

required to represent video scenes and the strict limitations related to the transmis-

sion, the storage and the processing capabilities. As a consequence, several video

standards have been developed along the past few decades, to store and broadcast

video information in the digital form. Some of such video standards are the MPEG-

1 Video [26], the MPEG-2 Video [27] and the MPEG-4 Visual [28], proposed by

the Moving Pictures Experts Group (MPEG) of the International Organization for

Standardization (ISO) and by the International Electrotechnical Commission (IEC);

the H.261 [29] and the H.263 [30], proposed by the International Telecommunica-

tions Union (ITU); and the H.264/AVC [31], also known as MPEG-4 Part 10 or

MPEG-4 AVC, recently developed by the Joint Video Team (JVT) of MPEG and

ITU. A similar partnership between MPEG and ITU had been previously respon-

sible for the definition of the MPEG-2 Video standard. In fig. 1.1 it is represented

the evolution of these standards along the time.

Most of these standards make use of block-based video coding techniques that

exploit the energy compaction properties of the Discrete Cosine Transform (DCT),

allied with quantization schemes, to reduce the amount of irrelevant information

that is present in each frame. Moreover, temporal prediction mechanisms based

on motion estimation and compensation procedures are usually applied, to reduce

the amount of redundant information in consecutive frames. By applying such

compression techniques, it is possible to obtain a substantial decrease of the amount

ITU-T
Standards

Joint
ITU-T/MPEG
Standards

MPEG
Standards

H.261

H.262 /
MPEG-2 Video

MPEG-1 Video MPEG-4 Visual

H.264 /
MPEG-4 Part 10 AVC

H.263 H.263+ H.263++

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

DCT-based
standards

IntDCT-based
standards

Figure 1.1: Evolution of the main video standards along the past few years.

2

1.1 Motivation

of data required to store or transmit a given video sequence. As a consequence,

many successful applications have arisen in the areas of digital television, digital

storage, video streaming over the network, surveillance, mobile and portable video

transmission, and many others.

However, once video signals have been compressed, delivery systems and service

providers frequently face the need for further manipulations and processing of the

compressed video-streams. Such data processing usually focuses on adapting the

characteristics of the video sequences not only to the terminal devices but also to

the available channel bandwidth or to the characteristics of the storage media. In

this scope, a video transcoder is defined as a device that converts one or more video

streams into other video streams that possess a more desirable set of characteris-

tics [107].

As a consequence, video transcoding has emerged as a new research area concern-

ing a broad set of processing, manipulation and adaptation techniques to convert one

video bit stream into another bit stream with a more convenient set of parameters

targeted to a given application. This parameter adaptation may include changes

on: syntax, spatial and temporal resolutions, bit rate adjustment, added function-

alities or even other adjustments imposed by hardware requirements. Moreover,

with the advent of a broad range of different portable and battery supplied termi-

nal equipments, including handheld computers, Personal Digital Assistants (PDAs),

set-top boxes and smart cellular phones, new requirements and demands have re-

cently arisen. With the significant set of different characteristics that are presented

by these devices in what concerns the available computational resources, display

capability and power consumption, it became increasingly important to ensure the

feasibility of such video processing algorithms in a wide range of different embedded

computational systems.

Meanwhile, the developments on video transcoding that have been published in

the last few years have shown that significant advantages can be obtained by fully

processing the video streams in the compressed DCT-domain [6]. Some of such

advantages are enumerated as follows:

• lower computational cost, since it avoids the implementation of both the for-

ward transform and its inverse;

• smaller data volume, since it takes advantage of the presence of a large number

of null quantized DCT coefficients, which heavily reduce the data manipulation

rate [57, 99];

• increased image quality, resulting from the absence of degradation effects that

3

1. Introduction

arise during the computation of the direct and of the inverse DCT, which

usually emerge from round-off errors that are introduced by the usage of finite

precision arithmetic; this quality loss becomes even more serious in embedded

systems with limitative hardware for fixed-point arithmetic and operating with

a restricted number of bits.

As a consequence, there has been a growing interest in the research and industrial

communities to develop processing techniques and to implement many of the most

required video parameter adjustment and processing algorithms either directly in the

compressed-domain or in an intermediate domain representation, where the process-

ing is directly applied to the DCT coefficients. In the following, such intermediate

processing domain will be simply denoted by DCT-domain [107].

Due to the complexity of the inherent procedures and to the significant number

of coding mechanisms that must be adapted, one of the most challenging processing

operations is related to the DCT-domain composition of multiple precoded video

objects, in order to obtain one single video sequence [11]. Contrary to what hap-

pens with some video standards (such as MPEG-4 Visual [28]) where multiple video

objects can be independently encoded and transmitted, the objective of these com-

position operations is to obtain a single video plane composited by the several input

video objects. In this scope, it will be generically denoted by video object any im-

age or video entity that can be characterized by a given shape and texture data

structure, as well as by a precise size and target position within the composited

plane.

As an example, with the widespread dissemination and usage of video data over

the several communication means that have become increasingly available, intellec-

tual property management and protection issues become one of the most common

video processing operations that is carried out over broadcasted video sequences.

Such operations usually comprehend a set of stationary or quasi -stationary manip-

ulations on precoded video streams, in order to insert extra visual information in

the video sequence that is delivered to the receiver. Among the several possible ma-

nipulations, the algorithms for the insertion of visible logos, subtitles, fixed images

or graphical symbols in video sequences represent the most commonly used. Such

objects usually occupy a small area of the encoded frame and tend to be static, from

frame to frame. As a consequence, the insertion of visible objects in the compressed-

domain has faced a growing interest by broadcasting television networks as well as

by digital video producers and distributors, in order to provide the possibility of

inserting their own logos and subtitles in pre-encoded video streams [61]. To take

into account for the several DCT-based video standards currently in use, this mech-

4

1.1 Motivation

anism should provide the insertion capability in several block-based video standards,

such as the simplest MPEG-1 and MPEG-2 and other real-time low bit rate services

based on H.261 and H.263 video standards [29, 30, 64, 74].

Another video processing operation that has become increasingly popular along

the past few years is related to the composition of multiple video sequences into a

single scene, according to any arbitrary composition layout. One of such layouts

that is particularly adopted in surveillance and video-conferencing applications is

the picture-in-picture setup, where one or more foreground video sequences are con-

tinuously displayed, at a reduced dimension, over a given region of the background

displaying area. However, the implementation of these dynamic video composit-

ing schemes in the compressed DCT-domain poses some additional highly complex

challenges. Contrary to what happens with the static video compositing opera-

tions, it requires the simultaneous processing and combination of the several and

possibly different encoding strategies that are adopted by the video sequences under

processing.

An example of one of the most challenging operations that is often required is

the adaptation of the temporal prediction schemes of the input video sequences, in

order to provide an efficient encoding of the output composited video stream. In

fact, many video transcoding operations require the refinement or even the computa-

tion of entirely new Motion Vectors (MVs), in order to reduce the magnitude of the

prediction error signal and the drift that is introduced along the time by such tech-

niques. Consequently, the implementation of motion estimation and compensation

algorithms by directly using the DCT coefficients obtained from the received video

sequences is one of the processing techniques that has been given more attention by

the research community.

Another important challenge is related to the efficiency and reliability of the

scaling procedures that are required to adapt the spatial resolutions of the involved

foreground video sequences. Although such issue has been considered by many

researchers in the last few years, the characteristics of the proposed algorithms

do not always comply with the requisites of the adopted space-scaling transcoding

system: either they are only directly applied to scaling operations using integer

power of 2 scaling factors, or their performance significantly degrades when other

arbitrary scaling factors are applied. Moreover, some of these algorithms do not

allow the direct processing of pre-coded data using the fixed block structure that is

adopted by most digital video standards.

5

1. Introduction

1.2 Main objectives

In accordance with the identification of open research issues that was described

in the previous section, the research work that is presented in this thesis targets the

implementation of complex composition schemes of compressed video objects, by

directly processing each encoded video sequence in the intermediate DCT-domain

representation. Contrasting with other simpler pixel-domain approaches - composed

of a cascading structure of one or more complete decoding stages, a dedicated pixel-

domain composition module and a final video encoding structure - the adopted

compressed-domain approach takes advantage of many of the encoding parameters

and statistics that are available in the input compressed video streams. As it will

be shown in the presentation, such significant amount of information can be used

not only to simplify the overall computation, but also to improve the video quality

and coding efficiency.

The main research efforts that were conducted in the scope of this thesis were

focused on the design of efficient algorithms and processing architectures to imple-

ment video composition transcoding operations in current video processing struc-

tures. Along this study, a particular attention was devoted to the inherent trade-off

between the following key factors that significantly affect the actual feasibility of

these transcoding structures in current video processing systems: i) the involved

computational cost, ii) the output video quality, and iii) the resulting bit rate.

Consequently, many of the algorithms that are proposed provide a complexity scal-

ability feature that confer the designer the possibility to adapt the characteristics

of the obtained transcoder not only to the computational capabilities of the target

system, but also to the coding quality and bit rate requirements of the intended

application.

The following paragraphs outline the main objectives of the conducted research:

• Development of new transcoding algorithms for video composition

One of the prime focuses of the research presented in this thesis is the devel-

opment of efficient and flexible transcoding algorithms for video composition

in the compressed DCT-domain. Two distinct video compositing schemes will

be considered:

– Static video composition: consisting on the insertion of stationary or

quasi -stationary visible data (such as logos or other non-regular shaped

objects, etc.) over the received “background” video sequence;

– Dynamic video composition: consisting on the composition of one or more

6

1.2 Main objectives

“foreground” video sequences over the displaying area corresponding to

the “background” video sequence.

The implementation of any of these transcoding schemes should support a wide

flexibility and variability of the insertion parameters, mainly, in what concerns

the adopted composition layout, the position of the several video objects, the

spacial scaling of the inserted scenes, etc.

• Development and improvement of DCT-domain video processing op-

erations

To support the implementation of the proposed transcoding algorithms for

video composition, several common video processing operations will have to

be adapted and transposed into the DCT-domain. Despite the several algo-

rithms that have already been proposed in the literature by other authors,

some significant changes and improvements have to be carried out. These

improvements are important to optimize not only the processing of the video

objects, by directly using the DCT coefficients of the decoded video objects,

but also to better adapt and suit their implementations to the data structures

adopted by the considered video standards. Some examples of research topics

that have to be tackled are:

– DCT-domain video space-scaling: by considering an arbitrary integer

scaling factor and a proper adaption to the block-based data structures

of the video standards;

– DCT-domain motion estimation: by directly using the decoded blocks of

DCT-coefficients obtained from the received video sequences.

• Development of transcoding architectures for video composition

The efficient concretization of the several transcoding algorithms that will be

proposed along this thesis can only be achieved through a careful design and

implementation procedure. In particular, a tight relation should exist between

the transcoding algorithms development stage and their corresponding archi-

tectures design phase. Such relation allows to cope with the several restrictions

that are imposed not only by the data structures associated to the considered

video standards, but also with the computational and memory access require-

ments and characteristics of the target implementation platforms.

• Optimization of the considered transcoding algorithms

One of the main premises that will serve as the basis for the development

7

1. Introduction

of the algorithms and architectures that are proposed in this thesis is the

possibility to properly adapt the computational cost required by the several

involved operations with both the bit rate and the quality requirements of

the intended transcoding system. In order to attain such objective, a flexible

scaling of the overall complexity level that is involved in each operation, as

well as an accurate assessment of the resulting influence on both the obtained

video quality and bit rate, should be carefully analyzed. By adopting such

approach, it will be possible to confer the transcoder designer the possibility

to trade-off the involved computational cost with the resulting output video

quality performance measures.

From the stated objectives, it should be clear that although some basic theo-

retical concepts and principles of digital video coding, as well as of the associated

standards, will have to be extensively used, the main focus of this thesis will be

on digital video transcoding techniques, algorithms and architectures, and on the

more practical aspects related to their implementation in currently available com-

putational systems.

1.3 Summary of original contributions

In this section, it is presented a summary of the most relevant and original

contributions that have resulted from the research work performed in the scope of

this thesis. Such achievements are mainly related to the proposal of innovative or

improved transcoding algorithms and architectures to provide video manipulation

schemes in the compressed DCT-domain.

Along the comprehensive study that was performed during the development stage

of such algorithms and architectures, a constant attention was devoted to the valida-

tion of the proposed techniques within the scientific community. As a consequence,

many of the most relevant contributions have already been published either in inter-

national scientific journals or in the proceedings of several international conferences.

The most relevant contributions are listed as follows:

• Fast Transcoding Architectures to Insert Non-Regular Shaped Ob-

jects in the Compressed DCT-Domain

From the developed research work, it was proposed a set of fast transcoding

architectures to insert non-regular shaped objects, such as visible logos or sub-

titles, in compressed video signals. The proposed transcoders incorporate a

logo insertion module on their structure that manipulates the DCT coefficient

8

1.3 Summary of original contributions

blocks directly obtained from the decoded video streams. To avoid the pres-

ence of undesired semi-transparent rectangular regions around the inserted

objects, the proposed technique makes use of the multiplication-convolution

property of the DCT. Such transcoding structures have proved to provide

significant advantages, both in terms of the subjective video quality and com-

putational cost. Moreover, the distinctive features presented by the proposed

architectures provide the means to adapt the insertion scheme to the particu-

lar requirements of the target application.

Most of the related main contributions have already been published in:

[86] N. Roma and L. Sousa, “Insertion of irregular-shaped logos in the

compressed DCT domain,” in Proceedings of the IEEE International

Conference on Digital Signal Processing (DSP), vol. 1. Santorini,

Greece: IEEE, Jul. 2002, pp. 125–128.

[87] N. Roma and L. Sousa, “Transcoding architectures for object inser-

tion in compressed video,” INESC-ID – Lisboa, Portugal, Tech. Rep.

RT/006/2002, Oct. 2002.

[88] N. Roma and L. Sousa, “Fast transcoding architectures for insertion of

non-regular shaped objects in the compressed DCT-domain,” Signal

Processing: Image Communication, vol. 18, no. 8, pp. 659–683, Sep.

2003.

• Arbitrary Space Scaling Algorithm in the Compressed DCT-Domain

It was proposed an efficient video downscaling algorithm for any arbitrary inte-

ger scaling factor. This algorithm receives the encoded DCT coefficient blocks

of the input video sequence and efficiently computes the DCT coefficients of

the scaled video stream. The involved steps are properly tailored, so that

all operations are performed using the video standard block structure, inde-

pendently of the adopted scaling factor. As a result, the proposed algorithm

offers a significant optimization of the computational cost without compro-

mising the output video quality, by taking into account the scaling mechanism

and by restricting the involved operations to avoid useless computations. In

order to meet any system needs, an optional and possible combination of the

presented algorithm with high order AC frequency DCT coefficients discarding

techniques was also proposed. Such combination provides a flexible complexity

scalability feature and gives rise to an adaptable trade-off between the involved

scalable computational cost and the resulting video quality and bit rate.

9

1. Introduction

Most of the related main contributions have already been published in:

[90] N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for

any arbitrary integer re-size video downscaling,” EURASIP Journal

on Advances in Signal Processing, vol. 2007, no. 57291, pp. 1–16, Sep.

2007.

• Block-Based Motion Re-Estimation Algorithm in the Compressed

DCT-Domain

The research work that was performed on DCT-domain spatial downscaling

algorithms and on dynamic composition of multiple video sequences required

the development and the proposal of a new compressed-domain motion es-

timation algorithm. This algorithm directly processes the DCT coefficients

obtained from the decoded video streams and is based on an iterative scheme

that computes the new MVs by applying a least squares estimation technique.

To reduce the computational effort, the proposed algorithm may also only

consider an arbitrary subset of non-null DCT coefficients. The resulting MVs

provide the means to significantly enhance the quality of the temporal predic-

tion mechanism on the processed video sequences, with a consequent reduction

of the required bit rate.

Most of the related main contributions have already been published in:

[89] N. Roma and L. Sousa, “Least squares motion estimation algorithm in

the compressed DCT domain for H.26x/MPEG-x video sequences,” in

Proceedings of the IEEE International Conference on Advanced Video

and Signal-Based Surveillance (AVSS). Como - Italy: IEEE, Sep.

2005, pp. 576–581.

• Dynamic Video Composition Algorithm in the Compressed DCT-

Domain

It was proposed an efficient architecture to perform the composition of encoded

video sequences that fully operates in the compressed DCT-domain. By di-

rectly operating with the partially decoded DCT coefficients of the involved

video sequences, the proposed approach may provide significant advantages

in what concerns the output video quality performance. Such advantages are

owed to the absence of both the Inverse Discrete Cosine Transform (IDCT)

and DCT processing blocks that naturally make it less prone to round-off

10

1.4 Computational framework

and fixed-precision arithmetic errors. Moreover, the presented approach sig-

nificantly improves the temporal prediction mechanism, by incorporating the

developed DCT-domain motion re-estimation algorithm. Contrary to the re-

finement schemes proposed by other authors, this refinement procedure may

consider any dimension for the search area, which significantly improves the

output video quality and reduces the resulting bit rate. Furthermore, the

presented DCT-domain approach does not impose any limitation on the com-

position setup, allowing each “foreground” video sequence to be placed over

any location of the “background” video scene. Therefore, it also offers a flex-

ible and easy implementation of most current video composition setups, such

as Picture-In-Picture (PIP), Picture-And-Picture (PAP) and Picture-Over-

Picture (POP).

Most of the related main contributions have already been published in:

[91] N. Roma and L. Sousa, “Fully compressed-domain transcoder for

PIP/PAP video composition,” in Proceedings of the Picture Coding

Symposium (PCS), Lisbon - Portugal, Nov. 2007, pp. CD–ROM.

1.4 Computational framework

To support the development of the several algorithms and architectures that were

proposed in the scope of the research presented in this thesis, a complete and ded-

icated computational framework was implemented. This computational framework

was also used to evaluate and assess all the presented transcoding algorithms and

architectures. In the following, it will be presented a brief description of the main

aspects related to such framework.

Video coding platform

Without any generalization or applicability loss of the several transcoding algo-

rithms and architectures that are presented in this thesis, the implemented frame-

work was based on a generic block-based video coding structure, incorporating most

of the processing modules that integrate many current DCT-based video encoders.

In accordance, such coding structure makes use of the DCT and of a motion-

compensation prediction mechanism to reduce the amount of irrelevant and redun-

dant information within the processed video data. The frames of the processed

video sequences are divided into Macroblocks (MBs), where each MB consists of

four luminance blocks (Y), along with the corresponding sub-sampled chrominance

11

1. Introduction

blocks (Cb) and (Cr) [7]. By taking these general assumptions into account, any

of the proposed transcoding structures can be easily implemented and integrated

within the transcoding architecture of any other compatible video standard. Nev-

ertheless, to support the evaluation and the assessment procedures of the presented

transcoding schemes, the above referred transcoding structure made use of the same

syntax and semantic rules of the H.263 [30] video standard. The selection of this

specific standard arises from the simple encoding mechanism that characterizes it,

thus greatly simplifying the development and integration of new processing modules.

In addition, such approach does not compromise the general applicability of the pro-

posed techniques to other DCT-based video standards, such as the H.261 [29], the

MPEG-1 Video [26], the MPEG-2 Video [27] and the MPEG-4 Visual [28].

Software implementation

The conception of this computational framework comprised the full implementa-

tion of the used video encoding and decoding systems, as well as of all the processing

modules that are required to implement the proposed video transcoding architec-

tures. All these computational blocks were developed using the GNU Octave [69]

high-level language, primarily intended for numerical and matrix operations, running

over a general purpose distribution of the Linux operating system. Such computa-

tional platform provides a convenient batch-oriented interface to perform numerical

computations, using a language that is mostly compatible with Matlab from Math-

works [60]. The development of complex processing systems, such as the video

transcoding schemes that are proposed in this thesis, is somewhat facilitated by its

extensible and customizable facility via user-defined functions written in Octave’s

own language.

Furthermore, contrasting with other general purpose programming languages

(such as ANSI C [37] or C++), that could potentially provide better computational

performances, the programming language adopted in the implementation of this

framework comprises a comprehensive library of mathematical functions that has

proved to be special adequate to allow a fast and easy prototyping platform, capable

of implementing all the processing structures required by the proposed transcoders.

Computational resources

To accelerate the execution of the proposed transcoding structures, the

GRID [18] computational platform that is available at INESC-ID facilities was ex-

tensively used to run several parallel instances of the developed software transcoder

12

1.4 Computational framework

implementations. The GRID infrastructure, depicted in fig. 1.2, is composed of 22

computational nodes, each one equipped with a 3.2 MHz Intel Pentium 4 processor

with 1 GB of memory RAM. The several nodes that compose this computational

pool are managed by the Globus software toolkit [19, 21] using the Condor sched-

uler [15]. The combination of these two middleware toolkits provides a complete

and efficient platform to control the job queuing mechanism, the adopted schedul-

ing policy and priority schemes, and a complete set of resources to monitor and

manage the several computational nodes.

The parallelization of the implemented transcoding structures was carried out

by using a simple Single-Program Multiple-Data (SPMD) parallel computational

model, by executing the same transcoding software implementation in all nodes of

the GRID infrastructure. The input streams, corresponding to the encoded video

sequences that have to be processed by the transcoding system, were sliced into

multiple pieces of data. Each of these slices was then assigned to a distinct job that

was submitted to the queuing mechanism.

To comply the required slicing procedure of the input video sequences with

the data dependencies that are inherent to the video coding syntax and seman-

tic rules, each of these slices comprehends an integer multiple of closed Group of

Figure 1.2: Grid infrastructure available at INESC-ID.

13

1. Introduction

Pictures (GOP) units. By adopting such approach, it was removed any INTER

frame dependency between the data sets that were submitted to the several differ-

ent jobs. The processed output video sequence was then obtained by implementing

an ordered concatenation mechanism of the output video streams produced by the

several processed jobs.

By using such a parallel computational platform, it was possible to obtain a

faster and reliable prototyping system to implement all the proposed transcoding

architectures. In fact, without such platform, some of the conducted evaluation and

assessment experimental procedures would have taken several days to be obtained.

1.5 Organization of the thesis

This thesis is organized in seven chapters and two appendices.

In the present chapter it is presented the motivation and an introductory ap-

proach to the recent advent of transcoding techniques in current video processing

applications. The main challenges and target objectives of the presented research

are also outlined, as well as a brief overview of the main resulting contributions.

In chapter 2 it is presented a set of theoretical foundations concerning the DCT

that will be extensively used in the presentation of the several algorithms proposed in

this thesis. A formal definition of this transform is provided, as well as the presenta-

tion of its most important properties and relations with other discrete trigonometric

transforms.

Chapter 3 presents a brief overview of the main state-of-the-art techniques and

tools that have been proposed over the last few years to implement many of the most

required operations for video transcoding of video bit streams in the DCT-domain.

In chapter 4 it is addressed the problem concerning the insertion of non-regular

shaped objects, such as visible logos, in compressed video signals. A different ap-

proach from the usual pixel-domain compositing operation is adopted, in order to

avoid the presence of undesired semi-transparent rectangular regions around the in-

serted objects. The transposition of this technique to the compressed DCT-domain

is presented, as well as the integration of the logo insertion module in several archi-

tectures of compressed-domain video transcoders.

Chapter 5 presents a set of efficient transcoding operations to process and ma-

nipulate one or more precoded video sequences in the compressed DCT-domain. In

particular, section 5.2 addresses the implementation of an innovative and efficient

transcoding algorithm for video downscaling by any arbitrary integer scaling factor

in the transform-domain. Such algorithm offers a considerable advantage in what

14

concerns the computational cost and the obtained video quality, when arbitrary

scaling factors are applied. In section 5.3 it is proposed a new compressed-domain

motion estimation algorithm. This algorithm is based on an iterative scheme to es-

timate the new MVs, by using the DCT coefficients directly obtained from the input

video stream. These two important algorithms were then applied in the implemen-

tation of a flexible and efficient compressed-domain video compositing architecture,

presented in section 5.4.

In chapter 6 it is described the several experimental procedures that were con-

ducted in the scope of the presented research, in order to assess the performance and

the efficiency of the proposed algorithms and architectures. A thorough discussion

of the obtained results is also presented. Such discussion provides a detailed evalu-

ation of the objective and subjective video quality levels, as well as of the involved

computational cost and the resulting bit rate, obtained with the proposed static and

dynamic video processing algorithms.

Finally, chapter 7 concludes this thesis with a presentation of the main accom-

plished objectives and the drawing of some possible future research directions.

Besides these seven chapters, this thesis also includes two appendices where

it is provided some complementary information concerning the presentation of a

motion estimation algorithm mentioned in the description of the current state-of-

the-art, and some additional and supplementary results obtained with the proposed

architectures.

References

[6] P. Assunção and M. Ghanbari, “A frequency-domain video transcoder for dy-

namic bit-rate reduction of MPEG-2 bitstreams,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 8, no. 8, pp. 953–967, Dec. 1998.

[7] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards:

Algorithms and Architectures, 2nd ed. Kluwer Academic Publishers, Jun. 1997.

[11] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-

DCT compressed video,” IEEE Journal on Selected Areas in Communications,

vol. 13, no. 1, pp. 1–11, Jan. 1995.

[15] “Condor webpage,” http://www.cs.wisc.edu/condor, 2008.

[18] I. Foster, The Grid: Blueprint for a New Computing Infrastructure, 2nd ed.

Morgan Kaufmann, 2004.

15

http://www.cs.wisc.edu/condor

[19] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,”

in Proceedings of the IFIP International Conference on Network and Parallel

Computing (NPC), vol. LNCS 3779. Springer-Verlag, 2006, pp. 2–13.

[21] “Globus webpage,” http://www.globus.org, 2008.

[26] MPEG-1: ISO/IEC JTC1 CD 11172 - “Coding of moving pictures and asso-

ciated audio for digital storage media up to 1.5 Mbit/s – Part 2: Video”, ISO,

1992.

[27] MPEG-2: ISO/IEC JTC1 CD 13818 - “Generic coding of moving pictures and

associated audio – Part 2: Video”, ISO, 1994.

[28] MPEG-4: ISO/IEC 14496-2:2004. Information technology – Coding of audio-

visual objects – Part 2: Visual, ISO, 2004.

[29] ITU-T Recommendation H.261 - “Video Codec for Audiovisual Services at p×64

Kbit/s”, ITU-T, Mar. 1993.

[30] ITU-T Recommendation H.263 - “Video Coding for Low Bitrate Communica-

tion”, ITU-T, Feb. 1998.

[31] ITU-T Recommendation H.264, “Advanced Video Coding for Generic Audiovi-

sual Services”, ITU-T, May 2003.

[37] B. Kernighan and D. Ritchie, The C Programming Language, 2nd ed. Prentice

Hall Software, 1988.

[57] S. Liu and A. C. Bovik, “Local bandwidth constrained fast inverse motion com-

pensation for DCT-domain video transcoding,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 12, no. 5, pp. 309–319, May 2002.

[60] “Matlab webpage,” http://www.mathworks.com/products/matlab, 2008.

[61] J. Meng and S.-F. Chang, “Embedding visible video watermarks in the com-

pressed domain,” Proceedings of the IEEE International Conference on Image

Processing (ICIP), vol. 1, pp. 474–477, 1998.

[64] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. Legall, MPEG video

compression standard. Chapman & Hall, 1996.

[69] “Octave webpage,” http://www.octave.org, 2008.

16

http://www.globus.org
http://www.mathworks.com/products/matlab
http://www.octave.org

[74] F. Pereira and T. Ebrahimi, Eds., The MPEG-4 Book. Prentice Hall PTR,

2002.

[86] N. Roma and L. Sousa, “Insertion of irregular-shaped logos in the compressed

DCT domain,” in Proceedings of the IEEE International Conference on Digital

Signal Processing (DSP), vol. 1. Santorini, Greece: IEEE, Jul. 2002, pp. 125–

128.

[87] N. Roma and L. Sousa, “Transcoding architectures for object insertion in com-

pressed video,” INESC-ID – Lisboa, Portugal, Tech. Rep. RT/006/2002, Oct.

2002.

[88] N. Roma and L. Sousa, “Fast transcoding architectures for insertion of non-

regular shaped objects in the compressed DCT-domain,” Signal Processing:

Image Communication, vol. 18, no. 8, pp. 659–683, Sep. 2003.

[89] N. Roma and L. Sousa, “Least squares motion estimation algorithm in the

compressed DCT domain for H.26x/MPEG-x video sequences,” in Proceedings

of the IEEE International Conference on Advanced Video and Signal-Based

Surveillance (AVSS). Como - Italy: IEEE, Sep. 2005, pp. 576–581.

[90] N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for any ar-

bitrary integer re-size video downscaling,” EURASIP Journal on Advances in

Signal Processing, vol. 2007, no. 57291, pp. 1–16, Sep. 2007.

[91] N. Roma and L. Sousa, “Fully compressed-domain transcoder for PIP/PAP

video composition,” in Proceedings of the Picture Coding Symposium (PCS),

Lisbon - Portugal, Nov. 2007, pp. CD–ROM.

[99] B. Shen and I. K. Sethi, “Block-based manipulations of transformed-compressed

images and videos,” ACM Multimedia System Journal, vol. 6, no. 2, pp. 113–

124, Mar. 1998.

[107] H. Sun, X. Chen, and T. Chiang, Digital Video Transcoding for Transmission

and Storage. CRC Press, 2004.

17

18

2
The Discrete Cosine Transform

Contents
2.1 Introduction . 20

2.2 Definition . 24

2.2.1 Extension properties of sampled data beyond original
boundaries . 25

2.2.2 Discrete cosine transforms 27

2.2.3 Discrete sine transforms 31

2.2.4 Inverse transforms . 32

2.2.5 Main properties . 32

2.3 Multidimensional transforms 34

2.4 Application of the DCT to image and video coding . . . 35

2.4.1 One-dimensional discrete cosine transform 36

2.4.2 Two-dimensional discrete cosine transform 38

2.5 Multiplication-convolution property 38

2.5.1 Generic discrete trigonometric transform 40

2.5.2 Definition . 43

2.5.3 Fast computation of the convolution operation in the
DCT-domain . 46

2.6 Conclusion . 51

References . 52

19

2. The Discrete Cosine Transform

2.1 Introduction

Transform-based coding has been extensively used in image and video coding.

The adoption of transform functions to encode pixel data relies on the general

premise that adjacent pixels exhibit a significant level of spatial correlation. Such

correlation can be highly exploited to predict the value of a given pixel from its

corresponding neighbors. As a consequence, many digital image and video coding

techniques that have been proposed take advantage of these transform functions

to map the spatial correlated data into a set of less correlated transform-domain

coefficients.

In fig. 2.1 it is depicted the general structure of a typical digital video transmis-

sion system. The main objective of the source encoder is to exploit the redundancies

and the irrelevancies of the pixel data, in order to obtain the highest possible com-

pression level. Such objective is attained by reducing the contents entropy, thus

decreasing the average number of bits required to represent each frame. On the

other hand, to enhance the reliability of the transmission, the channel encoder adds

a certain redundancy level to the output of the source encoder.

To maximize the compression, each component of the source encoder exploits a

different redundancy level of the pixel data:

Source Decoder

Source Encoder

Transform Quantizer
Entropy
Encoder

Channel
Encoder

Original
Image

Reconstructed
Image

Transmission
ChannelMotion

Compensation

Inverse
Transform

Inverse
Quantizer

Entropy
Decoder

Channel
Decoder

Inverse Motion
Compensation

Motion
Estimation

Frame Memory

Inverse
Quantizer

Inverse
Transform

Frame
Memory

Figure 2.1: Block diagram of a general video transmission system.

20

2.1 Introduction

• The motion compensation module decorrelates the pixel data in order to mini-

mize the temporal redundancy between consecutive frames. Its main objective

is to compensate for the displacement of moving objects, from one frame to

another, in order to minimize the magnitude of the resulting difference signal.

The implementation of this module in the encoder side is tightly coupled with

a motion estimation module, to compute the MVs that describe the relative

motion of a given block of pixels.

• The transform module decorrelates the pixel data in order to minimize the

spatial redundancy between adjacent pixels. Several different transforms can

be adopted in the implementation of this module; a thorough and detailed

discussion about the transform functions that are usually used by such module

will be provided in the following sections.

• The quantizer module takes advantage of the inability of the human eye to

perceive small differences between pixel values. As a consequence, such small

differences are often considered irrelevant and can actually be discarded with-

out introducing serious visual artifacts. Such irrelevancy is often denoted by

psychovisual redundancy. This idea is often extended and exploited in low

bit rate transmission systems, characterized by strict bandwidth restrictions,

where visual quality has to be sacrificed in order to reduce the bit rate to the

available bandwidth. Hence, even though other sources of degradation may

also have to be considered (as it will be described in section 3.1.2), this module

is usually the main source of irreversible loss in these encoding schemes.

• The entropy encoder implements a final lossless compression stage in the en-

coding scheme, by using, for example, a Huffman run-length encoder [26, 27,

29, 30]. The main purpose of this module is to represent each symbol of

the quantizer output with the minimum amount of bits as possible. In the

following, this encoding block will be generally denoted by Variable Length

Coder (VLC), while the corresponding decoder block will be denoted by Vari-

able Length Decoder (VLD).

In video coding terminology, a compressed frame that only uses spatial redundancy

reduction techniques is usually referred to as an Intraframe (INTRA), and is often

simply denoted by I-frame. On the other hand, a compressed frame that uses both

spatial and temporal redundancy reduction techniques is referred to as an Interframe

(INTER) and is denoted by P-frame.

21

2. The Discrete Cosine Transform

Most transform-based coding techniques process the pixel data by grouping the

pixels in block structures. These blocks are then transformed and mapped into

another domain, such as the frequency-domain. By defining two (N ×N) transfor-

mation matrices:

T c = {Tc(m, i)} , m, i = 0, 1, . . . , N − 1, (2.1)

T r = {Tr(n, j)} , n, j = 0, 1, . . . , N − 1, (2.2)

and by considering a two-dimensional (2-D) image block in the spatial-domain x,

the corresponding transform-domain representation X is obtained by applying the

(N ×N) linear transformation process:

X = T c ·x ·T r
T. (2.3)

The T c and T r matrices are usually referred to as transformation kernels or basis

functions.

As it was previously referred, the main motivation for applying this exchange of

the signal domain and compute the transform representation X of the pixel-domain

signal x is to obtain a more compact representation of the pixel-data. Nevertheless,

such transformation process has to be reversible, so that x can be reconstructed

from X in the decoder side of the video transmission system.

Some of the most commonly used transforms that have been considered for

image and video coding are the Karhunen-Loève Transform (KLT), the Discrete

Fourier Transform (DFT), the Discrete Cosine Transform (DCT), the Discrete Sine

Transform (DST), and the Discrete Wavelet Transform (DWT) [34, 53, 78, 82].

The KLT is the most efficient, in terms of compaction efficiency. The basis

functions of this transform are obtained from the statistical properties of the pixel

data. As a consequence, it gives rise to the optimum performance in terms of energy

compaction, thus placing as much energy as possible in as few coefficients as possible.

However, since the transform kernel of this transform depends on the image data

under processing, it cannot be computed using a fast matrix-multiplication form,

based on a separable pre-computed matrix kernel. It also requires a continuous

transmission of the transform kernel coefficients to the decoder end, thus implying

a subsequent increase of the required bandwidth. Moreover, for block-based coding,

the derivation of the basis kernel corresponding to each image block introduces an

extra computational effort, that is often not compatible with most current image

and video coding applications.

As a consequence, other less efficient but image independent transforms have

been preferred. Among them, the DFT is characterized by a linear, separable and

22

2.1 Introduction

symmetric definition. Contrary to the KLT, it is represented by fixed basis functions

and exhibits good decorrelation and energy compaction characteristics. However,

the output of the DFT is defined in the complex-domain and therefore gives rise to

both magnitude and phase components to be encoded. Furthermore, the implicit

periodicity of DFT introduces boundary discontinuities that result in a significant

high-frequency content.

As a result, discrete transforms characterized by smoother basis functions have

been preferred. In particular, the transform output provided by the DCT usually

leads to compaction efficiency levels quite close to the optimum performance pro-

vided by the KLT. Consequently, the DCT has been widely adopted in many digital

image and video standards, such as the JPEG [32], H.261 [29], H.263 [30], MPEG-1

Video [26], MPEG-2 Video [27] and MPEG-4 Visual [28] (see fig. 1.1 on page 2).

Independently of the adopted standard, the computation of the transform coef-

ficients usually implies the usage of floating point precision accuracy. Nevertheless,

for practical implementations, the floating-point DCT and IDCT are usually im-

plemented with finite precision. This often leads to an accuracy mismatch in the

computation of these transforms at both the encoder and decoder ends of the video

transmission system. These errors in the IDCT mismatch will accumulate and re-

sult in a non-negligible distortion component with visible artifacts, that can only be

removed by periodically inserting INTRA-coded blocks, to stop this accumulation.

To circumvent this mismatch problem, recent video standards have adopted al-

ternative transforms. These transforms can be accurately implemented with reduced

precision, at the cost of a slight decrease of the provided decorrelation performance.

Some examples of these transforms are the Walsh-Hadamard Transform (WHT) [79],

the Slant Transform (ST) [80] and the Haar Transform (HT) [22]. Another example

of such transforms is the Integer Discrete Cosine Transform (IntDCT) [8], recently

adopted by the H.264/AVC video standard [31] (see fig. 1.1 on page 2). It is defined

as:

XI = TI ·x ·TI
T, (2.4)

where the transform kernel matrix (TI) is:

TI =

1/2

1/
√

10
1/2

1/
√

10

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

 . (2.5)

Since the scaling factors associated with this kernel can be absorbed in the quantiza-

tion process, all arithmetic operations of this transform can be accurately computed

23

2. The Discrete Cosine Transform

with 16-bit integers and using solely additions and shift operations; there is no need

to perform any multiplication.

However, despite the orthogonal nature and the computational simplicity that

is offered by these transforms, many important mathematical relations already pre-

sented for the DCT have not yet been extended to such transforms. One such relation

is the multiplication-convolution property, whose definition, in the DCT-domain, will

be presented in section 2.5.2. Such limitations will restrict the application of some

transcoding operations that will be presented in the following chapters to DCT-based

video encoding systems, namely, those based on the H.261 [29], H.263 [30], MPEG-1

Video [26], MPEG-2 Video [27] and MPEG-4 Visual [28] standards. As a conse-

quence, the general designation of DCT-H.26x/MPEG-x that henceforward will be

extensively adopted, will only accommodate this broad family of DCT-based video

standards and excludes those based on integer transforms, such as the H.26L [33]

and H.264/AVC [31].

In the following sections it is presented a brief description of the discrete cosine

transform family, as well as its definition and main properties. From now on, the

subscripts i and j will denote coordinates in the spatial (pixel) domain, whereas

the subscripts m and n will denote coordinates in the transform-domain. Likewise,

lowercase symbols will denote pixel-domain signal values, whereas uppercase symbols

will denote transform-domain values. E.g.: X (m,n) = DCT (x(i, j)).

2.2 Definition

Similarly to what happens with other Fourier-related transforms, the so called

Discrete Trigonometric Transforms (DTTs), such as the Discrete Cosine Transform

(DCT) and the Discrete Sine Transform (DST), represent a function or a signal

as a sum of trigonometric terms (cosine or sine), with different frequencies and

amplitudes. Just like the DFT, the DCT and the DST also operate with a finite

number of discrete data samples of a given function. Nevertheless, while the DCT

only makes use of cosine functions, the DFT uses both cosines and sines (in the

form of complex exponentials) to represent each signal. However, this difference is

just a direct consequence of a more important characteristic of these transforms. As

it will be seen in the following subsections, the DCT and the DST imply different

boundary conditions on sample data than the DFT or other related transforms.

To simplify this description, the presentation that follows will be focused on one-

dimensional (1-D) data sequences. Nevertheless, the same definitions can equally

be extended to 2-D signals, without any loss of generalization.

24

2.2 Definition

2.2.1 Extension properties of sampled data beyond original

boundaries

Just like any other Fourier-related transform that operates on a given function

f(n) over a finite discrete domain, the DFT, the DCT or the DST can be thought

of as implicitly defining an extension of that function outside the original domain.

Such implicit extension, defined as a sum of trigonometric functions, will then allow

the evaluation of that function at any arbitrary point n, even for points where the

original function f(n) was not defined. Nevertheless, while the DFT and the Fourier

series imply a periodic extension of the original function, the extension properties

that are implicit in the DCT and DST imply quite distinct characteristics that

provide useful applications in image and video processing.

Since the DCT and the DST operate on finite and discrete sequences, two issues

arise concerning the symmetry properties of the extensions that are obtained from

the input samples, which do not arise for the continuous cosine transform. Firstly,

each boundary of the input data set can be extended symmetrically (also known as

even extension) or anti-symmetrically (also known as odd extension). Secondly, the

symmetry or anti-symmetry point of such extension must be specified. As an exam-

ple, by considering a symmetric (even) extension of the left boundary of a simple

data sequence composed of four equally spaced data points abcd, two distinct possi-

ble solutions arise in terms of the symmetry point: either the data is symmetrically

extended about the sample a, in which case the even extension is dcbabcd; or the

data is even about a hypothetical point, halfway between a and the previous point,

in which case the symmetric extension is dcbaabcd (a is repeated).

By adopting these different extension setups, infinite sequences can easily be

obtained by simple extending the input data samples of a given finite signal. Such

infinite extensions are classified according to the types of symmetry adopted at each

boundary of the original signal. The four possible extension setups are illustrated

in fig. 2.2 and can be enumerated as follows [58]:

n

WS

n

WA

n

HS

n

HA

0 0 0 0

Figure 2.2: Symmetric-periodic extensions of a finite sequence.

25

2. The Discrete Cosine Transform

• Whole-Sample Symmetry (WS),

• Whole-Sample Anti-symmetry (WA),

• Half-Sample Symmetry (HS),

• Half-Sample Anti-symmetry (HA),

where the designations whole-sample and half-sample refer to the position of the

point of symmetry: either coincident with one of the original samples or at a the-

oretical half-way between two samples. Hence, a given finite sequence f(n) can be

easily converted into an infinite sequence by symmetrically extending each Point of

Symmetry (POS) using any of the above four possible setups and by continuing that

extension indefinitely, to obtain a Symmetric-Periodic Sequence (SPS), according to

the following rules [58]:

HSHS(x1, . . . , xn) = P(x1, . . . , xn, xn, . . . , x2) (2.6)

HAHA(x1, . . . , xn) = P(x1, . . . , xn,−xn, . . . ,−x2) (2.7)

WSWS(x1, . . . , xn) = P(x1, . . . , xn−1, xn, xn−1, . . . , x2) (2.8)

WAWA(x1, . . . , xn) = P(0, x2, . . . , xn−1, 0,−xn−1, . . . ,−x2) (2.9)

where P(ϕ) denotes the periodic replication of the sequence ϕ. The POS are either

all of the same type or of two different types. If the adopted types are different,

then they alternate along the length of the SPS. The obtained extensions are then

usually denominated by concatenating the mnemonics of the symmetry types used

at each of its ends (e.g.: WSWS, HAHA, WAHS, etc.).

Two POS are associated with the base period: a Left Point of Symmetry (LPOS)

and a Right Point of Symmetry (RPOS); between them lie the representative sam-

ples. At each POS, it is implemented one of the four defined types of symmetry:

WS, WA, HS or HA.

Four possible extension types at each of the two endpoints leads to a total of

16 distinct SPSs. All these different extensions characterize a broad set of standard

variants of discrete cosine and sine transforms. For each of these 2 transforms, each

of the 2 data set boundaries can be either symmetrically or anti-symmetrically ex-

tended (2 possibilities per boundary) and can be extended about a data point or a

point halfway between two sample points (2 choices per boundary), thus giving rise

to a total of 2 × 2 × 2 × 2 = 16 different possibilities. Half of these setups, corre-

sponding to those where the left boundary is symmetrically extended, correspond

to the 8 different types of DCTs, while the remaining half comprises the 8 types of

26

2.2 Definition

DSTs. In table 2.1 it is presented a comprehensive description of the several prop-

erties that are implicit to both the input and output extensions of the considered

discrete cosine (C) and sine (S) transforms [58].

At this point, it is worth to recall that any discontinuity of the considered func-

tion potentially reduces the rate of convergence of its Fourier series, so that more sine

or cosine terms are needed to represent it with a given accuracy. As a consequence,

these different boundary conditions lead to different but useful properties for the

several DCT and DST variants. In fact, such characteristic significantly influences

the actual usefulness of the DFT and of other transforms for signal compression:

the smoother a function is, the fewer terms in its DFT, DCT or DST are required

to represent it accurately, and the more it can be compressed. However, the implicit

periodicity of the input sequence that characterizes the DFT often implies consid-

erable discontinuities at the signal boundaries, since any random segment of a given

signal is unlikely to have the same pattern at both the left and right boundaries.

In contrast, when both boundaries of a given signal are symmetrically extended, it

naturally yields a continuous and smooth extension at the boundaries. This is why

some types of DCT that have two symmetrically extended boundaries (in particu-

lar, DCTs of types I, II, V, and VI, as will be defined in the following subsections)

generally perform better for signal compression than the other DTTs.

2.2.2 Discrete cosine transforms

From a pure and rather simplistic mathematical point of view, each DCT can

be defined as a linear and invertible trigonometric function F : RN → RN . As it

was referred in the previous section, there are several different variants of the DCT,

presenting distinct formal definitions and characteristics. Nevertheless, all of them

share a common important property: they all operate and output data sequences

characterized by symmetric extensions at their left boundary. Hence, 8 different

variants of the DCT are available, corresponding to all possible extension combi-

nations in both boundaries of the output sequence that comply with this specific

characteristic. A comprehensive list of extension alternatives and their correspond-

ing variants of the DCT is presented in table 2.1.

Among these transforms, it is often denoted by even DCTs those transforms

that also present the same characteristic in terms of the symmetry point in both

boundaries (half-sample or whole-sample symmetry). Such transforms are usually

denominated by DCT I, II, III and IV. On the other hand, those transforms with

distinct characteristics in terms of the adopted point of symmetry in the two bound-

aries are usually denoted by odd DCTs and are denominated by DCT V, VI, VII

27

2
.
T

h
e

D
is

c
re

te
C

o
si

n
e

T
ra

n
sf

o
rm

Table 2.1: Properties of the implicit input and output extensions of the considered discrete sine and cosine transforms.

Transform
Input extension properties Output extension properties

SPS Length Index Range LPOS RPOS SPS Length Index Range LPOS RPOS

C1e WSWS N 0→ N − 1 0 N − 1 WSWS N 0→ N − 1 0 N − 1 C1e
−1

C2e HSHS N 0→ N − 1 − 1
2 N − 1

2 WSWA N 0→ N − 1 0 N∗ C3e
−1

C3e WSWA N 0→ N − 1 0 N∗ HSHS N 0→ N − 1 − 1
2 N − 1

2 C2e−1

C4e HSHA N 0→ N − 1 − 1
2 N − 1

2 HSHA N 0→ N − 1 − 1
2 N − 1

2 C4e
−1

C1o WSHS N 0→ N − 1 0 N − 1
2 WSHS N 0→ N − 1 0 N − 1

2 C1o
−1

C2o HSWS N 0→ N − 1 − 1
2 N − 1 WSHA N 0→ N − 1 0 N − 1

2 C3o
−1

C3o WSHA N 0→ N − 1 0 N − 1
2 HSWS N 0→ N − 1 − 1

2 N − 1 C2o
−1

C4o HSWA N 0→ N − 1 − 1
2 N∗ HSWA N 0→ N − 1 − 1

2 N∗ C4o
−1

S1e WAWA N 0→ N − 1 −1∗ N∗ WAWA N 0→ N − 1 −1∗ N∗ S1e
−1

S2e HAHA N 0→ N − 1 − 1
2 N − 1

2 WAWS N 0→ N − 1 −1∗ N − 1 S3e
−1

S3e WAWS N 0→ N − 1 −1∗ N − 1 HAHA N 0→ N − 1 − 1
2 N − 1

2 S2e
−1

S4e HAHS N 0→ N − 1 − 1
2 N − 1

2 HAHS N 0→ N − 1 − 1
2 N − 1

2 S4e
−1

S1o WAHA N 0→ N − 1 −1∗ N − 1
2 WAHA N 0→ N − 1 −1∗ N − 1

2 S1o
−1

S2o HAWA N 0→ N − 1 − 1
2 N∗ WAHS N 0→ N − 1 −1∗ N − 1

2 S3o
−1

S3o WAHS N 0→ N − 1 −1∗ N − 1
2 HAWA N 0→ N − 1 − 1

2 N∗ S2o
−1

S4o HAWS N 0→ N − 1 − 1
2 N − 1 HAWS N 0→ N − 1 − 1

2 N − 1 S4o
−1

SPS Length Index Range LPOS RPOS SPS Length Index Range LPOS RPOS
Transform

Output extension properties Input extension properties

Legend: SPS - Symmetric-Periodic Sequence; LPOS - Left Point of Symmetry; RPOS - Right Point of Symmetry;

* - Extra data sample of the implicitly extended sequence, corresponding to an anti-symmetric point of symmetry. 2
8

2.2 Definition

and VIII. Hence, while one of the boundaries presents a symmetry/anti-symmetry

characteristic around an original data point, the other is extended around an im-

plicit halfway point, between two data samples. These odd transforms, however,

have been rarely used in practical image and video coding applications.

Independently of the specific type of DCT, the mathematical definition of each

of these transforms is represented as a sum of product terms that multiply a cosine

function C(m, i) with the input sequence x(i):

X(m) =
∑

i

C(m, i).x(i) (2.10)

According to the previously defined nomenclature, the subscript i denotes the coordi-

nate in the spatial (pixel) domain, whereas the subscript m represents the coordinate

in the transform-domain.

Equivalent matrix definitions are often adopted in the literature, which represent

the DCT computation as a simple (N ×N) matrix multiplication of a kernel matrix

C by an input data vector x, in the form:

X = C ·x (2.11)

In such matrix formulations, an e or o subscript is often appended to the kernel

matrix definition (C), to denote even or odd transforms (e.g.: Ce, Co).
Independently of the adopted formalization, the term C(m, i) can be defined by

the product:

C(m, i) = A.w1(m).w2(i).t(m, i), (2.12)

where t(m, i) = cos (f(m, i)) is the transform kernel; the term w1(m) is a weighting

function that is used in some transforms to make the column vectors orthogonal to

one another; the weighting function w2(i) is required by some transforms to make

the row vectors orthogonal to one another; and the scalar A is a final multiplier

that normalizes the rows and columns in order to produce a normal matrix. Hence,

the mutual contribution of all these weighting functions leads to an orthonormal

definition of each considered transform. These properties will be further described

in section 2.2.5.

In table 2.2 it is presented a comprehensive list of the several orthogonal

(N ×N)-point DCT kernel matrix definitions. The w1(m) and w2(i) terms are

implemented by the orthogonalization functions ξ (p) and ζ (p), defined in eqs. 2.13

and 2.14, respectively.

ξ (p) =

{√
1
2

, for p = 0 or p = N

1 , for p = 1, 2, . . . , N − 1.
(2.13)

29

2. The Discrete Cosine Transform

Table 2.2: Definition of the orthogonal DCT and DST kernel matrices, as defined
by Rao and Yip [82], Strang [105] and Püschel and Moura [81, table 5.1
and table A.1].

DTT Definition Length Index Range

DCT-I
DCT-1e [C1e]m,i =

√
2

N−1 ξ (m) ζ (m) ξ (i) ζ (i) cos
(

miπ
N−1

)

N
m = 0, 1, . . . , (N − 1)
i = 0, 1, . . . , (N − 1)

DCT-II
DCT-2e [C2e]m,i =

√
2
N
ξ (m) cos

(
m(i+ 1

2
)π

N

)

DCT-III
DCT-3e [C3e]m,i =

√
2
N
ξ (i) cos

(
(m+ 1

2
) iπ

N

)

DCT-IV
DCT-4e [C4e]m,i =

√
2
N

cos

(
(m+ 1

2
)(i+ 1

2
)π

N

)

DCT-V
DCT-1o [C1o]m,i =

√
2

N− 1

2

ξ (m) ξ (i) cos
(

miπ

N− 1

2

)

DCT-VI
DCT-2o [C2o]m,i =

√
2

N− 1

2

ξ (m) ζ (i) cos

(
m(i+ 1

2
)π

N− 1

2

)

DCT-VII
DCT-3o [C3o]m,i =

√
2

N− 1

2

ζ (m) ξ (i) cos

(
(m+ 1

2
) iπ

N− 1

2

)

DCT-VIII
DCT-4o [C4o]m,i =

√
2

N+ 1

2

cos

(
(m+ 1

2
)(i+ 1

2
)π

N+ 1

2

)

DST-I
DST-1e [S1e]m,i =

√
2

N+1 sin
(

(m+1)(i+1)π
N+1

)

DST-II
DST-2e [S2e]m,i =

√
2
N
ξ (m) sin

(
(m+1)(i+ 1

2
)π

N

)

DST-III
DST-3e [S3e]m,i =

√
2
N
ξ (i) sin

(
(m+ 1

2
)(i+1)π

N

)

DST-IV
DST-4e [S4e]m,i =

√
2
N

sin

(
(m+ 1

2
)(i+ 1

2
)π

N

)

DST-V
DST-1o [S1o]m,i =

√
2

N+ 1

2

sin
(

(m+1)(i+1)π

N+ 1

2

)

DST-VI
DST-2o [S2o]m,i =

√
2

N+ 1

2

sin

(
(m+1)(i+ 1

2
)π

N+ 1

2

)

DST-VII
DST-3o [S3o]m,i =

√
2

N+ 1

2

sin

(
(m+ 1

2
)(i+1)π

N+ 1

2

)

DST-VIII
DST-4o [S4o]m,i =

√
2

N− 1

2

ζ (m) ζ (i) sin

(
(m+ 1

2
)(i+ 1

2
)π

N− 1

2

)

30

2.2 Definition

ζ (p) =

{
1 , for p = 0, 1, . . . , N − 2√

1
2

, for p = N − 1.
(2.14)

As it can be observed, the definitions of the odd DCTs are quite similar to the

corresponding even definitions, where the denominators of the cosine arguments are

replaced by the value N ± 1
2
.

2.2.3 Discrete sine transforms

Similarly to the previously defined DCTs, each DST can be defined, from a

pure and rather simplistic mathematical point of view, as a linear and invertible

trigonometric function F : RN → RN . The several variants of the DST also share

a common important property, since they all operate and output data sequences

characterized by anti-symmetric extensions at their left boundary. Consequently,

8 different variants of the DST are also available, corresponding to all possible

extension combinations in both boundaries of the output sequence that comply

with this specific characteristic. A comprehensive list of extension alternatives and

the corresponding variants of the DST is also presented in table 2.1.

As it was mentioned for the cosine transform, DSTs are also divided in even

and odd transforms, whenever they present the same characteristic in terms of the

symmetry point in both boundaries (half-sample or whole-sample symmetry), or

when they have distinct characteristics in terms of the adopted point of symmetry

in the two boundaries, respectively. Hence, even DSTs are also denoted by DST I,

II, III and IV, while odd DSTs are usually referred to as DST V, VI, VII and VIII.

Similarly to the DCTs, the mathematical definition of each DST is represented

as a sum of product terms that multiply a sine function S(m, i) with the input

sequence x(i):

X(m) =
∑

i

S(m, i).x(i) (2.15)

where the term S(m, i) is defined by the product:

S(m, i) = A.w1(m).w2(i).t(m, i), (2.16)

and t(m, i) = sin (f(m, i)) is the corresponding transform kernel.

The equivalent matrix definitions represent the computation of each DST as an

(N ×N) matrix multiplication of a kernel matrix S by an input data vector x, in

the form:

X = S ·x (2.17)

In table 2.2 it is also presented a comprehensive list of the several orthogonal

(N ×N)-point DST kernel matrix definitions. Similarly to the DCT definitions,

31

2. The Discrete Cosine Transform

the transform kernel of each odd DSTs are quite similar to the corresponding even

definition, where the denominators of the sine arguments are replaced by the value

N ± 1
2
.

2.2.4 Inverse transforms

The following expressions represent the relations between each inverse kernel

matrix and the respective forward kernel matrix:

C1−1 = C1 (2.18)

C2−1 = C3 (2.19)

C3−1 = C2 (2.20)

C4−1 = C4 (2.21)

S1
−1 = S1 (2.22)

S2
−1 = S3 (2.23)

S3
−1 = S2 (2.24)

S4
−1 = S4 (2.25)

The designations for even or odd transforms have been omitted from these equations,

since the same relation holds for both the even and odd cases.

2.2.5 Main properties

Several useful properties can be derived from the previously defined sine and

cosine transforms. This section presents a brief overview of the most important

and useful properties of these transforms for image and video coding [23, 34, 53].

In such presentation, a generic discrete cosine transform will be used for illustra-

tion. Nevertheless, the presented properties are equally valid for the whole family

of trigonometric transforms defined in the previous subsections.

A - Linearity

According to the several definitions presented in table 2.2, any trigonometric

transform can be regarded as a linear combination of linear functions (sine (S) or

cosine (C) functions), which are added together using the input signal samples as

weighting factors:

X(m) =
∑

i

x(i) C(m, i) (2.26)

32

2.2 Definition

As a consequence, by denoting by X (m) and Y (m) the cosine transforms of the

input samples x (i) and y (i), the following statement defines the linearity property

of this transform for any scalar α and β ∈ R:

DCT
[
αx (i) + βy (i)

]
= αX (m) + βY (m) (2.27)

B - Orthogonality

The row and column vectors that compose each discrete sine and cosine transform

kernel matrix define a set of orthogonal basis functions. Let C denote the (n×m)

kernel matrix of a given cosine transform:

C =

a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm

 (2.28)

This matrix is said to be orthogonal because all column vectors

ci =
[
a1,i a2,i . . . an,i

]T
fulfill the following relation, denoted by ci ⊥ cj:

c1
T · c2 = c1

T · c3 = . . . = ci
T · cj = 0, ∀i 6= j (2.29)

with 1 ≤ i, j ≤ m. Hence, these relations imply that:

CT = C−1 (2.30)

Entirely similar relations also apply for the row vectors ri.

C - Normalization

Each column vector ci of any discrete sine and cosine transform kernel matrix

also fulfills the following property:

‖ci‖ = 1, ∀i : 1 ≤ i ≤ m. (2.31)

As a consequence, the kernel matrices defined in table 2.2 are said to be normalized.

D - Orthonormality

Considering that each column or row vector of any discrete sine or cosine trans-

form kernel matrix are both orthogonal and normalized, these matrices are also said

to be orthonormal, thus presenting the following important properties:

CT = C−1, CTC = I, C CT = I (2.32)

These relations lead to a quite important consequence, since the matrix inversion

operation is reduced to a simple matrix transpose, resulting in a significant compu-

tational cost reduction.

33

2. The Discrete Cosine Transform

E - Energy conservation (Parseval’s theorem)

Another important property of these discrete sine and cosine transform kernel

matrices is related to the conservation of the signal energy after the computation

of its transform. This property is also denoted by Parseval’s theorem and can be

formulated by the following expression:

N−1∑

m=0

|X (m)|2 = ‖X‖2 = XTX = xT CT C x = xTx = ‖x‖2 =
N−1∑

i=0

|x (i)|2 (2.33)

2.3 Multidimensional transforms

Multidimensional extensions of the several previously described sine and cosine

transforms can be straightforwardly defined by considering separable decompositions

along each dimension.

In fact, it can be easily shown that a two-dimensional transform can be regarded

as the application of the same one-dimensional transform, performed firstly along

the rows and then along the columns (see fig. 2.3). As an example, by considering

the generic one-dimensional definition of the cosine transform, the extension to two

dimensions can be defined as:

X (m,n) =
∑

i

∑

j

C(m, i) C(n, j) x(i, j) (2.34)

By re-arranging this equation, one can obtain:

X (m,n) =
∑

i

C(m, i)
∑

j

C(n, j) x(i, j) (2.35)

=
∑

i

C(m, i) X̃1D (i, n) (2.36)

where X̃1D (i, n) =
[
C ·xT

]T
= x · CT is a matrix whose lines are the 1-D discrete

cosine transform of the lines of x(i, j).

x(i,j)

j

i

 Row Transform
X 1D(i,n)

n

i

 Column Transform
X(m,n)

n

m

~

Figure 2.3: Row-Column decomposition of a 2-D transform.

34

2.4 Application of the DCT to image and video coding

Hence, the 2-D discrete cosine transform of the matrix x = [x]i,j can be repre-

sented in a matrix-product form as follows:

X = [X]m,n = C ·x · CT (2.37)

The same formulation could equally be applied to any other type of sine or cosine

transform, as well as to their 2-D inverse transforms.

The corresponding inverse transform can then be derived as:

x = [x]i,j = (C)−1 ·X ·
(
CT
)−1

(2.38)

By taking into account the orthogonality property of the kernel matrices, defined

in section 2.2.5 (C−1 = CT), the following expression can be easily derived for the

inverse transform:

x = [x]i,j = CT ·X · C (2.39)

This row-column decomposition defines an additional property that is often referred

to as separability property. It provides a quite important computational advan-

tage: X(m,n) can be computed in two steps by using successive 1-D operations on

the rows and columns of the image data. From an implementation point of view,

this row-column approach may significantly simplify the hardware requirements, at

the expense of a slight increase in the overall operation-count.

2.4 Application of the DCT to image and video

coding

Contrasting to the other previously described DTTs, the even type-II discrete

cosine transform (DCT-II) has been widely adopted in image and video processing

applications and is currently the basis of many image and video standards (e.g.:

JPEG [32], H.263 [30], MPEG-2 Video [27], etc.). As it was previously referred, such

fact is mainly owed to its particular well suited characteristics to exploit the spatial

irrelevancies of a given pixels area, by concentrating most of the pixels energy in a

restricted set of DCT coefficients [7]. Hence, most DCT-H.26x/MPEG-x standards

transform each (N ×N) pixels block from the spatial-domain into a (N ×N) matrix

of DCT-domain coefficients, by considering N = 8. The selection of this particular

block size is historically related to several reasons. In what concerns the hardware

and software implementation point of view, an (8× 8) block size does not impose

significant memory requirements and its DCT computation is easily manageable on

35

2. The Discrete Cosine Transform

most computing platforms. On the other hand, in what concerns the compaction

efficiency point of view, it has been observed that block sizes larger than (8× 8)

pixels do not offer any significantly better compression levels [7].

As a consequence, unless otherwise stated, from now on it will be adopted the

even type-II discrete cosine transform, whenever the DCT operation is mentioned.

Furthermore, the corresponding (8× 8) kernel matrix will be simply referred by T:

[T(m, i)] , [C2e(m, i)] =

√
2

N
ξ (m) cos

(
m
(
i+ 1

2

)
π

N

)
, (2.40)

with m, i = 0, 1, . . . , (N − 1), N = 8 and ξ (m) defined in eq. 2.13.

2.4.1 One-dimensional discrete cosine transform

According to the above definitions, the 1-D DCT can be formulated as follows [2,

34, 53, 76, 82]:

X (m) =

√
2

N
ξ (m)

N−1∑

i=0

cos

(
m
(
i+ 1

2

)
π

N

)
x(i) ←→ X = T ·x (2.41)

x (i) =

√
2

N

N−1∑

m=0

ξ (m) cos

(
m
(
i+ 1

2

)
π

N

)
X(m) ←→ x = TT ·X (2.42)

with m, i = 0, 1, . . . , (N − 1) and ξ (m) as defined in eq. 2.13.

From a careful observation of equations 2.41 and 2.42, it can be seen that the

computations of the forward and inverse DCT are nearly the same. Thus, from a

hardware implementation point of view, the same computational unit can be used

for both the forward and the inverse DCTs.

From eq. 2.41, it can also be observed that the first transform coefficient (X(0))

represents the average value of the sample sequence. As a consequence, this value

is often referred to as the DC Coefficient, in analogy to what happens with the

circuit analysis theory in electrical engineering. In accordance, all other transform

coefficients are denoted by AC Coefficients.

The DCT decomposes each signal into a series of waveforms or basis functions,

each one with a particular spatial frequency. In fig. 2.4(a) it is depicted the set

of 8 basis functions corresponding to the discrete cosine transform, with N = 8.

These waveforms actually correspond to the set of functions defined by the sum
∑N−1

i=0 cos

(
m(i+ 1

2
)π

N

)
, with N = 8 and m varying from m = 0 to m = N − 1. In

accordance with the previous paragraph, the bottom waveform (m = 0) renders

a constant (DC) value, whereas all other waveforms (m = 1, 2, . . . , 7) represent

36

2.4 Application of the DCT to image and video coding

different basis for progressively increasing frequencies. All these basis functions

are orthogonal. As a consequence, the multiplication between any pair of these

waveforms followed by a summation over all sample points yields a zero (scalar)

value, whereas the multiplication of any of these waveforms with itself followed by

a summation operation yields a constant (scalar) value. Hence, according to the

orthogonal definition, these waveforms are said to be independent: none of the

basis functions can be represented as a combination of the other basis functions.

As a consequence, the DCT can be regarded as the process of finding the weight

X(m), corresponding to each waveform shown in fig. 2.4(a), so that the sum of the

8 waveforms, scaled by the corresponding weights X(m), yields the reconstructed

version of the original 8-point vector x.

For illustrations purposes, it is also presented in fig. 2.4(b) the set of basis func-

tions corresponding to a N = 16-point DCT.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

(a) N = 8.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 2 4 6 8 10 12 14 16

(b) N = 16.

Figure 2.4: 1-D DCT basis functions.

37

2. The Discrete Cosine Transform

2.4.2 Two-dimensional discrete cosine transform

The extension of the above defined transform to a bi-dimensional space is

straightforward [2, 34, 53, 76, 82]:

X (m,n) =
2

N
ξ (m) ξ (n)

N−1∑

i=0

N−1∑

j=0

x(i, j) cos

(
m
(
i+ 1

2

)
π

N

)
cos

(
n
(
j + 1

2

)
π

N

)
(2.43)

⇔ X = T ·x ·TT (2.44)

x (i, j) =
2

N

N−1∑

m=0

N−1∑

n=0

ξ (m) ξ (n) X(m, i) cos

(
m
(
i+ 1

2

)
π

N

)
cos

(
n
(
j + 1

2

)
π

N

)
(2.45)

⇔ x = TT ·X ·T (2.46)

with m,n = 0, 1, . . . , (N − 1); i, j = 0, 1, . . . , (N − 1); and ξ (m) and ξ (n)

defined in eq. 2.13.

Just like the definition of the 1-D DCT, the transform coefficient X(0, 0) repre-

sents the average value of the sample sequence and is denoted by DC Coefficient,

while all other transform coefficients are denoted by AC Coefficients.

In fig. 2.5 it is depicted the set of 64 basis functions corresponding to the 2-D

discrete cosine transform, with N = 8. These 2-D basis functions can be generated

by multiplying the horizontally oriented 1-D basis functions (shown in fig. 2.4(a))

with a vertically oriented set of the same functions. As it was observed for the

1-D case, it can be noted that the basis functions exhibit a progressive increase

with the frequency, both in the vertical and horizontal directions. A particular case

occurs with the top-left basis function, which results from the multiplication of two

constant vectors, corresponding to the DC component in fig. 2.4(a). Just like the

1-D case, such function assumes a constant value (DC Coefficient). Hence, each 2-D

DCT can be regarded as the process of finding the weight X(m,n), corresponding

to each waveform shown in fig. 2.5, so that the sum of the 64 waveforms, scaled by

the corresponding weights X(m,n), yields the reconstructed version of the original

(8× 8) pixel matrix x.

2.5 Multiplication-convolution property

As it will be seen in the following chapters, some processing functions that di-

rectly operate with the DCT coefficients of an encoded image or video stream re-

quire the application of other more complex properties, besides those presented in

section 2.2.5. One of such properties will be used by the static video composition

operations, proposed in chapter 4, and concerns the relation between the convolution

38

2.5 Multiplication-convolution property

Figure 2.5: 2-D DCT basis functions.

operation, implemented in the transform-domain, and the corresponding pixel-wise

multiplication of two blocks of pixels.

The formulation of such relations is quite common in other transform domains.

As an example, the Fast Fourier Transform (FFT) domain component-wise mul-

tiplication is widely used to accomplish spatial-domain convolution, required by

many feature extraction and filtering operations. Nevertheless, a similar relation,

but implemented in the DCT-domain, will be required by the set of applications

that will be considered in this thesis. However, although the DCT is closely related

to the DFT, the multiplication-convolution theorem for the DCT was established

much after the corresponding relationship for the DFT. In fact, despite the several

39

2. The Discrete Cosine Transform

attempts to establish this relation [104], a complete and more consistent formal-

ization was only presented relatively recently [11, 58]. In particular, Martucci [58]

presented a formalized and detailed description of the convolution operation for the

entire family of discrete sine and cosine transforms. In his presentation, the DCT

and the DST are regarded as special cases of the so called Generalized Discrete

Fourier Transform (GDFT), which operates on infinite sequences that are strictly

periodic or antiperiodic, with period N . Martucci denoted such definition as sym-

metric convolution, since it proved to be specially suited to convolve symmetrically

extended sequences. In practice, such type of convolution can be regarded as a

conventional convolution sum, that has been suitably modified to incorporate the

implied symmetric extensions of both operands.

In this section it will be presented the formulation of the multiplication-

convolution property, in the DCT-domain. Such property will provide the means to

replace the spatial-domain pixel-wise multiplication by a DCT-domain symmetric

convolution operation. A fast computational method to compute such convolution

will be presented in subsection 2.5.3.

2.5.1 Generic discrete trigonometric transform

The definition of the discrete cosine transform that was presented in the previ-

ous section corresponds to the first formulation of the DCT, reported by Ahmed,

Natarajan, and Rao, in 1974 [2]. It is also the most commonly used in image and

video standards. As it was referred in section 2.2, several other DTTs have also been

proposed, such as the 8 types of DCTs and the 8 types of DSTs defined in tables 2.1

and 2.2 [58, 82]. Since the kernel matrices of all these transforms are orthogonal

and invertible, the kernel matrices of their inverses can be easily obtained by their

transposes.

Meanwhile, Martucci [58] proposed a new formulation for these DTTs, denoted

by convolution form, where the orthogonality of the kernel matrices was lost for

most DTT types. This convolution form was shown to be more appropriate for

applying the convolution-multiplication property than the above orthogonal form,

derived by Wang [110], since it avoids the need for adding any scaling factors or

weighting functions to the convolution-multiplication formula. The definition and

formulation of each of these kernel matrices for the DCT and the DST is presented

in tables 2.3 and 2.4 [44, 58]. Since the kernel functions of some of these transforms

evaluate to zero for some values of the indices m and i, Martucci rearranged some

of their index ranges in order to avoid null values. As a consequence, contrasting

with the definitions presented in tables 2.1 and 2.2, the index ranges for both m

40

2
.5

M
u
ltip

lic
a
tio

n
-c

o
n
v
o
lu

tio
n

p
ro

p
e
rty

Table 2.3: Properties of the implicit input and output extensions of the convolution formulations of the considered discrete sine
and cosine transforms.

Transform
Input extension properties Output extension properties

SPS Length Index Range LPOS RPOS SPS Length Index Range LPOS RPOS

C1e WSWS N + 1 0→ N 0 N WSWS N + 1 0→ N 0 N C1e
−1

C2e HSHS N 0→ N − 1 − 1
2 N − 1

2 WSWA N 0→ N − 1 0 N∗ C3e
−1

C3e WSWA N 0→ N − 1 0 N∗ HSHS N 0→ N − 1 − 1
2 N − 1

2 C2e−1

C4e HSHA N 0→ N − 1 − 1
2 N − 1

2 HSHA N 0→ N − 1 − 1
2 N − 1

2 C4e
−1

C1o WSHS N 0→ N − 1 0 N − 1
2 WSHS N 0→ N − 1 0 N − 1

2 C1o
−1

C2o HSWS N 0→ N − 1 − 1
2 N − 1 WSHA N 0→ N − 1 0 N − 1

2 C3o
−1

C3o WSHA N 0→ N − 1 0 N − 1
2 HSWS N 0→ N − 1 − 1

2 N − 1 C2o
−1

C4o HSWA N − 1 0→ N − 2 − 1
2 N − 1∗ HSWA N − 1 0→ N − 2 − 1

2 N − 1∗ C4o
−1

S1e WAWA N − 1 1→ N − 1 0∗ N∗ WAWA N − 1 1→ N − 1 0∗ N∗ S1e
−1

S2e HAHA N 0→ N − 1 − 1
2 N − 1

2 WAWS N 1→ N 0∗ N S3e
−1

S3e WAWS N 1→ N 0∗ N HAHA N 0→ N − 1 − 1
2 N − 1

2 S2e
−1

S4e HAHS N 0→ N − 1 − 1
2 N − 1

2 HAHS N 0→ N − 1 − 1
2 N − 1

2 S4e
−1

S1o WAHA N − 1 1→ N − 1 0∗ N − 1
2 WAHA N − 1 1→ N − 1 0∗ N − 1

2 S1o
−1

S2o HAWA N − 1 0→ N − 2 − 1
2 N − 1∗ WAHS N − 1 1→ N − 1 0∗ N − 1

2 S3o
−1

S3o WAHS N − 1 1→ N − 1 0∗ N − 1
2 HAWA N − 1 0→ N − 2 − 1

2 N − 1∗ S2o
−1

S4o HAWS N 0→ N − 1 − 1
2 N − 1 HAWS N 0→ N − 1 − 1

2 N − 1 S4o
−1

SPS Length Index Range LPOS RPOS SPS Length Index Range LPOS RPOS
Transform

Output extension properties Input extension properties

Legend: SPS - Symmetric-Periodic Sequence; LPOS - Left Point of Symmetry; RPOS - Right Point of Symmetry;

* - Extra data sample of the implicitly extended sequence, corresponding to an anti-symmetric point of symmetry.

4
1

2. The Discrete Cosine Transform

Table 2.4: Definition of the convolution formulation of the DCT and DST kernel
matrices [58].

DTT Definition Length Index Range

cDCT-I
cDCT-1e [C1e]m,i = 2 ξ2 (i) cos

(
miπ
N

)
(N + 1) m, i = 0, 1, . . . , N

cDCT-II
cDCT-2e [C2e]m,i = 2 cos

(
m(i+ 1

2
)π

N

)
N m, i = 0, 1, . . . , (N − 1)

cDCT-III
cDCT-3e [C3e]m,i = 2 ξ2 (i) cos

(
(m+ 1

2
) i π

N

)
N m, i = 0, 1, . . . , (N − 1)

cDCT-IV
cDCT-4e [C4e]m,i = 2 cos

(
(m+ 1

2
)(i+ 1

2
)π

N

)
N m, i = 0, 1, . . . , (N − 1)

cDCT-V
cDCT-1o [C1o]m,i = 2 ξ2 (i) cos

(
miπ

N− 1

2

)
N m, i = 0, 1, . . . , (N − 1)

cDCT-VI
cDCT-2o [C2o]m,i = 2 ζ2 (i) cos

(
m(i+ 1

2
)π

N− 1

2

)
N m, i = 0, 1, . . . , (N − 1)

cDCT-VII
cDCT-3o [C3o]m,i = 2 ξ2 (i) cos

(
(m+ 1

2
) iπ

N− 1

2

)
N m, i = 0, 1, . . . , (N − 1)

cDCT-VIII
cDCT-4o [C4o]m,i = 2 cos

(
(m+ 1

2
)(i+ 1

2
)π

N− 1

2

)
(N − 1) m, i = 0, 1, . . . , (N − 2)

cDST-I
cDST-1e [S1e]m,i = 2 sin

(
miπ
N

)
(N − 1) m, i = 1, 2, . . . , (N − 1)

cDST-II
cDST-2e [S2e]m,i = 2 sin

(
m(i+ 1

2
)π

N

)
N

m = 1, 2, . . . , N
i = 0, 1, . . . , (N − 1)

cDST-III
cDST-3e [S3e]m,i = 2 ξ2 (i) sin

(
(m+ 1

2
) iπ

N

)
N

m = 0, 1, . . . , (N − 1)
i = 1, 2, . . . , N

cDST-IV
cDST-4e [S4e]m,i = 2 sin

(
(m+ 1

2
)(i+ 1

2
)π

N

)
N m, i = 0, 1, . . . , (N − 1)

cDST-V
cDST-1o [S1o]m,i = 2 sin

(
miπ

N− 1

2

)
(N − 1) m, i = 1, 2, . . . , (N − 1)

cDST-VI
cDST-2o [S2o]m,i = 2 sin

(
m(i+ 1

2
)π

N− 1

2

)
(N − 1)

m = 1, 2, . . . , (N − 1)
i = 0, 1, . . . , (N − 2)

cDST-VII
cDST-3o [S3o]m,i = 2 sin

(
(m+ 1

2
) iπ

N− 1

2

)
(N − 1)

m = 0, 1, . . . , (N − 2)
i = 1, 2, . . . , (N − 1)

cDST-VIII
cDST-4o [S4o]m,i = 2 ζ2 (i) sin

(
(m+ 1

2
)(i+ 1

2
)π

N− 1

2

)
N m, i = 0, 1, . . . , (N − 1)

42

2.5 Multiplication-convolution property

and i for some of these transform definitions are no longer the same. With this new

formulation, there is a direct link between all DTTs and the GDFT.

Similarly to the orthogonal DCT and DST definitions, the following expressions

represent the relations between each inverse kernel matrix and its own, or another,

forward kernel matrix:

C1
−1 =

1

M
C1 (2.47)

C2
−1 =

1

M
C3 (2.48)

C3
−1 =

1

M
C2 (2.49)

C4
−1 =

1

M
C4 (2.50)

S1
−1 =

1

M
S1 (2.51)

S2
−1 =

1

M
S3 (2.52)

S3
−1 =

1

M
S2 (2.53)

S4
−1 =

1

M
S4 (2.54)

where M = 2N for even transforms and M = 2N−1 for odd transforms. As before,

since the same relation holds for both the even and odd cases, the designations for

even or odd transforms have been omitted.

2.5.2 Definition

The DCT-domain convolution operation and its relation with the element-by-

element multiplication, in the space-domain, can be defined as follows. Let f(i)

and g(i) represent two vectors, each one with N elements. The length-N vector

h(i), obtained from the element-by-element multiplication, between f(i) and g(i) is

denoted as:

h = f ⊙ g (2.55)

The multiplication-convolution property that is now defined relates the DCT coef-

ficients vectors F (m) and G(m), corresponding to the input vectors f(i) and g(i),

with the resulting DCT coefficients output vector H(m).

Martucci [58] presented the formulation of this property for all considered DTTs

using the following notation:

Ωn = εa{Φn}⊛ εb{Ψn} = τ−1
c

{
τa{Φn} ⊙ τb{Ψn}

}
(2.56)

43

2. The Discrete Cosine Transform

Table 2.5: Multiplication-convolution properties of WSWA DTT extensions.

ǫa ǫb

Output
Extension

⊛
Input Index Ranges Output

Index Range
τa τb τc

−1

Φn Ψn

WSWA WSWA WSWA s 0 → N − 1 0 → N − 1 0 → N − 1 C3e C3e C3e
−1

WSWA WAWS WAWS s 0 → N − 1 1 → N 1 → N C3e S3e S3e
−1

WAWS WAWS WSWA s 1 → N 1 → N 0 → N − 1 S3e S3e −C3e
−1

where Φn and Ψn are two input sequences of finite length and Ωn is the output

convolved sequence. In this expression, εa and εb are two generic symmetric or anti-

symmetric extension operators, as defined in section 2.2.1, ⊛ denotes the symmetric

convolution operation, defined in terms of a conventional convolution sum that has

been suitably modified to incorporate the implied symmetric extensions of both

operands, and ⊙ denotes the element-by-element multiplication. The operators τa,

τb and τ−1
c define three invertible convolution-form DTTs, as defined in table 2.4,

that transform from one domain to another.

Martucci grouped such relations in families of three or four DTTs, whose input

and output data sequences share the same type of symmetry. Since most DCT-

H.26x/MPEG-x video standards make use of the even type-II DCT (DCT-IIe),

characterized by a WSWA symmetry extension (see table 2.1), the family of such

relations that deal with the WS and the WA extensions shows to be specially rele-

vant:

ΩWSWA = f(ΦWSWA,ΨWSWA) (2.57)

In table 2.5 it is presented the several properties of such group, where s denotes

the skew-circular convolution operation. Such particular form of the symmetric

convolution of two length-M sequences α(n) and β(n), with n = 0, 1, . . . ,M − 1 is

defined as:

α(n) s β(n) =
n∑

k=0

α(n)β(n− k)−
M−1∑

k=n+1

α(n)β(n− k +M) (2.58)

Hence, the skew-circular convolution operation of two length-M sequences defines

an output sequence that is equivalent to the corresponding period of a periodic

convolution of anti-symmetric sequences, with period M .

Among the properties presented in table 2.5, the first formulation is considered

specially adequate, since it relates two input WSWA symmetric extensions and

outputs one WSWA extension. By applying such property to the formulation stated

in eq. 2.56, the following relation is obtained:

ΩWSWA = ΦWSWA s ΨWSWA = C3e

−1
{
C3e{Φ} ⊙ C3e{Ψ}

}
. (2.59)

44

2.5 Multiplication-convolution property

By recalling the relation between the forward and inverse definition of the C2e and

the C3e transforms, stated in eqs. 2.48 and 2.49, the above equation comes as follows:

ΩWSWA = ΦWSWA s ΨWSWA = C2e

{
C2e

−1{Φ} ⊙ C2e

−1{Ψ}
}
. (2.60)

Under this assumption, if we denote the generic WSWA data sequences Φ, Ψ and Ω

by the corresponding convolution form of the even type-II DCT coefficients F (m),

G(m) and H(m), it comes:

H(m)WSWA = FWSWA(m) s GWSWA(m) = C2e

{
f(i)⊙ g(i)

}
. (2.61)

According to eq. 2.61, the DCT coefficients H(m), corresponding to the pixels

vector h(i), that is obtained by the element-by-element multiplication of the pixels

sequences f(i) and g(i), can be obtained by computing a skew-circular convolution

operation with the DCT coefficients F (m) and G(m), corresponding to the pixel

sequences f(i) and g(i), respectively. Such skew-circular convolution is computed

by a circular convolution between WSWA symmetrically-extended versions of the

input operands.

Chang and Messerschmitt [11] presented an equivalent formulation of this def-

inition that directly operates with the orthogonal form of the even type-II DCT

(DCT-IIe) of the input signals. According with such formulation, the DCT of

h(i) can be computed by applying the symmetric convolution operation to the

DCT coefficients of the two length-N WSWA sequences F = DCT-IIe(f) and

G = DCT-IIe(g), as defined as follows:

H(m) = F (m) ⊛G(m) = WN(m)
(
F̃ (m) s G̃(m)

)
. (2.62)

The vectors F̃ (m) and G̃(m) correspond to symmetric length-2N WSWA extended

sequences of F (m) and G(m), defined as:

X̃(m) =

0 , m = 0

X̂(N −m) , m = 1 . . . (N − 1)

X̂(m−N) , m = N . . . (2N − 1)

(2.63)

where X̂(m) = X(m)
ξ(m)

, with X(m) = DCT-IIe [x(i)] and ξ(m) as defined in eq. 2.13.

The skew-circular convolution s, defined in eq. 2.58, is computed as follows:

F̃ (m) s G̃(m) =
1√
2N
· ξ(m) ·

[
m∑

n=0

F̃ (n)G̃(m− n)−
2N−1∑

n=m+1

F̃ (n)G̃(m− n+ 2N)

]

(2.64)

=
1√
2N
· ξ(m) ·

[
2N−1∑

n=0

F̃ (n)G̃ [mod2N (m− n)] ·S(m− n)

]
(2.65)

45

2. The Discrete Cosine Transform

where:

S(m− n) =

{
1 , m− n ∈ [0, (2N − 1)]
−1 , otherwise

(2.66)

and WN(m) is a length-N rectangular window, which is used to extract the repre-

sentative samples out of the base period of the result of the convolution.
The extension of the above definition to the 2-D domain can be easily formulated

as shown in eq. 2.67, where ξ(m) and S(m) were defined in eq. 2.13 and 2.66 and

X̃(m1, m2) is a (2N × 2N) symmetric WSWA extended sequence defined as shown
in eq. 2.68.

F (m1,m2)sG (m1,m2) =
1

2N
ξ(m1) ξ(m2)

[
2N−1∑

n1=0

2N−1∑

n2=0

F̃ (n1, n2)G̃ [mod2N (m1 − n1) ,mod2N (m2 − n2)] ·S(m1 − n1) ·S(m2 − n2)

]

(2.67)

X̃ (m1,m2) =

0 , m1 = 0 or m2 = 0

X̂(N −m1, N −m2) , m1 = 1 . . . (N − 1), m2 = 1 . . . (N − 1)

X̂(m1 −N,N −m2) , m1 = N . . . (2N − 1), m2 = 1 . . . (N − 1)

X̂(N −m1,m2 −N) , m1 = 1 . . . (N − 1), m2 = N . . . (2N − 1)

X̂(m1 −N,m2 −N) , m1, m2 = N . . . (2N − 1)

(2.68)

2.5.3 Fast computation of the convolution operation in the
DCT-domain

By analyzing the definition of the convolution operation, expressed in equa-

tions 2.62 through 2.66, it can be observed that the total number of multiplications

required to perform the convolution between two length-N sequences is proportional

to (2N)2 = 4N2. By extending this analysis to the 2-D domain, one can conclude

that
[
(2N)2]2 = 16N4 multiplications are required to evaluate the convolution be-

tween two (N ×N) bidimensional sequences (see eq. 2.67).

Recently, Shen et al. [100] proposed a different approach to compute the DCT-

domain convolution, by exploiting the symmetry and the orthogonality properties

of the DCT to reduce the overall computational cost of the convolution operation.

They started their formulation from the 1-D length-N DCT-II transform definition,

as follows:

X(m) =
N−1∑

i=0

C2e(m, i) x(i), (2.69)

where C2e(m, i) =
√

2
N
ξ (m) cos

(
m(i+ 1

2
)π

N

)
, defined in table 2.2, with ξ (m) defined

in eq. 2.13.

46

2.5 Multiplication-convolution property

Each element of the pixel-domain sequence x(i) can be reconstructed using the

IDCT as follows:

x(i) =
N−1∑

m=0

C2e(m, i)X(m). (2.70)

From the definition of the pixel-wise multiplication (eq. 2.55) and by using

eq. 2.70, each h(i) element can be expressed as:

h(i) = f(i)⊙ g(i) =

N−1∑

m1=0

N−1∑

m2=0

C2e(m1, i) C2e(m2, i) F (m1) G(m2), (2.71)

where the vectors F and G are the discrete cosine transforms of f and g, respec-

tively. Since only these transform data sequences are actually available from a video

compressed bitstream, there is a considerable interest in computing H directly from

F and G. The discrete cosine transform of h(i), expressed as H(m), is stated from

eq. 2.69 as follows:

H(m) =

N−1∑

i=0

C2e(m, i)h(i) (2.72)

=
N−1∑

i=0

C2e(m, i)

(
N−1∑

m1=0

N−1∑

m2=0

C2e(m1, i) C2e(m2, i) F (m1) G(m2)

)
(2.73)

By performing some simple manipulations, eq. 2.73 can be expressed as:

H(m) =

N−1∑

m1=0

N−1∑

m2=0

W (m,m1, m2) F (m1) G(m2), (2.74)

where:

W (m,m1, m2) =

N−1∑

i=0

C2e(m, i)C2e(m1, i)C2e(m2, i). (2.75)

Hence, eq. 2.74 expresses the DCT-domain convolution operation corresponding

to the spatial-domain pixel-wise multiplication of eq. 2.55. Nevertheless, by compar-

ing these two approaches in what concerns the computational cost, the pixel-domain

approach seems to require significantly less operations (O (N)) than the DCT-

domain counterpart, which implies a computational cost proportional to O (N3)

(disregarding the cost of performing two IDCTs and one direct DCT in the pixel-

domain approach). However, by considering that many of the DCT coefficients of

typical compressed video streams are zero, the DCT-domain convolution between

F and G requires, in practice, only NF × NG × N multiplications, where NF and

NG represent the number of nonzero coefficients in F and G, respectively. Hence,

47

2. The Discrete Cosine Transform

since only the nonzero DCT coefficients need to be used in the convolution pro-

cess, the convolution operation in the DCT-domain may have, in practice, a lower

computational cost than the spatial-domain approach.

Besides these observations, Shen et al. [100] have shown that the computation

cost inherent to this operation can still be significantly reduced, by taking advantage

of the sparse characteristics of the W (m,m1, m2) matrix. They proved that each

cross product between any two arbitrary elements of F and G (e.g.: F (m1) and

G(m2)), contributes to no more than two elements H(a) and H(b) of the resulting

DCT output vector H, where these indexes a and b are given by:

a =

m1 +m2 , if m1 +m2 < N
2N − (m1 +m2) , if m1 +m2 > N
∅ (empty) , if m1 +m2 = N

(2.76)

and

b = |m1 −m2|. (2.77)

The justification for this fact comes from the orthogonality property of the DCT,

stated as:
N−1∑

m=0

C2e(m, i) . C2e(m, j) =

{
1 , i = j
0 , i 6= j

. (2.78)

In fact, from eq. 2.75,

W (m,m1, m2) =

N−1∑

i=0

C2e(m, i) [C2e(m1, i) C2e(m2, i)] . (2.79)

By using simple trigonometric relations, the term C2e(m1, i) C2e(m2, i) of the equation

above can be formulated as follows:

C2e(m1, i) C2e(m2, i) =

√
2

N
ξ (m1) cos

(
m1

(
i+ 1

2

)
π

N

)
×

√
2

N
ξ (m2) cos

(
m2

(
i+ 1

2

)
π

N

)
(2.80)

=
ξ (m1) ξ (m2)

N
cos

(
(m1 +m2)

(
i+ 1

2

)
π

N

)
+

ξ (m1) ξ (m2)

N
cos

(
(m1 −m2)

(
i+ 1

2

)
π

N

)
(2.81)

=
ξ (m1) ξ (m2)

N

 C2e(m1 +m2, i)√
2
N
ξ (m1 +m2)

+
C2e(m1 −m2, i)√

2
N
ξ (m1 −m2)

(2.82)

48

2.5 Multiplication-convolution property

=

√
1

2N

ξ (m1) ξ (m2)

ξ (m1 +m2)
C2e(m1 +m2, i)+

√
1

2N

ξ (m1) ξ (m2)

ξ (m1 −m2)
C2e(m1 −m2, i) (2.83)

Hence, eq. 2.79 can be written as:

W (m,m1, m2) =

√
1

2N

ξ (m1) ξ (m2)

ξ (m1 +m2)

N−1∑

i=0

C2e(m, i)C2e(m1 +m2, i) +

√
1

2N

ξ (m1) ξ (m2)

ξ (m1 −m2)

N−1∑

i=0

C2e(m, i)C2e(m1 −m2, i) (2.84)

By taking eq. 2.78 into account, one concludes that the first term on the right

side of eq. 2.84 is non-null only when m = m1 +m2. Similarly, the second term will

be nonzero when m = m1 −m2. However, since cos(m1 −m2) = cos(m2 −m1), one

realizes that this term will be nonzero whenever m = |m1 −m2|. A detailed proof

of this formulation can be found in [100].

Shen et al. also proposed an efficient algorithm for computingH(m), by observing

that the entries in W (m,m1, m2) take only three possible nonzero values:
√

1
N

and

±
√

1
2N

.

1) if m1 = 0 and m2 = 0 then m = (m1 + m2) = |m1 −m2| = 0. From eq. 2.78

and eq. 2.84, it comes that:

W (m,m1, m2) =
1√
2N

√
1/2.

√
1/2√

1/2
.1 +

1√
2N

√
1/2.

√
1/2√

1/2
.1 (2.85)

= 2
1√
2N

√
1/2 =

√
1

N
(2.86)

2) if m1 = 0 or m2 = 0, it comes that m = (m1 +m2) = |m1 −m2| 6= 0 and

W (m,m1, m2) =
1√
2N

1.
√

1/2

1
.1 +

1√
2N

1.
√

1/2

1
.1 =

√
1

N
(2.87)

3) if m1 6= 0 and m2 6= 0, it comes that (m1 + m2) 6= |m1 − m2|. Hence, two

different cases should be taken into account: m = a or m = b (see eqs. 2.76

and 2.77):

m = a: • if m = (m1 +m2) < N , then:

W (m,m1, m2) =
1√
2N

1.1

1
.1 + 0 =

√
1

2N
(2.88)

49

2. The Discrete Cosine Transform

• if (m1 +m2) > N , then m = 2N − (m1 +m2); considering that

C2e(m1 +m2, i) = −C2e(2N − (m1 +m2), i), it comes:

W (m,m1, m2) =
1√
2N

1.1

1
.(−1)+0 = −

√
1

2N
(2.89)

m = b: • if m = |m1 −m2| 6= 0, then:

W (m,m1, m2) = 0 +
1√
2N

1.1

1
.1 =

√
1

2N
(2.90)

• if m = |m1 −m2| = 0, then:

W (m,m1, m2) = 0 +
1√
2N

1.1√
1/2

.1 =

√
1

2N
(2.91)

The weighting factors W (a,m1, m2) and W (b,m1, m2) for each cross product

F (m1)G(m2), applied in the computation of the two elements H(a) and H(b) of the

resulting DCT output vector H(m) (see eqs. 2.76 and 2.77) are shown in table 2.6,

with α =
√

1/N and β =
√

1/(2N). As it was shown, from the previous description,

when either m1 or m2 are zero, the product F (m1)G(m2) contributes to exactly

one output component. Otherwise, at most two components are required in the

evaluation.

By adopting this technique, the computational cost is now reduced to NF×NG×
NW multiplications, with NW representing the number of nonzero W (m,m1, m2)

elements for each fixed m (1 or 2). Actually, this computational cost can be further

reduced by exploiting the symmetry property of the DCT (in particular, of the

W (m,m1, m2) matrix) in the mapping of m1, m2 to m, to reduce the number of

multiplications required to compute eq. 2.74. In fact, eq. 2.74 can be computed as

follows [100]:

H(m) =

N−2∑

m1=0

N−1∑

m2=m1+1

W (m,m1, m2) [F (m1) G(m2) + F (m2) G(m1)]

+

N−1∑

m1=0

W (m,m1, m1) F (m1) G(m1) (2.92)

Hence, if F (m1)G(m2) and F (m2)G(m1) are both nonzero, their multiplications with

the weighting factor W (m,m1, m2) can still be merged, thus reducing the amount

of required multiplications.

The procedure described above to fasten the computation of the convolution

operation in the DCT-domain can be extended to the 2-D case using an entirely

50

2.6 Conclusion

Table 2.6: Weighting factors W (a,m1, m2) and W (b,m1, m2), with N = 8 and a
and b given by eqs. 2.76 and 2.77.

m1

m2

0 1 2 3 4 5 5 7

0 α, α α, α α, α α, α α, α α, α α, α α, α

1 α, α β, α β, β β, β β, β β, β β, β – , β

2 α, α β, β β, α β, β β, β β, β – , β -β, α

3 α, α β, β β, β β, α β, β – , β -β, α -β, α

4 α, α β, β β, β β, β – , α -β, α -β, α -β, α

5 α, α β, β β, β – , β -β, α -β, α -β, α -β, α

6 α, α β, β – , β -β, α -β, α -β, α -β, α -β, α

7 α, α – , β -β, α -β, α -β, α -β, α -β, α -β, α

similar procedure. It can be shown [100] that, in such a case, each element of the W

matrix takes on one of five possible nonzero values:
1

N
, ± 1

2N
and ±

√
2

2N
. Each cross

product contributes to no more than four output values. As in the 1-D case, this

fast algorithm provides the means to significantly reduce the computational load:

instead of 16N4 multiplications, only about 4N4 operations are now required.

2.6 Conclusion

In this chapter it was presented a general overview of the main discrete trigono-

metric transforms, with a special emphasis to the presentation of the main properties

of the even type-II discrete cosine transform. This transform has been particularly

adopted in image and video standards due to its high suitability to exploit inter-pixel

redundancies, rendering excellent decorrelation for most image data. In fact, since

this DCT packs the energy content in a reduced number of low frequency coeffi-

cients, it provides the capability to discard some high frequency coefficients without

significantly degrading the output image quality. This implicit coarse quantization

scheme provides a significant reduction of the resulting signal entropy and a conse-

quent reduction of the average number of required bits to encode each pixel.

The formulation of many of the presented properties was based on the boundary

characteristics of the data sequences under processing and on the implicit symmetric

extensions of those sequences outside the original domain.

Among the several properties that have been presented, a special attention was

devoted to the formalization of the multiplication-convolution property. This prop-

51

erty will be applied by the static video composition operations, that will be presented

in chapter 4, and concerns the relation between the convolution operation, imple-

mented in the transform-domain, and the corresponding pixel-wise multiplication of

two blocks of pixels.

References

[2] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE

Transactions on Computers, vol. C-23, no. 1, pp. 90–93, 1974.

[7] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards:

Algorithms and Architectures, 2nd ed. Kluwer Academic Publishers, Jun. 1997.

[8] W.-K. Cham, “Family of order-4 four-level orthogonal transforms,” IEE Elec-

tronic Letters, vol. 19, no. 21, pp. 869–871, Oct. 1983.

[11] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-

DCT compressed video,” IEEE Journal on Selected Areas in Communications,

vol. 13, no. 1, pp. 1–11, Jan. 1995.

[22] A. Haar, “Zur theorie der orthogonalen funktionen-systeme [on the theory of

orthogonal function systems],” Mathematische Annalen, no. 69, pp. 331–371,

1910.

[23] H. Hedberg and P. Nilsson, “A survey of various discrete transforms used in

digital image compression algorithms,” in Proceedings of the Swedish System-

On-Chip Conference, Bastad - Sweden, Apr. 2004.

[26] MPEG-1: ISO/IEC JTC1 CD 11172 - “Coding of moving pictures and asso-

ciated audio for digital storage media up to 1.5 Mbit/s – Part 2: Video”, ISO,

1992.

[27] MPEG-2: ISO/IEC JTC1 CD 13818 - “Generic coding of moving pictures and

associated audio – Part 2: Video”, ISO, 1994.

[28] MPEG-4: ISO/IEC 14496-2:2004. Information technology – Coding of audio-

visual objects – Part 2: Visual, ISO, 2004.

[29] ITU-T Recommendation H.261 - “Video Codec for Audiovisual Services at p×64

Kbit/s”, ITU-T, Mar. 1993.

52

[30] ITU-T Recommendation H.263 - “Video Coding for Low Bitrate Communica-

tion”, ITU-T, Feb. 1998.

[31] ITU-T Recommendation H.264, “Advanced Video Coding for Generic Audiovi-

sual Services”, ITU-T, May 2003.

[32] JPEG: ITU-T Recommendation T.81 - “Digital compression and coding of

continuous-tone still images”, ITU-T, 1993.

[33] ITU-T/SG16/VCEG (Q.6), H.26L Test Model Long-Term Number 8 (TML-8),

ITU-T, Video Coding Experts Group (VCEG), Sep. 2001.

[34] A. K. Jain, Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[44] R. Kresch and N. Merhav, “Fast DCT domain filtering using the DCT and the

DST,” IEEE Transactions on Image Processing, vol. 8, no. 6, pp. 821–833, Jun.

1999.

[53] J. S. Lim, Two-Dimensional Signal and Image Processing. Prentice-Hall, 1990.

[58] S. A. Martucci, “Symmetric convolution and discrete sine and cosine trans-

forms,” IEEE Transactions on Signal Processing, vol. SP-42, no. 5, pp. 1038–

1051, May 1994.

[76] B. Porat, A Course in Digital Signal Processing. John Wiley & Sons, Inc.,

1997.

[78] W. K. Pratt, Digital Image Processing. John Wiley & Sons, Inc., 1978.

[79] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image cod-

ing,” Proceedings of the IEEE, vol. 57, no. 1, pp. 58–68, Jan. 1969.

[80] W. K. Pratt, W.-H. Chen, and L. R. Welch, “Slant transform image coding,”

IEEE Transactions on Communications, vol. 22, no. 8, pp. 1075–1093, Aug.

1974.

[81] M. Püschel and J. M. F. Moura, “The algebraic approach to the discrete cosine

and sine transforms and their fast algorithms,” Society for Industrial and Ap-

plied Mathematics Journal on Computing, vol. 32, no. 5, pp. 1280–1316, 2003.

[82] K. R. Rao and P. Yip, Discrete Cosine Transform: algorithms, advantages and

applications. Academic Press, Inc., 1990.

53

[100] B. Shen, I. K. Sethi, and V. Bhaskaran, “DCT convolution and its application

in compressed domain,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 8, no. 8, pp. 947–952, Dec. 1998.

[104] B. C. Smith and L. A. Rowe, “Algorithms for manipulating compressed im-

ages,” IEEE Computer Graphics and Applications, pp. 34–42, Sep. 1993.

[105] G. Strang, “The discrete cosine transform,” Society for Industrial and Applied

Mathematics Review, vol. 41, no. 1, pp. 135–147, 1999.

[110] Z. Wang, “Fast algorithms for the discrete W transform and for the discrete

Fourier transform,” IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 32, no. 4, pp. 803–816, Aug. 1984.

54

3
Video Transcoding in the

DCT-Domain

Contents
3.1 Introduction . 56

3.1.1 Computational efficiency 56

3.1.2 Reduced influence of degradation effects 56

3.2 Video transcoding architectures 59

3.2.1 Pixel-domain transcoding architectures 59

3.2.2 DCT-domain transcoding architectures 64

3.3 Video processing algorithms in the DCT-domain 65

3.3.1 Motion compensated temporal prediction 67

3.3.2 Bit rate and quality adaptation 82

3.3.3 Space scaling . 93

3.3.4 Motion vector composition 101

3.3.5 Motion estimation . 106

3.3.6 Time scaling . 122

3.4 Conclusions . 128

References . 129

55

3. Video Transcoding in the DCT-Domain

3.1 Introduction

As it was referred in the previous chapters, the main reasons for transform-

domain video transcoding techniques have become increasingly popular in the last

few years are related to the inherent advantages that they provide, both in terms of

the computational efficiency and of the obtained video quality.

3.1.1 Computational efficiency

The increased computational efficiency levels provided by transform-domain pro-

cessing algorithms result from the smaller number of arithmetic operations that are

required to perform the same video processing task, when compared with the tradi-

tional pixel-domain transcoding approaches.

However, this computational advantage is not always evident, since many

transform-domain algorithms are clearly distinct from their pixel-domain counter-

parts. Nevertheless, they all share a common advantage: they do not require the

implementation of both the direct and inverse DCTs. By considering that two ma-

trix multiplications are required for each of these operations, and that N2(N − 1)

additions and N3 multiplications are required to perform each (N ×N) matrix

multiplication, these direct and inverse transforms impose a fixed overhead of about

4(N − 1) additions and 4N multiplications in the processing of each pixel, when

pixel-domain processing algorithms are used.

3.1.2 Reduced influence of degradation effects

The main advantages of the transform-domain processing algorithms in terms

of the obtained video quality result as a consequence of the absence of degradation

effects that are directly introduced during the computation of the direct and inverse

DCTs. Such degradation usually emerges from round-off errors that are introduced

by the usage of finite precision arithmetic. Hence, the influence of this degrada-

tion effect will be enforced by every DCT/IDCT processing modules at the several

transcoding nodes that process the video encoded signal, since the primary encoding

device until the final decoder-end of the whole video transcoding system. Conse-

quently, its influence will be greatly aggravated when the number of transcoding

nodes, between the primary encoder and the final decoder, increases.

This degradation effect will also accumulate with the result of other degradation

sources that are inherent to the video encoding process, such as the quantization

and the clipping of the DCT coefficients. In particular, the clipping effect is usually

imposed by certain video standards that confine the reconstruction levels of all

56

3.1 Introduction

coefficients, other than the INTRA DC coefficients, to an interval between -2048

and 2047, represented with 12 bits (e.g.: H.263 [30]). All together, these sources

of degradation will contribute to the introduction of a gradual distortion along the

processing chain.

To illustrate this phenomenon, fig. 3.1 presents the Peak Signal-to-Noise Ratio

(PSNR) degradation effect introduced in an INTRA type encoded frame, from the

Mobile & Calendar video sequence. The processed frames were obtained using sev-

eral different quantization setups of a H.263 [30] video encoder, by passing it through

successive transcoding nodes, since its primary encoder until the final decoder. The

selection of this particular video sequence was due to its characteristics in terms of

the amount of spatial detail, since this feature is specially affected by this type of

degradation.

Two different setups were considered for the particular case of a null quantizer

(Q = 0):

• Full-precision, without the clipping effect of the transmitted DCT coefficients

imposed by the H.263 video standard [30] (Legend Key ’Q=0 noCLIP’);

0.0

10.0

20.0

30.0

40.0

50.0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
S

N
R

 [d
B

]

Transcoding Nodes

Q=0 noCLIP

Q=0

Q=1

Q=2

Q=3

Q=4

Q=8

Q=16

(a) Obtained PSNR measures.

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
or

m
al

iz
ed

 P
S

N
R

 [d
B

]

Transcoding Nodes

Q=0 noCLIP

Q=0

Q=1

Q=2

Q=3

Q=4

Q=8

Q=16

(b) Normalized PSNR measures.

Figure 3.1: Degradation effect in pixel-domain transcoding nodes.

57

3. Video Transcoding in the DCT-Domain

• Full-precision, with the clipping effect in the transmitted DCT coefficients

(Legend Key ’Q=0’).

To eliminate any remaining influence of the quantizer modules over the obtained

video quality, this null quantizer was also applied to the DC coefficients of all INTRA

blocks. This violation of this video standard rules was only considered for these two

quantization setups (Q = 0).

The first of these two setups (Q=0 noCLIP), characterized by the absence of any

quantization or clipping effect, clearly demonstrates the degradation effect intro-

duced by the usage of fixed-point arithmetic for computing the direct and inverse

DCTs. Such effect is even more noticeable in encoded frames with high quality lev-

els and may lead to significant losses in the first nodes of the cascaded transcoding

system, reaching magnitudes of about 5 dB per node.

The second setup (Q=0) illustrates the effect of clipping in the obtained video

quality in a situation without any quantization in the video encoding setup. The

extremely low video quality level (about 5.5 dB) that was obtained with this config-

uration arises from the fact that most DCT coefficients exceed the 12-bit dynamic

range supported by the considered video standard [30]. This fact clearly illustrates

the strict restrictions imposed by the considered standard to encode lossless video

data.

The remaining plots, presented in the charts of fig. 3.1, illustrate the degradation

effect introduced by the several cascaded transcoding nodes in situations with non-

null quantizers. Although this degradation cannot be directly attributed to the lack

of precision in the arithmetic operations that are performed in the computation of

the direct and inverse DCT, the following aspects can be observed:

• The clipping effect is still noticeable in transcoding setups using small non-null

quantization steps, such as Q = 1; this gives rise to higher degradation effects

than those that are obtained with schemes using greater quantization steps

(e.g. Q = 2, 3, 4); this was already observed in the setup with Q = 0.

• From the chart presented in fig. 3.1(b), which plots the normalized PSNR

measures in terms of their maximum value, obtained at the output of the first

encoder, it can be observed that the relative influence of the degradation effect

is more significant in video sequences encoded with a greater PSNR level; this

was also observed for the setup with ’Q=0 noCLIP’ and illustrates the influence

of the quantization procedure not only of the INTRA DC coefficients (with

a fixed step size of 8 (Q = 4)) but also of the remaining AC coefficients, on

58

3.2 Video transcoding architectures

the degradation level that is introduced by transmitting the encoded frame

through several cascaded transcoding nodes.

In the following sections, it will be presented a brief overview of the main video

transcoding architectures and algorithms that have been proposed in the last few

years. By entirely performing the processing of the incoming video sequences in

the compressed DCT-domain, most of these transcoding systems demonstrate great

advantages both in terms of the computational efficiency and of the resulting video

quality.

3.2 Video transcoding architectures

As it was referred before, video transcoding can be regarded as a process of

changing or converting a pre-compressed bit stream into another bit stream, with

different coding characteristics.

As an example, a simple drift-free transcoding process to reduce the bit rate of

a precoded video sequence can be simply carried out by applying the operations

depicted in fig. 3.2: decoding of the original bit stream into its reconstructed pixels

and re-encoding with a coarser quantization step. However, apart from being com-

putationally expensive, such cascaded architectures make the transcoding process

rather slow and difficult to be implemented in real-time. Although the effect of such

drawback may be negligible in most video storage applications, it is a crucial issue in

networking and real-time applications. As a consequence, other more efficient struc-

tures have been proposed in the last few years to implement transcoding tasks in

the pixel-domain, in the transform-domain [6] or even in a hybrid pixel/transform-

domain [90].

Requantization
Video

Encoder
Video

Decoder
Rin Rout

Figure 3.2: Cascaded transcoder.

3.2.1 Pixel-domain transcoding architectures

The most straightforward drift-free transcoding architectures are implemented

in the pixel-domain, by cascading a video decoder and a video encoder, as it is

illustrated in fig. 3.3. As it was previously seen, such architectures are frequently

adopted to reduce the bit rate of a given precoded bit stream, by considering coarser

59

3. Video Transcoding in the DCT-Domain

quantization step sizes in the encoding part of the transcoder. These architectures

may also be used to change the video standard that is adopted by the output se-

quence, by considering distinct syntax codes in the VLD and the VLC modules.

The motion estimation block of the encoder side is frequently absent in such archi-

tectures, since the motion vectors of the incoming bit stream are usually re-used,

instead of computing new ones. These motion vectors are then applied to implement

the motion compensation prediction mechanism considering the previous and future

frames, stored in the corresponding frame memories (denoted as “Ref. Mem. P”

and “Ref. Mem. F”, in fig. 3.3) of both the decoding and encoding sides of the

transcoder architecture. Such simplification is often a very significant step towards

a simple and fast architecture, since motion estimation is undoubtedly the most

complex processing step of the video coding algorithm. For the same reason, the

GOP structure of the input video stream is also kept unchanged for the sake of

simplicity. Otherwise, it would be necessary to reorder the picture sequence, which

would introduce a delay of several pictures and would make the implementation and

application of those architectures unsuited for real-time and low latency transcoding

applications.

In the following sections, it will be analyzed the transcoding process of three

different types of coded frames: Intra (I), Predicted (P) and Bidirectionally Inter-

polated (B). For the sake of illustration, it will be considered the above referred

transcoder architecture to reduce the bit rate of a given precoded bit stream, by

adopting a coarser quantization step size Q2 > Q1 in the encoding part of the

transcoder. As it will be described in section 3.3.2, several different approaches may

be devised to select the optimum coarser quantization step size Q2 to be adopted

in the encoding part of the transcoder. Nevertheless, the following description will

only focus on the aspects concerning to the transcoder architecture point of view.

It is worth noting that the block diagram of the cascaded structures illustrated

in fig. 3.3, composed by a pixel-domain decoder and encoder, may be wholly or

+

-

Q2 VLC

Q-1
2

+

+

DCT

IDCT
MC

Q-1
1 IDCT

+

+

Ref. Mem. P
MC

VLD

DECODER ENCODER

0

P

I

P

I

0

P

I

MV
Ref. Mem. F

Ref. Mem. P

Ref. Mem. F

Rin Rα
in e1

nE1
n

MC(x1
n-k)

x1
n e2

n E2
n Rα

out Rout

MC(x2
n-k)

x2
n

Figure 3.3: Typical pixel-domain cascaded transcoder architecture.

60

3.2 Video transcoding architectures

partially used to process these three types of frames. While B type frames employ

all modules of the codec, P type frames make use of only one of the two reference

frame buffers in the feedback loop, and I type frames do not use the feedback loop

at all. In the following, Rin and Rout will denote the input and output streams,

respectively. To represent the input and output streams for each type of frame,

the representations Rα
in and Rα

out will be adopted, with α = I, P, B. The inverse

quantization operations will be denoted as Q−1.

A - Intra (I) type frames

The transcoding process of I type frames is conducted by coarsely encoding the

decoded pictures x1
n (see fig. 3.3) with Q2 > Q1. As a consequence, the output

sequence for this type of pictures RI
out is given by:

RI
out = Q2

[
DCT

(
x1

n

)]
, (3.1)

where x1
n is given by:

x1
n = IDCT

[
Q−1

1

(
RI

in

)]
. (3.2)

By substituting eq. 3.2 in eq. 3.1, the transcoding equation for I type frames can

be formulated:

RI
out = Q2

[
Q−1

1

(
RI

in

)]
. (3.3)

It should be noted that since many video standards apply a fixed quantization step

of 8 to encode the DC coefficient of each INTRA coded block, these equations only

apply to the AC DCT coefficients of each encoded block.

B - Predicted (P) type frames

According to the block diagram of the cascaded pixel-domain transcoder, illus-

trated in fig. 3.3, the P type frames are accumulated in both Motion Compensation

(MC) loops, as they are used to decode and encode consecutive frames. In fact,

if the nth incoming picture is of type P, then the (n−MB)th previously decoded

anchor frame is required to reconstruct the current frame, where MB is the distance

between anchor pictures. Such anchor is usually the last decoded P or I type frame.

Hence, the input and output prediction errors e1
n and e2

n, respectively, are related

to the input and output bit streams RP
in and RP

out as follows:

e1
n = IDCT

[
Q−1

1

(
RP

in

)]
(3.4)

RP
out = Q2

[
DCT

(
e2

n

)]
. (3.5)

61

3. Video Transcoding in the DCT-Domain

The decoded frame x1
n and the corresponding prediction error e2

n are given by:

x1
n = e1

n + MC
(
x1

n−MB

)
(3.6)

e2
n = x1

n −MC
(
x2

n−MB

)
, (3.7)

where x2
n−MB

is the previous anchor frame, decoded after coarser quantization, and

MC is the motion compensation operation for P type frames. By substituting eq. 3.6

into 3.7, the prediction error e2
n is computed as follows:

e2
n = e1

n + MC
(
x1

n−MB

)
−MC

(
x2

n−MB

)
. (3.8)

According to eq. 3.8, the prediction error e2
n can be obtained by adding the input pre-

diction error e1n to the difference between the input and output motion-compensated

anchor frames. This difference can be regarded as the transcoding error that is in-

troduced in each anchor picture. Since the motion vectors that are used by both

motion compensated loops are considered to be the same, this difference can be

calculated prior to the accumulation:

e2
n = e1

n + MC
(
x1

n−MB
− x2

n−MB

)
. (3.9)

It should be noted, however, that even when the considered motion vectors are

the same, the previous simplification may introduce some distortion in the overall

transcoding process. In fact, if one takes into account that the motion compensation

function is not a linear operation, as a consequence of the round-off errors inherent

to integer truncation, it is easily observed that:

MC (an)−MC (bn) 6= MC (an − bn) . (3.10)

Even so, Assunção and Ghanbari [5] have shown that no significant drift error is

introduced when such simplification is considered and only one frame buffer is used

to accumulate the transcoding error. Hence, by substituting eq. 3.9 into eq. 3.5 and

by taking into account the linear property of the DCT, one can obtain:

RP
out = Q2

[
E1

n + DCT
(
MC

(
x1

n−MB
− x2

n−MB

))]
, (3.11)

where E1
n = Q−1

1

(
RP

in

)
. According to this equation, it can be observed that for

transcoding a P type frame, the accumulated transcoding error has to be added to

the incoming DCT coefficients and then coarsely quantized.

62

3.2 Video transcoding architectures

C - Bidirectionally interpolated (B) type frames

The transcoding procedure for B type frames is entirely similar to the processing

of P type pictures. In fact, the only difference is that the motion compensated

prediction makes use of two reference anchor frames: one in the past and other in

the future. As a consequence, eq. 3.11 should be modified as:

RB
out = Q2

[
E1

n + DCT
(
MC

(
x1

p − x2
p,x

1
f − x2

f

))]
, (3.12)

where the indices p and f denote the past and future anchor frames, respectively.

As a consequence, two frame memories are needed, one for each anchor frame.

Moreover, the accumulated transcoding errors for both frames have to be taken into

account, in order to keep track of the drift in B type frames. It should be also noted,

however, that since B type frames are not used as references for further prediction

in most DCT-H.26x/MPEG-x video standards, the resulting output picture x2
b does

not need to be stored in such buffers. Hence, only the corresponding prediction

difference Rb
out needs to be supplied to the output of the transcoding system.

D - Reduced computational cost of pixel-domain architectures

The transcoding equations corresponding to the processing of I, P and B type

frames (see eqs. 3.3, 3.11 and 3.12) can be efficiently implemented, provided that

the transcoder architecture presented in fig. 3.3 is re-designed in order to only im-

plement the computational blocks that are really needed to fulfill the processing -

see fig. 3.4. In this architecture, the transcoding error is directly computed in the

DCT-domain. As it was referred before, such simplification can be performed by

taking into account the linearity property of the DCT, and allows the use of only one

pair of DCT/IDCT operations. Moreover, by re-using the decoded motion vectors

in just one reconstruction loop, this architecture is significantly more computational

efficient than the one presented in fig. 3.3.

It should be also noted that the DCT and IDCT processing blocks included in the

transcoder architecture illustrated in fig 3.4 are only necessary because the motion

compensation function is defined as a pixel-domain operation. As a consequence, this

transcoder architecture is defined as a pixel-domain transcoder. In fact, to further

improve the efficiency and to reduce the computational cost of this architecture,

fully frequency-domain transcoders that operate entirely in the DCT-domain have

also been derived.

63

3. Video Transcoding in the DCT-Domain

Q2 VLC

Q2
-1

+

+

IDCT

Q1
-1

DCT

+

+

MC

VLD

MV Ref. Mem. P

Ref. Mem. F

Rin Rα
out Rout

-
+

0

P I

Rα
in

Figure 3.4: Reduced computational cost pixel-domain transcoder architecture.

3.2.2 DCT-domain transcoding architectures

As it was previously referred, if the motion compensation operation could be

performed directly in the frequency-domain, there would be no need for the DCT

and IDCT processing blocks of the transcoder architecture illustrated in fig. 3.4. In

fact, as it will be detailed in subsection B of section 3.3.1 (page 69), such operation

can be efficiently performed in the transform-domain, which provides a significant

simplification of the architecture described above, as illustrated in fig. 3.5.

In the transform-domain, the transcoding error, given by the difference be-

tween the inverse quantized input and the inverse quantized output DCT coeffi-

cients, is added to the DCT of the current picture after Transform-Domain Motion

Compensation (MC-DCT) and accumulated directly in the transform-domain.

As it will be shown in the following sections, computational and distortion advan-

Q2 VLC

Q2
-1

+

Q1
-1

+

+

MC-DCT

VLD

MV Ref. Mem. P

Ref. Mem. F

Rin Rα
out Rout

-
+

0

P I

Rα
in

Figure 3.5: Transform-domain transcoder architecture.

64

3.3 Video processing algorithms in the DCT-domain

tages can be obtained, by implementing the processing functions, on the incoming

video sequences, directly in the transform-domain.

3.3 Video processing algorithms in the DCT-

domain

To sustain a good video quality at a specified compression ratio, existing video

standards compress video streams by customizing their characteristics, in order to

meet a set of constraints of their target application scenarios or terminal devices.

Therefore, video streams that have been compressed for one specific application

are often not applicable or optimized for other scenarios, with different constraints.

In such situations, delivery systems and service providers frequently face the need

for further manipulations and processing of such compressed video streams. The

main aim of such operations is to adapt the characteristics of the video stream

not only to the adopted transmission channel but also to the characteristics of the

terminal devices. Some common sources of mismatches include lower transmission

bandwidths, smaller display screens, reduced computational capabilites, etc. Such

mismatches often impose serious hardnesses and hinder the efficient sharing and

broadcast of compressed videos among today’s heterogeneous network and terminal

devices [108].

To alleviate this problem, a number of scalable (or layered) video coding tech-

niques have been proposed, in order to obtain compressed video streams that can

be easily tailored to meet different application or network constraints. In layered

video coding, a given stream is usually compressed into one base layer and one or

more hierarchically dependent enhancement layers. While the base layer can be

independently decoded to provide a pre-defined basic video quality, the several en-

hancement layers can be used to progressively improve the video quality whenever

sufficient channel transmission capacity, as well as decoder display and computa-

tional processing resources, are available. However, most of these layered video

coding techniques only provide a part of the solution for the above mentioned prob-

lems. Often, the available channel capacity is still scarce to transmit the base layer

bit stream, making real-time video transmission not possible. In addition, the tar-

get devices, or even the adopted video standards, may not be capable of processing

multi-layered video streams. In such situations, transcoding techniques are usually

necessary and preferred.

In contrast to layered video coding techniques, transcoding methods are primar-

ily regarded as a set of manipulation and adaptation techniques to process video

65

3. Video Transcoding in the DCT-Domain

sequences. Many of these techniques allow their application directly on compressed

precoded streams, thus offering significant advantages in what concerns the compu-

tational requirements and distortion level. This processing may include:

• syntax conversion, so that an existing precoded video can be processed by a

decoder of a different video standard, such as the conversion between MPEG-2

Video and H.264/AVC or H.263 and MPEG-4 Visual standards [96];

• spatial resolution reduction, to allow a given video stream to be received in

devices equipped with display screens with lower resolution;

• temporal resolution reduction, to allow devices with reduced computational

capabilities to decode the video stream in real-time;

• bit rate adjustment, to allow real-time transmission using variable bandwidth

communication channels;

• functionality and hardware compliancy requirements, to adjust the video

stream to the functional characteristics of the target terminal devices, such

as the amount of memory available at the decoder buffer, the processing re-

sources, etc. In fact, the computational resources that are available in many

terminal decoding systems, such as portable, mobile and battery supplied

devices, poses severe restrictions to the computational cost of the adopted

transcoding algorithms [6, 89].

To accomplish the set of different manipulations discussed above, a large num-

ber of transcoding techniques have been proposed in the literature. In particular,

for DCT compressed video streams, such as DCT-H.26x/MPEG-x videos, three

transcoding approaches are generally adopted:

• bit rate and quality adaptation [106, 107];

• spatial resolution reduction [16, 63, 66, 90];

• temporal resolution reduction [13, 115].

Depending on the specific application requirements, these methods present their

own inherent advantages and disadvantages, and can even be individually or jointly

applied. As an example, while frame rate reduction can better preserve video spatial

details, it may introduce motion irregularities, due to frame skipping. On the other

hand, frame size reduction techniques tend to preserve smooth motion at the expense

of distorted video spatial details.

66

3.3 Video processing algorithms in the DCT-domain

In the following subsections, it will be presented a brief overview of each of

these techniques. Further details and some additional improvements or alternative

algorithms for these techniques that are proposed in the scope of this thesis will be

presented in subsequent chapters.

3.3.1 Motion compensated temporal prediction

Most video compression algorithms use temporal prediction techniques based on

motion compensation to predict each N×N pixels block (x) of the current image, by

searching the best matching block (x̂) in a reference frame that maximizes a given

similarity criteria. The residual signal that is obtained by subtracting the prediction

block from the current image block, e = x − x̂, is subsequently encoded using the

Discrete Cosine Transform (DCT) to obtain the prediction signal, E = DCT(e).

At the decoder end, the DCT coefficients of the current block (X) are recovered

by summing up the coefficients of the selected prediction block (X̂) with the DCT

coefficients of the prediction error signal (E), that was received from the encoder:

X = X̂ + E. (3.13)

A - Motion-compensation in the pixel-domain

To implement the motion compensation operation in the pixel-domain, it is nec-

essary to extract the pixel information of the prediction block (x̂) from previous

or future images. This is achieved by shifting the current horizontal and vertical

positions a number of pixels dictated by the previously computed motion vector

(v). However, since usually neither the vertical nor the horizontal components of

the motion vector are an integer multiple of the block size, there is no perfect align-

ment of the prediction block (x̂) with the grid defined by the several blocks (x̂i) of

the reference image (see fig. 3.6). Therefore, the area corresponding to this block

is frequently composited by pixels that belong to the four neighboring blocks x̂1,

x̂2, x̂3 and x̂4. As a consequence, the prediction block (x̂) is usually comprised by

four separate sub-regions, corresponding to the areas that are intersected with each

block x̂i. Assuming that the region of block x̂ that is superimposed with block x̂1

is composited by h lines and w columns, where 0 ≤ h, w ≤ N , the intersections of

the block x̂ with blocks x̂2, x̂3 and x̂4 are composited by h× (N −w), (N − h)×w
and (N − h)× (N − w) pixels, respectively.

All these sub-regions can be extracted from the corresponding blocks (x̂i) by

multiplying each of these blocks by the appropriate matrices (hi1 and hi2), that

perform the separation and the displacement of the required pixel areas [11, 62].

67

3. Video Transcoding in the DCT-Domain

REFERENCE IMAGE

�x̂
�x̂

�x̂
�x̂

x̂

MV

w

h
x

CURRENT IMAGE

Figure 3.6: Motion compensation procedure.

The matrices pair (hi1, hi2) is defined by the number of lines and columns of the

area intersected by each block x̂i with the block x̂. Hence, the motion compensation

operation can be described as follows:

x̂ =
4∑

i=1

hi1 x̂i hi2, (3.14)

where matrices hij , for i = 1, . . . , 4 and j = 1, 2, are N × N sparse matrices

whose structure is similar to the upper and lower triangular matrices uh and ℓw

(see eqs. 3.15 and 3.16), where Ih and Iw are h × h and w × w identity matrixes,

respectively.

h11 = h21 = uh ,

[
0 Ih

0 0

]
(3.15)

h12 = h32 = ℓw ,

[
0 0
Iw 0

]
(3.16)

Similarly,

h31 = h41 = ℓN−h (3.17)

and

h22 = h42 = uN−w. (3.18)

Considering that uz = ℓ
T
z , ∀z, the previous definitions can be generalized by

using only upper or lower triangular matrices:

h11 = ℓ
T
h = uh h12 = ℓw = uT

w

h21 = ℓ
T
h = uh h22 = ℓ

T
N−w = uN−w (3.19)

h31 = ℓN−h = uT
N−h h32 = ℓw = uT

w

h41 = ℓN−h = uT
N−h h42 = ℓ

T
N−w = uN−w

68

3.3 Video processing algorithms in the DCT-domain

Hence, eq. 3.14 is given by:

x̂ =
4∑

i=1

hi1 x̂i hi2 (3.20)

= ℓ
T
h x̂1 ℓw + ℓ

T
h x̂2 ℓ

T
N−w + ℓN−h x̂3 ℓw + ℓN−h x̂4 ℓ

T
N−w (3.21)

= uh x̂1 uT
w + uh x̂2 uN−w + uT

N−h x̂3 uT
w + uT

N−h x̂4 uN−w (3.22)

B - Motion-compensation in the DCT-domain

The described motion compensation operation can be directly implemented in

the DCT-domain [11, 62] by taking into account the linearity property of the DCT

and by applying the distributive property of matrix multiplication with respect to

the DCT. By following this approach, the set of matrices Hij ≡ DCT(hij) can

be directly used to compute the DCT of the prediction block X̂ ≡ DCT(x̂) from

the DCT of the previous image blocks X̂i ≡ DCT(x̂i). Hence, a set of expressions

entirely equivalent to eqs. 3.20–3.22, but defined in the DCT-domain, are stated as:

X̂ =
4∑

i=1

Hi1 X̂i Hi2 (3.23)

= LT
h X̂1 Lw + LT

h X̂2 LT
N−w + LN−h X̂3 Lw + LN−h X̂4 LT

N−w (3.24)

= Uh X̂1 UT
w + Uh X̂2 UN−w + UT

N−h X̂3 UT
w + UT

N−h X̂4 UN−w (3.25)

By applying the distributive property of the matrix-product regarding to the

matrix-addition operation, one can easily reduce the number of matrix-products of

the above equations to only six:

X̂ = LT
h

(
X̂1 Lw + X̂2 LT

N−w

)
+ LN−h

(
X̂3 Lw + X̂4 LT

N−w

)
(3.26)

= Uh

(
X̂1 UT

w + X̂2 UN−w

)
+ UT

N−h

(
X̂3 UT

w + X̂4 UN−w

)
(3.27)

Nevertheless, considering that each matrix multiplication requires N3 products

and N2(N−1) additions, the above operation still implies a considerable complexity

level of about O (N3), independently of the adopted computational scheme. More-

over, similarly to the pixel-domain approach, the matrices Hij are constant and can

be pre-computed and stored in memory. Hence, if one takes into account that if

uz = ℓ
T
z , ∀z, their transforms Uz and Lz are also related as Uz = LT

z , then only

seven different matrices need to be stored. However, contrary to what happened in

the pixel-domain approach, the Hij matrices, obtained from the computation of the

DCT of the hij matrices, are no longer sparse.

69

3. Video Transcoding in the DCT-Domain

C - Motion compensation in the DCT-domain with sub-pixel resolution

It can be shown that the previous described motion compensation algorithm in

the compressed DCT-domain can be easily generalized to the sub-pixel resolution.

In such case, most video standards state that the required sub-pixel values should be

obtained by interpolation, namely, by using the bilinear function [26, 27, 30]. One

example of such situation is illustrated in fig. 3.7. If P (x, y) denotes the intensity

of the pixel located at position (x, y), the value P (xα, yβ) can be obtained in two

stages:

1. Compute the auxiliary values:

P (xα, y0) = (1− α)P (x0, y0) + αP (x1, y0) (3.28)

P (xα, y1) = (1− α)P (x0, y1) + αP (x1, y1) (3.29)

2. Compute the desired value:

P (xα, yβ) = (1− β)P (xα, y0) + βP (xα, y1) (3.30)

= (1− α)(1− β)P (x0, y0) + (1− α)βP (x0, y1) +

α(1− β)P (x1, y0) + αβP (x1, y1). (3.31)

In practice, the above computation can be regarded as a weighted average of the

four neighboring points of the desired pixel. The corresponding weights are given by

(1− dx) and (1− dy), where d = (dx, dy) is the vector that connects each neighbor

point to the desired pixel.

x0 x1

y0

y1

β

α

xα

yβ

Figure 3.7: Sub-pixel resolution using bilinear interpolation.

70

3.3 Video processing algorithms in the DCT-domain

Table 3.1: Intersected regions and the corresponding bilinear interpolation weights.

Prediction Block Height Width Weight(h) Weight(w)

x̂A ⌈h⌉ ⌈w⌉ α β

x̂B ⌈h⌉ ⌊w⌋ α 1− β
x̂C ⌊h⌋ ⌈w⌉ 1− α β

x̂D ⌊h⌋ ⌊w⌋ 1− α 1− β

In a block-based coding environment, it is highly convenient to implement the

above interpolation in a block basis. Let us consider the non-integer motion vector

v, which points to the intersected region between x̂1 and the prediction block x,

composited by h × w pixels, where h and w can be any non-integer values (see

fig. 3.8):

(h, w) = (N,N)− v, (3.32)

with h = ⌊h⌋+ α and w = ⌊w⌋+ β.

In this case, for each prediction pixel, the four neighboring pixels can be obtained

from the four adjacent prediction blocks x̂A, x̂B, x̂C and x̂D, which, in turn, are

obtained from the four original blocks x̂1, x̂2, x̂3 and x̂4 using an integer resolution

whose intersected regions with x̂1 have the dimensions given in table 3.1.

xA
^

xB
^

xC
^ xD

^

MV

x1
^ x2

^

x3
^ x4

^

x

(a) Desired prediction block and the four
adjacent blocks x̂A, x̂B, x̂C and x̂D.

 h h

 w

 w

 w + β

 h + α

x1
^

x

(b) Detailed view.

Figure 3.8: Bilinear interpolation using the four adjacent blocks x̂A, x̂B, x̂C and
x̂D.

71

3. Video Transcoding in the DCT-Domain

As before, the desired sub-pixel prediction block is obtained by bilinear interpo-

lating each four neighboring pixels using the weights presented in table 3.1:

x̂ = α β x̂A + α (1− β) x̂B + (1− α) β x̂C + (1− α) (1− β) x̂D (3.33)

= α β
[
ℓ
T
⌈h⌉x̂1ℓ⌈w⌉ + ℓ

T
⌈h⌉x̂2ℓ

T
N−⌈w⌉ + ℓN−⌈h⌉x̂3ℓ⌈w⌉ + ℓN−⌈h⌉x̂4ℓ

T
N−⌈w⌉

]
+

α (1− β)
[
ℓ
T
⌈h⌉x̂1ℓ⌊w⌋ + ℓ

T
⌈h⌉x̂2ℓ

T
N−⌊w⌋ + ℓN−⌈h⌉x̂3ℓ⌊w⌋ + ℓN−⌈h⌉x̂4ℓ

T
N−⌊w⌋

]
+

(1− α) β
[
ℓ
T
⌊h⌋x̂1ℓ⌈w⌉ + ℓ

T
⌊h⌋x̂2ℓ

T
N−⌈w⌉ + ℓN−⌊h⌋x̂3ℓ⌈w⌉ + ℓN−⌊h⌋x̂4ℓ

T
N−⌈w⌉

]
+

(1− α) (1− β)
[
ℓ
T
⌊h⌋x̂1ℓ⌊w⌋ + ℓ

T
⌊h⌋x̂2ℓ

T
N−⌊w⌋ + ℓN−⌊h⌋x̂3ℓ⌊w⌋ + ℓN−⌊h⌋x̂4ℓ

T
N−⌊w⌋

]

(3.34)

The above equation can be expressed with its dependencies in x̂1, x̂2, x̂3 and x̂4,

as follows:

x̂ = f(x̂1) + f(x̂2) + f(x̂3) + f(x̂4), (3.35)

where

f(x̂1) = α ℓ
T
⌈h⌉x̂1ℓ⌈w⌉ β + α ℓ

T
⌈h⌉x̂1ℓ⌊w⌋ (1− β) +

(1− α) ℓ
T
⌊h⌋x̂1ℓ⌈w⌉ β + (1− α) ℓ

T
⌊h⌋x̂1ℓ⌊w⌋ (1− β) (3.36)

= α ℓ
T
⌈h⌉x̂1

[
ℓ⌈w⌉ β + ℓ⌊w⌋ (1− β)

]
+ (1− α) ℓ

T
⌊h⌋x̂1

[
ℓ⌈w⌉ β + ℓ⌊w⌋ (1− β)

]

(3.37)

=
[
α ℓ

T
⌈h⌉ + (1− α) ℓ

T
⌊h⌋

]
x̂1

[
β ℓ⌈w⌉ + (1− β) ℓ⌊w⌋

]
(3.38)

= ℓ
T(h) x̂1 ℓ(w), (3.39)

with

ℓ(m) = θ ℓ⌈m⌉ + (1− θ) ℓ⌊m⌋ (3.40)

and

θ = m− ⌊m⌋. (3.41)

In a similar way, one could derive:

f(x̂2) = ℓ
T(h) x̂2 ℓ

T(N − w), (3.42)

f(x̂3) = ℓ(N − h) x̂3 ℓ(w), (3.43)

f(x̂4) = ℓ(N − h) x̂4 ℓ
T(N − w). (3.44)

72

3.3 Video processing algorithms in the DCT-domain

Hence, for the DCT-domain MC, with sub-pixel resolution, one can obtain an

expression entirely similar to eq. 3.21:

x̂ = ℓ
T(h) x̂1 ℓ(w) + ℓ

T(h) x̂2 ℓ
T(N − w) +

ℓ(N − h) x̂3 ℓ(w) + ℓ(N − h) x̂4 ℓ
T(N − w), (3.45)

with h, w ∈ Q. It is worth noting that, in the particular case when m ∈ N,

⌈m⌉ = ⌊m⌋ = m and ℓ(m) = ℓm, making eq. 3.45 entirely similar to eq. 3.21.

The transposition of eq. 3.45 to the compressed DCT-domain is performed in an

entirely similar manner as it was done before, leading to:

X̂ = LT(h) X̂1 L(w) + LT(h) X̂2 LT(N − w) +

L(N − h) X̂3 L(w) + L(N − h) X̂4 LT(N − w) (3.46)

= LT(h)
[
X̂1 L(w) + X̂2 LT(N − w)

]
+ L(N − h)

[
X̂3 L(w) + X̂4 LT(N − w)

]

(3.47)

where

L(m) = DCT (ℓ (m)) . (3.48)

However, contrasting to what was previously described, although the set of ma-

trices L(m) are constant, there is no longer any feasibility to pre-compute and store

all possible values in memory. In fact, while only seven different Lm matrices were

required in the previously described integer resolution approach, the extension to

the sub-pixel resolution gives rise to the need of considering a significant number of

possible values h, w ∈ Q. Even so, it is still possible to compute their values using

a restricted set of pre-computed and stored matrices, by taking into consideration

eq. 3.40:

L(m) = θ L⌈m⌉ + (1− θ) L⌊m⌋, (3.49)

where θ = m − ⌊m⌋ are scalars. Hence, the previous setup, composed by seven

pre-computed and stored matrices, can still be kept unchanged, with an additional

computational cost of 2N2 scalar multiplications and N2 additions to compute each

L(m) matrix. If one takes into consideration that eq. 3.47 requires 6 matrix multi-

plications and 3 matrix sums, representing 6N3 products and 6N3− 3N2 additions,

these extra operations will represent an increase of 8N2 scalar multiplications and

4N2 additions, leading to a total of 6N3 + 8N2 products and 6N3 + N2 additions.

Considering the usual 8 × 8 block dimension (N = 8), it represents an increase of

16.7% and 8.9% of the number of multiplications and additions, respectively. This

73

3. Video Transcoding in the DCT-Domain

contrasts with the significant increase of the number of operations that would arise

if a brute-force approach was followed by separately computing each of the four

neighboring blocks.

As a concluding remark, the above described algorithm provides the ability to

extend the computation of the motion compensation algorithm in the compressed

DCT-domain to any sub-pixel resolution, keeping the original complexity level un-

changed (O (N3)) but requiring more memory.

D - Computationaly reduced algorithms for motion-compensation in the
DCT-domain

Several proposals have been presented in order to reduce the computational

load of the motion compensation algorithm presented for the DCT-domain. In the

remaining of this section, two of the most used methods will be presented: Bandwidth

constrained motion-compensation and Decomposition of the DCT-kernel matrix.

Bandwidth constrained motion-compensation

The previously described motion compensation algorithm requires a consider-

able amount of operations. According to eq. 3.26 or eq. 3.27, six (N × N) matrix

multiplications and three (N × N) matrix additions are required, leading to the

computation of 6N3 − 6N2 elementary products and 6N3 + 3N2 sums.

Recently, Li and Shi [51] and Liu and Bovik [56, 57] have proposed two rather

equivalent strategies to reduce the computational load of the motion compensation

algorithm. Their algorithms exploit the sparseness property of the X̂i blocks, as

well as the spatial continuity and the high correlation between neighboring blocks.

The proposed motion compensation algorithms are based on two elementary opera-

tions: cropping and shifting. The cropping operation keeps unchanged all the data

inside the window (effective area) and zeroes all the pixels outside this area. The

shifting operation displaces the interest region, according to the motion vector of

the macroblock under processing.

This procedure, however, usually gives rise to an undesired and significant in-

crease of the bandwidth required to represent each subblock. Such increase is the

result of the introduction of the steep change at the edge of the interest window,

between the effective area and the blank area. As a consequence, this abrupt bound-

ary usually introduces, at the resulting block, some DCT coefficients with higher

frequencies than those of the original block. The effect of this phenomenom can

be easily observed in the example illustrated in fig. 3.9, where it is considered a

macroblock composited by four luminance blocks x̂1, x̂2, x̂3 and x̂4. The motion

74

3.3 Video processing algorithms in the DCT-domain

MV

1x̂ 2x̂

3x̂ 4x̂

x̂

Figure 3.9: Macroblock composited by four luminance blocks x̂1, x̂2, x̂3 and x̂4.

compensation algorithm is applied to obtain the prediction block x̂ given by the

motion vector v = (2, 2). The DCT coefficients of each block x̂i are presented in

eq. 3.50. These coefficients were obtained at the output of the inverse quantizer

block of the video decoder, using a given quantization step size (Q = 15).

X̂1 =

816 −90 120 −60 0 0 0 0

−90 −390 60 −30 0 0 0 0

120 60 −120 0 0 0 0 0

−60 0 0 −60 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

X̂2 =

816 60 120 30 0 0 0 0

−90 360 60 0 0 0 0 0

120 −90 −120 −30 0 0 0 0

−60 −30 0 30 0 0 0 0

0 −30 −30 −30 −30 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

X̂3 =

816 −90 120 −60 0 0 0 0

60 360 −90 0 0 0 0 0

120 60 −120 0 0 0 0 0

30 −30 −30 30 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

X̂4 =

816 60 120 30 0 0 0 0

60 −390 −90 −30 −30 0 0 0

120 −90 −120 −30 0 0 0 0

30 0 −30 −60 −30 0 0 0

0 −30 −30 −30 −30 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(3.50)

By observing these DCT coefficients, one can easily realize that each X̂i is a

sparse matrix with most of its high frequency coefficients equal to zero. In fact,

they can be represented as:

X̂i =

[A]ki×ki
0

0 0

 (3.51)

where [A]ki×ki
denotes a (ki × ki) matrix, with at least a non-null element in its ki

line or ki column. Hence, assuming that d(xi, yi) is the non-zero highest effective

frequency element in X̂i and ki = max {xi, yi}, then d(m,n) = 0 for all m,n > ki.

For convenience of representation, ki will be used to denote the bandwidth of the

75

3. Video Transcoding in the DCT-Domain

block x̂i. Hence, the bandwidths of the four blocks that composite the macroblock

represented in fig. 3.9 are k1 = 4, k2 = 5, k3 = 4 and k4 = 5.

The DCT coefficients of the prediction block (X̂) are obtained by summing up

the four components X̃1, X̃2, X̃3 and X̃4, where X̃i = Hi1X̂iHi2 and X̂ =
∑4

i=1 X̃i.

Each X̃i component represents the contribution of each block x̂i to the prediction

block. In figs. 3.10 through 3.13 it is represented each of these components x̃i. The

corresponding DCT representations X̃i are presented in eqs. 3.52 through 3.55.

Figure 3.10: Block x̃1.

X̃1 =

427.125 155.458 −118.705 135.373 5.875 −55.038 75.011 −47.359

157.688 −65.885 −151.049 118.185 3.346 −48.600 63.690 −40.789

−111.631 −153.590 −89.645 −5.422 1.238 −4.620 6.123 −4.215

140.859 112.125 −18.066 −35.841 2.406 4.686 −3.618 2.330

3.875 5.073 5.317 2.526 −3.375 −2.832 0.097 −1.021

−56.806 −46.281 1.225 6.454 −3.213 −2.266 −0.135 −0.388

76.410 61.855 1.123 −5.476 0.704 0.233 1.395 −0.727

−47.917 −39.022 −0.412 3.614 −1.619 −0.364 −0.415 −0.507

(3.52)

Figure 3.11: Block x̃2.

X̃2 =

162.500 −206.943 145.442 −64.230 −12.250 62.167 −73.503 47.923

131.470 −166.270 113.476 −44.012 −20.868 62.199 −69.591 44.588

17.916 −22.508 14.919 −4.964 −4.266 10.022 −10.798 6.831

16.629 −22.260 18.808 −14.018 9.003 −4.781 1.954 −0.540

10.750 −12.508 5.339 3.873 −12.000 16.268 −15.200 9.109

−3.188 4.870 −5.788 6.826 −7.428 7.110 −5.642 3.130

3.402 −5.204 6.201 −7.331 7.991 −7.658 6.080 −3.374

−3.274 4.696 −4.836 4.909 −4.733 4.158 −3.120 1.678

(3.53)

Figure 3.12: Block x̃3.

X̃3 =

162.750 128.663 12.484 7.375 −2.500 −6.644 7.276 −5.125

−207.079 −162.895 −15.748 −10.706 3.124 8.777 −9.685 6.754

145.003 111.687 10.626 11.363 −2.022 −7.092 8.030 −5.411

−63.073 −44.274 −3.895 −11.948 0.580 4.800 −5.755 3.589

−14.000 −18.767 −2.372 11.887 0.750 −2.494 3.418 −1.767

64.143 59.073 6.331 −10.696 −1.566 0.712 −1.525 0.378

−75.216 −66.576 −6.969 8.160 1.649 0.238 0.373 0.329

48.915 42.757 4.441 −4.429 −1.035 −0.369 0.040 −0.368

(3.54)

Figure 3.13: Block x̃4.

X̃4 =

18.250 −23.914 18.774 −11.841 5.000 0.055 −2.364 1.997

−23.940 31.322 −24.449 15.194 −6.090 −0.581 3.534 −2.869

18.869 −24.547 18.761 −11.011 3.471 1.902 −4.014 2.967

−12.023 15.414 −11.135 5.462 −0.072 −3.536 4.534 −3.026

5.250 −6.410 3.702 −0.184 −3.000 4.837 −4.780 2.930

−0.216 −0.225 1.622 −3.359 4.762 −5.238 4.482 −2.583

−2.133 3.228 −3.764 4.360 −4.685 4.448 −3.511 1.943

1.865 −2.692 2.820 −2.920 2.866 −2.553 1.934 −1.046

(3.55)

The result of the addition of all these components X̃i is the DCT representation

76

3.3 Video processing algorithms in the DCT-domain

of the prediction block X̂ and is given by:

X̂ =
4∑

i=1

X̃i =

767.244 62.464 54.077 64.433 3.784 −10.028 16.311 −8.584

67.579 −374.041 −72.821 81.106 −29.710 34.538 −23.856 15.038

65.571 −83.412 −47.463 −11.040 3.066 −5.834 4.645 −3.367

80.382 63.241 −15.658 −57.225 14.345 −1.836 −0.009 0.753

13.832 −41.617 16.198 20.019 −24.742 26.608 −25.741 14.926

−6.501 29.916 −2.202 −4.132 3.556 −14.661 10.979 −7.781

12.095 −18.418 2.279 2.585 −4.088 11.427 −9.107 6.164

−6.860 12.742 −1.459 −0.622 1.863 −8.162 6.269 −4.406

(3.56)

By applying the IDCT operation, one can finally obtain the prediction block (x̂),

illustrated in fig. 3.14 and presented in eq. 3.57.

Figure 3.14: Prediction
block x̂

x̂ = IDCT(X̂) =

38 44 73 121 172 205 224 173

43 30 44 87 142 180 170 144

74 44 28 49 100 145 123 99

121 86 49 42 70 100 105 67

167 139 103 75 61 58 66 58

194 175 150 111 65 32 11 60

195 183 147 98 54 30 10 42

166 142 104 71 57 55 43 51

(3.57)

By observing the DCT coefficients of the obtained motion-compensated block

X̂, depicted in eq. 3.56, the previously referred undesired increase of the required

bandwidth to represent this block becomes evident. In fact, while the four original

blocks X̂i are characterized by a maximum bandwidth of k = 5, the DCT coefficients

matrix of the obtained block is no longer sparse and is characterized by a bandwidth

of k = 8.

Algorithm

If one takes into account that the several effective areas of the four components

x̃i are spatially adjacent, it may be expected that there should be no subblock

boundaries in x̂. Consequently, the number of non-zero coefficients in X̂ should be

much smaller than those presented in X̂i. This implies that the bandwidth of x̂

should be also much smaller that the bandwidth of each component x̃i.

Hence, one can decompose each component X̃i into two coefficient matrixes

Fi and Ei. The matrix Fi represents the actual contribution of X̃i to X̂ and it

usually contains low frequency components. The matrix Ei represents the subblock

boundary effect and it is characterized by a higher bandwidth. Thus:

X̂ =
4∑

i=1

X̃i =
4∑

i=1

(Fi + Ei) =
4∑

i=1

Fi +
4∑

i=1

Ei (3.58)

Although many elements of the Ei matrices are non-zero, the sum of the four

matrices should be an all-zero matrix:
∑4

i=1 Ei = [0]8×8, since no subblock boundary

77

3. Video Transcoding in the DCT-Domain

effect should be present in x̂. This implies that there is no need to calculate Ei,

providing the ability to restrict the calculation to the computation of the fraction
∑4

i=1 Fi. Consequently, if one estimates the frequency bandwidth (kf) of X̂ prior to

actually computing X̂, it is only necessary to compute those frequency components

below kf in the calculation of X̃i. This is the basic idea of this bandwidth constrained

algorithm, that can be implemented simply by applying low-pass filtering in the

computation process.

Hence, by observing that x̂ is obtained from x̂i and by assuming that the maxi-

mum bandwidth of x̂ is kf , from the continuity properties and from the high corre-

lation among the pixels inside the macroblock area, one can naturally estimate kf

as:

kf = max{k1, k2, k3, k4}. (3.59)

Consequently, one can apply a low-pass filter Lkf
in the computation process, where:

Lkf
=

[I]kf×kf
0

0 0

 (3.60)

and [I]kf×kf
is a (kf × kf) identity matrix. The coefficients corresponding to the

effective area in X̂ are extracted as:

X̂ =
4∑

i=1

Fi = Lkf

(
4∑

i=1

Hi1X̂iHi2

)
L

T
kf

(3.61)

=

4∑

i=1

(
Lkf

Hi1 L
T
kf

)(
Lkf

X̂i L
T
kf

)(
Lkf

Hi2 L
T
kf

)
(3.62)

where Hi1 and Hi2 are the discrete cosine transform of matrices hi1 and hi2, defined

in eqs. 3.19. Since the bandwidth (ki) of each component X̂i is lower that kf (see

eq. 3.59), it comes:

ki ≤ kf ⇒ Lkf
X̂i L

T
kf

= X̂i. (3.63)

and

X̂ =

4∑

i=1

Fi =

4∑

i=1

(
Lkf

Hi1 L
T
kf

)
X̂i

(
Lkf

Hi2 L
T
kf

)
(3.64)

=
4∑

i=1

H
kf

i1 X̂i H
kf

i2 (3.65)

where H
kf

i1 and H
kf

i2 are obtained by applying the low-pass filter Lkf
to the original

78

3.3 Video processing algorithms in the DCT-domain

matrices Hi1 and Hi2:

H
kf

ij (m,n) =

Hij(m,n) , m, n ≤ kf

0 , otherwise.
(3.66)

The result of the application of the described procedure to the macroblock used in the

previous example is presented in fig. 3.15. The corresponding DCT representation

X̂ is shown in eq. 3.67.

Figure 3.15: Prediction
block x̂

X̂ =

767.244 62.464 54.077 64.433 3.784 0 0 0

67.579 −374.041 −72.821 81.106 −29.710 0 0 0

65.571 −83.412 −47.463 −11.040 3.066 0 0 0

80.382 63.241 −15.658 −57.225 14.345 0 0 0

13.832 −41.617 16.198 20.019 −24.742 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(3.67)

By applying the IDCT operation, the prediction block x̂ can be obtained:

x̂ = IDCT(X̂) =

33 47 72 115 174 216 211 183

46 38 46 87 144 176 165 140

73 45 26 48 102 138 127 96

116 86 47 38 72 109 104 75

168 143 105 75 62 61 62 61

200 176 149 117 62 13 13 43

194 167 139 109 59 13 10 36

172 144 105 74 55 44 41 41

(3.68)

By comparing the obtained results with the pixel values presented in eq. 3.57 it

can be observed that the application of this algorithm leads to quite similar results.

Nevertheless, it also presents some slightly differences in certain pixel values of the

processed macroblock. Such differences arise as a result of restricting the bandwidth

in the computation of the involved signals to kf .

Computational Requirements

By comparing eqs. 3.23 and 3.65 one realizes that the formalism of the motion

compensation algorithm was kept entirely unchanged. However, the same result can

now be obtained by performing the operations on (kf×kf) matrices, instead of using

(8× 8) matrices as in eq. 3.23.

Thus, the main advantage of using this bandwidth constrained scheme comes

from the significant reduction of the involved computational load. In fact, by using

a computational scheme entirely similar to the one illustrated in eqs. 3.26 and 3.27,

requiring six matrix multiplications and three matrix additions, one concludes that

6k3
f elementary products and 6k3

f − 3k2
f sums are now required. Hence, depending

79

3. Video Transcoding in the DCT-Domain

on the block bandwidth (kf), this can provide a significant computational saving in

the overall motion compensation procedure.

Distortion

In eq. 3.58 it was stated that the sum of the contributions of the four macroblocks

to the subblock boundary effect is canceled, i.e.
∑4

i=1 Ei = 0, so that only the

effective area fractions will contribute to the final result:

X̂ =
4∑

i=1

Fi +
4∑

i=1

Ei =
4∑

i=1

Fi (3.69)

However, by considering that the maximum bandwidth ki of the four blocks used in

the above example is 5, and by analyzing the DCT coefficients of the macroblock

obtained using the full-precision method X̂ (see eq. 3.56), the presence of coefficients

representing frequencies with order higher than kf can be easily observed, with

kf = max{k1, k2, k3, k4} = 5.

This fact can be justified by the presence of inherent discontinuities along the

original boundaries of the four blocks x̂i. These edges, whose representations were

not present in the original DCT coefficients of each block x̂i, are now located in the

middle of the area occupied by x̂ and therefore must now be represented, leading

to increased order DCT coefficients. Since the described bandwidth constrained

algorithm does not take into account for this fact, it may give rise to the introduction

of a minor distortion in the image. On the other hand, the low-pass filtering effect

that characterizes this method often contributes to a noticeable decrease of the

blocking effect that is present in the image, therefore slightly improving the image

quality [57].

In fig. 3.16 it is presented the original macroblock, as well as the resulting pre-

diction block using the full-precision method (fig. 3.16(b)) and using the bandwidth

constrained algorithm (fig. 3.16(c)). The PSNR of these blocks is 24.89 dB and

24.34 dB, respectively, corresponding to an almost non-noticeable degradation of

about 0.55 dB. However, while the full-precision algorithm required 4096 multi-

plications and 3776 sums, the bandwidth constrained method needed only 1000

multiplications and 875 sums, representing an approximate speedup of about 4.

This significant speedup can easily justify the slight degradation that is introduced

by this method. Its magnitude is directly related to the block bandwidth, which

is greatly dependent on the quantization process that is used in the video coding

procedure. Thus, greater speedups can easily be achieved when higher quantization

steps are used.

80

3.3 Video processing algorithms in the DCT-domain

MV

1x̂ 2x̂

3x̂ 4x̂

x̂

(a) Original macroblock. (b) Prediction block, ob-
tained using the full-
precision method.

(c) Prediction block, ob-
tained using the band-
width constrained
method.

Figure 3.16: DCT-domain motion compensation using the full-precision and the
bandwidth constrained methods.

In conclusion, this bandwidth constrained algorithm may offer significant

speedup capabilities by avoiding unnecessary computations at a minor cost of in-

troducing slight and non-noticeable distortions in the decoded images. These dis-

tortions can often be compensated and minimized by an inherent reduction of the

blocky artifacts (previously introduced in the quantization process) as a consequence

of the low-pass filtering that is performed by this algorithm.

Decomposition of the DCT-kernel matrix

To fasten the computation of the operation presented in eq. 3.23, some decompo-

sition methods have also been proposed by several authors. Merhav and Bhaskaran

[62, 63] introduced the usage of one of the fastest algorithms for computing the

8-point DCT, proposed by Arai et al. [3]. Considering the computation of the DCT

of a given block of pixels (X) using the traditional matrix product: X = T x TT,

Arai et al. proposed a factorization for matrix T so that:

T = DPB1B2MA1A2A3, (3.70)

where D is a diagonal matrix, P is a sparse permutation matrix (all non-null ele-

ments are equal to 1), M is a sparse matrix, and B1, B2, A1, A2 and A3 are all

sparse matrices with all non-null elements equal to 1 or -1 (see [63]). Hence by

pre-computing the fixed upper and lower matrices:

Ji , ui(MA1A2A3)
T, i = 1, 2, . . . , 8 (3.71)

and

Ki , ℓi(MA1A2A3)
T, i = 1, 2, . . . , 8, (3.72)

81

3. Video Transcoding in the DCT-Domain

Merhav and Bhaskaran computed the DCT of the prediction block X̂ using one of

the following expressions:

X̂ = T
[
JhB

T
2 BT

1 PTD
(
X1DPB1B2J

T
w + X2DPB1B2K

T
8−w

)
+

K8−hB
T
2 BT

1 PTD
(
X3DPB1B2J

T
w + X4DPB1B2K

T
8−w

)]
TT (3.73)

X̂ = T
[(

JhB
T
2 BT

1 PTDX1 + K8−hB
T
2 BT

1 PTDX3

)
DPB1B2J

T
w+

(
JhB

T
2 BT

1 PTDX2 + K8−hB
T
2 BT

1 PTDX4

)
DPB1B2K

T
8−w

]
TT(3.74)

by selecting the expression which requires less computations for the given w and h.

According to the authors, in comparison to the brute-force method (DCT decoding,

followed by pixel-domain MC, followed by DCT encoding), the usage of this scheme

provides a reduction of the computational load of about 32% for the worst case and

46.8% on the average case.

Another proposal was presented by Assunção and Ghanbari, who achieved a

reduction of the computational cost by approximating the elements of matrices Hij

to finite sums of powers of 2, with a maximum distortion of 1/32 [6]. By doing

so, only basic integer operations, such as shift-right and additions, are required to

compute eq. 3.23. According to these authors, when compared with the pixel-domain

approach, the proposed fast DCT-domain MC method using approximate matrices

provides a reduction of about 81% in the overall computational cost.

3.3.2 Bit rate and quality adaptation

The main objective of a bit rate or quality adaptation transcoder is to convert

a high rate bit stream into a lower rate sequence of bits. This reduction makes it

possible to store the encoded video in a restricted storage medium or to transmit it

over constrained or heterogeneous networks, where the transmission bandwidth is

not always sufficient to meet the requirements imposed by the original encoded video

sequence. Such system accepts a precoded bit stream at its input and produces a

scaled bit stream, with new constraints that are not usually known a priori, i.e., at

the time of creation of the original bit stream [106, 107].

Two basic principles are usually adopted by these transcoders:

1. the information of the original bit stream should be exploited as much as

possible;

2. the resulting image quality of the lower bit rate video sequence should be

as high as possible, or as close as possible to a hypothetical bit stream that

82

3.3 Video processing algorithms in the DCT-domain

would have been created if the original source video was encoded at the target

reduced rate.

Consequently, several different requirements may have to be met by the output

signal of this transcoder, such as bit rates, minimum visual quality, constrained

delay, limited buffer size and periodic random access points.

As it was briefly described in section 3.2, a straightforward approach to imple-

ment this transcoder is to fully decode the input sequence and then re-encode it

with a new set of coding parameters (see fig. 3.2). Such implementation, usually

referred to as the cascaded approach, implies the maximum computational cost. As

a consequence, several other alternative approaches are usually adopted in order to

avoid the significant number of operations required by the pixel-domain cascaded

transcoder.

Most of these approaches are based on a partial decoding of the input bit stream

up to the dequantized DCT coefficients, followed by a new requantization of the co-

efficients with a coarser quantization step. However, while for INTRA type frames

of a given video stream the overall computational cost is reduced, with no signifi-

cant penality in the coding efficiency, the same is generally not true in INTER type

frames. As it was shown in section 3.2.1, the requantization change in INTRA type

images, which are used as reference for predictive INTER type frames, will imply

that the displaced frame difference of INTER type frames will have to be recom-

puted in order to close the prediction loop and avoid the introduction of drift and

inherent degradation of the video quality. As a consequence, such a process usu-

ally involves the whole recomputation of the prediction residuals, the re-estimation

of the motion vectors and the selection of new coding modes, which often require

similar computational costs as those of a full encoder.

In general, four different types of architectures are usually adopted by these bit

rate adaptation transcoders [106, 107]:

Architecture I – transcoder with truncation of the high frequency DCT coef-
ficients;

Architecture II – transcoder with requantization of the DCT coefficients;

Architecture III – transcoder with re-encoding of the reconstructed pictures, us-
ing the motion vectors and the coding modes of the original
bit stream;

Architecture IV – transcoder with re-encoding of the reconstructed pictures,
using the motion vectors extracted from the original high-
quality video stream but applying a new coding mode deci-
sion.

While the first two architectures are often referred to as open loop transcoders, since

83

3. Video Transcoding in the DCT-Domain

the encoder loop is not closed in the re-encoding process, the other two architec-

tures are denominated as closed loop transcoders. The former significantly reduce

the computational cost of the structure, at the expense of introducing loss in pic-

ture quality, since they do not recompute the prediction difference signal in the

re-encoding loop. On the other hand, the last two architectures close the encod-

ing loop and do not introduce any drift error, thus presenting significantly better

quality performances. However, such advantage is usually achieved at the expense

of an increased computational cost, since more processing functions will have to be

recomputed.

Architecture I: Truncation of high frequency DCT coefficients

The block diagram of this architecture is presented in fig. 3.17. As it was referred

before, the bit rate adaptation is achieved by discarding part of the high frequency

DCT coefficients of the input bit stream. To accomplish this objective, the VLD

parser of the top branch of the block diagram does not perform any decoding task,

but simply determines the codeword lengths that correspond to the AC coefficients

of the frame under processing. Meanwhile, the bit allocation analyzer computes

an AC bit usage profile (PVN), consisting of a running sum of the number of bits

required to encode the AC frequency DCT coefficients until macroblock N , as shown

in fig. 3.18:

PVN =
∑

AC bits (3.75)

In addition, the analyzer also counts the sum of all bits that are required to encode

the frame under processing: TB (total bits). After all macroblocks of the considered

frame have been analyzed, a target value (TVAC) of the bits used to encode the AC

frequency DCT coefficients of each frame is calculated as [106, 107]:

TVAC = PVLS − α.TB− BEX (3.76)

Input
bit stream

Rate Controller
(frequency cut)

VLDDelay

VLD
Parser

Bit Allocation
Analyzer

Output
bit stream

Figure 3.17: Architecture I: Truncation of high frequency DCT coefficients [106,
107].

84

3.3 Video processing algorithms in the DCT-domain

where PVLS is the same profile value used in the last macroblock, α is the percentage

by which the precoded bit stream is to be reduced and BEX is the amount of bits

by which the previous frame missed its desired target.

With this newly scaled profile, the rate controller simply discards all the DCT

coefficients that exceed the computed scale profile. All the codewords other than

the AC coefficients should be kept, in order to maintain a compliant bit stream.

Cumulative bits
used for AC coeffs

Block number

Original profile

Scaled profile New target
count of AC bits

0

Figure 3.18: AC bit usage profile [106, 107].

Hence, the main advantage of this approach is related to its simplicity: it does

not need to perform variable length decoding and inverse quantization. Its compu-

tational cost is even lower than the one corresponding to the decoder. However, it

usually introduces a serious amount of drift error, since the decoding loop is not

closed along the transcoding process.

Architecture II: Requantization of the DCT coefficients

The block diagram of architecture II is presented in fig. 3.19. This transcoder

slightly increases the computational cost by including a VLD, a modified rate con-

troller (requantizer), implemented by cascading an inverse and a direct quantization

modules, and a VLC. Just like architecture I, it also performs a preliminary variable

length decoding pass on the input bit stream and computes a similar scaled target

profile of cumulative codeword bits versus the macroblock count, to be used for rate

control (see fig. 3.18).

However, contrary to architecture I, the quantized DCT coefficients are inverse

quantized as soon as this profile is computed and requantized with a coarser quan-

tizer scale. This new quantizer scale is adaptively determined by making slight ad-

justments after the processing of every macroblock, so that the scaled target profile

85

3. Video Transcoding in the DCT-Domain

Input
bit stream

Rate Controller
(requantizer)

VLDDelay

VLD
Parser

Bit Allocation
Analyzer

Output
bit streamVLC

Figure 3.19: Architecture II: Requantization of the DCT coefficients [106, 107].

is respected as the several macroblocks within the frame are processed [106, 107]:

QN = QNOM +G×
(
∑

N−1

BU− PVN−1

)
, (3.77)

where QN is the quantization factor for macroblock N , QNOM is an estimate of the

new nominal quantization factor for the frame under processing,
∑

N−1 BU is the

cumulative amount of coded bits up to macroblock (N − 1), and G is a gain factor

that controls how tightly the profile curve is tracked through the frame. QNOM is

usually initialized to an average guess value before the processing of the very first

frame, and updated for the next frame by setting it to QLS (the quantization factor

for the last macroblock) from the frame just completed.

The coarsely requantized block of DCT coefficients is then variable-length en-

coded to generate the scaled bit stream.

Architecture III: Recoding with old motion vectors and old coding
modes

The block diagram of architecture III is shown in fig 3.20. In this architecture,

the reconstructed frames are obtained from the normal decoding procedure, by ex-

tracting the motion vectors and the macroblocks coding modes from the original bit

stream. The scaled bit stream is then obtained by re-encoding the reconstructed

frames at the encoder side of the transcoder, by re-using the old motion vectors and

macroblock coding modes, but using a different requantization step, thus minimizing

the introduction of drift error.

Consequently, the advantage of this architecture, when compared to fully decod-

ing and re-encoding, is that no motion estimation and coding mode decisions will

have to be carried out.

86

3.3 Video processing algorithms in the DCT-domain

Input
bit stream

Re-encoder
VLD

&

Dequantizer

Delay

VLD
Parser

Motion vector and
encoding mode

extracter

Output
bit stream

Reconstruct

Figure 3.20: Architecture III: Recoding with old motion vectors and old coding
modes [106, 107].

Architecture IV: Recoding with old motion vectors and re-avaliation
of the coding modes

Architecture IV can be regarded as an improved and modified version of archi-

tecture III, since it computes new macroblock coding modes during the re-encoding

stage, at the expense of additional computational cost. When the encoder side of

the transcoder compresses the video signal, it selects the new coding mode based on

the rate-distortion compromise that was selected for the considered operating point.

At higher bit rates, the encoder sends more motion vectors and reduces the residual

difference signal energy. On the other hand, the motion vectors are too expensive to

be encoded at lower rates. Consequently, while at higher rates optimal coding mode

decision for a given macroblock is more likely to favor bidirectional motion com-

pensation over forward motion compensation, at lower rates the opposite is usually

preferred. As a consequence, bidirectional motion compensation is often changed to

forward or backward motion compensation in these transcoders.

As it can be easily realized, the computational cost involved in this architecture

is quite close to the one corresponding to the cascaded transcoder, except for the

computational demanding motion estimation part, that may be absent. To further

enhance the video quality, the transcoder may also perform the whole or partial

re-estimation of the motion vectors. Alternatively, the motion estimation process

can re-use the old motion vectors, extracted from the input bit sequence. These

motion vectors can then be used as starting points to a subsequent refinement oper-

ation, thus providing a considerable quality improvement at the expense of a slight

increase in the system computational cost. Some of these motion vector refinement

techniques, both in the pixel and in the transform DCT-domain, will be described

in section 3.3.5.

87

3. Video Transcoding in the DCT-Domain

Architectures comparison

The performance of the described bit rate and quality adaptation transcoders

was assessed and compared by Sun, Kwok, and Zdepski [106] and by Sun, Chen,

and Chiang [107]. In table 3.2 it is presented a summary of the computational

blocks required by the four considered transcoder architectures, as well as the cas-

caded approach, denoted by “C”. While the first architecture presents minimum

computational cost, at the expense of the inherent drift problem, the requantization

approach, introduced in architecture II, requires the introduction of the requantizer

and of the variable decoder/encoding modules. However, it still keeps the process-

ing entirely in the DCT-domain, with moderate drift degradation. Even so, the

usage of coarser quantization steps often produces annoying coding artifacts, such

as blocking and ringing effects, or even severely blurs the video content. To remove

this drift distortion, the decoding and re-encoding loops have to be implemented in

the transcoder. This is achieved at the expense of the integration of frame memory

devices and of a motion compensation module in architectures III and IV.

To assess the quality performance (in terms of the PSNR) presented by the

several considered architectures, Sun et al. [106, 107] evaluated seven coding setups

for each test sequence:

Ref. A – Compression at 15 Mbps using the original sequence;

Ref. B – Compression at 4 Mbps using the original sequence;

Ref. C – Cascaded pixel-domain transcoder from 15 Mbps to 4 Mbps;

Arch. I – Cascaded transcoder from 15 Mbps to 4 Mbps with Architecture I;

Arch. II – Cascaded transcoder from 15 Mbps to 4 Mbps with Architecture II;

Arch. III – Cascaded transcoder from 15 Mbps to 4 Mbps with Architecture III;

Arch. IV – Cascaded transcoder from 15 Mbps to 4 Mbps with Architecture IV.

The first three experiments are used as references, to compare the scaling perfor-

Table 3.2: Processing modules required by the several considered bit rate and qual-
ity adaptation transcoders [106, 107].

Processing Module
Architectures

I II III IV C

VLD bit stream parser and rate controller • • • • •
Quantizer/dequantizer/VLD/VLC • • • •
Decoding/encoding loops/frame memory/motion compensation • • •
Mode decision • •
Motion estimation •

88

3.3 Video processing algorithms in the DCT-domain

Table 3.3: PSNR measure when transcoding from 15 Mbps to 4 Mbps [106, 107].

Output Sequence
PSNR [dB]

Flower Garden Bicycle Bus

Ref. A 37.02 35.12 37.74

Ref. B 29.60 27.26 30.44

Ref. C 29.34 27.14 30.22

Arch. I 20.89 20.18 21.87

Arch. II 27.41 25.04 28.44

Arch. III 29.19 27.02 30.14

Arch. IV 29.32 27.11 30.20

mances. The obtained results, presented in table 3.3, were obtained with an MPEG-2

encoder for the test video sequences illustrated in fig. 3.21, each one composed of

150 frames.

As it can be observed, the first significant quality improvement was obtained

by applying the requantization procedure in architecture II, as opposed to simply

truncation of the DCT coefficients, performed in architecture I. The next level of

improvement is the result of closing the encoding loop, in architecture III. As it can

also be observed, the advantage of using architecture IV is not very significant: the

main difference lies in the procedure related to the decision of the macroblock coding

mode. As it was referred before, the performance gap is the result of adjustments

on the overhead bits of the motion vectors at various bit rate operation points.

Moreover, one can realize that architecture IV is already very close to the theoretical

optimal case, corresponding to a compression at 4 Mbps from the original sequence

(Ref. B), thus leaving little room for further improvements on this architecture, in

what concerns the output video quality.

Although the results corresponding to the simplest structure (architecture I)

(a) Flower Garden. (b) Bicycle. (c) Bus.

Figure 3.21: Test video sequences adopted in the evaluation of the bit rate and
quality adaptation architectures.

89

3. Video Transcoding in the DCT-Domain

that are presented in table 3.3 evidence a significant loss in the obtained video

quality, recent advances proposed by Eleftheriadis and Anastassiou [17] have proven

a significant improvement of its usefulness. These authors presented a dynamic

rate-shaping approach to select the DCT coefficients that should be kept in the

transcoding process [17]. Two different methods to select this set were proposed:

the Constrained Dynamic Rate Shaping (CDRS) and the Unconstrained Dynamic

Rate Shaping (GDRS). While in the first approach a set of coefficients at the end of

each block is removed from the video bit stream, with the breakpoint of each block

selected by the transcoder, in the second technique there is a 64-element binary

vector indicating which coefficients will be kept. In both approaches, the optimiza-

tion process consists of an iterative minimization of a Lagrangian cost function,

computed as L = D + λR. This incremental cost reduction takes into account the

number of bits (R) resulting from the inclusion of the run length codes of the con-

sidered DCT coefficients, as well as the resulting distortion (D) associated to the

coefficients truncation [17].

Transform-domain architectures

The previously described architectures for bit rate and quality adaptation can be

further simplified if the processing modules required by each specific structure are

entirely operated in the DCT-domain, as it was presented in section 3.2.2. In fact,

considering that most of the described architectures perform the bit rate adaptation

by directly manipulating the received DCT coefficients and by recalling the linearity

properties of both the DCT and the motion compensation operations, it becomes

clear that all the involved manipulations can be easily performed without the need

to perform either the direct or inverse DCT. Moreover, such approach may even

avoid the introduction of additional distortion, as a consequence of precision and

round off errors that are always introduced during the computation of the DCT and

IDCT operations (see section 3.1.2).

One example of such architecture was already presented in fig. 3.5 [6]. It is

represented again, in fig. 3.22, but with the inclusion of the previously described

Bit Allocation Analyzer. In this architecture, the motion compensation operation is

entirely performed in the DCT-domain, using an algorithm quite similar to the one

described in subsection B of section 3.3.1 (page 69). As it was previously observed,

this module merges both the decoding and the encoding loops in one single loop,

which, in turn, avoids the introduction of any additional drift. Such mechanism is

implemented by means of a frame update memory, to store the residual signal that

is obtained as a result of the transcoding operation that affects both the INTRA

90

3.3 Video processing algorithms in the DCT-domain

Input
bit stream

VLD

Bit Allocation
Analyzer

Output
bit stream

Q i
-1 Q f VLC

Q f
-1

+

+

+
-

+

+

Frame Update
Memory

MC-DCT

Motion Vectors

Figure 3.22: Frequency domain bit rate and quality adaptation architecture [6].

and the INTER type frames.

By adopting these DCT-domain processing structures, it is possible to obtain

significant gains, both in terms of the computational cost of the transcoder and in

terms of output video quality.

Requantization distortion error

Many of the described quality and bit rate adaptation techniques rely on a new

requantization of the received DCT coefficients. In particular, such algorithms usu-

ally apply a coarser quantization step Qf > Qi to the AC frequency DCT coefficients

of the received blocks, in order to convert or adapt an incoming high rate bit stream

into a lower sequence of bits.

As it was previously described (see, for example, section 3.2.1), the involved

computational cost of such procedure greatly depends on the type of picture under

processing, i.e. I, P or B type frame. Nevertheless, independently of the considered

image type, the requantization process is usually implemented as a cascade sequence

of an inverse quantizer Q−1
i followed by a coarser quantizer Qf :

Xout = Qf

[
Q−1

i (Xin)
]
. (3.78)

However, this coarse requantization of the DCT coefficients of the incoming video

sequence is often responsible for the introduction of an inherent degradation effect,

consisting of three distinct components [4]:

1. some nonzero coefficients of the input frame that become zero after coarse

requantization;

91

3. Video Transcoding in the DCT-Domain

2. quantization error;

3. requantization error.

While the first two are well-known causes of distortion, the later is specific to this

requantization procedure. In fact, under certain specific conditions, the requantiza-

tion can introduce an additional error that would not be introduced if the original

DCT coefficients had been directly quantized with the target coarser quantization

step size. Such situation is illustrated in fig. 3.23.

In this figure, the reconstruction levels of the DCT coefficients A and B, quan-

tized with a first quantizer step size Q1, are QA
1 and QB

1 , respectively. On the other

hand, if the coarser quantizer step size Q2 had been used, both coefficients would be

reconstructed to the same level QA
2 = QB

2 . However, if A and B are first quantized

with Q1 and then coarsely requantized with Q2, the reconstruction level of A will

be the same as that of direct coarser quantization with Q2, i.e., QA
12 = QA

2 . On the

other hand, in the case of B, the reconstruction value after requantization will be

different from that of direct coarser quantization i.e., QB
12 6= QB

2 . Hence, while the

requantization error of A is zero, the error introduced for coefficient B is not.

Therefore, whenever the coarse quantization interval entirely contains the finer

one, the direct coarse quantization and requantization distortions will be equal. On

the other hand, if the finer interval overlaps two different coarser intervals, the re-

quantization distortion will be larger whenever the reconstruction value of the first

quantization and the original coefficient fall into different coarser quantization in-

tervals [4]. Since the first quantization is performed independently of subsequent

requantization procedures, the requantization error cannot be avoided. The dis-

tortion resulting from this error may lead to a drop in picture quality of about

1.5 dB [4].

A B

Q1
A Q1

B

Q2
A = Q2

B = Q12
A Q12

B

Q1 Q1 Q1

Q2 Q2

Figure 3.23: Requantization error.

92

3.3 Video processing algorithms in the DCT-domain

3.3.3 Space scaling

Spatial frame scale is often required to reduce the image resolution by a given

scale factor (SF) before transmission or storage, thus reducing the output bit rate [1,

95]. From a straightforward point of view, image resizing of a compressed video

sequence can be performed by cascading: i) a video decoder block; ii) a pixel-domain

resizing module, to process the decompressed sequence; and iii) an encoding module,

to compress the resized video. Such structure is illustrated in fig. 3.24. To implement

↓SVideo Decoder
Pixel-Domain
Space Scaling
Transcoder

Video Encoder
Input Video
Sequence

Output Video
Sequence

Figure 3.24: Cascaded pixel-domain space-scaling transcoder.

this downscaling process directly in the DCT-domain, alternative approaches have

also been proposed [1, 95, 113]. These techniques can be classified in three different

categories:

• filtering and downsampling: by using an arbitrary low-pass filter, the im-

age is downsampled by dropping alternate pixels in both directions [59, 66,

114];

• averaging and downsampling: by representing every set of
(
SFx × SF y

)

pixels by a single output pixel, corresponding to its average value [11, 24, 63,

99, 116];

• DCT decimation: by discarding a subset of high order AC frequency DCT

coefficients, a group of blocks composited by (K ×K) DCT coefficients will

form a downsampled (N ×N) DCT coefficients block, with K ≤ N [16, 46–

48, 73, 85].

From a strict digital signal processing point of view, the first two techniques

may be regarded as somewhat equivalent approaches. However, they are applied in

different contexts, as it will be seen in the following.

A - Space scaling using filtering and downsampling

Most of the techniques within this category adopt a traditional cascaded filtering

and downsampling process. As an example, Natarajan and Vasudev proposed a

scaling scheme, with SF = 2, that replaces every set of four neighboring blocks Bi,j,

93

3. Video Transcoding in the DCT-Domain

with i, j = 0 . . . 1, by a single (N ×N) transform block B [66]:

B̂ =
(

F1 F2

)

 B0,0 B0,1

B1,0 B1,1

 F1
T

F2
T

 (3.79)

where F1 and F2 are the proposed filter matrices that were specially derived to

downscale the original DCT coefficients blocks Bi,j [66]. F1 and F2 only differ in

the signs of their entries:

F1 =

0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.453 0.208 −0.037 0.011 0.000 −0.011 0.037 −0.208

0.000 0.500 0.000 0.000 0.000 0.000 0.000 −0.500

−0.159 0.396 0.257 −0.049 0.000 0.049 −0.257 −0.396

0.000 0.000 0.500 0.000 0.000 0.000 −0.500 0.000

0.106 −0.176 0.384 0.245 0.000 −0.245 −0.384 0.176

0.000 0.000 0.000 0.500 0.000 −0.500 0.000 0.000

−0.090 0.139 −0.188 0.433 0.000 −0.433 0.188 −0.139

(3.80)

F2 =

0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

−0.453 0.208 0.037 0.011 0.000 −0.011 −0.037 −0.208

0.000 −0.500 0.000 0.000 0.000 0.000 0.000 0.500

0.159 0.396 −0.257 −0.049 0.000 0.049 0.257 −0.396

0.000 0.000 0.500 0.000 0.000 0.000 −0.500 0.000

−0.106 −0.176 −0.384 0.245 0.000 −0.245 0.384 0.176

0.000 0.000 0.000 −0.500 0.000 0.500 0.000 0.000

0.090 0.139 0.188 0.433 0.000 −0.433 −0.188 −0.139

(3.81)

To reduce the involved computational cost, Natarajan and Vasudev also proposed

an approximation to these filter matrices, by rounding off their entries to a restricted

set of sub-powers of 2: 0, ±1
8
, ±1

4
and ±1

2
.

Another filtering approach was proposed by Martucci [59]. By applying the

symmetric convolution property of the DCT (see section 2.5), it was shown that the

discrete cosine transform of a scaled block can be obtained by pointwise multiplying

the original block by the transform coefficients of a 2-D anti-aliasing filter. The

obtained block B̂ is then obtained after a downsampling stage with SF = 2, by

following a procedure entirely equivalent to a pixel-domain downsampling process,

i.e. by manipulating the DCT coefficients of the filtered block B̃, as follows [59]:

B̂ =
B̃(m)− B̃(N −m)√

2
, with m,n = 0, 1, . . . ,

(
N

2
− 1

)
. (3.82)

By folding over the coefficients and pointwise subtracting in both dimensions, the

procedure gives rise to a
(

N
2
× N

2

)
DCT coefficients block, corresponding to the

scaled target block (SF = 2). This is, in fact, one of the main drawbacks of this

94

3.3 Video processing algorithms in the DCT-domain

method: since most video standards adopt a fixed (N ×N) pixels block structure,

it is usually required that both the input and output signals of these transcoders

are structured in blocks with (N ×N) elements.

More recently, Yin et al. [114] proposed an alternative approach based on the

concept of frequency synthesis, to transform an input macroblock, consisting of four

blocks, each one with (8× 8) DCT coefficients, into a single (8× 8) DCT coefficients

block. The corresponding computations are actually performed on the rows and

columns of the input macroblock using separable 1-D filters (f1, f2). Let B1 and

B2 denote the input vectors of size N . The output block B̂, also of size (N ×N),

is computed as:

B̂ = f1 ·B1 + f2 ·B2 (3.83)

where:

f1(k, p) =

N−1∑

i=0

ψN
p (i) ·ψ2N

k (i) (3.84)

f2(k, p) =
N−1∑

i=0

ψN
p (i) ·ψ2N

k (i+N) (3.85)

and

ψN
m(i) =

√
2

N
ξ(m) cos

(
2i+ 1

2N
mπ

)
(3.86)

with ξ (m) defined in eq. 2.13.

B - Space scaling using averaging and downsampling

Somewhat similar approaches were proposed by other authors, who presented

some improvements in the algorithm efficiency by adopting simpler average low-

pass filters. According to this technique, every
(
SFx × SF y

)
pixels block is repre-

sented by a single pixel with their average value, thus leading to an averaging and

downsampling scheme [11, 24, 63, 99, 116].

By denoting b0,0, b0,1, b1,0 and b1,1 the four adjacent (8× 8) pixels blocks,

as shown in fig. 3.25, and considering a downsampling process characterized by

SFx = SF y = 2, each (2× 2) pixels sub-block will be replaced by their average value,

in order to obtain the downsampled (8× 8) pixels block b̂, as shown in fig. 3.25.

This downsampling operation can be represented by the following expression:

b̂ =
1∑

i=0

1∑

j=0

hi,j.bi,j.wi,j (3.87)

95

3. Video Transcoding in the DCT-Domain

b0,0

(8x8)

b0,1

(8x8)

b1,0

(8x8)

b1,1

(8x8)

b
(8x8)

↓2

Figure 3.25: Downsampling four adjacent blocks to obtain a single (8× 8) block.

In this equation, hi,j and wi,j are the downsampling filter matrices:

h0,0 = h0,1 = w0,0
T = w1,0

T =
1

2

 u4×8

04×8

 (3.88)

h1,0 = h1,1 = w0,1
T = w1,1

T =
1

2

 04×8

u4×8

 (3.89)

where 04×8 is a (4× 8) zero matrix and u4×8 is defined as:

u4×8 =

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

. (3.90)

These scaling schemes can be directly implemented in the DCT-domain, by ap-

plying the DCT operator to both sides of eq. 3.87, as follows:

DCT
(
b̂
)

= DCT

(
1∑

i=0

1∑

j=0

hi,j.bi,j .wi,j

)
. (3.91)

By taking into account that the DCT is a linear and orthonormal transform, it is

distributive over matrix multiplication. Hence, eq. 3.91 can be rewritten as:

B̂ =
1∑

i=0

1∑

j=0

Hi,j.Bi,j.Wi,j, (3.92)

where X = DCT (x).

One advantage of this approach is the fact that all the filter matrices Hi,j and

Wi,j can be pre-computed and stored in memory. Hence, given the blocks Bi,j =

DCT(bi,j) from the input video sequence, for i, j = 0 . . . 1, the downsampled DCT

coefficients matrix B̂ = DCT(b̂) can be obtained by matrix multiplication.

96

3.3 Video processing algorithms in the DCT-domain

It should be noted, however, that although the filter matrices hi,j and wi,j are

highly sparse, Hi,j = DCT(hi,j) and Wi,j = DCT(wi,j) are not sparse at all. Conse-

quently, this filtering and averaging approach may have a significant computational

cost, often comparable to downsampling in the spatial-domain using the straight-

forward cascaded approach. This fact usually makes this technique impractical to

be implemented in real-life transcoding devices. To overcome this drawback, some

authors have proposed optimized factorizations of the filter matrices to minimize

the involved computational cost [63]. Even so, the involved cost is usually still too

high, since such factorizations will imply highly non-regular matrix manipulation

algorithms.

Despite all these observations, it should be also noted that these techniques do

not take advantage of the spatial redundancies that are generally present in the

images under processing. As a consequence, the same number of computations will

be always required, independently of the number of non-null AC frequency DCT

coefficients that are present in each block.

C - Space scaling using DCT decimation

Another popular approach, usually referred to as DCT decimation, takes advan-

tage of the fact that most of the pixels energy is concentrated in the lower frequency

band of each block. Consequently, several video transcoding manipulations that

have been proposed make use of this characteristic, by discarding some high or-

der AC frequency DCT coefficients and retaining only a sub-set of the low order

terms. As a consequence, this approach has also been denoted as Modified Inverse

Transformation and Decimation (MITD) [98] and has been particularly adopted in

DCT-domain inverse motion compensation [51, 54, 57] and spatial resolution down-

scaling [16, 46–48, 73, 85] schemes.

By following this principle, Dugad and Ahuja [16] proposed an efficient DCT

decimation scheme for spatial downscaling in the DCT-domain. Their algorithm

starts by extracting the (4× 4) low frequency DCT coefficients from the four original

adjacent blocks: b0,0, b0,1, b1,0 and b1,1 (see fig. 3.25). Each of these sub-blocks is

then inverse DCT transformed, in order to obtain a sub-set of the original (N ×N)

pixels area that will represent the scaled version of the original block. The four

(4× 4) pixels sub-blocks are then merged and combined together, in order to obtain

an (8× 8) pixels block. The corresponding (8× 8) DCT coefficients block is then

obtained by applying the discrete cosine transform to this (8× 8) pixels block.

This algorithm was shown to provide significant performance improvements over

the previously described filtering schemes and can be formalized as follows. Let

97

3. Video Transcoding in the DCT-Domain

B0,0, B0,1, B1,0 and B1,1 represent the four original (8× 8) DCT coefficients blocks;

B
′

0,0, B
′

0,1, B
′

1,0 and B
′

1,1 represent the four (4× 4) low-frequency sub-blocks of B0,0,

B0,1, B1,0 and B1,1, respectively:

B
′

i,j =
[

I4×4 04×4

]
·Bi,j ·

 I4×4

04×4

 (3.93)

where In×n is an (n× n) identity matrix and 0n×n is an (n× n) null matrix. Let

b
′

i,j = IDCT
(
B

′

i,j

)
, for i, j = 0, . . . , 1.Then,

b̂ =

[
b

′

0,0

]
4×4

[
b

′

0,1

]
4×4[

b
′

1,0

]
4×4

[
b

′

1,1

]
4×4

8×8

(3.94)

is the downscaled version of

b =

[b0,0]8×8 [b0,1]8×8

[b1,0]8×8 [b1,1]8×8

16×16

. (3.95)

To compute B̂ = DCT
(
b̂
)

directly from B0,0, B0,1, B1,0 and B1,1 (i.e., from

B
′

0,0, B
′

0,1, B
′

1,0 and B
′

1,1), the following expression can be applied:

B̂ = T.b̂.TT (3.96)

where T is the (8× 8) DCT operator matrix. It can be decomposed into two equal-

sized (8× 4) sub-matrices TL and TR, where

TL = T.

I4×4

04×4

 ; TR = T.

04×4

I4×4

 (3.97)

denote the four left and the four right columns, respectively, of the 8-point DCT

operator T. By denoting by T4 the 4-point DCT operator matrix, equation 3.96

can be evaluated as:

B̂ =
[
TL TR

]

b̂1 b̂2

b̂3 b̂4

TT
L

TT
R

 (3.98)

=
[
TL TR

]

T
T
4 .B

′

0,0.T4 TT
4 .B

′

0,1.T4

TT
4 .B

′

1,0.T4 TT
4 .B

′

1,1.T4

TT
L

TT
R

 (3.99)

=
(
TLT

T
4

)
B

′

0,0

(
TLT

T
4

)T
+
(
TLT

T
4

)
B

′

0,1

(
TRTT

4

)T
+

(
TRTT

4

)
B

′

1,0

(
TLT

T
4

)T
+
(
TRTT

4

)
B

′

1,1

(
TRTT

4

)T
(3.100)

98

3.3 Video processing algorithms in the DCT-domain

Dugad and Ahuja [16] have also proposed a matrix decomposition to convert

the previous expression into an alternative form, so that the matrices involved in

the previous matrix multiplication become more sparse and the computational cost

is reduced. This scheme is formulated by defining the pair of matrices C and D,

characterized by a significant number of null elements, so that TLT4
T = C+D and

TRT4
T = C−D:

C =

0.7071 0.0000 0.0000 0.0000

0.0000 0.2960 0.0000 0.0162

0.0000 0.0000 0.0000 0.0000

0.0000 0.5594 0.0000 −0.0690

0.0000 0.0000 0.7071 0.0000

0.0000 −0.2492 0.0000 0.3468

0.0000 0.0000 0.0000 0.0000

0.0000 0.1964 0.0000 0.6122

D =

0.0000 0.0000 0.0000 0.0000

0.6407 0.0000 −0.0528 0.0000

0.0000 0.7071 0.0000 0.0000

−0.2250 0.0000 0.3629 0.0000

0.0000 0.0000 0.0000 0.0000

0.1503 0.0000 0.5432 0.0000

0.0000 0.0000 0.0000 0.7071

−0.1274 0.0000 −0.2654 0.0000

(3.101)

Hence, eq. 3.100 can be formulated as:

B̂ = (C + D)B
′

0,0(C + D)T + (C + D)B
′

0,1(C−D)T+

(C−D)B
′

1,0(C + D)T + (C−D)B
′

1,1(C−D)T (3.102)

=
[
C
(
B

′

0,0 + B
′

1,0

)
+ D

(
B

′

0,0 −B
′

1,0

)]
(C + D)T+

[
C
(
B

′

0,1 + B
′

1,1

)
+ D

(
B

′

0,1 −B
′

1,1

)]
(C−D)T (3.103)

= X(C + D)T + Y(C−D)T (3.104)

= (X + Y)CT + (X−Y)DT (3.105)

where:

X = C
(
B

′

0,0 + B
′

1,0

)
+ D

(
B

′

0,0 −B
′

1,0

)
(3.106)

and

Y = C
(
B

′

0,1 + B
′

1,1

)
+ D

(
B

′

0,1 −B
′

1,1

)
(3.107)

By applying such decomposition, Dugad and Ahuja have shown that this down-

sampling scheme requires only about 1.25 multiplications and 1.25 additions per

pixel of the original non-scaled image.

Ridge [85] has also proposed an extension to this formulation by using a de-

composition rather similar to the one presented by Merhav and Bhaskaran [63]. It

provides a further reduction of the involved computational cost and still yields visual

improvements, by reducing the aliasing effect. Even so, the main disadvantage of

this approach is concerned with the inherent introduction of blocky artifacts, mainly

in image areas with complex texture regions, due to the discard of high order AC

frequency coefficients.

99

3. Video Transcoding in the DCT-Domain

D - Discussion

Despite the several different strategies that have been presented, most of these

proposals are only directly applied to scaling operations using a scale factor given

by an integer power of two (SF = 2, 4, 8, 16, etc). Nevertheless, downscaling

operations using any other arbitrary integer scaling factor are often required. As a

consequence, in the last few years some techniques have been proposed in order to

implement these algorithms for any integer scale factor [48, 72, 92, 102, 103]. How-

ever, although many of these proposals provide good video quality for scaling factors

equal to integer powers of two, their performance significantly degrades when other

scaling factors are applied. Furthermore, they often suffer from computational inef-

ficiency in their processing: either by storing a large amount of data matrices [102]

or by operating with large amount of data [72].

Another important issue is concerned with the block structure adopted by these

algorithms. The (N ×N) pixels block structure adopted by some digital image (e.g.

JPEG [32]) and video standards (such as H.261 [29], H.263 [30], MPEG-1 Video [26]

and MPEG-2 Video [27]), requires that both the input original frame and the output

downscaled frame, together with all the data structures associated to the processing

algorithm, are organized in (N ×N) pixels blocks. As it was referred before, some

of the described algorithms cannot comply with this important requisite.

Hence, contrary to the most recent proposals [48, 72, 92, 102, 103], in section 5.2

it will be proposed an innovative algorithm that offers a reliable and very efficient

video downscaling method for any arbitrary integer scaling factor, with particularly

notable performances for scaling factors other than integer powers of 2. The algo-

rithm adopts an averaging and downsampling approach that is performed by directly

processing the received DCT coefficients, in order to minimize the introduction of

any inherent distortion. Moreover, the proposed algorithm also offers an alternative

method for minimizing the computational cost: this method is implemented by re-

stricting the involved operations in order to avoid spurious and useless computations

and by only performing those that are really needed to obtain the output values.

Furthermore, independently of the adopted scaling factor SF , all the involved steps

are properly tailored so that all operations are performed using (N ×N) coefficient

blocks, in order to comply the operations with most image and video standards.

An optional and possible combination of the presented algorithm with high order

AC frequency DCT coefficients discarding techniques is also proposed. These tech-

niques, usually adopted by DCT decimation approaches, provide a flexible and often

required complexity scalability feature.

Nevertheless, independently of the adopted methodology, the implementation

100

3.3 Video processing algorithms in the DCT-domain

of a space scaling transcoder to process pre-coded video sequences requires a

corresponding adaptation of the decoded motion vectors. The resulting motion-

compensation prediction scheme of the processed video sequence has to comply

with the new space resolution of the output sequence. To minimize the involved

computational cost, such procedure is usually performed by re-using the decoded

motion vectors and by applying several possible composition techniques, as it will

be described in the following section.

3.3.4 Motion vector composition

Frequently, when an arbitrarily time or space manipulation function is performed

over a precoded video sequence, each macroblock in the transcoded video is obtained

as a composition of several macroblocks from the input sequence. Since the motion

pattern of the composited macroblocks may be different from the original pattern,

a set of new Motion Vectors (MVs) is generally required to implement the motion

compensated prediction mechanism. However, it is often desired that these new

MVs correlate well with the MVs of the compositing macroblocks. In fact, although

the usual motion estimation algorithms may be used to estimate the new MV,

this approach is often avoided for real-time applications, since motion estimation is

computationally very intensive.

Consequently, fast methods have been devised to estimate the new MVs directly

from the set of MVs of the precoded video with small computational cost and with

satisfactory performance. In all these methods, it is necessary to take into account

that the borders of the composited macroblock may not align with the original

macroblock grid of the precoded frame. In fact, a given set of precoded macroblocks

may be partially or wholly used to composite the transcoded macroblocks. On the

other hand, the transcoded macroblocks may be composited of a different number

of macroblocks from the precoded video.

Several fast MV compositing methods have been proposed in the literature [108].

In general, those methods can be classified into two different categories, based on

the adopted process to derive the new motion vector from the precoded MVs. On

the one hand, each new motion vector may be obtained by averaging the corre-

sponding MVs from the precoded video. Such composition scheme may be obtained

either as a simple average or as a more complex mean operation, that takes into

account other characteristics of the compositing macroblocks, such as the area, the

coding computational cost, etc. On the other hand, the new MV may be directly

chosen from the set of original MVs, corresponding to the compositing macroblocks.

Independently of the adopted procedure to obtain the new MV, and at the cost of

101

3. Video Transcoding in the DCT-Domain

additional computations, this MV can be further refined by performing an additional

motion estimation tuning operation over a restricted search area.

In the following, it will be presented a brief description of some of the composition

techniques that have been proposed in the past few years. In all the presented

methods, the symbol P denotes the set of compositing macroblocks that are involved

in the transcoding operation, decoded from the original video stream.

A - Simple Average (SA)

According to this method, each new MV of the transcoded stream is obtained

by computing the simple arithmetic mean of all the corresponding MVs from the

precoded video:

v̂SA =
1

#P

∑

p∈P

v(p) (3.108)

where #P denotes the cardinal of the set P. According to the work presented by

Shen et al. [101], this method usually provides good estimates of the new motion

vector when all the corresponding MVs are similar and well aligned. However, it

tends to perform poorly if the compositing macroblocks undergo different MVs [112].

B - Area Weighted Average (AWA)

The area weighted average method interpolates the new MV by weighting each

precoded MV with the corresponding area of the compositing macroblock. Accord-

ing to this method, the larger the compositing area, the more the influence a pre-

coded macroblock will have over the motion-compensated residue of the transcoded

macroblock. This method can be stated as [52, 112]:

v̂AWA =

∑
p∈P

v(p)×A(p)
∑

p∈P
A(p)

(3.109)

where A(p) denotes the portion (in terms of number of pixels) of the precoded

macroblock MB(p) involved in the composition of the transcoded macroblock.

C - Spatial Activity-Area Weighted Average (SAAWA)

When the overlapping areas of the several compositing macroblocks are very sim-

ilar, the MVs obtained with the Area Weighted Average (AWA) technique may be

not meaningful. Consequently, several authors [13, 52, 101] have proposed different

approaches to estimate the new MVs by also taking into account the spatial activ-

ity of each compositing macroblock. Their justification for this method lies in the

102

3.3 Video processing algorithms in the DCT-domain

fact that, when their motion vectors deviate from the optimal values, the motion-

compensated residues of macroblocks with high spatial activity increase faster than

those corresponding to macroblocks with low spatial activity. Therefore, more em-

phasis should be given to the MVs of compositing macroblocks with higher spatial

activity.

Hence, not only does this method rely on the usage of each macroblock relative

compositing area, but it also considers the spatial activity to weight the influence of

each compositing MV. Such spatial activity can be assessed by several means, such

as [101]:

• by reconstructing the spatial-domain samples and measuring the energy or the

gradients within the corresponding blocks;

• by directly using the received DCT coefficients and counting the number of

non-null AC coefficients, thus avoiding the inherent cost of computing the

inverse DCT;

• by summing the absolute values of the received AC coefficients.

As an example, Liang et al. [52] proposed a composition algorithm that uses

the number of non-null AC coefficients of each DCT encoded block to estimate the

spatial activity of the original macroblocks in the computation of the composited

motion vector v̂SAWA:

v̂SAAWA =

∑
p∈P

v(p)× α(p)×A(p)
∑

p∈P
α(p)× A(p)

(3.110)

where α(p) denotes the number of non-null AC coefficients of macroblock MB(p).

Tan et al. also proposed the usage of another activity measure, corresponding to

the product of the quantization step-size and the number of bits used to encode the

macroblock, denominated by QB-measure [108]:

v̂SAAWA =

∑
p∈P

v(p)× A(p)×QB(p)
∑

p∈P
A(p)×QB(p)

(3.111)

where QB(p) denotes the product of the quantization step-size Q(p) with the total

number of bits B(p) used to encode the macroblock: QB(p) = Q(p)×B(p).

They claimed that not only does this measure provide similar transcoding per-

formances when compared with the usage of the techniques proposed by Shen et al.,

but it also presents the advantage of being significantly easier to be obtained from

the precoded video stream, since it does not require further computations.

103

3. Video Transcoding in the DCT-Domain

D - Maximum Area (MA) / QB-Area (MQBA)

Despite the significant number of different possible approaches to composite the

new MVs by averaging the set of corresponding precoded vectors, it is frequently

observed that such vectors lead to poorer results than those obtained by using

the original vectors [115]. Alternative techniques have therefore been proposed that

obtain the new MV by selecting one from the set of precoded vectors. As an example,

one of such techniques selects the motion vector that belongs to the macroblock with

the largest compositing area A(p), as follows:

v̂MA = v(p∗), where p∗ = arg max︸ ︷︷ ︸
p∈P

{A(p)} (3.112)

Another technique selects the MV that belongs to the macroblock with the largest

product of compositing area A(p) and QB(p) measure [13], as follows:

v̂MQBA = v(p∗), where p∗ = arg max︸ ︷︷ ︸
p∈P

{QB(p)×A(p)} (3.113)

E - Median (MDN)

Another proposed approach suggests choosing the precoded MV that is most

similar, on average, with the rest of the MVs corresponding to the set of compositing

macroblocks P. The implementation of this method can be stated as:

v̂MDN = v(p∗), where p∗ = arg min︸ ︷︷ ︸
p∈P

∑

p′∈P

‖v(p)− v(p′)‖

 (3.114)

Since the implementation of this method resembles the computation of the median

value of the compositing MVs, this technique has been denoted in the literature as

the median method. Nevertheless, it should be noted that its computation does not

entirely conform with the usual definition of the median estimate.

F - Comparative analysis

Despite all the presented compositing schemes, it should be noted that other pos-

sible alternatives could be equally adopted; each considering different cost functions

to obtain the composited MV leading to the best prediction of the current transcoded

macroblock. Some examples of such alternative schemes include weighted averaging

strategies based on coding complexity, maximum area methods, maximum coding

complexity schemes or weighted median methods.

104

3.3 Video processing algorithms in the DCT-domain

Tan et al. [108] presented a performance evaluation of some of these methods

when applied to MV composition, for the particular case of a space-scaling transcod-

ing system. Such evaluation was performed by computing the PSNR of both the

transcoded video stream and of the original uncompressed video, downsampled with

the same scale factor. A set of standard benchmark video sequences was used on this

evaluation. According to the obtained experimental results, the techniques that are

based on the computation of a weighted average (SA, AWA and SAAWA) are gen-

erally outperformed by the MQBA and MDN methods. In fact, the median (MDN)

method itself tends to perform consistently better than the MQBA, in terms of the

PSNR measure.

Furthermore, it should be noted that whenever MV re-estimation is affordable,

MVs of better precision can still be obtained at the cost of more computations. Once

again, several possible schemes can be devised to estimate the best composited

MV: either using the original data, decoded from the received video stream, or

from one of the compositing schemes previously described. As an example, Wong

and Au [112] proposed a fast motion re-estimation block-matching method that is

performed over a restricted set of MV candidates. Such set includes both the n

original compositing MVs and an additional MV candidate. This extra candidate

is estimated as a weighted average of the precoded vectors using the reciprocal of

their corresponding Sum of Absolute Differences (SAD) measures as weights:

vn+1 =

∑n

i=1 vi · 1
SADi∑n

i=1
1

SADi

(3.115)

with

SAD(vi) =

(N−1)∑

m=0

(N−1)∑

n=0

∣∣∣Fcurr(x+m, y+ n)−Fprev(x+ vx
i +m, y+ vy

i + n)
∣∣∣, (3.116)

where Fcurr and Fprev denote the current and previously coded frames, respectively.

If this extra MV, vn+1, is not equal to one of the first n candidates, the value of the

corresponding SAD (SADn+1) is computed, using the calculated value vn+1 as the

MV. Finally, the MV within this set with the lowest SAD value is selected as the

final motion vector v:

v = arg min︸ ︷︷ ︸
i≤n+1

{SADi} (3.117)

It is worth noting that such re-estimation method could be equally applied using

any of the compositing schemes previously described.

The presented MV refinement schemes, based on re-estimation techniques, in-

volve, however, a significant amount of computations. As a consequence, its usage

105

3. Video Transcoding in the DCT-Domain

often raises a difficult design compromise: it implies a trade-off between the overall

system computational cost and the resulting encoding quality and efficiency. As

it will be described in the following section, several different approaches have been

proposed to accomplish this objective, by processing the received data either in the

pixel or in the transform-domains.

3.3.5 Motion estimation

Among the several transcoding operations that have been addressed over the

last few years to process already compressed video sequences directly in the DCT-

domain, the Motion Estimation (ME) function has deserved a special attention by

the scientific community. In fact, many video processing systems frequently require

the computation of new MVs to encode the new video stream. Most ME techniques

that have been applied up until now in the majority of the transcoding systems adopt

the composition schemes previously described in section 3.3.4 to reuse the MVs

decoded from the received video stream. However, as it was previously observed,

most of these schemes frequently lead to non-optimal motion compensated prediction

results, due to the mismatch that often exists between the prediction and residual

components.

To overcome this quality loss without performing a full motion estimation op-

eration, motion vector refinement schemes have been proposed [13, 41, 115]. The

search windows typically adopted by these MV refinements are relatively small (e.g.

[−2,+2]), compared to original search windows. Nevertheless, not only does this

keep the additional computational cost at low and tolerable levels, but it still pro-

vides a significant amount of the achievable gains. As a consequence, such schemes

have been frequently adopted by most bit rate reduction transcoding systems to im-

prove the output video quality, as well as by spatial or temporal resolution reduction

architectures.

However, few algorithms have been presented to estimate entirely new MVs in

the absence of any precoded MV (e.g. INTRA to INTER frame conversion) or when

the original MVs do not have any correlation with the motion activity in the new

encoded frame (e.g. video composition, logo insertion [88], etc.). In such cases,

the simple but computational intensive cascaded architecture is often applied, by

performing the estimation of the new motion vectors in the pixel-domain.

Recently, some proposals have been presented to perform this motion estimation

directly in the DCT-domain. Despite the different target application area, con-

sisting of photogrammetric techniques for image registration of JPEG compressed

aerial photos, Reeves and Kubik proposed an algorithm entirely different from the

106

3.3 Video processing algorithms in the DCT-domain

traditional approaches, by trying to apply matching techniques using correlation

and convolution techniques in the DCT-domain [83, 84].

Koc and Liu have also recently presented a new approach, denominated by

DCT pseudo-phases technique, and applied it to DCT-domain motion estima-

tion [12, 38, 39, 41]. However, unlike other fast block-matching motion estimation

methods (such as logarithmic, three-step, cross, etc. [7]), which simply pick up a set

of displacement candidates out of all possible displacement values in terms of the

minimum SAD values, these techniques employ the sinusoidal orthogonal principles

to extract the shift information from the pseudo-phases hidden in the DCT coeffi-

cients of the processed frames. Due to the novelty and peculiarity of this technique,

the corresponding algorithm will be described in more detail.

In the following, it will be presented a brief overview of the main proposed

approaches to implement the motion estimation procedure using the data received

from the incoming video stream and to process it directly in the compressed DCT-

domain.

A - Cascaded transcoders

Similarly to what happens in other video transcoding processing techniques,

the most straightforward approaches to perform the (re-)estimation of the motion

vectors of a given video stream are the cascaded architectures. Usually, to reduce

the computational complexity, these structures re-use the motion vectors extracted

from the incoming bit stream (vi) and perform a prediction of the new motion

vector (vp) (see section 3.3.4). However, as it was referred before, these simple

motion vector reuse schemes usually introduce a considerable quality degradation.

Moreover, although the optimal motion vector can still be obtained by applying a

new exhaustive motion estimation procedure, this alternative is often not desirable

due to its high computational cost. As a consequence, a motion vector refinement

stage is usually adopted, in order to improve the accuracy of the motion vectors

that will be used by the output bit stream (vo).

Pixel-domain cascaded transcoders

The block diagram of a pixel-domain cascaded architecture applying MV pre-

diction techniques is presented in fig. 3.26. The advantage of these schemes is their

ability to provide a video quality level that is comparable to the one that would

be obtained by performing a new full-search motion estimation, but at the cost

of considerably less computations. Even so, the incoming bit stream is first fully

decoded and the block-matching motion (re-)estimation algorithm is performed in

107

3. Video Transcoding in the DCT-Domain

+

-

Q VLC

Q-1

+

+
Memory

DCT

IDCT
MC

ME

Q-1 IDCT

+

+

Frame
MemoryMC

VLD

DECODER

ENCODER

MVo

INPUT OUTPUT

0

P

I

P

I

0

P

I

MVi

MV
Predictor

MVi MVp

(0,0)

Figure 3.26: Cascaded pixel-domain motion estimation transcoder.

the pixel-domain, similarly to what happens in the front-end encoder of the video

communication system.

An example of the application of this type of structures was presented by Youn,

Sun, and Lin [115], who have proposed a cascaded pixel-domain architecture to

be applied in a frame skipping transcoding structure. The proposed architecture

refines the base motion vector obtained from the motion vectors decoded from the

incoming bit stream, by using a maximum area composition technique (v̂MA) (see

eq. 3.112). It then applies a set of fast search motion estimation algorithms within

a small search window.

Chen, Chu, and Pan [13] have proposed a similar architecture that obtains the

composited motion vector prediction (vp) from a maximum spatial activity (v̂MQBA)

composition algorithm (see eq. 3.113). It the applies a fast search algorithm to

refine this prediction and to obtain a more accurate motion vector (vo), in order to

minimize the prediction error of the output video sequence.

Transform-domain cascaded transcoders

The described cascaded structure with a motion vector refinement module can

equally be implemented in the transform-domain, by transposing all the involved

operations to the DCT-domain. Such structure, illustrated in fig. 3.27, can be easily

obtained from the block diagram of fig. 3.26, just by: i) removing all DCT and IDCT

processing modules; and ii) replacing the MC module by its equivalent MC-DCT

processing block, operating in the DCT-domain, as described in subsection B of

section 3.3.1 (page 69). Once the incoming video frames are decoded to the DCT-

domain, the predicted motion vectors (vp) can be obtained in an entirely similar

way, as it was done in the pixel-domain architectures. Such predictions can then be

refined by applying them to a DCT-domain motion re-estimation algorithm.

As an example, Seo and Kim proposed a motion vector refinement algorithm

108

3.3 Video processing algorithms in the DCT-domain

+

-

Q VLC

Q-1

+

+
Memory

MC-DCT

ME-DCT

Q-1

+

+

Frame
MemoryMC-DCT

VLD

DECODER

ENCODER

MVo

INPUT OUTPUT

0

P

I

P

I

0

P

I

MVi

MV
Predictor

MVi MVp

(0,0)

Figure 3.27: Cascaded transform-domain motion estimation transcoder.

based on a fast block-matching mechanism, entirely implemented in the DCT-

domain [93, 94]. Such algorithm makes use of a predicted motion vector (vp), ob-

tained from the decoded motion vectors received from the incoming bit stream and

from a mean/median compositing scheme, to determine a restricted set of candidate

macroblocks to be checked by the block-matching algorithm. The adopted estima-

tion algorithm is based on the minimization of the Mean Squared Error (MSE) crite-

rion and on a computationally efficient method to extract the motion-compensated

DCT candidate blocks. By extensively re-using the overlapped information corre-

sponding to the set of 15× 16 pixels that are shared with the previously considered

adjacent candidate macroblock, they have shown that it is computationally feasible

to implement a block-matching algorithm in the transform-domain, provided that

the number of candidate macroblocks is reduced and that all these candidates are

adjacent to each other.

B - Convolution based transcoder

As it was referred before, Reeves and Kubik proposed a convolution based tech-

nique to perform image matching, which was initially developed for image regis-

tration of JPEG compressed aerial photos [83, 84]. By taking into account that

image registration is a problem entirely similar to estimating the motion vectors in

predictive video coding, such technique can be equally applied to motion estimation

in video transcoding systems.

The proposed technique is based on the convolution-multiplication relationship

for the DCT and DST transforms, previously formulated by Martucci [58] (see sec-

tion 2.5), which states the equivalence between the multiplication operation in the

DCT-domain and the computational costly symmetric convolution operation in the

pixel-domain. Hence, by providing a feasible alternative to compute the convolu-

tion of two shifted images, this technique makes it possible to easily determine the

position of the peak within the convolution result, which indicates the magnitude

109

3. Video Transcoding in the DCT-Domain

of the disparity of the two considered images.

However, the proposed symmetric convolution approach presents one important

limitation: it only provides useful results for integer displacements of one posi-

tion [83, 84]. Even so, some interest should still be devoted to this approach, mainly

for motion re-estimation applications, where the search area is usually rather limited

around a previously predicted candidate motion vector.

As it was described in section 2.5, this convolution-multiplication relationship

between the pixel and the DCT-domains implies a symmetric extension of a N -point

base sequence at each of its ends, in order to obtain a periodic sequence with length

2N . As it was also observed, this symmetric convolution can be defined in a number

of different ways, depending on how each end of the sequence to be convolved is

extended. According to what was described in section 2.5, each point of symmetry

can coincide with a sample point (odd symmetry) or can fall between two samples

(even symmetry). Furthermore, the sequence can be extended in a symmetrically

or anti-symmetrically way.

In the following, the description of the algorithm will be performed using 1-D

signals. Such simplification is adopted in order to ease the explanation and does

not introduce any limitation on the algorithm. Furthermore, instead of using the

orthogonal form of the even type-II DCT kernel (see table 2.2):

X (m) =
∑

i

C2e(m, i).x(i) (3.118)

=

√
2

N
ξ (m)

N−1∑

i=0

x(i) cos

(
m
(
i+ 1

2

)
π

N

)
, (3.119)

with m ∈ {0, . . . , N − 1} and ξ (p) as defined in eq. 2.13, it will be adopted the

convolution form of the second kind even DCT kernel matrix (see table 2.4), as

defined by Martucci [58]:

XC2e
(m) =

∑

i

C2e(m, i).x(i) (3.120)

= 2

N−1∑

i=0

x(i) cos

(
m
(
i+ 1

2

)
π

N

)
. (3.121)

In fact, it can be shown that these two DCT definitions are equivalent and a direct

correspondence can be obtained between each other, with XC2e
(0) = 2

√
N.X (0)

and XC2e
(m) =

√
2N.X (m).

In the considered case, the symmetric convolution operation is defined so that

each of the pixel-domain convolved sequences x(i) and y(i) is extended at both ends

110

3.3 Video processing algorithms in the DCT-domain

with half-sample symmetry, with:

c(i) = x(i) s y(i) (3.122)

= C1e
−1
{
XC2e

(m) YC2e
(m)

}
, (3.123)

where s denotes the skew-circular convolution, defined in eq. 2.58, XC2e
(m) and

YC2e
(m) are the second kind even DCT transforms of x(i) and y(i), defined in

eq. 3.120, and C1e
−1 denotes the inverse type-I even cosine transform, defined as:

ZC1e
(m) = 2

N∑

i=0

ξ2 (i) z(i) cos

(
miπ

N

)
(3.124)

z(i) = C1e
−1 {ZC1e

(m)} =
1

N

N∑

m=0

ξ2 (m)ZC1e
(m) cos

(
imπ

N

)
. (3.125)

As it was reported by Reeves and Kubik [83, 84], this symmetric convolution only

provides useful results for integer displacement values of zero or one. Nevertheless,

these authors have proposed a methodology to obtain fractional disparities within

this region.

In order to compute the disparity value with greater accuracy, it is necessary

to estimate the exact position (pM) corresponding to the maximum value of the

correlation function between two points: p0 and p1. However, since this technique

only provides correlation values for these two samples, the exact position of pM

must be inferred from the output values at these two points. In fact, from a rather

simplistic point of view, one can assume that sample p0 will have a higher correlation

value when pM is closer to p0, whereas sample p1 will have a higher value when pM

is closer to p1. Reeves and Kubik modeled the variation of this correlation function

with two linear functions: the first passing through sample p0, with positive slope

α, and the second passing through sample p1, with slope −α.

Hence, for 2-D signals, the above algorithm is implemented by defining the con-

volution function:

c(i, j) = x(i, j) s y(i, j) (3.126)

obtained by extending eq. 3.122 for the 2-D case, where:

y(i, j) = x(i+ di, j + dj) (3.127)

and di and dj are the horizontal and vertical disparities, respectively. Similarly, the

auto-convolution function can be defined as:

a(i, j) = x(i, j) s x(i, j). (3.128)

111

3. Video Transcoding in the DCT-Domain

To simplify the following description, it will be presented the computation of the

horizontal disparity (di) by assuming a null vertical disparity (dj). Hence, by com-

puting the convolution values c(p0) and c(p1) from the decoded DCT coefficients,

corresponding to images x(i, j) and y(i, j), as well as the auto-convolution values

a(p0) and a(p1) of the undisplaced image x(i, j), an expression for the horizontal

disparity dn can be derived as follows:

dn =
a(p0)− a(p1) + c(p1)− c(p0)

2 [a(p0)− a(p1)]
. (3.129)

A similar expression could equally be derived for the vertical disparity dj .

Unfortunately, from the experimental assessment that was carried out by these

authors, it was concluded that the above formulation consistently underestimates

the true value of the disparity, since the slope of this relation varies from block

to block. As a consequence, they have proposed the usage of a correcting factor

that was empirically estimated from the results obtained using several test video

sequences. However, as they have recognized, the accuracy of the obtained results

is not enough to consider the usage of this technique in real life video processing

systems. Furthermore, this technique also suffers from an important limitation: it

cannot differentiate between a negative and a positive disparity, since it can only

reveal the magnitude of the disparity, not its sign. As a consequence, such limitation

must be overcome by other external means.

Consequently, despite the high interest that this technique could initially raise to

reduce the computational cost in motion estimation applications performed directly

in the DCT-domain, the poor accuracy of the results that it provides makes it

unsuitable for most current video transcoding applications.

C - Least squares based transcoder

Reeves [83] has also proposed an alternative iterative scheme that performs image

matching by applying a Least Squares Estimation (LSE) technique. Similarly to the

convolution based technique, described in the previous subsection, this methodology

was developed to be applied in digital image processing applications, namely, in the

computation of the disparity of two shifted signals, for image registration of JPEG

compressed aerial photos.

Based on this approach, in section 5.3.1 it will be presented a new motion es-

timation algorithm, directly operating in the DCT-domain, to be applied in video

processing applications. Such algorithm computes the new MVs by applying a LSE

technique and by following an approach somewhat similar to the one proposed by

112

3.3 Video processing algorithms in the DCT-domain

Reeves. By adopting such methodology, it is possible to compute new MVs using the

DCT coefficients directly obtained from the DCT-H.26x/MPEG-x video streams.

Furthermore, the proposed algorithm also provides the possibility to efficiently

take advantage of the energy compaction property provided by the DCT. In fact,

since most of the pixels energy is concentrated on the lower frequency band of the

encoded blocks, most high frequency coefficients are set to zero after the quantization

step. Hence, to reduce its computational effort, the proposed ME algorithm may

consider only an arbitrary subset of non-null DCT coefficients, thus providing an

adaptive capability to trade computational cost with the resulting accuracy of the

MVs.

D - DCT pseudo-phases based transcoder

This technique was proposed by Koc and Liu and is based on the shift property of

the Fourier Transform (FT) of a given signal x(t) and its delayed version x(t− τ) [12,

38, 39, 41]:

F {x (t− τ)} = e−jωτ
F {x (t)} , (3.130)

where F { · } denotes the Fourier transform. According to elementary signal process-

ing theory, the phase component of the Fourier transform of a shifted signal contains

the information corresponding to the amount of the shift (τ). When t represents

time, the shift τ denotes the amount of delay of the shifted signal. In general, such

delay can be easily extracted from the phase component in the FT-domain. In con-

trast, contrary to what happens with the DFT, the discrete cosine/sine transforms

of a given signal do not have any phase components. Even so, these authors have

shown that some shift information can still be extracted from the DCT and DST

coefficients of a shifted signal.

In the following, a detailed description of these techniques will be presented,

firstly, in the simpler scope of 1-D discrete signals. The application of this method-

ology to 2-D motion estimation will be presented in appendix A.

Shift estimation in 1-D signals

Within the scope of the following presentation, it is assumed that a given signal

{x1(n) : n ∈ {0, . . . , N − 1}} is right shifted by an amount m (with m > 0), to

obtain another signal {x2(n) : n ∈ {0, . . . , N − 1}}. It is also assumed that the

sample values of x1(n) are all zeros outside the support region Ψ (x1). Therefore,

x2(n) =

x1(n−m), for n−m ∈ Ψ (x1) ,

0, elsewhere.
(3.131)

113

3. Video Transcoding in the DCT-Domain

Koc and Liu have shown that, for k = 1, . . . , N − 1:

 Xc
2(k)

Xs
2(k)

 =

 +Zc
1(k) −Zs

1(k)

+Zs
1(k) +Zc

1(k)

 gc
m(k)

gs
m(k)

 , (3.132)

where gs
m(k) , sin

[
kπ
N

(
m+ 1

2

)]
and gc

m(k) , cos
[

kπ
N

(
m+ 1

2

)]
are called pseudo-

phases, analogous to the phases of the FT of shifted signals; Xc
2(k) and Xs

2(k) are

orthogonal even type-II cosine (DCT-IIe) and sine (DST-IIe) trigonometric trans-

forms of x2(n); Zc
1(k) and Zs

1(k) are orthogonal even type-I cosine (DCT-Ie) and

sine (DST-Ie) trigonometric transforms of x1(n), respectively, defined as follows:

Xc
2 (k) =

2

N
ξ (k)

N−1∑

n=0

x2(n) cos

(
k
(
n+ 1

2

)
π

N

)
, with k ∈ {0, . . . , N − 1} (3.133)

Xs
2 (k) =

2

N
ξ (k)

N−1∑

n=0

x2(n) sin

(
k
(
n+ 1

2

)
π

N

)
, with k ∈ {1, . . . , N} (3.134)

Zc
1 (k) =

2

N
ξ (k)

N−1∑

n=0

x1(n) cos

(
knπ

N

)
, with k ∈ {0, . . . , N} (3.135)

Zs
1 (k) =

2

N
ξ (k)

N−1∑

n=0

x1(n) sin

(
knπ

N

)
, with k ∈ {1, . . . , N − 1} (3.136)

with ξ (p) defined in eq. 2.13. It should be noted that the above definitions present

slight differences when compared with those previously defined in table 2.2. Such

differences arise not only from the fact that these alternative definitions do not

comply with the normalization property, defined in section 2.2.5, but also because

not all of these transforms are defined within the same domain.

By denoting the pseudo-phases matrix as θ(k) , [gc
m(k) gs

m(k)]T, by defining the

matrix X(k) , [Xc
2
(k) Xs

2
(k)]T and by taking into account that the matrix:

Z1(k) ,
[

Zc
1
(k) −Zs

1
(k)

Zs
1
(k) +Zc

1
(k)

]
(3.137)

is orthogonal, i.e.,

1

[Zc
1(k)]

2 + [Zs
1(k)]

2 Z1
T(k)Z1(k) = I2, (3.138)

equation 3.132 can be represented as:

θ(k) =
1

[Zc
1(k)]

2 + [Zs
1(k)]

2 Z1
T(k)X(k). (3.139)

114

3.3 Video processing algorithms in the DCT-domain

By taking into account the sinusoidal orthogonal principles,

2

N

N∑

k=1

ξ2 (k) sin

(
k
(
m+ 1

2

)
π

N

)
sin

(
k
(
n + 1

2

)
π

N

)
= δ(m− n)− δ(m+ n+ 1),

(3.140)

2

N

N−1∑

k=0

ξ2 (k) cos

(
k
(
m+ 1

2

)
π

N

)
cos

(
k
(
n+ 1

2

)
π

N

)
= δ(m− n) + δ(m+ n+ 1),

(3.141)

where δ(n) is the discrete impulse function, Koc and Liu have shown that the

IDST-IIe and the IDCT-IIe transforms of the pseudo-phases gs
m(k) and gc

m(k), re-

spectively, are defined as a sum of discrete impulse functions:

IDST-IIe {ξ (k) gs
m(k)} =

2

N

N∑

k=1

ξ2 (k) gs
m(k) sin

(
k
(
n + 1

2

)
π

N

)

= δ(m− n)− δ(m+ n+ 1) (3.142)

IDCT-IIe {ξ (k) gc
m(k)} =

2

N

N−1∑

k=0

ξ2 (k) gc
m(k) cos

(
k
(
n+ 1

2

)
π

N

)

= δ(m− n) + δ(m+ n+ 1) (3.143)

It was also shown that the opposite signs of the impulse functions δ(m− n) and

δ(m + n + 1) in eq. 3.142 can be used to detect the shift direction. In fact, if the

IDST-IIe inverse transform of the pseudo-phase gs
m is computed, the observable win-

dow of the index space in the inverse DST domain will be limited to {0, . . . , N − 1}.
As a consequence, in the case of a right shift (m > 0), one spike (generated by the

positive δ function) will point upwards at location n = m in the observable window,

while the other δ function will point downwards at n = −(m + 1), outside the ob-

servable window. This is illustrated in fig. 3.28(a), where the observable window is

represented as a gray shaded area. On the other hand, when a left shift is considered

(m < 0), a negative spike, at n = −(m+ 1) > 0, will fall in the observable window,

and the positive impulse δ(n), at n = m < 0, will fall outside the observable space

(see fig. 3.28(b)). The exact displacement of this shift (m) can thus be obtained

from the position of the peak. Hence, this scheme provides the means to determine

the direction and displacement of the shift from the sign of the impulse functions

δ(n) in eq. 3.142.

The whole algorithm for shift estimation can be summarized as stated in fig 3.29.

According to Koc and Liu, the above methodology may even be applied when,

due to the presence of noise resulting from prediction mismatches, there is a slight

discrepancy between the two considered shifted signals [12, 38, 39, 41].

115

3. Video Transcoding in the DCT-Domain

m N-1

N/2

- N/2

- (m+1)
n

m > 0

0

(a) Right shift (m > 0).

m
N-1

N/2

- N/2

- (m+1)
n

m < 0

0

(b) Left shift (m < 0).

Figure 3.28: Application of the sinusoidal orthogonal principle to DST pseudo-
phases, to evaluate the direction and magnitude of the shift between
two 1-D signals.

1. Compute the DCT-Ie and the DST-Ie coefficients of x1(n) and the DCT-IIe
and the DST-IIe coefficients of x2(n);

2. Compute the pseudo-phase gs
m(k) for k = 1, . . . ,N , by solving the following

equation:

gs
m(k) =

Zc
1
(k).Xs

2
(k)−Zs

1
(k).Xc

2
(k)

[Zc
1
(k)]

2
+[Zs

1
(k)]

2 , for k 6= N,

1 for k = N ;
(3.144)

3. Compute the IDST-IIe of the pseudo-phase {ξ(k)gs
m(k); k = 1, . . . ,N} to pro-

duce the output {d(n); n = 0, . . . ,N − 1};

4. Search for the peak value inside the observable window; the estimated dis-
placement m can be found as:

m =

ip, if d(ip) > 0,

−(ip + 1), if d(ip) < 0,
(3.145)

where ip = arg maxn |d(n)| is the index at which the peak value is located.

Figure 3.29: Shift estimation using the 1-D pseudo-phases technique.

116

3.3 Video processing algorithms in the DCT-domain

Shift estimation in 2-D signals

The described pseudo-phases technique for extracting the shift values from the

DCT pseudo-phases can be extended to the 2-D case and be directly applied to

the problem of motion estimation. A detailed mathematical formulation of the

corresponding procedure is presented in appendix A. The corresponding procedure

is entirely similar to the 1-D case, where 2-D trigonometric transforms have to be

computed in order to extract the shift information.

(mx , my)

Frame t -1

Frame tN

N

Figure 3.30: Adopted 2-D translation motion model.

The considered displacement estimation procedure assumes a simple transla-

tional motion model, in which a given object moves by mx, in the horizontal direc-

tion, and by my, in the vertical direction, between the time instances corresponding

to two consecutive frames, taken at instants t− 1 and t, respectively (see fig. 3.30).

In fig. 3.31 it is summarized the formulation of the corresponding algorithm.

E - Application to motion re-estimation in the DCT-domain

Under the 2-D translational motion model, Koc and Liu proposed the described

motion estimation algorithm [40] by applying the pseudo-phases technique to esti-

mate the displacement between two images, directly in the DCT-domain. However,

as it will be observed, this algorithm presents some characteristics that significantly

difficult its application in a real-life video transcoding system:

• Lack of adequacy to standard video coding systems

The algorithm makes use of a significant set of 2-D trigonometric transforms

of both the first kind (DCCT-Ie, DCST-Ie, DSCT-Ie and DSST-Ie) and of

117

3. Video Transcoding in the DCT-Domain

1. Compute the trigonometric transform coefficients of the second kind
(DCCT-IIe, DCST-IIe, DSCT-IIe and DSST-IIe) of a (N ×N) block of pixels
of the current frame xt;

2. Compute the trigonometric transform coefficients of the first kind (DCCT-Ie,
DCST-Ie, DSCT-Ie and DSST-Ie) of a (N ×N) block of pixels of the previous
frame xt−1;

3. Compute the pseudo-phases f(k, l) and g(k, l), by solv-
ing eqs. A.19 and A.20 and by taking eq. A.9 into ac-
count to obtain {gcs(k, l); k = 0, . . . ,N − 1; l = 1, . . . ,N} and
{gsc(k, l); k = 1, . . . , N ; l = 0, . . . ,N − 1};

4. Obtain the normalized pseudo-phases f ′(k, l) and g′(k, l) outside the block
boundaries, in order to cope with any eventual ill-conditioned equations:

f ′(k, l) =

f(k, l), for |f(k, l)| ≤ 1,

0 otherwise,
; g′(k, l) =

g(k, l), for |g(k, l)| ≤ 1,

0 otherwise.

5. Compute the 2-D inverse trigonometric transforms of the second kind
(IDCST-IIe and IDSCT-IIe) of the pseudo-phases f ′(k, l) and g′(k, l) as
DCS(m,n) and DSC(m,n), for m,n ∈ {0, . . . ,N − 1}, which represent the
impulse functions whose peak positions indicate the shift magnitude and the
corresponding peak signs reveal the direction of the movement:

DCS(m,n) =
4

N2

N−1∑

k=0

N∑

l=1

ξ2(k)ξ2(l)f ′(k, l) cos

[
kπ

N

(
m+

1

2

)]
sin

[
lπ

N

(
n+

1

2

)]

DSC(m,n) =
4

N2

N∑

k=1

N−1∑

l=0

ξ2(k)ξ2(l)g′(k, l) sin

[
kπ

N

(
m+

1

2

)]
cos

[
lπ

N

(
n+

1

2

)]

6. Search for the peaks of DCS(m,n) and DSC(m,n) inside the observable win-
dow Φ = {0, . . . , N − 1}2, such that:

(iDCS, jDCS) = arg max
m,n∈Φ

|DCS(m,n)| ,

(iDSC, jDSC) = arg max
m,n∈Φ

|DSC(m,n)| .

7. Estimate the displacement magnitude d = (mx,my) from the signs and posi-
tions of the peaks of DCS(m,n) and DSC(m,n):

mx =

iDSC = iDCS, if DSC(iDSC, jDSC) > 0

−(iDSC + 1) = −(iDCS + 1), if DSC(iDSC, jDSC) < 0

my =

jDCS = jDSC, if DCS(iDCS, jDCS) > 0

−(jDCS + 1) = −(jDSC + 1), if DCS(iDCS, jDCS) < 0

Figure 3.31: Motion estimation using the 2-D pseudo-phases technique.

118

3.3 Video processing algorithms in the DCT-domain

the second kind (DCCT-IIe, DCST-IIe, DSCT-IIe and DSST-IIe). How-

ever, such transform coefficients cannot be directly obtained from the decoded

DCT-H.26x/MPEG-x video streams. To circumvent this problem, Koc and

Liu presented a set of point-to-point relationships between the trigonometric

transforms of the first kind and the corresponding transforms of the second

kind [12, 40, 41]. However, not only do these relations imply the computation

of a significant amount of operations, but they also require the storage of a

significant number of adaptation constant matrices. Moreover, the presented

relations do not solve the problem of computing the required trigonometric

transforms of the second kind (DCST-IIe, DSCT-IIe and DSST-IIe) from the

DCT coefficients (DCCT-IIe) decoded from the received stream, which would

imply the computation of more arithmetic operations and the storage of more

adaptation matrices.

Another important issue is concerned with the block size that is adopted by

this algorithm. Contrary to the traditional motion estimation algorithms,

which require a larger search area than the reference block, the proposed algo-

rithm limits the search area to the size of the candidate block under processing.

By restricting the search area to a single block, this algorithm is significantly

more prone to the influences of the boundary effect. This is observed when

the displacement is large when compared with the block size. As a result, the

displaced object may partially or completely move out of the block, making

the contents of the two temporally consecutive blocks very different. There-

fore, it is usually accepted that the larger the block, the better the estimation.

As a consequence, two different approaches may be followed to cope with this

restriction:

– adopt the (N ×N) block structure traditionally used by standard video

coding algorithms (with N = 8), for both the candidate block and the

search area; such alternative is not only more prone to the influence

of the boundary effect (when the displacement is larger than the block

size), but it also gives rise to motion vectors that are not compliant with

the majority of the video standards, which adopt the motion estimation

procedure at the macroblock level;

– adopt the (M ×M) macroblock size for the block size in the proposed

algorithm; however, such alternative would introduce some additional

difficulties, since the (N ×N) DCT coefficients block grid used by video

coding algorithms is smaller than the (M ×M) macroblock grid (usually,

with M = 2N), which would imply that four (N ×N) coefficient blocks

119

3. Video Transcoding in the DCT-Domain

had to be merged in order to obtain the larger (M×M) DCT coefficients

block, required by this algorithm.

In their published work, Koc and Liu have followed the second alternative.

They proposed an adaptive overlapping scheme [12, 40, 41] to enlarge the

block area and diminish the boundary effect when the displacement is large,

compared to the block size. Since the reference block size and the search area

size have to be equal, instead of using the reference block, they used a block

of the same size and position in the current frame as the search area of the

previous frame, defined by the search range D = {(u, v) : −p ≤ u, v ≤ +p}.
The peak values of DSC and DCS are searched in a zig-zag way over this index

range Φ = {0, . . . , p}2. As a consequence, in addition to the requirement that

the new peak value must be larger than the current peak value by a given

threshold, it is also necessary to check if the motion estimate determined by the

new peak index lies within the search region D. Nevertheless, this approach

should be regarded as a significantly expensive method in what concerns its

computational cost, since it requires the implementation of the concatenation

operation of neighboring DCT blocks in the DCT-domain [43].

• High computational cost

The referred lack of adequacy of this algorithm to standard video transcoding

systems and its requirement to obtain several trigonometric transforms, other

than the received DCCT-IIe, confers the algorithm a significant computational

cost, in order to obtain the required transforms.

Such computational effort is further increased by the significant amount of

computations required by the calculation of the pseudo-phases f(k, l) and

g(k, l) (eqs. A.9, A.19 and A.20), as well as by the application of the 2-D

IDCT-IIe inverse transform to compute the DCS(m,n) and DSC(m,n) func-

tions, and by the subsequent search procedure, to find the index corresponding

to the largest peak value.

Moreover, since all the required 2-D transformations must be computed for an

image area corresponding to the macroblock under processing, it still implies

an extra and significant computational effort in order to calculate the elements

of the DCT coefficients blocks that are obtained from the concatenation of the

four decoded adjacent blocks [43].

• Preprocessing requirements

To alleviate some difficulties and improve the performance of the presented

algorithm, the usage of a preprocessing step has also been proposed [12, 41].

120

3.3 Video processing algorithms in the DCT-domain

Such procedure should be employed in order to enhance the features of moving

objects and remove strong and unwanted background features that can affect

the accuracy of the estimation. The proposed preprocessing step consists

on the application of a simple edge extraction scheme, by horizontally and

vertically convolving the block under processing with a (3×3) Sobel operator;

furthermore, a frame differentiation procedure is also applied, to restrict the

processing to the difference of two consecutive frames.

• High precision requirements and ill-conditioned solutions

The authors have also observed that if the absolute computed value of the

pseudo-phases f(k, l) and g(k, l) (see eqs. A.19 and A.20) is greater than 1,

such value tends to be ill-conditioned and should be discarded, by assigning it

the null value [12]. Such situation occurs when the denominator in eqs. A.19

and A.20 is close to zero in comparison to the finite arithmetic precision, or

when it is set to zero after the quantization step. It happens more likely when

k and l are both large, since high frequency coefficients tend to be lower than

low frequency coefficients. Some other inaccuracies are also identified when

the algorithm is applied to signals at the presence of noise or quantization

errors. As a consequence, the accuracy of the obtained motion vectors highly

depends on the adopted arithmetic precision.

• Performance

A performance assessment of this algorithm was also conducted [12, 41],

when compared with traditional optimal and sub-optimal pixel-domain block-

matching motion estimation algorithms. The Full-Search Block-Matching

(FSBM), the Logarithmic Search method (LOG) [35], the Three Step Search

method (TSS) [42] and the Subsampled Search approach (SUB) [55] were used

in this assessment. The performance of the different schemes was evaluated

and compared in terms of the MSE and the total number of bits required

to encode the motion compensated residuals. The presented results evidence

that the proposed algorithm performed worse than all other considered block-

matching algorithms in terms of MSE for most of the considered test sequences.

For some sequences, though, the proposed algorithm performed slightly better

than the sub-optimal block-matching algorithms in terms of the total number

of bits required to encode the motion compensated residual.

As a consequence of all these aspects, this algorithm has not been adopted by

many recent video transcoding systems, which usually tend to adopt motion esti-

mation algorithms more suited to be applied with current video standards.

121

3. Video Transcoding in the DCT-Domain

3.3.6 Time scaling

As it was previously referred, high bit rate reduction ratios are often required

to transmit precoded video streams over low bandwidth channels. However, such

reduction ratios often result in unacceptable picture quality levels when the video

is transcoded to provide the original full frame rate. As a consequence, frame rate

reduction is often considered as an efficient scheme to provide the allocation of more

bits to the remaining frames. This allows to maintain the quality of the non-dropped

frames as high as possible. Similar frame rate conversion schemes are also needed

whenever the target terminals only support video streams with lower frame rates.

Just like the previously described transcoding issues, a straightforward approach

to implement frame rate scaling is to use a cascade of a decoder and an encoder,

so that one frame is retained out of a given set of original frames. Various tech-

niques can be devised to accomplish such task more efficiently [13, 115]. In particu-

lar, transcoding techniques entirely operating in the compressed DCT-domain have

been proposed in order to reduce the involved computational cost. Some of such

techniques will be described in the following paragraphs.

A - Macroblock tracking over dropped frames

The main difficulty to efficiently implement frame dropping techniques that re-

duce the incoming video sequence frame rate arises from the predictive nature of

most current video standards. In particular, when a subset of the frames received

from the incoming video sequence is dropped, the motion vectors corresponding to

the remaining frames are no longer valid, since they may point to prediction regions

located in the dropped frames that do not exist in the output video sequence any

more. As a consequence, new motion vectors need to be derived. The same situ-

ation occurs with the prediction difference signal, which must also be re-evaluated

whenever frame dropping techniques are implemented to reduced the required video

bandwidth.

One example of such situation is illustrated in fig. 3.32. In this figure, it is

assumed that MB
′

1 represents the best matching macroblock of MB1 and MB
′′

1 rep-

resents the best matching macroblock of MB
′

1. In the event of dropping the frame

(n− 1), it is necessary to find a new motion vector, pointing to one of the mac-

roblocks in frame (n− 2), which best matches macroblock MB1.

Several schemes have been proposed to fulfill this task. In the following, it

will be described the methods based on: i) backward bilinear interpolation of the

motion vectors, ii) forward dominant motion vector selection [115], and iii) activity

122

3.3 Video processing algorithms in the DCT-domain

(Dropped)

Frame (n-2) Frame (n-1) Frame (n)

v1
(n-1)

v1
(n) MB1

MB1'

MB1''

v1
(n)

(a) Tracking macroblocks in backward order.

v1
(n-2)

v3
(n-2)

v2
(n-2)

v4
(n-2)

v1
(n-1)

v3
(n-1)

v2
(n-1)

v4
(n-1)

v1
(n)

v3
(n)

v2
(n)

v4
(n)

(b) Incoming motion vectors.

Figure 3.32: Backward motion vector composition.

dominant motion vector selection [13]. In all these schemes, it is desirable the re-

usage of the motion vectors received from the incoming video sequence, followed

by a refinement post-processing step. This additional refinement can significantly

improve the motion estimation accuracy, thus justifying the inherent additional

computational cost.

Motion vector bilinear interpolation method

One possible way to obtain the required motion vector is to perform an en-

tire full-search block-matching motion estimation procedure using a search area

defined within the last non-dropped frame (n− 2). To avoid the high computa-

tional cost involved by such procedure, a new motion vector can be obtained by

summing up the decoded motion vector v
(n)
1 with v̂

(n−1)
1 , corresponding to the mac-

roblock MB
′

1, in fig. 3.32. However, since MB
′

1 is not defined within the adopted

macroblock grid, the corresponding motion vector v̂
(n−1)
1 is not available from the

decoded bit stream. To circumvent this situation, an estimate of such vector may

be obtained by applying a bilinear interpolation scheme considering the motion vec-

tors
{
v

(n−1)
1 , v

(n−1)
2 , v

(n−1)
3 , v

(n−1)
4

}
of the four neighboring macroblocks of MB

′

1

(see fig. 3.32). However, this bilinear interpolation method usually presents several

drawbacks that often make this procedure unreliable and not feasible in practical

systems, namely due to the large memory requirements and inaccuracy. In fact, for

consecutive dropped frames, the interpolation has to be performed in the backward

order, starting from the last dropped frame to the first dropped frame, requiring that

123

3. Video Transcoding in the DCT-Domain

all motion vectors corresponding to those dropped frames must be stored for further

processing. Moreover, the resulting motion vectors tend to be non-optimal, since

the four motion vectors, corresponding to the considered adjacent macroblocks, may

be too divergent to be properly described by a single motion vector.

To minimize these drawbacks, overlapping area weighted average compositing

schemes, entirely similar to the ones presented in section 3.3.4, have been proposed.

Nevertheless, these bilinear interpolation schemes tend to offer interpolated mo-

tion vectors whose reliability is often unsatisfactory and not accurate enough to be

adopted in high performance transcoding systems.

Forward dominant motion vector selection method

To overcome the drawbacks presented by the bilinear interpolation methods,

Youn, Sun, and Lin [115] proposed a different approach denominated by Forward

Dominant Vector Selection (FDVS). This method selects the motion vector from

the set of four adjacent macroblocks that has the largest overlapping area with the

macroblock pointed by the incoming motion vector. According to this approach, for

the example illustrated in fig. 3.32, the motion vector of macroblock MB
′

1 would be:

v̂
(n−1)
1 = v

(n−1)
2 (see fig. 3.32(b)).

It was claimed that this algorithm can achieve higher performances than the

backward bilinear interpolation method, both in terms of the PSNR quality level

and of the output bit rate, while having a lower computation effort. Moreover,

when multiple consecutive frames are dropped, this algorithm can be processed in

the forward order, thus eliminating the need to store the incoming motion vectors

of all dropped frames in the system memory.

In fig. 3.33 it is illustrated an example where two consecutive frames are dropped.

According to this algorithm, when the first skipped frame (n− 2) is dropped, the

corresponding motion vectors are stored in a motion vectors table, within the system

memory. Such table will be used to composite the motion vectors at the next frame

dropping. Hence, when frame (n− 1) is dropped, the FDVS algorithm searches

the dominant macroblock within frame (n− 2) for each current macroblock. As an

example, the first macroblock MB
(n−2)
1 in frame (n− 2) becomes the dominant mac-

roblock of the second macroblock MB
(n−1)
2 in frame (n− 1). This dominant motion

vector v
(n−2)
1 is selected from the motion vectors table at the location addressed by

the first macroblock and is then added to the current incoming motion vector v
(n−1)
2 ,

corresponding to the current macroblock MB
(n−1)
2 . The motion vector table is then

124

3.3 Video processing algorithms in the DCT-domain

(Dropped) (Dropped)

Frame (n-3) Frame (n-2) Frame (n-1) Frame (n)

v1
(n-2) v2

(n-1) v1
(n)

v2
(n-1)

v1
(n)

MB1'MB1'' MB1

(a) Tracking macroblocks by selecting the dominant motion vector.

v1
(n-3)

v3
(n-3)

v2
(n-3)

v4
(n-3)

v1
(n-2)

v3
(n-2)

v2
(n-2)

v4
(n-2)

v1
(n-1)

v3
(n-1)

v2
(n-1)

v4
(n-1)

v1
(n)

v3
(n)

v2
(n)

v4
(n)

(b) Incoming motion vectors.

Figure 3.33: Forward dominant motion vector selection method.

updated with this new composited motion vector value:

v̂
(n−1)
2 = v

(n−2)
1 + v

(n−1)
2 . (3.146)

Finally, when frame (n) is processed, the composited motion vector for the first

macroblock MB
(n)
1 will be set at:

v̂
(n)
1 =

[
v

(n−2)
1 + v

(n−1)
2

]
+ v

(n)
1 , (3.147)

since the value stored in the motion vectors table for the dominant macroblock

pointed by v
(n)
1 will be the dominant motion vector of MB

′

1. Hence, the main ad-

vantage of this scheme is the need of only one table to store the composited motion

vectors corresponding to the several dropped frames.

Activity dominant motion vector selection method

More recently, Chen, Chu, and Pan [13] have claimed that when the overlapping

areas of the current macroblock over the four macroblocks of the previous frame

are very close, the motion vector obtained with the FDVS algorithm may be not

meaningful. As a consequence, they have proposed an alternative Activity Dominant

Vector Selection (ADVS) algorithm, which selects the motion vector with the largest

prediction error among the set of motion vectors corresponding to the overlapped

macroblocks of the prediction frame. To obtain such an estimate of the prediction

error, they proposed to use the DCT coefficients energy of the corresponding residual

125

3. Video Transcoding in the DCT-Domain

v11
(n-1)

v13
(n-1)

v12
(n-1)

v14
(n-1)

v31
(n-1)

v33
(n-1)

v32
(n-1)

v34
(n-1)

v21
(n-1)

v23
(n-1)

v22
(n-1)

v24
(n-1)

v41
(n-1)

v43
(n-1)

v42
(n-1)

v44
(n-1)

NZ(v1
(n-1))

NZ(v3
(n-1))

NZ(v2
(n-1))

NZ(v4
(n-1))

Figure 3.34: Activity dominant motion vector selection method.

blocks, directly obtained from the decoded bit stream. With such an approach, the

activity information of a given macroblock is obtained by counting the number of

non-zero quantized DCT coefficients of the (8×8) residual blocks that are overlapped

by the macroblock area under processing. Similar alternative schemes to estimate

the amount of spatial activity can also be obtained using other statistics, such as by

summing the absolute values of the DCT coefficients.

In fig. 3.34 it is illustrated the application of the ADVS method, as proposed by

Chen, Chu, and Pan [13]. The motion vector corresponding to the macroblock with

the maximum number of Non-Zero quantized DCT coefficients (NZ) is selected as

the dominant motion vector. Hence, the greater the macroblock activity (NZ), the

more significant the respective motion:

NZ(v
(n−1)
1) = NZ(v

(n−1)
12) + NZ(v

(n−1)
14) (3.148)

NZ(v
(n−1)
2) = NZ(v

(n−1)
21) + NZ(v

(n−1)
22) +

+ NZ(v
(n−1)
23) + NZ(v

(n−1)
24) (3.149)

NZ(v
(n−1)
3) = NZ(v

(n−1)
32) (3.150)

NZ(v
(n−1)
4) = NZ(v

(n−1)
41) + NZ(v

(n−1)
42) (3.151)

In this example, NZ(v
(n−1)
1) could actually be greater than NZ(v

(n−1)
2), despite the

fact that NZ(v
(n−1)
1) only covers two (8× 8) blocks, as compared to the four (8× 8)

blocks covered by NZ(v
(n−1)
2), which would be chosen if the FDVS method was

applied.

Since the quantized DCT coefficients of the prediction macroblocks are available

from the decoded bit stream, the computational cost of this method is very low.

126

3.3 Video processing algorithms in the DCT-domain

B - Motion vector refinement post-processing

It is important to note that the composited motion vectors obtained with the

described methods tend to be non-optimal, since each vector is obtained as an

estimate value of the true optimal motion vector. Such approximation will result in

an inherent degradation effect due to the mismatch between the prediction and the

residual components. This degradation may increase the resulting bit rate and, for

smaller quantization steps, will decrease the final quality level.

To overcome this quality loss, current transcoding systems make use of the com-

posited motion vectors, obtained after the application of the described schemes, as

the basis for the application of subsequent MV refinement procedures [13]. Such

algorithms make use of the MV estimate and implement a search procedure for the

best matching macroblock over the last reconstructed reference frame, centered at

the point given by this MV estimate. Typically, the search window used for mo-

tion vector refinement is relatively small, when compared with the original search

window, e.g., [−2,+2]. Not only does this keep the added computational cost low,

but it still provides a significant amount of achievable gains. Some of such refine-

ment procedures were already described in section 3.3.5. Their usage increases the

transcoder performance almost to the level that is obtained with the application of

the full-search block-matching algorithm.

An algorithm that determines an appropriate search range based on the motion

vectors magnitudes and on the number of skipped frames was proposed in [25]. To

dynamically determine the number of skipped frames and to maintain a smooth

playback, frame rate control schemes based on the characteristics of the video con-

tent have also been proposed [25, 45].

It should be noted that, when the new motion vectors are re-estimated, the

corresponding residual data needs to be re-computed accordingly. The computation

of these new residuals, using the current frame and the new reference frame data,

can be directly performed in the transformed domain by using the DCT-domain

motion compensation techniques, previously described in section 3.3.4 [13, 20, 109].

C - Discussion

Independently of the several possible strategies that may be proposed to estimate

the motion vector that points to the best temporal predictor of a given macroblock,

when adjacent inter-frames are dropped, a difficult trade-off must be undertaken in

order to obtain the best balance between several aspects that considerably affect

the performance and feasibility of the transcoding system:

127

3. Video Transcoding in the DCT-Domain

• the amount of memory that is required to store the MVs corresponding to the

dropped frames;

• the accuracy of the estimation approach;

• the computational cost of the subsequent motion re-estimation mechanism.

In particular, a difficult trade-off is often associated to the last two aspects. In fact,

the resulting accuracy of the estimated MVs will definitely affect the selection of the

search range and the computational cost of the motion re-estimation mechanism.

Unfortunately, high accuracy levels are only achievable at the expense of a significant

amount of computations, thus imposing an inherent balance between the cost of

these two operations.

3.4 Conclusions

An overview of the main contributions on video transcoding of precoded video

streams over the last few years was presented in this chapter. Such description

started by illustrating the main advantages, both in terms of the computational

efficiency and of the output video quality, of video transcoding techniques in the

compressed domain. These techniques directly operate with the DCT coefficients

received from the decoded video stream, thus avoiding the need to implement both

the DCT and IDCT processing blocks.

A comparison of well established transcoding architectures was also presented,

by illustrating the main differences between the traditional cascaded pixel-domain

architectures and the more efficient transform-domain processing structures, that

have been presented in the past few years.

The rest of the chapter was devoted to the presentation of the main processing

techniques and algorithms that have been proposed by several authors, entirely or

partially operated in the compressed DCT-domain. Such techniques include motion

compensation prediction algorithms, bit rate and quality adaptation schemes, spacial

video scaling algorithms, motion vector composition techniques, motion estimation

procedures and time scaling algorithms.

As it was referred along the description, many processing structures require the

mutual application of several of these techniques, giving rise to highly computational

efficient architectures, entirely operating in the compressed DCT-domain.

128

References

[1] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcoding: An overview

of various techniques and research issues,” IEEE Transactions on Multimedia,

vol. 7, no. 5, pp. 793–804, Oct. 2005.

[3] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for images,”

Transactions of the Institute of Electronics, Information and Communication

Engineers (IEICE), vol. E71, no. 11, pp. 1095–1097, 1988.

[4] P. Assunção and M. Ghanbari, “Buffer analysis and control in CBR video

transcoding,” IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 10, no. 1, pp. 83–92, Feb. 2000.

[5] P. Assunção and M. Ghanbari, “Post-processing of MPEG2 coded video for

transmission at lower bit rates,” in Proceedings of the IEEE International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), Gorgia USA,

May 1996, pp. 1998–2001.

[6] P. Assunção and M. Ghanbari, “A frequency-domain video transcoder for dy-

namic bit-rate reduction of MPEG-2 bitstreams,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 8, no. 8, pp. 953–967, Dec. 1998.

[7] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards:

Algorithms and Architectures, 2nd ed. Kluwer Academic Publishers, Jun. 1997.

[11] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-

DCT compressed video,” IEEE Journal on Selected Areas in Communications,

vol. 13, no. 1, pp. 1–11, Jan. 1995.

[12] J. Chen, U.-V. Koc, and K. J. R. Liu, Design of Digital Video Coding Systems

- A Complete Compressed Domain Approach. Marcel Dekker, 2002.

[13] M.-J. Chen, M.-C. Chu, and C.-W. Pan, “Efficient motion-estimation algorithm

for reduced frame-rate video transcoder,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 12, no. 4, pp. 269–275, Apr. 2002.

[16] R. Dugad and N. Ahuja, “A fast scheme for image size change in the compressed

domain,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 11, no. 4, pp. 461–474, Apr. 2001.

129

[17] A. Eleftheriadis and D. Anastassiou, “Constrained and general dynamic rate

shaping of compressed digital video,” in Proceedings of the IEEE International

Conference on Image Processing (ICIP), Arlington, Virginia, U.S.A., Oct. 1995.

[20] K.-T. Fung, Y.-L. Chan, and W.-C. Siu, “Dynamic frame skipping for high-

performance transcoding,” in Proceedings of the IEEE International Conference

on Image Processing (ICIP), Oct. 2001, pp. 425–428.

[24] Q. Hu and S. Panchanathan, “Image/video spatial scalability in compressed

domain,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 23–

31, Feb. 1998.

[25] J.-N. Hwang, T.-D. Wu, and C.-W. Lin, “Dynamic frame-skipping in video

transcoding,” in Proceedings of the IEEE International Workshop on Multime-

dia Signal Processing (MMSP), 1998, pp. 616–621.

[26] MPEG-1: ISO/IEC JTC1 CD 11172 - “Coding of moving pictures and asso-

ciated audio for digital storage media up to 1.5 Mbit/s – Part 2: Video”, ISO,

1992.

[27] MPEG-2: ISO/IEC JTC1 CD 13818 - “Generic coding of moving pictures and

associated audio – Part 2: Video”, ISO, 1994.

[29] ITU-T Recommendation H.261 - “Video Codec for Audiovisual Services at p×64

Kbit/s”, ITU-T, Mar. 1993.

[30] ITU-T Recommendation H.263 - “Video Coding for Low Bitrate Communica-

tion”, ITU-T, Feb. 1998.

[32] JPEG: ITU-T Recommendation T.81 - “Digital compression and coding of

continuous-tone still images”, ITU-T, 1993.

[35] J. R. Jain and A. K. Jain, “Displacement measurement and its application in

interframe image coding,” IEEE Transactions on Communications, vol. COM-

29, no. 12, pp. 1799–1808, Dec. 1981.

[38] U.-V. Koc and K. J. R. Liu, “Low-complexity motion estimation scheme uti-

lizing sinusoidal orthogonal principle,” in Proceedings of the IEEE Interna-

tional Workshop on Visual Signal Processing and Communications (VSPC),

New Brunswick, NJ, Sep. 1994, pp. 57–62.

130

[39] U.-V. Koc and K. J. R. Liu, “Discrete-cosine/sine-transform based motion es-

timation,” in Proceedings of the IEEE International Conference on Image Pro-

cessing (ICIP), vol. 3, Austin, Texas, Nov. 1994, pp. 771–775.

[40] U.-V. Koc and K. J. R. Liu, “Adaptive overlapping approach for DCT-based

motion estimation,” in Proceedings of the IEEE International Conference on

Image Processing (ICIP), Washington, DC, 1995.

[41] U.-V. Koc and K. J. R. Liu, “DCT-based motion estimation,” IEEE Transac-

tions on Image Processing, vol. 7, no. 7, pp. 948–965, Jul. 1998.

[42] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-

compensated interframe coding for video conferencing,” in Proceedings of the

National Telecommunications Conference, New Orleans, LA, Nov. 1981, pp.

G5.3.1–G5.3.5.

[43] W. Kou and T. Fjällbrant, “A direct computation of DCT coefficients for a

signal block taken from two adjacent blocks,” IEEE Transactions on Signal

Processing, vol. 39, no. 7, pp. 1692–1695, Jul. 1991.

[45] A. Y. Lan and J.-N. Hwang, “Scene context dependent reference frame place-

ment for MPEG videocoding,” in Proceedings of the IEEE International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, Munich

- Germany, Apr. 1997, pp. 2997–3000.

[46] Y.-R. Lee and C.-W. Lin, “DCT-domain spatial transcoding using generalized

DCT decimation,” in Proceedings of the IEEE International Conference on

Image Processing (ICIP), Genoa - Italy, Sep. 2005.

[47] Y.-R. Lee, C.-W. Lin, and C.-C. Kao, “A DCT-domain video transcoder for spa-

tial resolution downconversion,” in Proceedings of the International Conference

on Recent Advances in Visual Information Systems, Mar. 2002, pp. 207–218.

[48] Y.-R. Lee, C.-W. Lin, S.-H. Yeh, and Y.-C. Chen, “Low-complexity DCT-

domain video transcoders for arbitrary-size downscaling,” in Proceedings of the

IEEE International Workshop on Multimedia Signal Processing (MMSP), Sep.

2004, pp. 31–34.

[51] H. Li and H. Shi, “A fast algorithm for reconstructing motion compensated

blocks in compressed domain,” Journal of Visual Languages and Computing,

vol. 10, no. 6, pp. 607–623, Dec. 1999.

131

[52] Y. Liang, L.-P. Chau, and Y.-P. Tan, “Arbitrary downsizing video transcoding

using fast motion vector re-estimation,” IEEE Signal Processing Letters, vol. 9,

no. 11, pp. 352–355, Nov. 2002.

[54] C.-W. Lin and Y.-R. Lee, “Fast algorithms for DCT-domain video transcod-

ing,” in Proceedings of the IEEE International Conference on Image Processing

(ICIP), Thessaloniki - Greece, Oct. 2001, pp. 421–424.

[55] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion

vectors,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 3, no. 2, pp. 148–157, Apr. 1993.

[56] S. Liu and A. C. Bovik, “Local bandwidth constrained fast inverse motion com-

pensation for DCT domain video transcoding,” in Proceedings of the IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP),

Salt Lake City, UT, May 2001.

[57] S. Liu and A. C. Bovik, “Local bandwidth constrained fast inverse motion com-

pensation for DCT-domain video transcoding,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 12, no. 5, pp. 309–319, May 2002.

[58] S. A. Martucci, “Symmetric convolution and discrete sine and cosine trans-

forms,” IEEE Transactions on Signal Processing, vol. SP-42, no. 5, pp. 1038–

1051, May 1994.

[59] S. A. Martucci, “Image resizing in the discrete cosine transform domain,” in

Proceedings of the IEEE International Conference on Image Processing (ICIP),

vol. 2, Washington D.C. - USA, Oct. 1995, pp. 244–247.

[62] N. Merhav and V. Bhaskaran, “A fast algorithm for DCT-domain inverse mo-

tion compensation,” in Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, Atlanta, GA, USA,

May 1996, pp. 2307–2310.

[63] N. Merhav and V. Bhaskaran, “Fast algorithms for DCT-domain image down-

sampling and for inverse motion compensation,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 7, no. 3, pp. 468–476, Jun. 1997.

[66] B. K. Natarajan and B. Vasudev, “A fast approximate algorithm for scaling

down digital images in the DCT domain,” in Proceedings of the IEEE Interna-

tional Conference on Image Processing (ICIP), vol. 2, Washington D.C. - USA,

Oct. 1995, pp. 241–243.

132

[72] Y. S. Park and H. W. Park, “Arbitrary-ratio image resizing using fast DCT

of composite length for DCT-based transcoder,” IEEE Transactions on Image

Processing, vol. 15, no. 2, pp. 494–500, Feb. 2006.

[73] V. Patil, R. Kumar, and J. Mukherjee, “A fast arbitrary factor video resizing

algorithm,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 16, no. 9, pp. 1164–1171, Sep. 2006.

[83] R. Reeves, “Image matching in the compressed domain,” Ph.D. dissertation,

Queensland University of Technology, Australia, 1999.

[84] R. Reeves and K. Kubik, “Compressed domain image matching using sym-

metric convolution,” in Proceedings of IEEE Region 10 Annual Conference on

Speech and Image Technologies for Computing and Telecommunications - TEN-

CON’97. Brisbane, Queensland: Queensland QUT Publications, Dec. 1997.

[85] J. Ridge, “Efficient transform-domain size and resolution reduction of images,”

Signal Processing: Image Communication, vol. 18, no. 8, pp. 621–639, Sep.

2003.

[88] N. Roma and L. Sousa, “Fast transcoding architectures for insertion of non-

regular shaped objects in the compressed DCT-domain,” Signal Processing:

Image Communication, vol. 18, no. 8, pp. 659–683, Sep. 2003.

[89] N. Roma and L. Sousa, “Least squares motion estimation algorithm in the

compressed DCT domain for H.26x/MPEG-x video sequences,” in Proceedings

of the IEEE International Conference on Advanced Video and Signal-Based

Surveillance (AVSS). Como - Italy: IEEE, Sep. 2005, pp. 576–581.

[90] N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for any ar-

bitrary integer re-size video downscaling,” EURASIP Journal on Advances in

Signal Processing, vol. 2007, no. 57291, pp. 1–16, Sep. 2007.

[92] C. L. Salazar and T. D. Tran, “On resizing images in the DCT domain,” in

Proceedings of the IEEE International Conference on Image Processing (ICIP),

vol. 4, Oct. 2004, pp. 2797–2800.

[93] K.-D. Seo and J.-K. Kim, “Motion vector refinement for video downsampling in

the DCT domain,” IEEE Signal Processing Letters, vol. 9, no. 11, pp. 356–359,

Nov. 2002.

133

[94] K.-D. Seo and J.-K. Kim, “Fast motion vector re-estimation for transcoding

MPEG-1 into MPEG-4 with lower spatial resolution in DCT-domain,” Signal

Processing: Image Communication, vol. 19, no. 4, pp. 299–312, Apr. 2004.

[95] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to lower

spatio-temporal resolution and different encoding formats,” IEEE Transactions

on Multimedia, vol. 2, no. 2, pp. 101–110, Jun. 2000.

[96] T. Shanableh and M. Ghanbari, “Transcoding of video into different encoding

formats,” in Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), vol. 4, Jun. 2000, pp. 1927–1930.

[98] T. Shanableh and M. Ghanbari, “Hybrid DCT/pixel domain architecture for

heterogeneous video transcoding,” Signal Processing: Image Communication,

vol. 18, no. 8, pp. 601–620, Sep. 2003.

[99] B. Shen and I. K. Sethi, “Block-based manipulations of transformed-compressed

images and videos,” ACM Multimedia System Journal, vol. 6, no. 2, pp. 113–

124, Mar. 1998.

[101] B. Shen, I. Sethi, and B. Vasudev, “Adaptive motion-vector resampling for

compressed video downscaling,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 9, no. 6, pp. 929–936, Sep. 1999.

[102] H. Shu and L.-P. Chau, “An efficient arbitrary downsizing algorithm for video

transcoding,” IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 14, no. 6, pp. 887–891, Jun. 2004.

[103] H. Shu and L.-P. Chau, “A resizing algorithm with two-stage realization

for DCT-based transcoding,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 17, no. 2, pp. 248–253, Feb. 2007.

[106] H. Sun, W. Kwok, and J. Zdepski, “Architectures for MPEG compressed bit-

stream scaling,” IEEE Transactions on Circuits and Systems for Video Tech-

nology, vol. 6, no. 2, pp. 191–199, Apr. 1996.

[107] H. Sun, X. Chen, and T. Chiang, Digital Video Transcoding for Transmission

and Storage. CRC Press, 2004.

[108] Y.-P. Tan, Y. Liang, and H. Sun, “On the methods and performances of ratio-

nal downsizing video transcoding,” Signal Processing: Image Communication,

vol. 19, pp. 47–65, 2004.

134

[109] A. Vetro, P. Yin, B. Liu, and H. Sun, “Reduced spatio-temporal transcoding

using an INTRA refreshing technique,” in Proceedings of the IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), 2002, pp. IV723–IV726.

[112] J. W. C. Wong and O. C. Au, “Modified predictive motion estimation for

reduced-resolution video from high-resolution compressed video,” in Proceed-

ings of the IEEE International Symposium on Circuits and Systems (ISCAS),

vol. 4, 1999, pp. 524–527.

[113] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proceedings

of the IEEE, vol. 93, no. 1, pp. 84–97, Jan. 2005.

[114] P. Yin, A. Vetro, B. Liu, and H. Sun, “Drift compensation for reduced spatial

resolution transcoding,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 12, no. 11, pp. 1009–1020, Nov. 2002.

[115] J. Youn, M.-T. Sun, and C.-W. Lin, “Motion vector refinement for high per-

formance transcoding,” IEEE Transactions on Multimedia, vol. 1, no. 1, pp.

30–40, Mar. 1999.

[116] W. Zhu, K. H. Yang, and M. J. Beacken, “CIF-to-QCIF video bitstream down-

conversion in the DCT domain,” Bell Labs Technical Journal, vol. 3, no. 3, pp.

21–29, Jul. 1998.

135

136

4
Static Video Composition

Contents
4.1 Introduction . 138

4.2 Objects insertion . 139

4.2.1 Insertion of irregular shaped objects in the pixel-domain . 140

4.2.2 Insertion of objects in the compressed DCT-domain . . . 142

4.3 Transcoding architectures for insertion of non-regular
shaped objects . 144

4.3.1 Pixel-domain transcoder with re-estimation of motion vec-
tors . 144

4.3.2 Pixel-domain transcoder without re-estimation of motion
vectors . 145

4.3.3 Compressed DCT-domain transcoder 146

4.3.4 Computational-reduced compressed DCT-domain
transcoder . 149

4.3.5 Open-loop compressed DCT-domain transcoder 155

4.4 Conclusions . 160

References . 160

137

4. Static Video Composition

4.1 Introduction

With the widespread dissemination of video data over the several communication

means that have become increasingly available over the last decades, static compo-

sition of video objects became one of the most common processing operations that

are carried out on video sequences broadcasted by conventional television networks,

or even on sequences that are transmitted to the last generations of mobile and

portable terminal devices. At this respect, a video object can be defined as a group

of correlated pixels, corresponding to either a natural or synthetic representation

of a real-world object, scene or symbol. Each video object is represented by two

types of information associated with it: its shape and its texture. Hence, by using

simple video composition or segmentation operations, each video sequence may be

represented by a number of different video objects.

In the scope of this chapter, static video composition is defined as a set of station-

ary or quasi-stationary manipulations on precoded video streams, in order to insert

extra visual information in the video sequence that is delivered or broadcasted to the

receiver. Although the video objects that are considered in these static composition

operations may have any arbitrary shape, being denoted by Non-Regular Shaped

Objects (NRSOs), their representation and position within the composited scene do

not significantly change with the time: in the event of any change, it cannot occur

between INTRA type frames, in order to keep the temporal prediction mechanism

as unaffected as possible. This characteristic contrasts with dynamic video compo-

sition operations, discussed in chapter 5, which will allow the composition of video

objects with changes on their texture component, from frame to frame.

Among the several possible manipulations, the insertion of logos, subtitles, fixed

images or graphical symbols in encoded video sequences represent the most common

application of these algorithms. Such objects usually occupy a small area of the

encoded frame and tend to be static for reasonably long periods of time.

One important application of these video transcoding techniques is related with

intellectual property management and protection. As a consequence, the insertion

of visible objects, such as logos and open subtitles (henceforward simply designated

by “logos”) in the compressed-domain has faced a growing interest by broadcasting

television networks as well as digital video producers and distributors, in order to

provide the possibility of inserting their own logos and subtitles in pre-encoded

video streams [61]. To take into account for the several DCT-based video standards

currently in use (DCT-H.26x/MPEG-x), not only should this mechanism provide the

insertion capability in object oriented video standards (such as MPEG-4 Visual [28,

138

4.2 Objects insertion

74]), but it should also be easily implemented in the earlier MPEG-1 Video and

MPEG-2 Video standards, as well as in other simpler real-time services based on

the H.261 and the H.263 video standards.

As it was described in chapter 3, recent developments on video transcoders have

shown that significant advantages concerning the computational cost of the algo-

rithms can be achieved by fully operating in the transform-domain [6]. In fact,

not only does it avoid the implementation of both the forward DCT and its in-

verse (IDCT), but it also takes advantage of the presence of a large number of null

quantized DCT coefficients to heavily reduce the data manipulation rate [57, 99].

As a consequence, a set of new DCT-domain static composition techniques will

be presented in this chapter. When compared with their pixel-domain counterparts,

such transform-domain architectures provide the means not only to significantly re-

duce the involved computational cost but also to increase the obtained video quality.

Nevertheless, it should be emphasized that although the described algorithms and

architectures will be focused on the insertion of fixed logos or subtitles, they can

equally be applied to the composition of precoded video sequences with any other

type of fixed objects, such as fixed images or graphical symbols.

4.2 Objects insertion§

Up until now, most insertion algorithms have been based on the compositing op-

eration proposed by Chang and Messerschmitt [11], Porter and Duff [77]. However,

despite its simplicity, when an NRSO (such as a letter or a logo) is inserted, it gives

rise to an undesired semi-transparent rectangular region around the object, which

corresponds to the area that is actually processed by the insertion algorithm. In this

chapter, a different insertion technique is proposed, by restricting the application of

the Porter and Duff’s algorithm [77] to the logo area. The application of this tech-

nique in the compressed DCT-domain will require the usage of the multiplication-

convolution relationship for the even type-II DCT (described in section 2.5.2), since

the simple linear combination adopted in the Porter and Duff’s algorithm will no

§Some portions of this section appeared in:

[86] - N. Roma and L. Sousa, “Insertion of irregular-shaped logos in the compressed DCT do-
main,” in Proceedings of the IEEE International Conference on Digital Signal Processing
(DSP), vol. 1. Santorini, Greece: IEEE, Jul. 2002, pp. 125–128.

[87] - N. Roma and L. Sousa, “Transcoding architectures for object insertion in compressed
video,” INESC-ID – Lisboa, Portugal, Tech. Rep. RT/006/2002, Oct. 2002.

[88] - N. Roma and L. Sousa, “Fast transcoding architectures for insertion of non-regular
shaped objects in the compressed DCT-domain,” Signal Processing: Image Communica-
tion, vol. 18, no. 8, pp. 659–683, Sep. 2003.

139

4. Static Video Composition

longer be applicable.

Several transcoding architectures will also be derived for the proposed NRSO

insertion algorithms, in both the pixel-domain and in the compressed DCT-domain.

Such architectures offer different characteristics in what concerns the obtained video

quality (PSNR) and of the computational load required to perform the insertion

algorithm.

4.2.1 Insertion of irregular shaped objects in the pixel-
domain

Object insertion in the pixel-domain can be performed by combining the pixels

of the background image b(n1, n2) with the object ℓ(n1, n2) to obtain the output

image f(n1, n2). This operation is usually expressed as a linear combination in the

form [11, 77]:

f(n1, n2) = α.ℓ(n1, n2) + (1− α).b(n1, n2), (4.1)

where the α factor determines the transparency level of the object. In particular,

when α = 1 all pixels of the background image are replaced by the object, giving

rise to an opaque overlapping of the object over the input image.

The main disadvantage of this method is emphasized when NRSOs are inserted.

In fact, since most video coding algorithms perform their processing on blocks with

N ×N pixels (usually N = 8), the insertion of objects whose shape and position do

not coincide with the defined block geometry and grid implies the extension of the

original object area to an integer multiple of (N ×N) pixels blocks. This extension

is usually performed by defining a transparency color (CT), whose value is assigned

to all pixels of this set of blocks that do not belong to the original NRSO. Three

different regions in the output image usually arise from this extension:

• the pixels corresponding to the original object, where f1(n1, n2) = α.ℓ(n1, n2)+

(1− α).b(n1, n2);

• the transparent pixels of the extended blocks that do not belong to the original

object, where f2(n1, n2) = α.CT + (1− α).b(n1, n2);

• the blocks that do not contain any pixel of the object to be inserted, where

f3(n1, n2) = b(n1, n2).

Independently of the considered value for CT , this scheme gives rise to an un-

desired semi-transparent rectangular region around the object, where f(n1, n2) =

f2(n1, n2) 6= b(n1, n2). An example of this phenomenon is illustrated in fig. 4.1(a),

where eq. 4.1 was applied to insert the object using α = 0.5.

140

4.2 Objects insertion

This undesired semi-transparent region can be avoided if eq. 4.1 is restricted to

the pixels of the original object. However, this will imply the usage of segmentation

techniques to isolate the pixels corresponding to the original object from the rest of

the pixels of the block [86].

Even so, the previously described formalism for the linear combination can still

be applied if the concept of transparency mask is introduced and defined as:

m(n1, n2) =

{
1 , (n1, n2) ∈ NRSO
0 , (n1, n2) /∈ NRSO

(4.2)

Altough the definition of this mask may be restricted to the blocks where the NRSO

should be inserted, its extension to the whole image area can provide useful infor-

mation concerning the location of the pixels that must be processed by the insertion

algorithm. As it will be described in section 4.3.3, this infomation can be used to

significantly increase the efficiency of the insertion algorithm.

Hence, eq. 4.1 becomes:

f(n1, n2) = [α.m (n1, n2)]⊙ ℓ (n1, n2) + [1− α.m (n1, n2)]⊙ b (n1, n2) (4.3)

= φ (n1, n2) + ψ (n1, n2)⊙ b (n1, n2) , (4.4)

where ⊙ denotes pixel-wise multiplication. In this equation, φ (n1, n2) and ψ (n1, n2)

represent constant matrices that are solely dependent on the considered object.

Consequently, they can be pre-computed and stored in memory. In fig. 4.1(b) it is

illustrated the result of the application of this technique using α = 0.5. As it can be

seen, the undesired semi-transparent region is no longer present around the NRSO.

(a) Porter and Duff technique [77]. (b) Proposed technique.

Figure 4.1: Pixel-domain insertion of an NRSO (α = 0.5).

141

4. Static Video Composition

4.2.2 Insertion of objects in the compressed DCT-domain

The pixel-domain insertion algorithm presented in eq. 4.1 can be applied in the

compressed-domain by using the orthogonality properties of the DCT. Since α and

(1− α) are scalars and the DCT is linear, eq. 4.1 becomes:

F (k1, k2) = α.L(k1, k2) + (1− α).B(k1, k2), (4.5)

where X(k1, k2) generically denotes the DCT transform of signal x(n1, n2), com-

puted, in matrix form, as X = T ·x ·TT.

However, most video coding algorithms perform the computation of the DCT

on blocks with (N × N) pixels, which makes this relation difficult to be applied

if the undesired semi-transparent region around the NRSO is to be avoided [86].

In fact, although α and (1 − α) are scalar constants, the terms [α.m (n1, n2)] and

[1− α.m (n1, n2)] of eq. 4.4 represent matrices. Consequently, each pixel-wise mul-

tiplication will have to be replaced by a convolution in the DCT-domain (see sec-

tion 2.5.2). Hence, the application of eq. 4.4 in the compressed DCT-domain is

stated as follows:

F (k1, k2) = Φ (k1, k2) + Ψ (k1, k2) ⊛ B (k1, k2) , (4.6)

where F (k1, k2) = DCT [f (n1, n2)], Φ(k1, k2) = DCT [φ (n1, n2)], Ψ(k1, k2) =

DCT [ψ (n1, n2)] and B(k1, k2) = DCT [b (n1, n2)]. As it was previously seen in

section 2.5.2, the multiplication-convolution property of the DCT is based on a

symmetric convolution operation over (2N × 2N) extended sequences. For the par-

ticular case of the 2-D even type-II cosine transform (DCCT-II transform), these

(2N × 2N) extended sequences should have a WSWA symmetric extension (as de-

scribed in section 2.2.1), expressed as:

X̃ (k1, k2) =

0 , k1 = 0 or k2 = 0

X̂(N − k1, N − k2) , k1 = 1 . . . (N − 1), k2 = 1 . . . (N − 1)

X̂(k1 −N,N − k2) , k1 = N . . . (2N − 1), k2 = 1 . . . (N − 1)

X̂(N − k1, k2 −N) , k1 = 1 . . . (N − 1), k2 = N . . . (2N − 1)

X̂(k1 −N, k2 −N) , k1, k2 = N . . . (2N − 1).

(4.7)

Consequently, the above 2-D convolution should be computed as follows:

Ψ(k1, k2) ⊛ B(k1, k2) = WN×N

(
Ψ̃(k1, k2) s B̃(k1, k2)

)
, (4.8)

where WN×N(k1, k2) is a N ×N rectangular window used to extract the representa-

tive samples out of the base period of the result of the convolution and Ψ̃(k1, k2) and

142

4.2 Objects insertion

B̃(k1, k2) are WSWA (2N × 2N) symmetric extensions of Ψ(k1, k2) and B(k1, k2),

as described in eq. 4.7, with

X̂(k1, k2) =
X(k1, k2)

ξ(k1)ξ(k2)
(4.9)

and ξ(k) defined in eq. 2.13.

The symbol s denotes the skew-circular convolution, defined as:

Ψ̃ (k1, k2) sB̃ (k1, k2) =
1

2N
ξ(k1) ξ(k2)

[
2N−1∑

m1=0

2N−1∑

m2=0

Ψ̃(m1, m2) ·

B̃
(
mod2N (k1 −m1) ,mod2N (k2 −m2)

)
·S(k1 −m1) ·S(k2 −m2)

]
(4.10)

where:

S(k −m) =

{
1 , k −m ∈ [0, (2N − 1)]
−1 , otherwise

. (4.11)

The described operation requires a significant amount of multiplications and

sums (∝ 16N4). Recently, Shen et al. [100] proposed a different approach to compute

the DCT-domain convolution, by exploiting the symmetry and the orthogonality

properties of the DCT to reduce the overall computational cost of this operation

(see section 2.5.3). With such algorithm, it is possible to reduce the total amount

of operations to only 25% [100].

The application of the proposed insertion method in the compressed DCT-

domain to insert two NRSOs, corresponding to the logo presented in fig. 4.2(a)

and the subtitle shown in fig. 4.2(b), in the Common Intermediate Format (CIF)

Carphone video sequence is presented in fig. 4.3. These objects were positioned

at coordinates (241, 10) and (256, 130), respectively. Such positions were carefully

selected in order to affect the minimum number of MBs as possible.

The frame presented in fig. 4.3(a) was obtained using a transparency factor

α = 0.5. In this processed image, it is still possible to perceive the presence of

some details of the background image in the area corresponding to the inserted

object. Fig. 4.3(b) presents the same frame using a transparency factor α = 1.0.

Contrasting with the previous setup, in this case the insertion is 100% opaque. The

corresponding transparency mask m(n1, n2), which was applied to the whole image,

is presented in fig. 4.3(c).

(a) Logo. (b) Subtitle.

Figure 4.2: Considered set of NRSOs (CT = 0).

143

4. Static Video Composition

(a) α = 0.5. (b) α = 1.0. (c) Transparency
mask: m(n1, n2).

Figure 4.3: Object insertion in the compressed DCT-domain using the Carphone
video sequence and the transparency mask of fig. 4.3(c).

4.3 Transcoding architectures for insertion of

non-regular shaped objects

In this section, a set of different architectures of both pixel-domain and

compressed-domain transcoders for insertion of NRSOs in compressed video se-

quences will be presented. The considered primordial objective was to achieve the

optimum trade-off between the obtained image quality (PSNR) and the involved

computational cost (evaluated by counting the number of arithmetic operations,

namely, sums and multiplications).

4.3.1 Pixel-domain transcoder with re-estimation of motion

vectors

The most straightforward architecture of a pixel-domain transcoder for object

insertion is illustrated in fig. 4.4. This decoder-encoder cascaded pair is usually

regarded as the most trivial architecture, since it comprises one full decoder followed

by one full encoder. The input video bit stream is first fully decoded and then re-

encoded after the application of the pixel-domain insertion algorithm, resulting in

the output bit stream. In this case, the compositing scheme previously described in

eq. 4.4 is directly applicable.

Despite its simplicity, the main disadvantages of this architecture are concerned

with its high computational cost. In fact, since the insertion algorithm is performed

in the pixel-domain and there is no re-usage of the original coding parameters,

a significant amount of operations is required to perform both the direct and in-

verse discrete cosine transforms, as well as the block-matching motion estimation

algorithm at the encoder side of the transcoding system. Moreover, this decoding-

144

4.3 Transcoding architectures for insertion of non-regular shaped objects

+

-

Q VLC

Q-1

+

+
Memory

DCT

IDCT
MC

ME

Q-1 IDCT

+

+

Frame
Memory

MC

VLD

DECODER

ENCODER

Memory
ψ (n1,n2) φ (n1,n2)

b (n1,n2) f (n1,n2)

LOGO INSERTION MODULE

Logo

Transp. Mask
m(n1,n2)

MV

MV

INPUT OUTPUT

0

P

I

P

I

0

P

I

Figure 4.4: Pixel-domain transcoder for object insertion with re-estimation of mo-
tion vectors.

encoding process of the whole picture usually leads to a non-negligible degradation

of the video quality. As it was shown in [6, 36] and briefly described in section 3.1.2,

transcoding systems using this cascaded transmission chain lead to an extra amount

of distortion, as a result of the twofold dequantization-quantization operation: one

at the encoder and another one at the transcoder. According to the results presented

in [36], this cascaded quantization introduces losses of about 0.5− 1.0 dB. Besides

the noticeable degradation introduced in the processed frames, it also affects the

performance of the motion estimation operation that is implemented at the encoder

side of the transcoder. In fact, while the MVs of the incoming bit stream were

computed with full-precision pixel values, the search procedure is now performed

in decoded pictures that were already affected by the quantization distortion (data

loss) of the coding algorithm [6].

4.3.2 Pixel-domain transcoder without re-estimation of mo-
tion vectors

Considering that motion estimation is undoubtedly the most computational de-

manding block of the video coding algorithm, an usual approach to significantly

reduce the computational cost of video transcoders is to remove the motion esti-

mation function from the encoder side. By doing so, the MVs of the incoming bit

stream are re-used, instead of calculating new ones. In this case, the architecture of

the pixel-domain transcoder is the one illustrated in fig. 4.5.

As it was already referred (and will be shown later), not only is this architec-

ture characterized by a significantly lower computational cost, but it usually leads,

in practice, to better quality performances than the previous described architec-

ture (with re-estimation of MVs at the encoder side). Even so, this architecture

still demands a significant amount of operations, since the computation of both

the forward and the inverse discrete cosine transforms are still required by this

scheme. Hence, this computational cost incited the proposals of DCT-domain video

transcoders [6, 54, 97, 111].

145

4. Static Video Composition

+

-

Q VLC

Q-1

+

+
Frame

Memory

DCT

IDCT
MC

Q-1 IDCT

+

+

Frame
Memory

MC

VLD

DECODER

ENCODER

Memory
ψ (n1,n2) φ (n1,n2)

b (n1,n2) f (n1,n2)

LOGO INSERTION MODULE

Logo

Transp. Mask
m(n1,n2)

MV

MV

INPUT OUTPUT

0

P

I

P

I

0

P

I

Figure 4.5: Pixel-domain transcoder for object insertion without re-estimation of
motion vectors.

Independently of the adopted motion estimation procedure, the two pixel-domain

insertion algorithms previously described can be formulated as stated in fig. 4.6. In

this figure, b(n1, n2) denotes the input (N ×N) pixels block under processing, while

f(n1, n2) represents the output block, resulting from the application of the insertion

algorithm.

I - Pre-compute and store in memory the two constant matrices that character-
ize the NRSO to be inserted:

φ (n1, n2) = [α.m (n1, n2)]⊙ ℓ (n1, n2)

ψ (n1, n2) = [1− α.m (n1, n2)]

II - For each decoded input block b(n1,n2):

• if b(n1, n2) ∩NRSO = ∅:
– Do nothing:
f(n1, n2) = b(n1, n2).

• if b(n1, n2) ∩NRSO 6= ∅:
– The NRSO portion in b(n1, n2) must be inserted:
f(n1, n2) = φ (n1, n2) + ψ (n1, n2)⊙ b (n1, n2).

Figure 4.6: Pixel-domain insertion algorithm.

4.3.3 Compressed DCT-domain transcoder

The most straightforward approach to implement the presented transcoder in

the compressed-domain is to perform the compositing operation of eq. 4.4 in the

DCT-domain, as it was described in eq. 4.6. However, this will imply that certain

operations, such as MC, will also have to be performed in the compressed-domain.

As it was described in section 3.3.1, devoted to the study of MC in the compressed

DCT-domain, this operation presents a computational cost that is somewhat higher

than its pixel-domain counterpart. This is mainly due to the fact that, in the general

146

4.3 Transcoding architectures for insertion of non-regular shaped objects

case, four neighbor blocks will have to be processed in order to obtain the prediction

of the current block (see section 3.3.1). Even so, several efficient algorithms have

recently been proposed to reduce the computational load of DCT-domain motion

compensation algorithms [51, 56, 57]. Their main advantages are obtained by ex-

ploiting the sparseness property of the DCT representation of the several blocks as

well as their spatial continuity between adjacent blocks.

The block diagram of the implemented DCT-domain transcoder is presented in

fig. 4.7. As in the previous pixel-domain transcoder, the motion vectors decoded

from the incoming bit stream are re-used, instead of performing their re-estimation

at the encoder part of the transcoder. This provides the ability to avoid the intro-

duction of degradation related to the usage of reference images already affected by

an additional quantization process.

The insertion algorithm is performed in a block-by-block basis: for each block

of the input image, it convolves its discrete cosine transform with Ψ (k1, k2), cor-

responding to the transparency mask, using the 2-D symmetric convolution in the

DCT-domain (see section 2.5.2) and adds the result with the data corresponding to

the NRSO Φ (k1, k2) (see eq. 4.6). Since Ψ (k1, k2) and Φ (k1, k2) only depend on the

object that is being inserted, they can be pre-computed and stored in memory, thus

leading to a significant reduction of the required number of operations (see fig. 4.7).

The formulation of this algorithm can be stated as presented in fig. 4.8.

To increase the efficiency of this architecture, some important issues concerning

the insertion procedure and the encoding of video data may be taken into account.

As an example, the computational cost of the insertion algorithm can be greatly

reduced by using the transparency mask to provide useful information about the

position of the NRSO. Hence, every MB whose values of the corresponding trans-

parency mask m(n1, n2) are all equal to zero (∀(n1, n2) ∈ MBx, m(n1, n2) = 0) can

be skipped from the whole insertion procedure.

More than the desired position of the object or subtitle, it is also convenient

to know the width and the height of the hypothetical box that tightly bounds the

+

-

Q VLC

Q-1

+

+
Frame

Memory

MC-DCT

Q-1

+

+

Frame
Memory

MC-DCT

VLD

DECODER

ENCODER

MemoryΨ (k1,k2) Φ (k1,k2)

B(k1,k2) F(k1,k2)

LOGO INSERTION MODULE

Logo

Transp. Mask
m(n1,n2)

MV

MV

INPUT OUTPUT

0

P

I

P

I

0

P

I

Figure 4.7: Compressed DCT-domain transcoder for object insertion.

147

4. Static Video Composition

I - Pre-compute and store in memory the two constant matrices that charac-
terize the NRSO to be inserted:

Φ(k1, k2) = DCT [φ (n1, n2)], with φ (n1, n2) = [α.m (n1, n2)]⊙ ℓ (n1, n2)

Ψ(k1, k2) = DCT [ψ (n1, n2)], with ψ (n1, n2) = [1− α.m (n1, n2)]

II - For each decoded input block B(k1,k2):

• if B(k1, k2) ∩NRSO = ∅:
– Do nothing:
F (k1, k2) = B(k1, k2).

• if B(k1, k2) ∩NRSO 6= ∅:
– The NRSO portion in B(k1, k2) must be inserted:
F (k1, k2) = Φ (k1, k2) + Ψ (k1, k2) ⊛B (k1, k2).

Figure 4.8: Compressed DCT-domain insertion algorithm.

NRSO. Some authors have suggested that, whenever it is possible, the position

of this box should be adjusted so that the number of MBs affected by the NRSO

insertion algorithm is minimized [71].

One other important issue is concerned with the effect of the insertion on the

encoding of the several MBs. In fact, despite all strategies that have been proposed

to re-use, in the coder side of the transcoder, as much information decoded from

the incoming bit stream as possible, one now has to take into account that this

information may be no longer valid for the MBs in the vicinity of the insertion. As

an example, to reduce the involved computational cost, video transcoders usually

re-use the decoded MVs, which may no longer precisely point to the best matching

MB. Furthermore, it is also highly possible that decoded MVs that pointed to the

MBs where the object has been inserted may have to be re-evaluated, since the

object content is no longer the expected prediction that should be inserted in those

regions of the image.

Panusopone et al. [71] have recently studied the problem of inserting translucent

objects (see eq. 4.1) in pixel-domain transcoders. They considered two distinct

approaches to adapt the motion vectors (and the quantization steps), so that the

resulting impact on the coding algorithm is reduced [71]:

Method 1 - Simple re-usage of the MVs decoded from the input bit stream. The

coding efficiency of this method will be inevitably reduced, as a con-

sequence of the MVs inaccuracy for the MBs where objects have been

inserted, as well as for those MBs that have MVs pointing to the

inserted object, since they will certainly have wrong reference MBs.

148

4.3 Transcoding architectures for insertion of non-regular shaped objects

Method 2 - Usage of two different sets of MVs, by choosing the original MVs de-

coded from the input bit stream for those MBs which are dominated

by the background content, or by adopting a null MV for those MBs

that are dominated by the content of the inserted object. The follow-

ing threshold rule was proposed, to determine the MVs to adopt in

the MBs where the object is inserted:

• v = (0, 0) when the transparency factor (α) is greater than or

equal to some adjustable threshold, e.g., α = 0.5;

• v will be kept unchanged, otherwise.

This scheme can equally be applied to select the MV value of those

MBs whose original MVs were pointing to the region where the object

was inserted.

However, not only is Panusopone et al. insertion method entirely implemented in

the pixel-domain, but their proposed insertion techniques are also clearly different

from those that are now presented and from the set of fast compressed DCT-domain

techniques that will be proposed in the following sections. Nevertheless, despite such

quite significant differences, their proposals concerning the re-usage of the MVs can

still be applied to the proposed architectures with minor changes.

4.3.4 Computational-reduced compressed DCT-domain
transcoder

From the analysis of the previously described compressed DCT-domain

transcoder, one can realize that the proposed insertion algorithm in the transform-

domain involves a significant amount of operations (even when re-usage of motion

vectors is considered). There are two functional blocks which contribute the most

for this computational cost:

• DCT-domain motion compensation (MC-DCT):

By following a straightforward approach, for each N × N pixels block it is

necessary to perform 6 matrix products and 3 matrix sums (see section 3.3.1).

Since N3 multiplications and N2(N−1) sums are involved in the computation

of each matrix product, 6N3 multiplications and 6N3−3N2 sums are required

to process each block. However, under certain circumstances, the bandwidth

constrained methods described in subsection D of section 3.3.1, (page 74) can

reduce the required computational load and take advantage of the sparseness

property of the DCT representations of the several blocks.

149

4. Static Video Composition

• 2-D symmetric convolution:

For each N × N pixels block, it is necessary to perform 4N4 multiplications

and sums (see section 2.5.2).

If the whole set of manipulations required by the compressed DCT-domain

transcoder is taken into account, the number of operations (multiplications and

additions) required to process each (N × N) pixels block will be those represented

in table 4.1. On the other hand, the computational load required by the tradi-

tional pixel-domain transcoder without re-estimation of motion vectors (described

in section 4.3.2) corresponds to the set of operations represented in table 4.2.

Thus, while the compressed DCT-domain transcoder is characterized by an

O (N4) complexity level, the traditional pixel-domain transcoder exhibits a com-

putational load proportional to only O (N3). This substantial extra amount of com-

Table 4.1: Required number of operations to process each (N ×N) pixels block
using the DCT-domain transcoder.

Functional Block Multiplications Additions

MC-DCT decoder 6N3 6N3 − 3N2

Differential decoder - N2

Convolution with Ψ(k1, k2) 4N4 4N4

Sum with Φ(k1, k2) - N2

MC-DCT encoder 6N3 6N3 − 3N2

Differential encoder - N2

Differential decoder - N2

TOTAL 4N4 + 12N3 4N4 + 12N3 − 2N2

Table 4.2: Required number of operations to process each (N ×N) pixels block
using the pixel-domain transcoder.

Functional Block Multiplications Additions

IDCT 2N3 2N3 − 2N2

MC decoder - -

Differential decoder - N2

Logo insertion N2 N2

MC encoder - -

Differential encoder - N2

DCT 2N3 2N3 − 2N2

Differential decoder - N2

TOTAL 4N3 +N2 4N3

150

4.3 Transcoding architectures for insertion of non-regular shaped objects

putations required by the described DCT-domain transcoder incited the presented

research for more efficient architectures.

Meanwhile, to clarify the presentation of this and of other architectures proposed

in this chapter, the following nomenclature will be adopted:

in - INTRA type image;

pn - INTER type image;

in - INTRA type image after the insertion of the NRSO;

pn - INTER type image after the insertion of the NRSO.

Similarly to previously defined notations, upper-case letters denote the discrete co-

sine transform coefficients corresponding to pixel-domain signals: X = DCT(x).

moreover. the sequential number of each image is appended to its representation

as a subscript index (e.g.: In Pn+1 Pn+2 . . .Pn+G−1 In+G Pn+G+1 . . .), where G is

the number of frames in each GOP that was adopted in the encoding setup of the

considered video sequence.

The architecture presented in this section tries to achieve a reduction of the

overall computational load by eliminating the DCT motion-compensation operation

from the processing of certain macroblocks in INTER type images. By considering

the general expression that is used to decode INTER type images at the decoder

end of the coding system:

pt = MC(pt−1) + et (4.12)

which, in the DCT-domain, is stated as:

Pt = MC-DCT(Pt−1) + Et, (4.13)

the objective of this new architecture is to process INTER type images using solely

the information corresponding to the current frame that is received from the commu-

nication channel: the differences signal (Et), the motion vectors and the quantization

levels. The expression for the decoding operation of INTER type images, to be per-

formed by the ultimate decoder of the whole video communication system, should

have the form:

pt = MC (pt−1) + e∗
t , (4.14)

where MC (pt−1) is obtained by applying the motion compensation algorithm to the

previous decoded image with the NRSO already inserted on it. The operand e∗
t

represents the differences signal after the application of the insertion algorithm to

the original differences frame: e∗
t = f (et).

By considering a fraction of a given video sequence composited by only two

consecutive frames (. . . it−1 pt . . .) and an NRSO defined by ℓ(n1, n2), the insertion

151

4. Static Video Composition

algorithm described in eq. 4.1 for a given transparency factor α comes as follows:

it−1 = αℓ + (1− α)it−1 (4.15)

= it−1 + α(ℓ− it−1) (4.16)

= it−1 + rt−1 (4.17)

pt = αℓ + (1− α)pt (4.18)

= pt + α(ℓ− pt) (4.19)

= pt + rt (4.20)

where rt−1 = α(ℓ− it−1) and rt = α(ℓ−pt), respectively. According to eq. 4.12 and

eq. 4.20, it follows that:

pt = MC (pt−1) + et + rt (4.21)

= MC (pt−1 − rt−1) + et + rt (4.22)

= MC (pt−1) + et −MC (rt−1) + rt (4.23)

= MC (pt−1) + e∗
t , (4.24)

where:

e∗
t = et −MC (rt−1) + rt. (4.25)

In the compressed DCT-domain, eq. 4.17 and eq. 4.24 are stated as:

It−1 = It−1 + Rt−1 (4.26)

Pt = MC-DCT
(
Pt−1

)
+ E∗

t , (4.27)

where

E∗
t = Et −MC-DCT (Rt−1) + Rt, (4.28)

and

Rt(k1, k2) = α(k1, k2) ⊛ [L(k1, k2)− Pt(k1, k2)] . (4.29)

From the previous description, it can be observed that eq. 4.27 corresponds to the

desired expression for the DCT-domain insertion algorithm, presented in eq. 4.14.

In fact, it can be shown, from eq. 4.28, that such procedure can be decomposed in

two distinct operations:

1. insertion of the data corresponding to the fraction of the NRSO that should

be placed in the current position: +Rt;

152

4.3 Transcoding architectures for insertion of non-regular shaped objects

2. removal of the data corresponding to the fraction of the NRSO that was in-

serted in the previously processed image; according to the encoding algorithm,

it is necessary to take into account the possible displacement between the cur-

rent macroblock and its prediction macroblock: −MC-DCT (Rt−1).

In the formulation of the above equations, the motion compensation function

was assumed to be a linear operation. However, that is not entirely true. As it

was previously noted, even when the considered motion vectors are the same, the

inherent integer truncation and round-off errors may introduce some slight distortion

in the overall DCT-domain processing.

The expression stated in eq. 4.28 conducts to the formulation of the insertion

algorithm that should be applied to each block of the image under processing, as

stated in fig. 4.9. In this figure, An denotes the DCT coefficients of the (N ×N)

pixels block under processing, while Bn−1 denotes the coefficients of the predic-

tion block, obtained after the motion compensation operation over the previously

processed image, using the corresponding motion vector vn.

The block diagram of this computational reduced frequency-domain insertion

transcoder is presented in fig. 4.10. According to this architecture, the NRSO data

I - INTRA type images:
• if At ∩ NRSO 6= ∅:

– It = It + Rt;

• if At ∩ NRSO = ∅:
– Do nothing: It = It.

II - INTER type images:
• if Au ∩NRSO = ∅ and Bu−1 ∩ NRSO = ∅:

– Do nothing: E∗
u = Eu;

• if Au ∩NRSO = ∅ and Bu−1 ∩ NRSO 6= ∅:
– The NRSO portion in Bu−1 must be removed: E∗

u = Eu−MC-DCT(Ru−1);

• if Au ∩NRSO 6= ∅ and Bu−1 ∩ NRSO = ∅:
– The NRSO portion in Au must be inserted: E∗

u = Eu + Ru;

• if Au ∩NRSO 6= ∅ and Bu−1 ∩ NRSO 6= ∅:
– The NRSO portion in Bu−1 must be removed and the NRSO portion in Au

must be inserted: E∗
u = Eu −MC-DCT(Ru−1) + Ru.

Figure 4.9: Computational-reduced insertion algorithm in the compressed DCT-
domain.

153

4. Static Video Composition

+
-

Q VLC

Q-1

-

+

Frame
Memory

MC-DCT

Q-1

+
+

Frame
Memory

MC-DCT

VLD

DECODER

ENCODER

Memory α (k1,k2)L (k1,k2)

R t(k1,k2)

LOGO INSERTION MODULE

Logo

Transp. Mask
m(n1,n2)

MV

MV

INPUT

OUTPUT

0

0

+

-

+

+MV

E t

E∗
t

B t(k1,k2)

E t

MV

E t

0

E t

R t

R t-1

R t

MC(R t-1)

R t-1

Figure 4.10: Computational-reduced compressed DCT-domain transcoder for ob-
ject insertion.

is inserted in INTER type images directly in the differences signal (Et). This con-

trasts with the previous architecture, where the NRSO was inserted in the partially

decoded image (Pt). Moreover, a significant reduction of the computational load

can now be achieved in the encoder part of the transcoder. In fact, while in the pre-

viously described compressed DCT-domain architecture the motion compensation

operation was applied to the entire image area, in this architecture this operation

is only performed in the area covered by the NRSO. Therefore, the degree of this

reduction will naturally depend on the particular characteristics of the NRSO that

is being inserted.

It should be noted, however, that a special care must be taken into account when

the MC procedure is performed in the encoder phase of this algorithm. In fact, to

achieve a perfect removal of the previously inserted NRSO data (see point 2 on

the preceding page), the MC operation must be accurate enough in order to avoid

any evidence of the removed data. Consequently, this precision requirement may

impede the usage of the bandwidth constrained methods described in subsection D

of section 3.3.1, (page 74), since the significant computational saving that is offered

by such algorithm comes at a cost of a slight distortion level, which is often enough

to prevent a perfect removal of the NRSO data. Nevertheless, this slight degradation

does not significantly affect the perfect decoding of the received video, which makes

this computational reduced method particularly well suited to be applied in the

decoder part of the insertion architecture.

Nevertheless, despite the described computational saving strategy, one realizes

that this architecture still requires a significant amount of computations. Namely, in

the DCT-domain motion compensation operation, that is performed over the entire

image at the decoder part; in the 2-D symmetric convolution, that is performed over

the area covered by the NRSO at the insertion module; and in the DCT-domain

motion compensation operation, that is performed over the area covered by the

NRSO at the encoder part of the transcoding system.

154

4.3 Transcoding architectures for insertion of non-regular shaped objects

4.3.5 Open-loop compressed DCT-domain transcoder

To cope with the high computational load of the previously presented

compressed-domain insertion algorithms, alternative schemes with lower computa-

tional requisites have been considered. Such architectures take into account some

information concerning the GOP structure of the coded video under processing and

are somewhat more permissive to the introduction of a certain distortion level in

the image area corresponding to the insertion. In fact, if one takes into account

that NRSOs (such as logos or subtitles) usually do not change with time (or only

change between a significant amount of frames), they can be often considered as

quasi-stationary entities. Consequently, one can easily raise the question about the

need to insert them in all encoded frames. As an example, INTER type images

are encoded with temporal prediction schemes, where the DCT is applied to the

difference between the current image and the image obtained from the application

of the motion-compensation mechanism to the previously decoded frame. Consid-

ering that logos (or other types of NRSOs) do not change with time, it wouldn’t be

difficult to accept that very little information concerning them would be present in

the differences signal corresponding to the encoding of INTER type images. Con-

sequently, only INTRA type images would have to be processed by the insertion

algorithm.

Unfortunately, this assumption is not completely true, not only due to the motion

compensation mechanism, but also due to the fact that the considered insertion

algorithm deals with semi-transparent type NRSOs. In fact, it should be taken

into account that the prediction of a given macroblock in a INTER type image is

obtained by conveniently displacing the previously decoded macroblocks, according

to the corresponding motion vectors. If one considers the simplest case, where one

of the macroblocks corresponding to the NRSO has a non-null motion vector, one

should accept that its prediction might not contain the NRSO, or even if it does,

it will be probably not placed in the correct position. Therefore, some important

issues will have to be considered in order to solve these problems.

From the previous sections, one realizes that the implementation of the insertion

algorithm in the compressed DCT-domain requires one 2-D symmetric convolution

and one or more motion-compensation operations in the DCT-domain. These op-

erations are the most computationally expensive ones, with a complexity level of

O (N4) and O (N3), respectively. Hence, an alternative approach may raise the pos-

sibility of tolerating the introduction of a certain amount of distortion in order to

decrease this required computational burden. To achieve such objective, a rather

simplified architecture is assumed for the insertion module, which is based on the

155

4. Static Video Composition

two following principles:

1. The NRSOs are solely inserted in INTRA type images;

2. Only the differences signal (Et) is processed in INTER type images.

To comply the insertion procedure with the existing video standards, and to keep

unchanged the general expression adopted in the decoding operation of INTER type

images at the decoder end of the system (see eq. 4.12), the processing of INTER

type images will have to be performed using only the information corresponding to

the image being processed and that is received from the communication channel:

the discrete cosine transform of the differences signal (Et). This expression should

have the form:

P̂t = MC-DCT
(
P̂t−1

)
+ E∗

t . (4.30)

The X̂ nomenclature was adopted in eq. 4.30 and will be used in the following

expressions to represent signals where a certain level of degradation or distortion is

tolerated, as a result of the application of the simplified insertion algorithm.

According to the first principle previously stated, the information that is con-

sidered in the processing of all (G − 1) INTER type images of a given GOP refers

solely to the previously processed INTRA frame:

it = αℓ + (1− α)it (4.31)

= it + α (ℓ− it) (4.32)

= it + rt, (4.33)

where rt = α (ℓ− it). This rt factor should be considered constant within a GOP.

Consequently, in the processing of the INTER type image pu of such GOP, corre-

sponding to time instant u (where u − t ≤ G), the same rt factor should also be

used. Hence, instead of having:

pu = αℓ + (1− α)pu (4.34)

= pu + α (ℓ− pu) (4.35)

one will have the slightly distorted p̂u:

p̂u = pu + α (ℓ− it) (4.36)

= pu + rt. (4.37)

Eq. 4.34 and eq. 4.36 can be used to estimate the amount of distortion (ǫt) that

is introduced by this simplified scheme. In fact, considering that rt = α (ℓ− it), the

156

4.3 Transcoding architectures for insertion of non-regular shaped objects

slightly distorted p̂u is given by:

p̂u = pu + α (ℓ− it) (4.38)

= αℓ + pu − αit (4.39)

= αℓ + (1− α)pu + α(pu − it) (4.40)

= αℓ + (1− α)pu + ǫt, (4.41)

where:

ǫt = α (pu − it) . (4.42)

From eq. 4.37, the processing of p̂u is conducted as follows:

p̂u = pu + rt (4.43)

= MC (pu−1) + eu + rt (4.44)

= MC
(
p̂u−1 − rt

)
+ eu + rt (4.45)

= MC
(
p̂u−1

)
+ eu −MC (rt) + rt (4.46)

= MC
(
p̂u−1

)
+ e∗

u. (4.47)

Hence, in the compressed DCT-domain, eqs. 4.33 and 4.47 are stated as:

It = It + Rt, (4.48)

P̂u = MC-DCT
(

̂Pu−1

)
+ E∗

u. (4.49)

Once more, eq. 4.49 is entirely similar to eq. 4.30, representing the decoding

operation of INTER type images at the decoder end of the video coding system. E∗
u

represents the processed differences signal and is obtained from the application of

the insertion algorithm to the original differences signal:

E∗
u = Eu −MC-DCT (Rt) + Rt (4.50)

By considering this expression, the algorithm corresponding to this simplified

insertion scheme can be formalized as shown in fig. 4.11. In this figure, An repre-

sents the DCT coefficients of the (N ×N) pixels block under processing, while Bn−1

denotes the coefficients of its prediction block, obtained after the motion compen-

sation operation over the previously decoded image using the current motion vector

vn.

In fig. 4.12 it is illustrated the block diagram corresponding to this insertion

architecture. The main advantages of this method are concerned with the reduced

157

4. Static Video Composition

I - INTRA type images:
• if At ∩ NRSO 6= ∅:

– It = It + Rt;

– Store Rt in memory.

• if At ∩ NRSO = ∅:
– Do nothing: It = It.

II - INTER type images:
• if vu = (0, 0):

– Do nothing: E∗
u = Eu;

• if vu 6= (0, 0):

– if Au ∩ NRSO = ∅ and Bu−1 ∩ NRSO = ∅:
∗ Do nothing: E∗

u = Eu;

– if Au ∩ NRSO = ∅ and Bu−1 ∩ NRSO 6= ∅:
∗ The NRSO portion in Bu−1 must be removed:

E∗
u = Eu −MC-DCT(Rt);

– if Au ∩ NRSO 6= ∅ and Bu−1 ∩ NRSO = ∅:
∗ The NRSO portion in Au must be inserted:

E∗
u = Eu + Rt;

– if Au ∩ NRSO 6= ∅ and Bu−1 ∩ NRSO 6= ∅:
∗ The NRSO portion in Bu−1 must be removed and the NRSO portion

in Au must be inserted:
E∗

u = Eu −MC-DCT(Rt) + Rt;

Figure 4.11: Open-loop compressed DCT-domain insertion algorithm.

computational load that is required to insert the NRSOs in the input video se-

quence. Not only are the required operations performed solely in the area affected

by the NRSO insertion (which is usually much smaller than the whole image area),

but the amount of operations required to process each image block is significantly

+

+

Q VLC

Frame
Memory

MC-DCT

Q-1VLD

DECODER ENCODER

Memory α (k1,k2)L (k1,k2)

R t(k1,k2)

LOGO INSERTION MODULE

Logo

Transp. Mask
m(n1,n2)

MV

INPUT OUTPUT

0

+

-

MV

I t(k1,k2)

MV+

-

0

R tR t

R t

P

I+

+

P

I

MC(R t)

Figure 4.12: Open-loop compressed DCT-domain transcoder for object insertion.

158

4.3 Transcoding architectures for insertion of non-regular shaped objects

lower. Such reduction is owed to the fact that while the blocks that are processed

in INTRA type images only require a 2-D symmetric convolution in the compressed

DCT-domain, the blocks that need some processing in INTER type images only

require one addition and, when the current MV is non-null, a compressed DCT-

domain motion-compensation operation, to remove the fraction of the NRSO that

was inserted during the processing of the previously encoded image.

It should also be noted that the required amount of memory was also signif-

icantly reduced. While in the presented scheme it is only necessary to store the

data corresponding to the fraction of the previously processed INTRA type image

where the NRSO was inserted (Rt), in the closed-loop compressed DCT-domain

transcoders, presented in sections 4.3.3 and 4.3.4, the insertion algorithm required

two image memories. However, while both frame memories of the closed-loop DCT-

domain transcoder, as well as the encoder-side memory of the computational-reduced

transcoder, have to be updated for each new precessed frame, the frame memory

of the open-loop transcoder only has to be updated with the Rt data when a new

INTRA type image is processed.

Furthermore, contrasting with the other transcoder architectures, presented in

the previous sections, the transparency factor (α) plays, in this structure, a some-

what different role. More than the transparency degree of the inserted NRSO, it

is also of great influence on the possibility of performing the inverse operation (re-

moval of the NRSO that was inserted in the previously processed image), that is

required in some macroblocks of INTER type images when the motion vector is

non-null. From one side, such situation arises from the fact that the values of the

output pixels in the processed area are obtained by a linear combination of the

NRSO data (weighted by the α factor) and of the background data (weighted by

the (1 − α) factor). In the limit situation, when α = 1, the result of this linear

combination is only composited by the pixels of the NRSO, making it impossible to

perform the inverse operation and to recover the background image. In fact, even

when α < 1, such perfect removal is still compromised, due to the degradation ef-

fect introduced by the quantization mechanism. On the other hand, it was already

shown that the introduced distortion ǫt = α (pu − it), resulting from the gradual

differences between the encoded images, increases significantly with α. As it will

be seen in section 6.2, concerning the experimental results, these limitations play a

major rule on the video quality of the output video sequence that is obtained with

this open-loop insertion algorithm. At the presence of significant movement or at

highly textures areas, it gives rise to a gradual introduction of an observable dis-

tortion effect in the neighboring regions close to the pixels areas where the NRSOs

159

have been inserted. Such effect will prevail along the whole GOP and can only be

removed when a new INTRA type frame is encoded.

4.4 Conclusions

A set of new video composition techniques for static object insertion in the com-

pressed DCT-domain was proposed in this chapter. The presented schemes are

based on the pixel-domain compositing technique and imply the usage of a sym-

metric convolution operator in the DCT-domain. This operator provided the means

to propose a set of new and efficient processing algorithms. Such algorithms not

only operate directly with the decoded DCT-coefficients, received from the incom-

ing video stream, but also restrict their processing to the pixels area corresponding

to the objects that are intended to be inserted in the video scene. By using these

techniques, the problem concerning the introduction of undesired semi-transparent

rectangular regions around irregular-shaped objects (such as logos or subtitles) was

circumvented.

The presentation of all these algorithms was carried out with the description

of several pixel-domain and DCT-domain transcoding architectures, that were pro-

posed to implement the NRSO insertion system.

References

[6] P. Assunção and M. Ghanbari, “A frequency-domain video transcoder for dy-

namic bit-rate reduction of MPEG-2 bitstreams,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 8, no. 8, pp. 953–967, Dec. 1998.

[11] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-

DCT compressed video,” IEEE Journal on Selected Areas in Communications,

vol. 13, no. 1, pp. 1–11, Jan. 1995.

[28] MPEG-4: ISO/IEC 14496-2:2004. Information technology – Coding of audio-

visual objects – Part 2: Visual, ISO, 2004.

[36] G. Keesman, R. Hellinghuizen, F. Hoeksema, and G. Heideman, “Transcoding

of MPEG bitstreams,” Signal Processing: Image Communication, vol. 8, pp.

481–500, 1996.

[51] H. Li and H. Shi, “A fast algorithm for reconstructing motion compensated

160

blocks in compressed domain,” Journal of Visual Languages and Computing,

vol. 10, no. 6, pp. 607–623, Dec. 1999.

[54] C.-W. Lin and Y.-R. Lee, “Fast algorithms for DCT-domain video transcod-

ing,” in Proceedings of the IEEE International Conference on Image Processing

(ICIP), Thessaloniki - Greece, Oct. 2001, pp. 421–424.

[56] S. Liu and A. C. Bovik, “Local bandwidth constrained fast inverse motion com-

pensation for DCT domain video transcoding,” in Proceedings of the IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP),

Salt Lake City, UT, May 2001.

[57] S. Liu and A. C. Bovik, “Local bandwidth constrained fast inverse motion com-

pensation for DCT-domain video transcoding,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 12, no. 5, pp. 309–319, May 2002.

[61] J. Meng and S.-F. Chang, “Embedding visible video watermarks in the com-

pressed domain,” Proceedings of the IEEE International Conference on Image

Processing (ICIP), vol. 1, pp. 474–477, 1998.

[71] K. Panusopone, X. Chen, and F. Ling, “Logo insertion in MPEG transcoder,”

in Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), Salt Lake City - USA, May 2001.

[74] F. Pereira and T. Ebrahimi, Eds., The MPEG-4 Book. Prentice Hall PTR,

2002.

[77] T. Porter and T. Duff, “Compositing digital images,” Proceedings of the ACM

International Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH), vol. 18, no. 3, pp. 253–259, Jul. 1984.

[86] N. Roma and L. Sousa, “Insertion of irregular-shaped logos in the compressed

DCT domain,” in Proceedings of the IEEE International Conference on Digital

Signal Processing (DSP), vol. 1. Santorini, Greece: IEEE, Jul. 2002, pp. 125–

128.

[87] N. Roma and L. Sousa, “Transcoding architectures for object insertion in com-

pressed video,” INESC-ID – Lisboa, Portugal, Tech. Rep. RT/006/2002, Oct.

2002.

[88] N. Roma and L. Sousa, “Fast transcoding architectures for insertion of non-

regular shaped objects in the compressed DCT-domain,” Signal Processing:

Image Communication, vol. 18, no. 8, pp. 659–683, Sep. 2003.

161

[97] T. Shanableh and M. Ghanbari, “Transcoding architectures for DCT-domain

heterogeneous video transcoding,” in Proceedings of the IEEE International

Conference on Image Processing (ICIP), Thessaloniki - Greece, Oct. 2001.

[99] B. Shen and I. K. Sethi, “Block-based manipulations of transformed-compressed

images and videos,” ACM Multimedia System Journal, vol. 6, no. 2, pp. 113–

124, Mar. 1998.

[100] B. Shen, I. K. Sethi, and V. Bhaskaran, “DCT convolution and its application

in compressed domain,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 8, no. 8, pp. 947–952, Dec. 1998.

[111] S. Wee and B. Vasudev, “Splicing MPEG video streams in the compressed

domain,” in Proc. IEEE Workshop on Multimedia Signal Processing, Princeton,

Jun. 1997.

162

5
Dynamic Video Composition

Contents
5.1 Introduction . 164

5.2 Space scaling algorithm by an arbitrary integer scale
factor . 166

5.2.1 Downscaling algorithms by an arbitrary scale factor . . . 167

5.2.2 Proposed downscaling approach 170

5.2.3 Algorithm . 176

5.3 Block-based motion re-estimation in the DCT-domain . 180

5.3.1 Linear least squares estimation 182

5.3.2 Least squares motion estimation 183

5.3.3 Least squares motion estimation in the DCT-domain . . . 185

5.4 Dynamic picture composition in the DCT-domain . . . 189

5.4.1 Proposed transcoder architecture 194

5.4.2 Frame scaling . 196

5.4.3 DCT-domain frame composition 198

5.4.4 Motion vector re-estimation 201

5.5 Conclusions . 204

References . 205

163

5. Dynamic Video Composition

5.1 Introduction

Besides the previously described family of stationary manipulations of precoded

video sequences, characterized by fixed insertion operations of one or more static

objects, other more complex operations are often required to manipulate and adapt

the video sequence that is being transmitted at a given instant. Among the several

possible operations that may be offered to the end-user, a particular set of video

compositing systems have become increasingly popular along the past few years,

to combine two or more video sequences in a single scene. However, contrary to

what was observed in the previous chapter for the static video compositing oper-

ations, these techniques, herein denoted by dynamic compositing schemes, require

the simultaneous processing and combination of the several, and possibly distinct,

encoding strategies that are adopted by the video sequences under processing. As

an example, one of the most challenging operations that is often required is the

adaptation of the temporal prediction schemes of the input sequences, in order to

provide an efficient encoding of the output video stream.

Hence, in the scope of this chapter, dynamic video composition is defined as a set

of techniques that provide the simultaneous processing and composition of several

non-stationary video objects. In particular, these objects may be characterized by

arbitrary changes on their texture component, from frame to frame, which impose

an individual processing of their own temporal prediction mechanisms. Moreover,

contrary to what was observed for the static video composition techniques, described

in the previous chapter, the video objects that are now considered are also charac-

terized by an arbitrary dimension but regular rectangular shape. Nevertheless, the

flexibility that is offered by these techniques does not require that such dimension is

necessary related to the fixed block or macroblock grid, adopted by the most recent

video standards.

With such characteristics and requisites in mind, this chapter will be focused

on the proposal of a set of particularly reliable and efficient processing operations,

intended to manipulate video sequences in the compressed-domain. The first of

these operations, presented in section 5.2, concerns the space-scaling of compressed

video sequences by an arbitrary integer scaling factor. The proposed approach is

based on an averaging and downsampling method, performed in a hybrid pixel-

transform domain, in order to minimize the introduction of any inherent distortion.

The proposed method also provides a minimization of the computational cost, by

avoiding spurious operations and by only performing those that actually contribute

to the evaluation of the output values.

164

5.1 Introduction

In section 5.3 it will be presented a new motion estimation algorithm that may

be implemented in the compressed DCT-domain. This algorithm provides an effi-

cient alternative to refine, or even re-compute, the set of motion vectors that are

required to implement the motion compensated prediction mechanism of the out-

put video sequence. The presented algorithm makes use of the DCT coefficients

obtained directly from the input video stream and is based on the application of an

iterative scheme that estimates the new motion vectors by applying a Least Squares

Estimation (LSE) technique.

These two important contributions are applied in the proposal of a new and

highly efficient video compositing architecture, that fully operates in the compressed

DCT-domain. This architecture will be presented in section 5.4 and directly oper-

ates with the partially decoded DCT coefficients of the involved video sequences,

thus potentially providing significant advantages in what concerns the output video

quality. Moreover, the presented approach relies on a careful treatment of the imple-

mented temporal prediction mechanism, by adopting the DCT-domain motion re-

estimation algorithm proposed in section 5.3. Contrary to other refinement schemes

previously proposed by other authors, this structure may consider arbitrary search

area dimensions to significantly reduce the resulting bit rate, thus increasing the

transmission or storage efficiency. Furthermore, contrary to other approaches, the

presented DCT-domain technique does not impose any limitation on the composi-

tion setup, allowing each foreground video sequence to be placed over any location

of the background video scene.

Along the description of the several techniques presented in this chapter, a par-

ticular attention will be devoted to properly tailor all the processing steps of these

compressed-domain algorithms, so that all operations are performed using the same

(N ×N) coefficients block structure that is received from the input video sequences

(usually, with N = 8). This characteristic is crucial to assure the conformance of

the involved operations with most image and video standards, and simultaneously

optimize the involved computational effort.

In addition, an optional and possible combination of the presented algorithms

with discarding techniques of the highest frequency DCT coefficients will also be

considered. These techniques provide a flexible and often required complexity scala-

bility feature, thus giving rise to an adaptable trade-off between the involved scalable

computational cost and the resulting video quality and bit rate, in order to meet

any system requirements.

165

5. Dynamic Video Composition

5.2 Space scaling algorithm by an arbitrary inte-

ger scale factor§

In section 3.3.3 it was presented a brief overview of the main space scaling tech-

niques that have been proposed over the past few years. As it was stated, the

characteristics of these algorithms do not always comply with the requisites of cur-

rent space-scaling transcoding systems. In particular, many such schemes are only

directly applied to scaling operations using a scale factor (SF) given by an integer

power of 2 (SF = 2, 4, 8, 16, etc.). Nevertheless, downscaling procedures using any

other arbitrary integer scaling factor are often required. As it was also previously

referred, in the last few years some proposals have arisen in order to implement these

algorithms for any integer scale factors [48, 72, 92, 102, 103]. However, although

these proposals provide good video quality for integer powers of 2 scaling ratios, their

performance significantly degrades when other scaling factors are applied. Moreover,

some of these algorithms do not allow the direct processing of pre-coded data using

the fixed (N ×N) pixels block structure (usually, with N = 8) that is adopted by

most digital image and video standards. Besides all these aspects, such transcoding

algorithms are often required to exhibit a high computational efficiency level, in or-

der to make it possible to execute them in real-time when implemented in a variety

of heterogenous target devices. Consequently, other feasible and reliable alternatives

have to be adopted, in order to obtain better quality performances for any arbitrary

scaling factors and to achieve the block-based organization found in most image and

video standards.

Meanwhile, some authors have distinguished the scaling algorithms in what con-

cerns their output domains [98]. While the input and output blocks of some proposed

algorithms are both defined in the DCT-domain, other approaches also process en-

coded input blocks (DCT-domain) but provide their output in the pixel-domain.

The processing of such output blocks can then either continue in the pixel-domain,

or an extra DCT computation module can be applied, in order to recover such out-

put into the DCT-domain. As a consequence, this latter kind of approach is often

referred to as a hybrid algorithm [98].

In this section, it will be presented the proposal of a reliable and very efficient

video downscaling method for any arbitrary integer scaling factor, with particu-

larly notable performances for scaling factors other than integer powers of 2. The

§Some portions of this section appeared in:

[90] - N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for any arbitrary integer
re-size video downscaling,” EURASIP Journal on Advances in Signal Processing, vol. 2007,
no. 57291, pp. 1–16, Sep. 2007.

166

5.2 Space scaling algorithm by an arbitrary integer scale factor

algorithm adopts an averaging and downsampling approach (see subsection B of sec-

tion 3.3.3 (page 95)) performed in a hybrid pixel-transform domain, in order to min-

imize the introduction of any inherent distortion. Moreover, the proposed method

also restricts the involved operations, to minimize the computational cost. In fact,

such approach allows to avoid spurious and useless computations, by only perform-

ing those that are really needed to obtain the output values. Furthermore, all the

involved steps are properly tailored, so that all operations are performed using the

received (N ×N) coefficient blocks structure, independently of the adopted scaling

factor (SF). This characteristic has never been proposed for this kind of algorithms

and is of extreme importance, to simultaneously guarantee the conformance with

most image and video standards and optimize the involved computational effort.

In addition, an optional and possible combination of the presented algorithm with

high order AC frequency DCT coefficients discarding techniques is also considered.

These techniques, usually adopted by DCT decimation algorithms (see subsection C

of section 3.3.3 (page 97)), confer a scalable computational cost to these downscaling

algorithms, providing an useful trade-off between the number of required operations

and the resulting video quality and bit rate.

5.2.1 Downscaling algorithms by an arbitrary scale factor

Besides the simplest half-scaling setups previously described in section 3.3.3,

many applications have arisen which require arbitrary non-integer scaling factors

(SF). From the digital signal processing point of view, an arbitrary-resize procedure

using a scaling factor SF = U/D (where U and D may take any non-null relative

prime integer values) can be accomplished by cascading an integer upscaling module

(by a factor U), followed by an integer downscaling module (by a factor D).

Dugad and Ahuja [16] have shown that by using their proposed DCT decima-

tion technique, the upscaling step can be efficiently implemented by padding with

zeros, at the high frequencies, the DCT coefficients of the original image sub-blocks,

in order to obtain the corresponding target (N ×N) DCT coefficients blocks of

the upscaled image. According to Dugad and Ahuja, since each up sampled block

will contain all the frequency content corresponding to its original sub-block, this

approach provides better interpolation results when compared with the usage of

bilinear interpolation algorithms.

However, as it will be shown in the following, the same does not always happen

in what concerns the implementation of the downscaling step using this approach.

In the last few years, proposals have arisen in order to implement DCT decimation

algorithms for any integer scale factor [48, 72, 73, 92, 102, 103]. However, not only

167

5. Dynamic Video Composition

are they directly influenced by the degradation effect resulting from the coefficient

discard, but they often suffer from computational inefficiency on their processing,

either by storing a large amount of data matrices [102] or by operating with large

matrices [72, 73, 92, 103]. One of such proposals was recently presented by Patil

et al. [73], who proposed a DCT-decimation approach based on simple matrix multi-

plications that processes each original DCT frame as a whole, without fragmenting

the involved processing by the several macroblocks. However, in practical imple-

mentations such approach may lead to serious degradations in what concerns the

processing efficiency. The manipulation of such wide matrices may hardly be effi-

ciently carried out in most current processing systems, namely, due to the inherently

high cache miss-rate that will be necessarily involved. This can result in an even

more serious problem when the processing of high resolution video sequences is con-

sidered. By using an alternative and somewhat simpler approach, Lee et al. [48]

proposed another downscaling technique by generalizing the previously described

DCT-decimation approach, in order to implement the space scaling with any arbi-

trary integer scaling factor (SF), other than integer powers of 2 (e.g. 3, 5, 7, etc).

Their methodology is illustrated in fig. 5.1 and can be described as follows:

1. For each original block of (N × N) pixels Bi,j, retain the low-frequency

(KSF
×KSF

) DCT coefficients B
′

i,j, thus discarding the remaining AC fre-

quency DCT coefficients, with KSF
defined as: KSF

= ⌈N/SF⌉;

2. Inverse transform each sub-block B
′

i,j to the pixel domain, using b
′

i,j =

TT
KSF

B
′

i,jTKSF
, where TKSF

is the KSF
-point DCT kernel matrix;

3. Concatenate (SF × SF) sub-blocks, in order to form an (NSF
×NSF

) pixels

block b
′

, with NSF
defined as NSF

= SF .KSF
:

b
′

=

b

′

0,0 · · · b
′

0,1
...

. . .
...

b
′

1,0 · · · b
′

1,1

(NSF
×NSF

)

(5.1)

4. Compute B
′

= DCT
(
b

′
)

= TNSF
b

′

TT
NSF

where TNSF
is the NSF

-point DCT

kernel matrix;

5. Extract the (N ×N) low frequency DCT coefficients of B
′

(e.g.: N = 8), in

order to obtain the (N ×N) DCT-domain scaled block B̂.

Although this methodology is often claimed to provide better performance re-

sults than bilinear downscaling approaches in what concerns the obtained video

168

5.2 Space scaling algorithm by an arbitrary integer scale factor

KS N

NS = S .KS

Discarded DCT
coefficients
(pre-processing)

N

IDCT DCT

Discarded DCT
coefficients
(post-processing)

F

F FF

Figure 5.1: Discarded DCT coefficients in arbitrary downscale DCT decimation
algorithms (example for SF = 3).

quality [16, 98], it can be shown that such statement is not always true. In particu-

lar, when these generalized DCT decimation downscaling schemes are applied using

a scaling factor other than an integer power of 2, it can be shown that the obtained

video quality is clearly worse than the provided by the previously described pixel

averaging approaches. The reason for the introduction of such degradation comes

as a result of the additional discarding procedure of the DCT coefficients, that is

referred in step 5 and illustrated in fig. 5.1. Contrary to the first discarding step

(performed in step 1), the second discard of high order AC frequency DCT coeffi-

cients only occurs for scaling factors other than integer powers of 2 and introduces

serious blocky artifacts, mainly in image areas with complex textured regions. To

better understand such phenomenon, it is presented in table 5.1 the number of DCT

coefficients that is considered along the implementation of this algorithm. As it can

be seen, the number of discarded coefficients during the last processing step may

be rather significative. The corresponding degradation effect will be thoroughly

assessed in section 6.3.1.

Table 5.1: Number of DCT coefficients considered by Lee et al.’s [48] arbitrary
downscaling algorithm.

Scaling factor SF 2 3 4 5 6 7 8

Number of preserved coeffi-
cients in each direction dur-
ing pre-processing

KSF
= ⌈N/SF⌉ 4 3 2 2 2 2 1

Reconstructed downscaled
block size

NSF
= SF .KSF

8 9 8 10 12 14 8

Number of discarded coeffi-
cients in each direction dur-
ing post-processing

NSF
−N 0 1 0 2 4 6 0

169

5. Dynamic Video Composition

To overcome the introduction of such degradation by downscaling algorithms

using any arbitrary integer scaling factor, a different approach will be proposed

in the next subsection, based on an efficient implementation of a pixel averaging

downscaling technique.

5.2.2 Proposed downscaling approach

Considering an arbitrary integer scaling factor SF =
(
SFx,SF y

)
∈ N2, where

SFx and SF y are the horizontal and the vertical downscaling ratios, respectively, the

purpose of the presented downscaling algorithm is to compute the (N ×N) DCT

encoded block corresponding to a set of
(
SFx × SF y

)
original blocks, each one with

(N ×N) DCT coefficients.

According to the pixel averaging approach previously described in subsection B

of section 3.3.3 (page 95), a generalized arbitrary integer downscaling procedure can

be formulated as follows: by denoting b as the pixels area corresponding to the set

of
(
SFx × SF y

)
original blocks bi,j, each with (N ×N) pixels,

b =

[b0,0] [b0,1] · · · [b0,SFx−1]
[b1,0] [b1,1] · · · [b1,SFx−1]

...
...

. . .
...[

bSFy−1,0

] [
bSFy−1,1

]
· · ·

[
bSFy−1,SFx−1

]

 (5.2)

the downscaled (N ×N) pixels block (b̂) can be obtained by multiplying b by the

downsampling and filtering matrices fSFx
and fSFy

as follows:

b̂ =

(
1

SFxSF y

)
× fSFy

·b · fT
SFx

, (5.3)

where fSF q
is a

(
N ×NSF q

)
constant matrix with the following structure:

fSFq
(i, j) =

{
1 , for i =

⌊
j

SF q

⌋
and j ∈ {0, . . . , (NSF q − 1)},

0 , otherwise.
(5.4)

These matrices are used to decimate the input image along the two dimensions. To

simplify the description, from now on it will be adopted a common scaling factor

for both the horizontal and vertical directions (SF = SFx = SF y). However, such

simplification does not introduce any restriction nor any limitation in the described

algorithm. As an example, the f3 filtering matrix (SF = 3), considering N = 5, is

given by eq. 5.5. This matrix may be used to perform image downscaling by a factor

of 3: each set of (3× 3) blocks, each one composed by (5× 5) pixels, is downsampled

170

5.2 Space scaling algorithm by an arbitrary integer scale factor

in order to obtain a single (5× 5) pixels block.

f3 =

1 1 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
1 0 0 0 0
0 1 1 1 0
0 0 0 0 1
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 1 1 1

︸ ︷︷ ︸
f0
3

︸ ︷︷ ︸
f1
3

︸ ︷︷ ︸
f2
3

(5.5)

However, the computation of eq. 5.3 using the filtering matrices defined in eq. 5.4

is usually difficult to handle, since it may involve the manipulation of large matrices.

Furthermore, although these filtering matrices may seem reasonably sparse in the

pixel-domain, that does not happen when such filtering procedure is transposed

into the DCT-domain. Therefore, a significant amount of data, corresponding to

the pre-computed filtering matrices, has to be stored. The computation of eq. 5.3 is

even harder to accomplish if we take into account that the (N ×N) block structure

adopted in image and video coding requires the several involved operations to be

performed directly on blocks with (N ×N) elements.

To circumvent all these issues, a different and more efficient approach is now

proposed. Firstly, by splitting the fSF
matrix into SF sub-matrices f0

SF
, f1

SF
, . . .fSF−1

SF
,

each with (N ×N) elements, the computation of eq. 5.3 can be decomposed in a

series of product terms and take a form entirely similar to eq. 3.87:

b̂ =
1

SF 2

(
f0
SF

b00 f0
SF

T
+ f0

SF
b01 f1

SF

T
+ · · ·+ f

(SF−1)
SF

b(SF−1)(SF−1) f
(SF−1)
SF

T
)

(5.6)

=
1

SF 2

SF−1∑

i=0

SF−1∑

j=0

f i
SF
·bij · f j

SF

T
, (5.7)

where bij are the several input blocks involved in the downscaling operation, directly

obtained from the input video sequence. In the bottom of eq. 5.5 it was represented

the set of three (N ×N) fx
SF

sub-matrices, for the case with SF = 3 and N = 5,

with x ∈ {0, . . . , (SF − 1)}.
Secondly, the computation of these terms can be greatly simplified if the sparse

nature and the high number of zeros of each fx
SF

matrix are taken into account. In

particular, it can be shown that each f i
SF
·bij · f j

SF

T
term only contributes to the

computation of a restricted sub-set of pixels of the subsampled block (b̂), within an

171

5. Dynamic Video Composition

area delimited by lines (lmin(i) : lmax(i)) and by columns (cmin(j) : cmax(j)), where:

lmin(i) =

⌊
i ∗N
SF

⌋
and lmax(i) =

⌊
i ∗N + (N − 1)

SF

⌋
(5.8)

cmin(j) =

⌊
j ∗N
SF

⌋
and cmax(j) =

⌊
j ∗N + (N − 1)

SF

⌋
(5.9)

with i, j = 0 . . . (SF − 1). By denoting the contribution of each block bi,j to the

sampled pixels block b̂ by the (nl(i)× nc(j)) matrix pi,j, one has:

pi,j = f i
SF
·bi,j · f j

SF

T

︸ ︷︷ ︸
nl(i)×nc(j) matrix

(5.10)

The terms f i
SF

and f j
SF

are (nl(i)×N) and (nc(j)×N) matrices, respectively, with

nl(i) = lmax(i)− lmin(i) + 1 (5.11)

and

nc(j) = cmax(j)− cmin(j) + 1, (5.12)

that are obtained from f i
SF

and f j
SF

by only considering the lines with non-null

elements (see the dashed boxes in eq. 5.5).

The resulting (N ×N) pixels sampled block (b̂) is obtained by summing up the

contributions of all these terms:

b̂ =
1

SF 2 ·
(

SF−1∑

i=0

SF−1∑

j=0

pi,j

)
(5.13)

where:

pi,j (l, c) =

{
pi,j (l, c) , for lmin(i) ≤ l ≤ lmax(i) and cmin(j) ≤ c ≤ cmax(j)

0 , otherwise

(5.14)

with 0 ≤ l, c ≤ (N − 1). Such decomposition allows to greatly reduce the overall

number of computations, since most of the null terms of the fSF
matrices are no

longer considered.

It is also worth noting that some pixels of the sampled block (b̂) may be obtained

from several of these product-terms. Such situation will occur whenever the set of

SF non-null elements of a given line of the fSF
matrix is split into two distinct

fx
SF

sub-matrices (see eq. 5.5). In such case, the value of the output pixel will be

the sum of the mutual contribution of adjacent bi,j (N ×N) pixels blocks. One

example of such scenario can be observed in the previously described case with

172

5.2 Space scaling algorithm by an arbitrary integer scale factor

SF = 3 and N = 5 (see f3 matrix in eq. 5.5), illustrated in fig. 5.2. While the pixels

of the first row of the sampled (N ×N) output block are obtained with only the

subset of original blocks {b00,b01,b02}, the pixels of the second row are the result of

the mutual contribution of the set of blocks {b00,b01,b02,b10,b11,b12}. The same

situation can be verified in what concerns the columns of the output block: while the

first column is obtained with blocks {b00,b10,b20}, the second column is computed

with blocks {bi0,bi1}, with i ∈ {0, . . . , (SF − 1)}.
A particular case also occurs whenever the original frame dimension, in any of its

directions, is not an integer multiple of SF . In such case, the pixels of the last column

(or line) cannot be obtained from SF 2 input pixels, since only a subset of the original

pixels remains to be considered in that line or column. To overcome such situation,

the corresponding averaging weights have to be adjusted to the available number of

pixels at the end of that line
(
Wc − SF .

⌊
Wc

SF

⌋)
or column

(
Wl − SF .

⌊
Wl

SF

⌋)
, where

Wc and Wl denote the number of columns and lines of the original image. As an

example, the last sampled pixel of a given line should be computed as:

b̂

(
: ,

⌊
Wc

SF

⌋)
=

1

SF
(
Wc − SF .

⌊
Wc

SF

⌋) × p
(

: ,

⌊
Wc

SF

⌋)
(5.15)

This adjustment can be compensated a posteriori, by multiplying the pixels of the

last column of the sampled block (b̂) by:

b̂

(
: ,

⌊
Wc

SF

⌋)
=

 SF
Wc − SF .

⌊
Wc

SF

⌋

× b̂
(

: ,

⌊
Wc

SF

⌋)
(5.16)

b : (N x N) output
pixels block

pi ,j : interference area
of input block bi ,j

b0,2

^b(0,0)

p1,0

p0,2

b(2,4)^b(2,4)^

b : (N x N) input
pixels block

^

Figure 5.2: Contributions of the several blocks of the original image (pi,j) to the

final value of each pixel of the sampled block b̂ (SF = 3, N = 5).

173

5. Dynamic Video Composition

The same applies for the vertical direction of the sampled image.

A - Hybrid downscaling algorithm

As it was referred in section 2.2.5, since the DCT is an unitary orthonormal

transform, it is distributive to matrix multiplication. Consequently, the described

scaling procedure can be directly performed in the DCT-domain and still provide

the previously presented computational advantages. By considering the matrix de-

composition formulation to compute the DCT coefficients of a given pixels block x,

X = T ·x ·TT, eq. 5.13 can be directly computed in the DCT-domain as:

B̂ = T · b̂ ·TT =
1

SF 2 ·T ·
(

SF−1∑

i=0

SF−1∑

j=0

pi,j

)
·TT (5.17)

The computation of this expression may be greatly simplified, provided that

the definition of the pi,j matrices, presented in eq. 5.14, is taken into account. In

particular, the computation of its (nl(i)× nc(j)) non-null elements (pi,j) can be

carried out as follows:

pi,j = f i
SF
·bi,j · f j

SF

T

(5.18)

= f i
SF
·TT ·Bi,j ·T · f j

SF

T

(5.19)

By denoting the product f i
SF
·TT by the (nl(i)×N) matrix Fi

SF
and the product

f j
SF
·TT by the (nc(j)×N) matrix Fj

SF
, the above expression can be represented as:

pi,j = Fi
SF
·Bi,j ·Fj

SF

T

︸ ︷︷ ︸
nl(i)×nc(j) matrix

(5.20)

where Bi,j is the (N ×N) DCT coefficients block directly obtained from the partially

decoded bit stream. Since all the Fx
SF

terms (with 0 ≤ x ≤ SF − 1) are constant

matrices, they can be pre-computed and stored in memory.

Furthermore, the overall computational cost of the described procedure can still

be further reduced if the usage of partial DCT information [51, 54, 57] techniques

is considered, as it will be shown in the following subsections.

B - DCT-domain pre-filtering for computational cost reduction

The advantages of the previously described hybrid downscaling scheme in what

concerns the computational cost can be regarded as the result of an efficient im-

plementation of the following cascaded processing steps: inverse DCT, low-pass

filtering (averaging), downsampling and direct DCT (see fig. 5.3). However, the

174

5.2 Space scaling algorithm by an arbitrary integer scale factor

HYBRID PIXEL /DCT DOMAIN MATRIX COMPOSITION

(a) Proposed procedure.

INVERSE

DCT
LP

FILTERING

SAMPLING

S
DIRECT

DCT
PRE

FILTERING

(b) Equivalent approach.

Figure 5.3: DCT-domain frame scaling procedure.

efficiency of this procedure can be further improved by noting that the signal com-

ponent corresponding to most of the high order AC frequency DCT coefficients,

obtained from the first implicit processing step (inverse DCT), is almost completely

discarded as the result of the second step (low-pass filtering). Hence, the overall

computational cost of this scheme can be significantly reduced by introducing an

optional low-pass pre-filtering stage in the inverse DCT processing step, which is

directly implemented by only considering a sub-set of the original DCT coefficients.

By denoting K as the maximum bandwidth of this low-pass pre-filter, given by the

highest line/column index of the considered DCT coefficients, only the coefficients

B̃i,j (m,n) = {Bi,j (m,n) : m,n ≤ K} will be used for the inverse DCT operation.

In practice, this pre-filtering can be formulated as follows:

B̃i,j =

[
[I]K×K 0

0 0

]
·Bi,j ·

[
[I]K×K 0

0 0

]T

(5.21)

=

[
[Bi,j]K×K

0
0 0

]
(5.22)

where [I]K×K is the (K ×K) identity matrix corresponding to the considered pre-

filter and [Bi,j]K×K
is a (K ×K) sub-matrix of Bi,j, obtained by extracting the

(K ×K) lower-order DCT coefficients. Thus, the representative contribution of

Bi,j to the output pixels pi,j (see eq. 5.20) can be obtained as:

[pi,j]nl(i)×nc(j)
=
[
Fi

SF

]

nl(i)×K
·
[
B̃i,j

]

K×K
·
[
Fj

SF

T
]

K×nc(j)

. (5.23)

By adopting this scheme, the proposed procedure provides a full control over

the final accuracy level towards a perfect fulfillment of any real-time requirement,

thus providing an useful trade-off between speed and accuracy. Furthermore, by

considering that the Bi,j matrices usually have most of their high order AC frequency

coefficients equal to zero, and provided that K is not too small, the distortion

resulting from this scheme is often negligible, as it will be shown in section 6.3.1.

175

5. Dynamic Video Composition

5.2.3 Algorithm

In fig. 5.4 it is formally stated the proposed hybrid downscaling algorithm, where

(linS, colS) are the block coordinates within the target (scaled) image; (l, c) are the

coordinates within the set of SF 2 blocks being sampled; and lmin, lmax, cmin and

cmax, defined in eqs. 5.8 and 5.9, respectively, are the bounding coordinates of the

target block area affected by each iteration.

I - Initialization:

• Compute and store in memory the set of Fx
SF

matrices;

II - Computation:
for linS=0 to

(
Wl

SF
− 1
)
, linS+=N do

for colS=0 to

(
Wc

SF
− 1
)
, colS+=N do

for l=0 to (SF − 1) do

for c=0 to (SF − 1) do

[pl,c]nl×nc
=

[
Fl
SF

]

nl×K
·
[
B̃l,c

]

K×K
·
[
Fc
SF

T
]

K×nc

b̂ (lmin : lmax, cmin : cmax) +=
1

SF
2 [pi,j]nl×nc

end for

end for
[
B̂
]
N×N

=
[
T
]
N×N

·
[
b̂
]
N×N

·
[
TT
]
N×N

end for

end for

Figure 5.4: Proposed hybrid pixel/transform-domain scaling algorithm.

To evaluate the computational cost of the proposed algorithm, the number of

multiplications (M) required to process each of the (Wc ×Wl) pixels of the original

frame was considered as the main figure of merit. Furthermore, two additional

downscaling algorithms were also considered, to assess the computational advantages

provided by the proposed algorithm:

• Cascaded Pixel Averaging Transcoder (CPAT);

• DCT Decimation Transcoder (DDT).

By adopting the same complexity metric, their computational costs were evaluated

and compared.

Cascaded Pixel Averaging Transcoder (CPAT)

In the Cascaded Pixel Averaging Transcoder, shown in fig. 5.3(b), the filtering

and downsampling processing steps are entirely carried-out in the pixel-domain,

176

5.2 Space scaling algorithm by an arbitrary integer scale factor

by firstly decoding the whole set of DCT coefficients received from the incoming

video stream. Most of the operations that are required to process each scaled block

(B̂) are performed in the computation of the SF 2 IDCTs, each one requiring 2N3

multiplications, since a single multiplication is required to compute the average of

each set of (SF × SF) pixels:

M (CPAT) =
1

WlWc

WlWc

N2
· 2N3

︸ ︷︷ ︸
IDCTs

+
WlWc

SF 2 · 1
︸ ︷︷ ︸
averaging

+
WlWc

SF 2N2
· 2N3

︸ ︷︷ ︸
DCTs

 (5.24)

By considering that 1
SF

2 ≪ 1, it can be approximately formulated as:

M (CPAT) ≈ 2N. (5.25)

DCT Decimation Transcoder (DDT)

As it was described in section 5.2.1 about the DCT Decimation Transcoder with

arbitrary integer scaling factors, formulated by Lee et al. [48], most operations that

are required to process each scaled block (B̂) are performed in the computation of

the SF 2 IDCTs, each one requiring 2K3 multiplications (with K =
⌈

N
SF

⌉
), and of

the final (KSF)-point DCT:

M (DDT) =
1

WlWc

WlWc

N2
2K3

︸ ︷︷ ︸
IDCTs

+
WlWc

SF 2N2
2 (K.SF)3

︸ ︷︷ ︸
DCT

 (5.26)

=
2K3

N2
(1 + SF) (5.27)

This computational metric can be approximately formulated as:

M (DDT) ≈ 2K3SF
N2

. (5.28)

Hybrid Downscaling Transcoder (HDT)

To estimate the overall computational cost of the proposed Hybrid Downscaling

Transcoder, let us first evaluate the cost of computing each pi,j matrix:

M (pi,j) = nl(i).K.K + nl(i).K.nc(j), (5.29)

177

5. Dynamic Video Composition

where nl(i) and nc(j) were defined in eqs. 5.11 and 5.12. Hence, it follows that:

M (HDT) =
1

WlWc

WlWc

SF 2N2

SF−1∑

i=0

SF−1∑

j=0

M (pi,j)

︸ ︷︷ ︸
IDCTs + averaging + scaling

+ 2N3

︸︷︷︸
DCTs

(5.30)

where:

SF−1∑

i=0

SF−1∑

j=0

M (pi,j) = K2SF
SF−1∑

i=0

nl(i) +K

(
SF−1∑

i=0

nl(i)

)

SF−1∑

j=0

nc(j)

 . (5.31)

By generically defining

nq =

⌊
qN + (N − 1)

SF

⌋
−
⌊
qN

SF

⌋
+ 1 (5.32)

as the number of lines of each f q
SF

matrix, it can be shown that:

N ≤
SF−1∑

q=0

nq < SF
(⌊

N

SF

⌋
+ 2

)
, (5.33)

where the lower limit of the previous expression corresponds to the case when N

is an integer multiple of SF . On the other hand, the upper limit corresponds to a

hypothetical worst case situation, when the set of SF non-null elements of both the

upper and the lower lines of each f q
SF

matrix are split across different f q
SF

matrices

(see eq. 5.5). Thus:

SF−1∑

i=0

SF−1∑

j=0

M (pi,j) < K2SF 2

(⌊
N

SF

⌋
+ 2

)
+KSF 2

(⌊
N

SF

⌋
+ 2

)2

. (5.34)

By using the above relation, as well as eq. 5.30, one can obtain:

M (HDT) <
1

SF 2N2

[
K2SF 2

(⌊
N

SF

⌋
+ 2

)
+KSF 2

(⌊
N

SF

⌋
+ 2

)2

+ 2N3

]
,

(5.35)

which can be approximately formulated as:

M (HDT) ≈ KNSF (K + 4) + 2
(
N3 +K2SF 2

)

N2SF 2 . (5.36)

Comparison

In table 5.2 it is presented the obtained comparison in what concerns the involved

computational cost, both in terms of the adopted scaling factor (SF) and of the

178

5.2 Space scaling algorithm by an arbitrary integer scale factor

Table 5.2: Comparison of the several considered downscaling approaches in what
concerns the involved computational cost.

Algorithm DCT coeffs. M Comparison

CPAT N 2N M(HDT)
M(CPAT N)

∝ 1
SF

DDT K =
⌈

N
SF

⌉
2K3SF

N2

M(HDT)
M(DDT)

∝ 1
SF

2

HDT K ∈ [1, N]
KNSF(K+4)+2(N3+K2SF

2)
N2SF

2 1

considered number of DCT coefficients (K). The presented comparison relations

were extracted by not considering the impact of the discarded constant factors in

eqs. 5.24, 5.27 and 5.35.

M (HDT)

M (CPAT)
≈ K2SF + 2N2

2N2SF 2 ∝ 1

SF
(5.37)

M (HDT)

M (DDT)
≈ K

N

1

SF 2 ∝

1
SF

2 for K = N

1
SF

for K = N
SF

(5.38)

This comparison clearly evidences the advantages in what concerns the computa-

tional cost provided by the proposed algorithm, when compared with other consid-

ered approaches and, in particular, with the DCT decimation transcoder (DDT).

Such advantages are even more significant when higher scaling factors are considered,

as it will be demonstrated in section 6.3.1.

Before concluding this presentation, it is worth noting that although the pre-

sented comparative study was entirely carried out by considering the usage of the

matrix decomposition algorithm to compute the DCT coefficients (X) of a given pix-

els block x: X = T ·x ·TT, similar results could equally be obtained if other faster

DCT computation algorithms (such as [14]) were adopted in the pixel-domain archi-

tectures that were considered in this evaluation. It can be shown that, although the

resulting complexity ratios would be slightly different from those presented above,

they would still be entirely favorable to the proposed hybrid pixel/transform-domain

scaling scheme.

179

5. Dynamic Video Composition

5.3 Block-based motion re-estimation in the

DCT-domain§

As it was mentioned in section 3.3.5, the possibility to implement ME proce-

dures in the compressed-domain has deserved a significant interest in the last few

years. Most ME techniques that have been proposed up until now for compressed-

domain video transcoding systems confine their procedure to a simple re-usage and

composition of the MVs already decoded from the received video stream. Such

procedure is accomplished by applying one of the several composition schemes de-

scribed in section 3.3.4, such as the simple mean, the weighted average, the median,

etc. [12, 52, 108]. However, most of these techniques often lead to non-optimal

motion compensated prediction results, due to the mismatch between the predic-

tion and residual components. Consequently, they often require a post-processing

re-estimation stage to refine the composited MVs. In practice, it is often observed

that a refinement procedure around the composited MV within a range of a couple

of pixels may often offer similar performance levels as those obtained with a full-

search motion re-estimation [95]. Moreover, few algorithms have been presented to

estimate entirely new MVs in cases of complete absence of any precoded MV in the

input video sequences (e.g. INTRA to INTER frame conversion, frame dropping

video time scaling [115]) or when those MVs do not have any correlation with the

motion activity in the new encoded frame (e.g. video composition [9, 50, 67], logo

insertion [88], etc.).

To circumvent such limitation, some proposals have been presented to perform

motion estimation directly in the DCT-domain, as it was described in section 3.3.5

and summarized in the following paragraphs:

• Pixel/DCT-domain cascaded transcoders, described in subsection A of sec-

tion 3.3.5 (page 107) - These structures re-use the MVs extracted from the

incoming bit stream and obtain a prediction of the new MV by using one

of the several possible composition schemes described in section 3.3.4. An

optimized MV can then be obtained by performing a new block-matching

motion-estimation procedure. The advantage of these schemes is their ability

to provide a video quality level that is comparable to the one that could be

obtained by going through a new full-search ME procedure, but using consid-

§Some portions of this section appeared in:

[89] - N. Roma and L. Sousa, “Least squares motion estimation algorithm in the compressed DCT
domain for H.26x/MPEG-x video sequences,” in Proceedings of the IEEE International
Conference on Advanced Video and Signal-Based Surveillance (AVSS). Como - Italy:
IEEE, Sep. 2005, pp. 576–581.

180

5.3 Block-based motion re-estimation in the DCT-domain

erably less computations.

• Convolution based transcoders, described in subsection B of section 3.3.5

(page 109) - These structures are based on the convolution-multiplication re-

lationship for the discrete cosine and sine transforms. By providing a feasible

alternative to compute the convolution of two shifted images, this technique

makes it possible to easily determine the position of the peak within the con-

volution result, which will indicate the magnitude of the disparity of the two

considered images. However, this symmetric convolution approach presents

one important limitation, since it only provides useful results for integral dis-

parities of zero or one. Consequently, the poor accuracy of the results that it

provides makes it not suitable for current video transcoding applications.

• Least squares based transcoders, described in subsection C of section 3.3.5

(page 112) - These structures, which were first proposed by Reeves [83], were

originally applied in photogrammetric techniques for image registration of

JPEG compressed aerial photos and tried to apply matching techniques using

the convolution in the DCT-domain. Unfortunately, the obtained experimen-

tal results demonstrated that not only does this methodology present a poor

precision level in the obtained values, but it also suffers from a sign ambiguity

in the disparity result.

• DCT pseudo-phases based transcoders, described in subsection D of sec-

tion 3.3.5 (page 113) - These structures were first proposed by Koc and Liu

[41] and are based on the application of the DCT pseudo-phases techniques.

Such techniques employ the sinusoidal orthogonal principle to extract the shift

information from the pseudo-phases hidden in the 2-D DCT coefficients of the

second kind (DCCT-IIe), decoded from the received video stream. However,

as it was already referred, this algorithm presents some important drawbacks

that significantly difficult its usage in practical transcoding systems: not only

does it involve a significant computational cost, but it also makes use of other

types of the discrete sine and cosine transforms of the processed blocks that

usually cannot be directly obtained from the video stream. In fact, not only

does it require the computation of the discrete cosine transform of the first

kind (DCCT-I) of the blocks under processing, but it also needs to compute

the four variations of the discrete sine/cosine trigonometric transforms of the

second kind: DCCT-II, DCST-II, DSCT-II and DSST-II. Moreover, all these

2D transformations must be computed for an image area corresponding to the

macroblock under processing, which implies a further computational effort in

181

5. Dynamic Video Composition

order to calculate the coefficients obtained from the concatenation of the four

involved decoded blocks.

Consequently, a different approach is now presented in this section to perform

the estimation of new MVs using the DCT coefficients directly obtained from a video

stream. The proposed algorithm is based on an iterative scheme that estimates the

new MVs by applying a Least Squares Estimation (LSE) technique and following

an approach somewhat similar to the one frequently adopted in image registration

procedures [83]. Moreover, to reduce its computational effort, the algorithm may

consider only an arbitrary subset of non-null DCT coefficients, by following an ap-

proach entirely similar to the partial DCT information technique [51], also adopted

in the previously proposed spatial downscale algorithm, presented in subsection B

of section 5.2.2 (page 174).

5.3.1 Linear least squares estimation

The LSE method is frequently used to fit a set of observed points to a given

theoretical model, defined by a set of adjustable parameters. One of the most

popular applications of this method is found in linear regression, to fit a set of M

data points (xi, yi) to a straight-line model:

y(x) = y(x; a, b) = a + bx+ n(x), (5.39)

where n(x) is the noise introduced by the sampling procedure.

The solution of this optimization process is often found by minimizing a merit

function that estimates the error between the theoretical model and the observed

samples. When n(x) is Gaussian, the obtained solution is optimal and is computed

by minimizing:

ε2(a, b) =

M∑

i=1

(yi − a− bxi)
2 (5.40)

At this minimum, the derivatives of ε2(a, b) with respect to a and b will vanish:

∂ε2(a, b)

∂a
= −2

M∑

i=1

(yi − a− bxi) = 0 (5.41)

∂ε2(a, b)

∂b
= −2

M∑

i=1

xi (yi − a− bxi) = 0 (5.42)

and the optimal values for the parameters a and b can be found by solving a linear

system of equations.

182

5.3 Block-based motion re-estimation in the DCT-domain

Models like this, where there is a linear function in the estimated parameters,

are denoted by linear models. On the other hand, when the models are not linear

in the parameters, the solution can not be found by simply solving a linear system

of equations. In such cases, the model is often denoted by:

y = f(x;λ) + n(x), (5.43)

where f(x;λ) is a known function, that is non-linear in the parameter λ. The least

squares criterion for these cases becomes:

ε2(λ) =

M∑

i=1

(yi − f(xi, λ))2 . (5.44)

By minimizing the derivatives of ε2 with respect to the parameters λj , one obtains:

∂ε2(λ)

∂λj

= 0 (5.45)

⇔ −2

M∑

i=1

(yi − f(xi, λ))
∂f(xi, λ)

∂λj

∣∣∣∣
λj=λj

= 0 (5.46)

Since f(x, λ) is non-linear in the parameter λj , these equations are usually quite

difficult to solve. In some non-linear models, like this, a Taylor series expansion

is often used to approximate the non-linear regression model to a simpler model

defined with linear terms. The linear LSE method is then applied to estimate the

model parameters.

5.3.2 Least squares motion estimation

The ME approach used in video coding has a lot in common with the non-

linear LSE technique described above. The main objective of such procedure is

to find the best predicting macroblock in a search region defined in a reference

image s(x1, x2), that best matches the macroblock of the current image r(x1, x2)

under processing. Since most video standards restrict this displacement to a simple

translational model, the output of this algorithm will be a motion vector v = (v1, v2)

that defines the distance between the macroblock in the current image r(x1, x2) and

the best predicting macroblock in the reference image s(x1 + v1, x2 + v2).

However, although this translational model can be described by a simple linear

equation:

y = x + v (5.47)

183

5. Dynamic Video Composition

the procedure to find the best motion vector associated to all pixels of a given mac-

roblock is highly non-linear. Nevertheless, the non-linear LSE model, as described

in eq. 5.43, proves to be quite suitable to be adopted and applied to the current and

reference image macroblocks:

r(x1, x2) ≃ s(x1 + v1, x2 + v2). (5.48)

By decomposing this expression in a first-order Taylor series expansion:

r(x1, x2) ≃ s(x1 + v0
1, x2 + v0

2) +
2∑

n=1

∂s

∂vn

∣∣∣∣
v=v0

(
vn − v0

n

)
(5.49)

≃ s(x1 + v0
1, x2 + v0

2) +
∂s

∂v1

∣∣∣∣
v=v0

(
v1 − v0

1

)
+

∂s

∂v2

∣∣∣∣
v=v0

(
v2 − v0

2

)
, (5.50)

the desired displacement parameter v can be estimated by following an iterative pro-

cedure and by computing the several increments dvi = vi−vi−1, where v0 = (v0
1, v

0
2) is

a preliminary prediction of the desired motion vector. As it was previously referred,

to accelerate this iterative procedure, an initial MV prediction can be obtained

by compositing the MVs decoded from the received video sequences. Nevertheless,

whenever such prediction cannot be obtained, a null motion vector v0 = (0, 0) should

be used for this initial estimate.

r(x1, x2) ≃ s(x1 + vi
1, x2 + vi

2) +
∂s

∂v1

∣∣∣∣
v=vi−1

dvi
1 +

∂s

∂v2

∣∣∣∣
v=vi−1

dvi
2 (5.51)

The best matching macroblock is obtained by minimizing the prediction error

e(x1, x2):

e(x1, x2) = r(x1, x2)− s(x1 + vi
1, x2 + vi

2) ≃
∂s

∂v1

∣∣∣∣
v=vi−1

dvi
1 +

∂s

∂v2

∣∣∣∣
v=vi−1

dvi
2

(5.52)

This equation can be represented as a linear system with M equations and 2

unknowns (dvi
1 and dvi

2), where M denotes the number of considered samples:

e = js ·dvi (5.53)

In this equation, the vector e denotes a (M × 1) matrix obtained by re-arranging

the columns of the difference matrix e = r− s:

e =

...
r(xl, xc)− s(xl + vi

1, xc + vi
2)

...

M×1

(5.54)

184

5.3 Block-based motion re-estimation in the DCT-domain

On the other hand, js is a (M × 2) Jacobian matrix whose columns contain the

partial derivatives of s disposed in major column order:

js =

...
...

∂s
∂v1

∂s
∂v2

...
...

M×2

(5.55)

and dv is the desired partial displacement matrix:

dvi =

[
dvi

1

dvi
2

]

2×1

. (5.56)

Hence, eq. 5.53 can be solved by simple algebraic manipulation:

e = js ·dvi (5.57)

⇔ js
T · e = js

T · js ·dvi (5.58)

⇔ dvi =
(
js

T · js
)−1 · jsT · e (5.59)

At the end of each iteration, the obtained displacement v is updated:

vi = vi−1 + dvi and a new displaced image area s is obtained by performing a

motion compensation and an interpolation procedures: si(x1 + vi
1, x2 + vi

2). The

algorithm is then repeated by computing the value of ∂s
∂v

∣∣
v=vi; s=si.

This iterative process will continue until an arbitrary stop condition is met. As

an example:

‖vi − vi−1‖ < δ (5.60)

for an arbitrarily small δ value.

5.3.3 Least squares motion estimation in the DCT-domain

By recalling the definition of the discrete cosine transform of a given signal a as

A = DCT(a) = T ·a ·TT, where:

T , T (m, i) =

√
2

N
ξ (m) cos

(
m
(
i+ 1

2

)
π

N

)
, (5.61)

and ξ (m) was defined in eq. 2.13, the described ME algorithm can be easily im-

plemented directly in the compressed DCT-domain if one takes into account the

orthonormal properties of the DCT:

T = T∗; T.TT = T.T−1 = I ⇒ T−1 = TT (5.62)

185

5. Dynamic Video Composition

In this case, eq. 5.52 will become:

E(k1, k2) = R(k1, k2)− S(k1, k2) ≃
∂S

∂v1
dvi

1 +
∂S

∂v2
dvi

2 (5.63)

⇔ E = Js ·dvi (5.64)

⇔ dvi =
(
Js

T ·Js

)−1 ·Js
T ·E (5.65)

where E = DCT(e) is a (M × 1) vector obtained by re-arranging the columns of the

residual matrix in the transform-domain:

E =

...
R(k1, k2)− S(k1, k2)

...

M×1

. (5.66)

As before, Js is a (M × 2) matrix whose columns contain the partial derivatives of

S disposed in column form:

Js =

...
...

∂S
∂v1

∂S
∂v2

...
...

M×2

(5.67)

and dv is the desired displacement matrix:

dvi =

[
dvi

1

dvi
2

]

2×1

. (5.68)

A - Computing the image derivative in the DCT-domain

Despite the apparent simplicity of the described procedure, the practical interest

of the proposed algorithm will greatly depend on the possibility and on the easiness

of computing the derivatives of S from each received encoded frame.

To handle such problem, the following formulation will consider the displacement

of a given image by a small motion vector v = (v1, v2). According to the definition

of the inverse DCT, the pixel-domain image data s(y1, y2) = s(x1 + v1, x2 + v2) will

be given by:

s(y1, y2) =
N−1∑

m1=0

T (m1, y1)
N−1∑

m2=0

T (m2, y2) ·S(m1, m2). (5.69)

By taking into account the chain rule on the computation of the derivatives of

s (y1, y2), with (y1, y2) = (x1 + v1, x2 + v2):

∂s (y1, y2)

∂v1
=

∂s

∂y1
· ∂y1

∂v1
=

∂s

∂y1
· 1 =

∂s (y1, y2)

∂y1
(5.70)

186

5.3 Block-based motion re-estimation in the DCT-domain

one obtains:

∂s(y1, y2)

∂y1
=

N−1∑

m1=0

∂T (m1, y1)

∂y1

N−1∑

m2=0

T (m2, y2) ·S(m1, m2) (5.71)

=

N−1∑

m1=0

P (m1, y1)

N−1∑

m2=0

T (m2, y2) ·S(m1, m2). (5.72)

where

P (m1, y1) =
∂T (m1, y1)

∂y1

=

√
2

N
ξ (y1)

(
−m1π

N

)
sin

(
m1

(
y1 + 1

2

)
π

N

)
(5.73)

In matrix form:
[
∂s(y1, y2)

∂y1

]
= P ·S ·TT . (5.74)

In a similar way, it can be shown that

[
∂s(y1, y2)

∂y2

]
= T ·S ·PT . (5.75)

Consequently, in the transform-domain, one has:

[
∂S

∂v1

]
= T

[
∂s

∂v1

]
TT = T P S TT TT = D1 S D2

T (5.76)

[
∂S

∂v2

]
= T

[
∂s

∂v2

]
TT = T T S PT TT = D2 S D1

T (5.77)

where D1 = TP and D2 = TT are constant (N ×N) matrices that can be pre-

computed and stored in memory.

B - Algorithm

According to the formulation stated above, the DCT-domain iterative least

squares motion estimation algorithm can be described by the procedure presented

in fig. 5.5.

C - Scalable computational cost

As it was previously stated, the main advantage of using the DCT in video

coding is concerned with its capability to concentrate most of the pixels energy in

the lower frequency band of the encoded blocks. Consequently, most high frequency

coefficients are often set to zero after the quantization step. As it was seen for

the previously proposed spatial downscale algorithm (presented in subsection B of

187

5. Dynamic Video Composition

Step 0: Read the macroblocks of the current (R) and reference (S) images from the

encoded video sequence:

R = DCT (r (x1, x2))

S = DCT
(
s
(
x1 + v0

1 , x2 + v0
2

))∣∣
v0=(v0

1
,v0

2)

Step 1: Compute the prediction error in the DCT-domain:

E = [R− S]M×1 , by considering vi

Step 2: Compute the partial derivatives of S:

Js =
[

D1 ·S ·D2
T ... D2 ·S ·D1

T

]

M×2

Step 3: Compute the displacement increment dvi:

dvi =

[
dvi

1

dvi
2

]

2×1

=
(
Js

T ·Js

)−1 ·Js
T ·E

Step 4: Update the motion vector vi:

vi = vi−1 + dvi

Step 5: Evaluate the stop condition:

If ‖vi − vi−1‖ < δ, stops the algorithm and sets v = vi;

otherwise, re-compute S|v=vi and return to Step 1.

Figure 5.5: Iterative LSE algorithm for the computation of the motion vectors in
the DCT-domain.

section 5.2.2 (page 174)), this fact may be highly exploited by applying a partial

DCT information processing approach [51], to obtain significant advantages when

the proposed motion estimation algorithm is performed in the DCT-domain.

As it was described in section 5.3.2, when this algorithm is applied in the

pixel-domain all (N ×N) pixels of the four luminance blocks that compose each

macroblock should be taken into account in the iterative estimation procedure.

Consequently, for most usual cases, the number of considered samples will be

M = 4× (8× 8) = 256. Hence, most of the computational effort of the proposed al-

gorithm is spent in the computation of the (256× 2) sized partial derivatives matrix

js.

In contrast, when the proposed motion estimation algorithm is applied in the

DCT-domain, only the non-null coefficients need to be taken into account, thus

leading to a significant smaller number of considered samples M . This fact can

also be used to scale the computation effort that should be spent by this algorithm.

As it was suggested for the image registration algorithm proposed by Reeves [83],

188

5.4 Dynamic picture composition in the DCT-domain

a subset of the (N ×N) DCT coefficients of each block can be selected using a

zig-zag pattern, just keeping the information that is more relevant for the image

structure. Alternatively, a low-pass pre-filtering scheme, entirely similar to the one

proposed in subsection B of section 5.2.2 (page 174), may be adopted. By denot-

ing K as the maximum bandwidth of this low-pass pre-filter, given by the highest

line/column index of the considered DCT coefficients, only the low-frequency coeffi-

cients S̃i,j (m,n) = {Si,j (m,n) : m,n ≤ K} will be used for the computation of the

partial derivatives matrix js. By following such approach, the number of considered

samples will be decreased to M = 4K2, with K < N , thus significantly reducing

the computational cost involved in each iterative step.

It is still worth noting that despite the described computational advantage, the

usage of this pre-filtering scheme may actually improve the overall estimation per-

formance. In fact, since higher frequency bands are often more prone to the presence

of noise, the convergence of this method may even be improved by discarding those

high frequency DCT coefficients [83]. Furthermore, to avoid the interference of even-

tual differences of the global luminance level of the two considered frames, the DC

coefficient of the blocks under processing should also be disregarded.

5.4 Dynamic video composition in the DCT-

domain§

As it was referred, video compositing transcoder architectures have become in-

creasingly popular along the past few years, to combine two or more video sequences

into a single scene. Among the several possible applications, these techniques have

been particularly applied by surveillance systems, multi-point videoconferencing, in-

teractive network video, preview guides and television walls, where multiple video

sources are composited and combined into a single video sequence. To implement

such video transcoders, the former analog video compositing systems typically re-

quired the existence of multiple tuners in the receiver device, as well as specialized

compositing modules to embed the several video sequences in real-time. Such requi-

sites usually imposed an additional cost for the terminal devices. In contrast, modern

digital video processing systems can implement this kind of video manipulations in

a much more efficient approach, which can significantly reduce the implementation

cost of the terminal devices.

§Some portions of this section appeared in:

[91] - N. Roma and L. Sousa, “Fully compressed-domain transcoder for PIP/PAP video compo-
sition,” in Proceedings of the Picture Coding Symposium (PCS), Lisbon - Portugal, Nov.
2007, pp. CD–ROM.

189

5. Dynamic Video Composition

Video composition typically involves several processing operations, such as over-

lapping, scaling, translation, filtering, etc. Such operations can be implemented

either at the client side or at the server side. However, server side systems, imple-

mented by means of specialized network transcoding nodes, tend to provide signifi-

cant advantages. On the one hand, they avoid the need to transmit multiple video

bitstreams to the several receivers, thus providing an extra saving of a lot of band-

width. On the other hand, they also allow the implementation of much simpler and

cost effective terminal devices, without any need for additional hardware or soft-

ware requirements. In fact, with the observed increase of both the bandwidth and

the computational cost levels inherent to these video transmission systems, video

composition implemented at the client side tend to be hardly suitable for embedded

and portable device applications, including handsets and PDAs.

Among the several possible video compositing setups, recent commercial appli-

cations have devoted a particular interest in Picture-In-Picture (PIP), Picture-And-

Picture (PAP) and Picture-Over-Picture (POP) composition schemes. These setups

are illustrated in fig. 5.6 and can be described as follows:

PIP - two or more video sequences are combined into a single scene, by scaling

all but one of the sequences (foreground scenes) and inserting them

inside the area occupied by the background scene (see fig. 5.6(a));

PAP - two or more video sequences are combined into a single scene, at the

same scale, side-by-side (see fig. 5.6(b));

POP - two or more video sequences are combined into a single scene, by scaling

all but one of the sequences (foreground scenes) and inserting them in

a separate region, over the background scene (see fig. 5.6(c)).

Several different transcoding structures to perform digital video composition

have been presented in the past. Among such composition schemes, quite different

Video
Sequence B

Video
Sequence A

(a) PIP setup.

Video
Sequence B

Video
Sequence A

(b) PAP setup.

Video
Sequence A

Video
Sequence B

(c) POP setup.

Figure 5.6: Considered video composition setups.

190

5.4 Dynamic picture composition in the DCT-domain

processing approaches have been adopted, both in terms of the processing domain

(either in the pixel-domain, in the DCT-domain or even in a hybrid Pixel-Transform-

domain), in terms of the offered flexibility to insert arbitrary positioned foreground

video objects, or even in terms of the capability to consider arbitrary-shaped video

sequences. Furthermore, many of the presented architectures have also considered

several different trade-offs and inherent compromises in terms of the bandwidth

efficiency and of the involved computational cost.

Pixel-domain processing schemes are usually regarded as the most simple ap-

proaches, since they implement the required composition by first decoding all the

input video sequences, which are then combined and re-encoded, in order to obtained

the output video sequence. In contrast, compressed-domain approaches often tend

to be more attractive, but serious obstacles exist that prevent efficient video com-

positing techniques to be fully implemented in the motion-compensated domain. As

an example, the reference image blocks of the background image in an overlapping

scene may be replaced by the foreground image. Consequently, video sequences fre-

quently need to be inverse-motion-compensated before composition, thus requiring

a subsequent motion compensation operation afterwards. This can make real-time

high-speed implementations quite difficult to be achieved.

One of the first proposals of a complete video composition architecture was

presented by Chang and Messerschmitt [9]. They presented a quite simple PIP

compositing scheme, that processes two block-aligned video sequences, without any

resizing of the foreground video sequence. To provide this structure with a motion-

compensated temporal prediction mechanism, the video composition processing part

was entirely implemented in the pixel-domain, which required the whole decoding

of the involved video sequences. Similarly, the proposed structure also included a

quite simple pixel-domain motion re-estimation mechanism, implemented solely in

the areas of the background video sequence that were actually affected by the object

insertion. This re-estimation only considered a quite reduced number of candidate

prediction MBs and was based on a sub-optimal 2-D binary search ME algorithm,

proposed by Jain and Jain [35]. Such quite simple ME algorithm was based on a

monotonically variation assumption of the adopted matching measure, along the

horizontal and vertical directions.

To reduce the computational cost, the same architecture was later transposed

into the DCT-domain [10, 11]. By implementing the motion compensation mecha-

nism directly in the transform-domain, this structure starts by reverting the whole

temporal prediction mechanism of the encoded input sequences, in order to remove

any inter-dependency between the received frames. The actual composition of the

191

5. Dynamic Video Composition

involved video sequences is then performed by directly operating with the DCT

coefficients blocks of the frames under processing. Nevertheless, this processing ap-

proach still considers the existence of a perfect alignment of the block and MB grids

of the composited video sequences. By applying this scheme, though, both the DCT

and the IDCT processing blocks of the traditional straightforward pixel-domain ap-

proach are removed. Moreover, considering that a significant amount of the AC

frequency DCT coefficients of each encoded block are zero, the compositing unit

often needs to process less data in the DCT-domain than in the pixel-domain. The

temporal prediction mechanism of the processed video sequence is then recovered

by applying the same DCT-domain motion compensation procedure in the encoder

part of this transcoder. However, to prevent this processing block from becoming

the computation-dominant in the whole compositing system, many of the new MVs

are inferred and composited directly from those obtained from the original input se-

quences, without any further refinement. As in [9], the motion vectors are evaluated

by considering three distinct regions of the composited scene:

• unaffected background / foreground areas: the original MVs are still valid and

may be used to encode the output video sequence;

• directly affected areas - the MVs have to be re-evaluated, since the original

predictors area was replaced by a foreground scene;

• indirectly affected areas - although the prediction region was not overlapped

by a foreground scene, the motion compensation mechanism still has to be

re-evaluated, since the corresponding prediction blocks could have been com-

promised through error propagation and drift.

Hence, in both the directly and indirectly affected areas, the background and fore-

ground video sequences need to be fully decoded, so that new motion compensated

prediction data can be calculated, for example, by using a pixel-domain sub-optimal

ME algorithm [9]. This over-simplified evaluation of the motion vectors greatly re-

duces the involved computational cost, at the expense of a natural reduction of the

compression performance. Furthermore, it is still worth noting that even those areas

corresponding to the foreground video scenes may also have to be re-evaluated. One

example of such situation occurs whenever the composition setup comprises scaling

procedures of the inserted video objects.

This DCT-domain approach was further improved by Noguchi et al. [67] and

applied to PIP compositing of MPEG-1 video sequences. Their technique essentially

expands the previously proposed algorithms, in order to comply the decoding stage

192

5.4 Dynamic picture composition in the DCT-domain

of the transcoder with the new featured half-pixel MVs and bidirectional prediction

modes, provided by the targeted MPEG-1 video standard [26]. As before, this

transcoding algorithm directly infers the new MVs from those of the original MPEG-

1 input video sequences, after subsequent scaling and composition, but does not

perform any re-estimation nor any refinement procedure.

Meanwhile, with the advent of the most recent video standards, a further re-

search effort has been recently devised around this issue. In particular, Li et al.

[49, 50] presented two compositing schemes to be applied with the H.264/AVC

video standard [31]: the Rate-Distortion Re-Encoding (RDRE) architecture (also

known as Picture-In-Picture Cascaded Transcoder (PIPCT)) and the Partial Re-

Encoding Transcoder (PRET) architecture. Due to the increased complexity of the

H.264/AVC video standard, both approaches entirely perform the composition of the

involved video sequences in the pixel-domain. However, while the RDRE scheme

fully decodes the several video streams into the pixel-domain and then compresses

the whole composited frame into a new bitstream, the PRET architecture presents

some significant computational advantages, by only processing those MBs that were

actually modified by the compositing operation, thus skipping the processing of all

unaffected blocks. Independently of the considered approach, both schemes perform

a pixel-domain re-estimation procedure of the MVs corresponding to the MBs of

the area affected by the PIP insertion: i) the original MVs of the received video

sequences are properly scaled and composited; and ii) the obtained MVs are refined

using the same pixel-domain sub-optimal ME algorithm that was adopted in [9].

Nevertheless, the performance of this quite simple MV re-estimation is further com-

promised by the fact that such ME procedure only takes into account the candidate

predictors that belong to the same video scene, thus disregarding all blocks where

the composition has been applied.

Independently of the processing domain where the compositing operation is car-

ried out, there are some research issues that still deserve further investigation, in

order to improve these transcoding architectures. Naturally, one of such issues is

concerned with the (re-)estimation of the MVs, in order to improve the involved

temporal prediction mechanism. As it was seen, most of these architectures adopt a

rather simplistic approach that merely infers the new MVs from those of the original

video sequences. These estimates are then either directly used by the encoder-side

motion-compensation prediction mechanism [67], or are applied to a quite simple

MV re-mapping scheme, such as the one adopted by Chang and Messerschmitt

[11], based on the ME algorithm proposed by Jain and Jain [35]. However, these

remapped MVs may not yield the minimum residual signal, due to the simplicity

193

5. Dynamic Video Composition

of their derivation. Furthermore, the involved ME operation usually implies the

transposition of the DCT encoded MBs into the pixel-domain, in order to compute

the matching measure.

Another important issue that is not usually considered by many DCT-domain

compositing architectures [9, 11] concerns the manipulation of the video sequences.

In order to simplify, as much as possible, the processing of the involved DCT encoded

blocks and to avoid an extra transposition into the pixel-domain, many approaches

imply a perfect alignment of the foreground sequences with the adopted (N × N)

block grid.

To overcome such limitations, an alternative and highly efficient architecture that

fully operates in the compressed DCT-domain is now considered. By directly oper-

ating with the partially decoded DCT coefficients of the involved video sequences,

the proposed approach potentially provides significant advantages in what concerns

the output video quality performance. Moreover, instead of only considering a cou-

ple of alternative predictors for each re-estimated MV [11], the presented approach

significantly improves the temporal prediction mechanism, by adopting a more ef-

ficient DCT-domain motion re-estimation algorithm. Contrary to the refinement

scheme proposed by Jain and Jain [35], this algorithm may consider any dimension

for the search area, which significantly improves the output video quality, as well as

the coding efficiency. Furthermore, the presented DCT-domain approach does not

impose any limitation on the adopted composition setup, allowing each foreground

video sequence to be placed over any location of the background scene.

5.4.1 Proposed transcoder architecture

One possible approach to implement video compositing transcoders in the

compressed-domain, without fully decoding the considered video streams, is to rep-

resent and process the input sequences using a common intermediate meta-format

representation. Such representation must be generated after the bitstreams pars-

ing (VLD) and syntax decoding stages. By adopting this approach, not only does

the image compositing part may be implemented in a fully independent way of

the bitstream processing workload, but it is also significantly easier to manipulate

video sequences that were encoded using distinct video standards (see fig. 5.7). In

fact, by considering that most block-based video standards that have been proposed

up to now (such as the H.261 [29], H.263 [30], MPEG-1 Video [26] and MPEG-2

Video [26]) adopt the same N -kernel discrete cosine transform (with N = 8), most

of such video sequences may be easily represented using this common meta-format

representation that include, among others, the following data structures:

194

5.4 Dynamic picture composition in the DCT-domain

Syntax
DecoderVLD Meta

Format

Background
Video Stream

Syntax
Decoder

VLD Meta
Format

Foreground
Video Stream 1

Syntax
Decoder

VLD Meta
Format

Foreground
Video Stream n

Video
Composer

Meta
Format

VLC
Syntax

Encoder

Composited
Video Stream

Parameters

Figure 5.7: Video compositing transcoder based on an intermediary meta-format
representation.

• spatial frame dimensions;

• quantization factors;

• DCT coefficients of the partially decoded blocks;

• MVs of the motion-compensated macroblocks;

• encoding modes and other parameters that are specific for each considered

video standard.

Similarly, other equivalent data structures will have to be taken into account if the

most recent video standards (such as H.264/AVC [31] and MPEG-4 Visual [28, 74])

are considered, where several other coding techniques may be adopted both for the

spatial prediction and temporal prediction mechanisms. Some examples of such

situation are the usage of INTRA frame spatial predictors and of multiple reference

frames prediction modes [31].

As it would be expected, besides this common meta-format information, video

compositing transcoders also require another set of parameters that are specifically

concerned with the required composition setup of the involved video sequences:

• scaling factor to be applied to each video sequence;

• coordinates of each insertion;

• format of the composition setup.

With this restricted set of information, it is possible to parameterize any supported

compositing setup. Furthermore, it should be noted that all these data structures

will only affect the processing modules that are actually responsible for the video

composition and should not influence the remaining decoding and encoding modules

of the video processing system.

The proposed DCT-domain compositing transcoder is presented in fig. 5.8. This

architecture naturally reflects the meta-format oriented processing structure, pre-

viously presented in fig. 5.7. As it was referred before, serious obstacles exist in

195

5. Dynamic Video Composition

Q-1

+

+

Frame Mem.MC-DCT

VLD

0

P

I

MVi
B

DCT-Domain
Downscaler Q-1

+

+

Frame Mem. MC-DCT

VLD
Foreground
Sequence 1

0

P

I

MVi
F1

Q-1

+

+

Frame Mem. MC-DCT

VLD

0

P

I

MVi
Fn

Foreground
Sequence n

+

-

QVLC

Q-1

+

+MVo

P

I

0
P

I

DCT-Domain
Downscaler

DCT-Domain Frame
Composition

Motion Vector
Composition

DCT-Domain
Motion Re-EstimationMC-DCT

Frame Mem.

Background
Sequence

Output
Sequence

Motion Vector
Downscaler

Motion Vector
Downscaler

Figure 5.8: DCT-domain video compositing transcoder architecture.

the implementation of DCT-domain operations directly in the motion-compensated

domain. Consequently, besides going through the bitstreams parsing (VLD) and the

syntax decoding stages, all processed video sequences are inverse motion compen-

sated before any composition operation can be conducted, thus requiring a subse-

quent motion compensation operation afterwards. All the processing modules that

are responsible for the actual implementation of the video composition operation

were represented with shaded blocks in fig. 5.8, namely the:

• DCT-domain frame downscaler;

• Motion vector downscaler;

• DCT-domain frame compositer;

• Motion vector compositer;

• DCT-domain motion re-estimator.

The implementation of each of these modules will be described in the following

subsections.

5.4.2 Frame scaling

The eventually required frame scaling operation of the several foreground video

sequences that are involved in the required video composition setup is implemented

by means of two processing steps: i) reduction of the spatial resolution of the par-

tially decoded frames, and ii) compositing and downscaling of the original MVs.

A - DCT-domain spatial frame scaling

To implement the spatial downscaling of the partially decoded foreground video

sequences, it was adopted the averaging and sub-sampling DCT-domain algorithm

for any arbitrary integer downscaling factor (SF), proposed in section 5.2.

196

5.4 Dynamic picture composition in the DCT-domain

By denoting by T the (N × N) DCT matrix kernel (N = 8), so that X =

DCT(x) = T ·x ·TT, the proposed algorithm is applied to compute each (N × N)

DCT coefficients block B̂, corresponding to the set of (SF×SF) original pixel blocks

bi,j:

B̂ =
1

SF 2 ·T ·
(

SF−1∑

i=0

SF−1∑

j=0

pi,j

)
·TT (5.78)

As it was previously defined in eq. 5.14, each matrix pi,j is computed as:

pi,j (l, c) =

pi,j (l, c) , for

{
lmin(i) ≤ l ≤ lmax(i)

cmin(j) ≤ c ≤ cmax(j)

0 , otherwise

(5.79)

where:

lmin(i) =

⌊
i ∗N
SF

⌋
and lmax(i) =

⌊
i ∗N + (N − 1)

SF

⌋
(5.80)

cmin(j) =

⌊
j ∗N
SF

⌋
and cmax(j) =

⌊
j ∗N + (N − 1)

SF

⌋
(5.81)

with i, j = 0 . . . (SF − 1). The computation of the non-null elements (pi,j) can be

implemented as follows:

pi,j = Fi
SF
·Bi,j ·Fj

SF

T

︸ ︷︷ ︸
nl(i)×nc(j) matrix

(5.82)

with nl(i) = lmax(i)− lmin(i)+1 and nc(j) = cmax(j)− cmin(j)+1. In this equation,

Bi,j is the (N ×N) DCT coefficients block, directly obtained from the original bit

stream. The (n(x)×N) Fx
SF

terms (with 0 ≤ x ≤ SF − 1) are constant matrices,

that can be pre-computed and stored in memory (see subsection A of section 5.2.2

(page 174)).

By adopting this algorithm, not only will the proposed architecture avoid the

influence of the degradation effects allied to blocky artifacts that are introduced

whenever the adopted scaling factor is not an integer power of 2 (see section 5.2.1),

but it also benefits from the significant computational advantages that it provides

(see section 5.2.3).

B - Motion vector downscaling

One of the strategies that was adopted in the proposed video composition archi-

tecture to minimize the involved computational cost is to restrict the search area

considered in the motion re-estimation procedure at the encoder-side, by computing

a prior prediction for each MV. Such prediction is calculated by properly reusing

197

5. Dynamic Video Composition

the set of MVs obtained from the partially decoded foreground and background

video sequences. However, considering that some compositing setups involve a re-

duction of the spatial resolution, the received MVs must also be properly adapted

by a scaling and a compositing step.

As it was previously described in section 3.3.4, several possible MV compositing

methods have been proposed, to directly predict the new MVs from the set of vectors

that are obtained from the precoded video. Among the considered approaches, the

compositing methods that rely on the spatial activity of each compositing MB in the

interpolation of the new motion vector, as described in subsection C of section 3.3.4

(page 102), have proved to provide specially adequate results. In particular, the

proposed video composition architecture adopts a variation of the Maximum Quan-

tization step-size times number of Bits-Area (MQBA) technique [108], which relies

on each MB compositing area and on its corresponding spatial activity to weight

the influence of each MV. Nevertheless, to avoid the inherent cost of computing the

inverse DCT, the spatial activity was directly estimated from the DCT coefficients

of each compositing block, by counting the number of non-null AC frequency DCT

coefficients, as proposed by Liang et al. [52]. Such spatial activity estimate is then

used in the computation of the composited motion vector (ṽ), as follows:

ṽ =

∑
i

∑
j v

′

i,j ·αi,j ·Ai,j∑
i

∑
j αi,j ·Ai,j

(5.83)

In eq. 5.83, v
′

i,j denotes the scaled MV corresponding to the original video sequence;

αi,j is the spatial activity of macroblock (i, j), measured by the number of non-null

AC frequency DCT coefficients; and Ai,j is a measure of the involved compositing

area, evaluated in terms of the number of pixels of the original macroblock (i, j)

that is considered in the composition of the transcoded macroblock.

Moreover, to further improve the performance and accuracy levels of the tempo-

ral prediction mechanism, both the scaling and compositing procedures make use of

a half-pixel precision level.

5.4.3 DCT-domain frame composition

The DCT-domain composition with the background scene of one or more fore-

ground video sequences, at any arbitrary position, often leads to mismatches of the

corresponding block grids [11], as it is illustrated in fig. 5.9. In such a situation, each

(N × N) DCT coefficients block of the involved foreground scenes (Yi) has to be

properly segmented and translated with respect to the block structure of the target

background scene (X). Similarly, to fulfill the required opaque superposition, the

198

5.4 Dynamic picture composition in the DCT-domain

superimposed area of the background video sequence will also have to be segmented

and removed, according to the adopted composition setup. After the removal of all

these superimposed regions of the background scene, each composited output block

B is formed by summing up the contributions from all the involved foreground video

sequences:

B = X−
∑

i

Xsegi
+
∑

i

Ysegi
(5.84)

The mathematical model to obtain the DCT coefficients of a given extracted

and translated sub-block was already formulated in [11] and is quite similar to the

formulation previously described in section 3.3.1, concerning the implementation

of the motion compensation module in the compressed-domain. Such operation

can be carried out by multiplying each of the involved DCT coefficients blocks

by the appropriate filter matrices (H1 and H2), that simultaneously perform the

segmentation and the translation operations of the required regions [11, 62]:

Xseg = Hx
1 ·X ·Hx

2 (5.85)

Yseg = Hy
1 ·Y ·Hy

2 (5.86)

In these equations, Hk = DCT(hk), with k ∈ {1, 2}, are pre-computed and stored

matrices that are required for the several different block composition setups, as

defined in table 5.3. Ih and Iw are (h×h) and (w×w) identity matrices, respectively,

where h and w denote the number of rows and columns to be extracted. Similarly,

IN represents the (N ×N) identity matrix.

Hence, for the particular example shown in fig. 5.9, the required segmentation

and translation matrices are the follow:

Hx
1 = DCT(hx

1) , with hx
1 =

[
0 0
0 Ih

]
(5.87)

X

Yseg

Y

B X Xseg Yseg

= - +

Foreground Scene (Y)

Background Scene (X)

�
�

Figure 5.9: Block segmentation and translation for DCT-domain video composit-
ing.

199

5. Dynamic Video Composition

Table 5.3: Filtering matrices used by the translation and segmentation operations
for dynamic video composition.

Composition Setup hx
1 hx

2 hy
1 hy

2

� � [
0 0
0 Ih

] [
0 0
0 Iw

] [
0 0
Ih 0

] [
0 Iw

0 0

]

�� [
0 0
0 Ih

] [
Iw 0
0 0

] [
0 0
Ih 0

] [
0 0
Iw 0

]

� � [
Ih 0
0 0

] [
0 0
0 Iw

] [
0 Ih

0 0

] [
0 Iw

0 0

]

�� [
Ih 0
0 0

] [
Iw 0
0 0

] [
0 Ih

0 0

] [
0 0
Iw 0

]

� IN

[
0 0
0 Iw

]
IN

[
0 Iw

0 0

]

	 IN

[
Iw 0
0 0

]
IN

[
0 0
Iw 0

]

 [
Ih 0
0 0

]
IN

[
0 Ih

0 0

]
IN

� [
0 0
0 Ih

]
IN

[
0 0
Ih 0

]
IN

� � B = Ysegi
= MC-DCT(Y)

∣∣
v=(N−h,N−w)

200

5.4 Dynamic picture composition in the DCT-domain

Hx
2 = DCT(hx

2) , with hx
2 =

[
0 0
0 Iw

]
(5.88)

Hy
1 = DCT(hy

1) , with hy
1 =

[
0 0
Ih 0

]
(5.89)

Hy
2 = DCT(hy

2) , with hy
2 =

[
0 Iw

0 0

]
(5.90)

The particular situation corresponding to the case where the output composited

block (B) is entirely formed by the pixels of the foreground scene can be implemented

in a way wholly similar to the compressed-domain motion compensation operation,

described in subsection B of section 3.3.1 (page 69). In fact, such case is entirely

equivalent to the usage of a motion vector given by v = (N − h,N − w), where h

and w denote the horizontal and vertical displacement, respectively, as defined in

fig. 5.9.

5.4.4 Motion vector re-estimation

As it was previously referred, Chang and Messerschmitt [11] have distinguished

three different areas of the composited scene: the unaffected area; the directly af-

fected area, corresponding to all MBs where the composition is performed; and the

indirectly affected area, whose prediction data may still need to be recalculated, since

its prediction blocks could have been modified through error propagation (drift).

Hence, contrary to the previously presented approaches that have been proposed

by other authors [9–11, 49, 50, 67], the compressed-domain video compositing archi-

tecture herein proposed introduces an efficient DCT-domain motion re-estimation

module. With such a module, it is possible to obtain an effective enhancement

of the temporal prediction mechanism in the output composited video sequence,

with a consequent saving of the required bandwidth that can potentiate an indirect

improvement of the output video quality.

Nevertheless, to minimize the involved computational cost, the MVs obtained

from the scaler and compositing stage, described in subsection B of section 5.4.1

(page 197), are applied to a second compositing module, in order to combine the

set of MVs corresponding to the several video sequences that affect the MB under

processing. This additional MV prediction stage is then followed by the actual

motion re-estimation module, as it will be described in the following subsections.

201

5. Dynamic Video Composition

A - Motion vector prediction

As it was referred, a first estimate of the MVs that will be used by the temporal

prediction mechanism of the output video sequence can be directly obtained from

the set of MVs of the original background (vB) and foreground (vF) video sequences.

However, the composition of the foreground sequences with the background scene at

any arbitrary position may naturally lead to mismatches of the corresponding MB

grids, as it was already explained. As a consequence, the MB grid of the composited

sequence often does not align with the original MB grid of the precoded frames.

Hence, depending on the actual position of the foreground sequences, the temporal

prediction data, corresponding to the precoded MBs, may be only partially used to

composite each MBs of the output sequence.

In such cases, it is necessary to define a selection criteria to choose, among the

decoded MVs of the foreground and background video sequences, the particular MV

that will be used to compute the prediction error of a given region. In an entirely

similar way, the search range that will be adopted by the subsequent refinement

procedure may be selected according to the confidence level of the corresponding

prediction MV: smaller search ranges will be preferred whenever most pixels of the

composited MB belong to the same decoded video sequence as the selected prediction

MB.

The proposed video composition transcoder adopted the procedure described in

fig. 5.10 to obtain the initial MV predictions (v̂) corresponding to the affected areas,

as well as a preliminary measure of the search area that will be considered in the MV

re-estimation module (pmre). Once again, to restrict the computational cost of the

v̂ = (0, 0) ; pmre = pmax → if the current MB and its prediction belong to

different compositing sequences;

v̂ = vB ; pmre = pmax/2 → if at least 75% of the current MB area belongs

to the background sequence;

v̂ = vF ; pmre = pmax/2 → if at least 75% of the current MB area belongs

to the foreground sequence;

v̂ = (0, 0) ; pmre = pmax → otherwise.

Figure 5.10: Computation of the MV prediction and of the search area preliminary
measure that will be considered in the MV re-estimation module.

202

5.4 Dynamic picture composition in the DCT-domain

subsequent motion re-estimation algorithm, the maximum considered displacement

of the search procedure is limited to a reasonably short range (e.g.: pmax = 4 pixels).

B - DCT-domain motion re-estimation

The set of MVs that were obtained in the previously described prediction module

(v̂) are then used as coarse estimates of the MVs of the composited frame. In order to

obtain more accurate refinements of these MVs, these estimates, as well as the DCT

coefficients blocks of the current and previously composited frames, are applied to

a motion re-estimation module. To implement such computational block, the DCT-

domain iterative Least Squares Motion Estimation (LSME) algorithm [89] that was

proposed in section 5.3 was adopted.

Considering that the DCT concentrates most of the pixels energy in the lower

frequency coefficients of the encoded blocks, the overall computational cost required

by this algorithm may be adjusted to the current restrictions of the processing sys-

tem by only considering the (K×K) lower frequency coefficients of each block under

processing. The reformulation of the compressed-domain motion re-estimation al-

gorithm presented in fig. 5.5 to take into account this computational simplification

is the following:

Step 0: Fetch the MBs corresponding to the current (R) and reference (S)

frames of the composited video sequence, by performing a DCT-domain

motion compensation operation using the initial predictor MV: v0 = v̂

Step 1: Compute the prediction error in the DCT-domain:

E = [R− S]4K×1 , by considering vi

Step 2: Compute the partial derivatives of S:

Js =
[

D1 ·S ·D2
T ... D2 ·S ·D1

T

]

4K×2

Step 3: Compute the displacement increment dvi:

dvi =

[
dvi

1

dvi
2

]

2×1

=
(
Js

T ·Js

)−1 ·Js
T ·E

Step 4: Update the motion vector vi:

vi = vi−1 + dvi

Step 5: Evaluate the stop condition:

If ‖vi − vi−1‖ < δ or ‖vi − v̂‖ > pmre,

− stop the algorithm and set v = vi;

otherwise,

− re-compute S|v=vi and return to Step 1.

203

5. Dynamic Video Composition

All the considered matrices are processed in vectorized form. Moreover, as it was

explained in section 5.3, D1 and D2 are constant (K × K) matrices that are pre-

computed and stored in memory. As it was also referred, to avoid the interference

of any eventual difference of the luminance level of the two considered frames, the

DC coefficients of the processed blocks should also be disregarded.

5.5 Conclusions

A set of highly efficient operations to process and manipulate precoded video

sequences in the compressed DCT-domain was proposed in this chapter. Contrary

to the previously presented static video compositing structures, the algorithms and

architectures that were proposed in this chapter actually manipulate the data struc-

tures affected to the several encoding strategies that are applied to each of the

considered video streams.

As a result, an innovative and efficient hybrid transcoding algorithm for video

downscaling in the transform-domain, by any arbitrary integer scaling factor, was

proposed in section 5.2. This algorithm offers a considerable advantage in what

concerns the computational cost, by benefiting from the used scaling mechanism

and by only performing the operations that are really needed to compute the desired

output values.

In section 5.3 it was proposed a new compressed-domain ME algorithm. This

algorithm is based on an iterative scheme that estimates the new MVs by applying

a Least Squares Estimation technique. This algorithm makes use of the DCT co-

efficients directly obtained from the input video streams and provides an efficient

alternative to refine, or even re-compute, the set of MVs that are required to imple-

ment the motion compensated prediction mechanism of the output video sequence.

These two important algorithms were then applied in the implementation of a

compressed-domain video compositing architecture, presented in section 5.4. While

the proposed scaling algorithm significantly contributes to provide this composit-

ing architecture with significant video quality performances, the new compressed-

domain ME algorithm actively contributes to an enhancement of the coding ef-

ficiency, by improving the temporal prediction mechanism of the processed video

sequences.

All these manipulations and algorithms were properly tailored, not only to opti-

mize the computational effort but also to simultaneously comply the involved oper-

ations with the video standards block structure.

204

References

[9] S.-F. Chang and D. G. Messerschmitt, “Compositing motion-compensated

video within the network,” in Proceedings of the International Workshop on

Multimedia Communications (MULTIMEDIA). IEEE, Apr. 1992, pp. 40–56.

[10] S.-F. Chang and D. G. Messerschmitt, “A new approach to decoding and

compositing motion-compensated DCT-based images,” in Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), vol. 5. IEEE, apr 1993, pp. 421–424.

[11] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-

DCT compressed video,” IEEE Journal on Selected Areas in Communications,

vol. 13, no. 1, pp. 1–11, Jan. 1995.

[12] J. Chen, U.-V. Koc, and K. J. R. Liu, Design of Digital Video Coding Systems

- A Complete Compressed Domain Approach. Marcel Dekker, 2002.

[14] W.-H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational algorithm

for the discrete cosine transform,” IEEE Transactions on Communications, vol.

COM-25, pp. 1004–1009, Sep. 1977.

[16] R. Dugad and N. Ahuja, “A fast scheme for image size change in the compressed

domain,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 11, no. 4, pp. 461–474, Apr. 2001.

[26] MPEG-1: ISO/IEC JTC1 CD 11172 - “Coding of moving pictures and asso-

ciated audio for digital storage media up to 1.5 Mbit/s – Part 2: Video”, ISO,

1992.

[28] MPEG-4: ISO/IEC 14496-2:2004. Information technology – Coding of audio-

visual objects – Part 2: Visual, ISO, 2004.

[29] ITU-T Recommendation H.261 - “Video Codec for Audiovisual Services at p×64

Kbit/s”, ITU-T, Mar. 1993.

[30] ITU-T Recommendation H.263 - “Video Coding for Low Bitrate Communica-

tion”, ITU-T, Feb. 1998.

[31] ITU-T Recommendation H.264, “Advanced Video Coding for Generic Audiovi-

sual Services”, ITU-T, May 2003.

205

[35] J. R. Jain and A. K. Jain, “Displacement measurement and its application in

interframe image coding,” IEEE Transactions on Communications, vol. COM-

29, no. 12, pp. 1799–1808, Dec. 1981.

[41] U.-V. Koc and K. J. R. Liu, “DCT-based motion estimation,” IEEE Transac-

tions on Image Processing, vol. 7, no. 7, pp. 948–965, Jul. 1998.

[48] Y.-R. Lee, C.-W. Lin, S.-H. Yeh, and Y.-C. Chen, “Low-complexity DCT-

domain video transcoders for arbitrary-size downscaling,” in Proceedings of the

IEEE International Workshop on Multimedia Signal Processing (MMSP), Sep.

2004, pp. 31–34.

[49] C.-H. Li, H. Lin, C.-N. Wang, and T. Chiang, “A fast H.264-based picture-in-

picture (PIP) transcoder,” in Proceedings of the IEEE International Conference

on Multimedia and Expo (ICME), vol. 3. IEEE, Jun. 2004, pp. 1691–1694.

[50] C.-H. Li, C.-N. Wang, and T. Chiang, “A low complexity picture-in-picture

transcoder for video-on-demand,” in IEEE International Conference on Wire-

less Networks, Communications and Mobile Computing, vol. 2, Jun. 2005, pp.

1382–1387.

[51] H. Li and H. Shi, “A fast algorithm for reconstructing motion compensated

blocks in compressed domain,” Journal of Visual Languages and Computing,

vol. 10, no. 6, pp. 607–623, Dec. 1999.

[52] Y. Liang, L.-P. Chau, and Y.-P. Tan, “Arbitrary downsizing video transcoding

using fast motion vector re-estimation,” IEEE Signal Processing Letters, vol. 9,

no. 11, pp. 352–355, Nov. 2002.

[54] C.-W. Lin and Y.-R. Lee, “Fast algorithms for DCT-domain video transcod-

ing,” in Proceedings of the IEEE International Conference on Image Processing

(ICIP), Thessaloniki - Greece, Oct. 2001, pp. 421–424.

[57] S. Liu and A. C. Bovik, “Local bandwidth constrained fast inverse motion com-

pensation for DCT-domain video transcoding,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 12, no. 5, pp. 309–319, May 2002.

[62] N. Merhav and V. Bhaskaran, “A fast algorithm for DCT-domain inverse mo-

tion compensation,” in Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, Atlanta, GA, USA,

May 1996, pp. 2307–2310.

206

[67] Y. Noguchi, D. G. Messerschmitt, and S.-F. Chang, “MPEG video compositing

in the compressed domain,” in Proceedings of the IEEE International Sympo-

sium on Circuits and Systems (ISCAS), vol. 2. IEEE, May 1996, pp. 596–599.

[72] Y. S. Park and H. W. Park, “Arbitrary-ratio image resizing using fast DCT

of composite length for DCT-based transcoder,” IEEE Transactions on Image

Processing, vol. 15, no. 2, pp. 494–500, Feb. 2006.

[73] V. Patil, R. Kumar, and J. Mukherjee, “A fast arbitrary factor video resizing

algorithm,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 16, no. 9, pp. 1164–1171, Sep. 2006.

[74] F. Pereira and T. Ebrahimi, Eds., The MPEG-4 Book. Prentice Hall PTR,

2002.

[83] R. Reeves, “Image matching in the compressed domain,” Ph.D. dissertation,

Queensland University of Technology, Australia, 1999.

[88] N. Roma and L. Sousa, “Fast transcoding architectures for insertion of non-

regular shaped objects in the compressed DCT-domain,” Signal Processing:

Image Communication, vol. 18, no. 8, pp. 659–683, Sep. 2003.

[89] N. Roma and L. Sousa, “Least squares motion estimation algorithm in the

compressed DCT domain for H.26x/MPEG-x video sequences,” in Proceedings

of the IEEE International Conference on Advanced Video and Signal-Based

Surveillance (AVSS). Como - Italy: IEEE, Sep. 2005, pp. 576–581.

[90] N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for any ar-

bitrary integer re-size video downscaling,” EURASIP Journal on Advances in

Signal Processing, vol. 2007, no. 57291, pp. 1–16, Sep. 2007.

[91] N. Roma and L. Sousa, “Fully compressed-domain transcoder for PIP/PAP

video composition,” in Proceedings of the Picture Coding Symposium (PCS),

Lisbon - Portugal, Nov. 2007, pp. CD–ROM.

[92] C. L. Salazar and T. D. Tran, “On resizing images in the DCT domain,” in

Proceedings of the IEEE International Conference on Image Processing (ICIP),

vol. 4, Oct. 2004, pp. 2797–2800.

[95] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to lower

spatio-temporal resolution and different encoding formats,” IEEE Transactions

on Multimedia, vol. 2, no. 2, pp. 101–110, Jun. 2000.

207

[98] T. Shanableh and M. Ghanbari, “Hybrid DCT/pixel domain architecture for

heterogeneous video transcoding,” Signal Processing: Image Communication,

vol. 18, no. 8, pp. 601–620, Sep. 2003.

[102] H. Shu and L.-P. Chau, “An efficient arbitrary downsizing algorithm for video

transcoding,” IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 14, no. 6, pp. 887–891, Jun. 2004.

[103] H. Shu and L.-P. Chau, “A resizing algorithm with two-stage realization

for DCT-based transcoding,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 17, no. 2, pp. 248–253, Feb. 2007.

[108] Y.-P. Tan, Y. Liang, and H. Sun, “On the methods and performances of ratio-

nal downsizing video transcoding,” Signal Processing: Image Communication,

vol. 19, pp. 47–65, 2004.

[115] J. Youn, M.-T. Sun, and C.-W. Lin, “Motion vector refinement for high per-

formance transcoding,” IEEE Transactions on Multimedia, vol. 1, no. 1, pp.

30–40, Mar. 1999.

208

6
Experimental Results

Contents
6.1 Introduction . 210

6.2 Static video composition 212

6.2.1 Quality of the encoded video sequences 213

6.2.2 Bit rate of the encoded video sequences 217

6.2.3 Efficiency of the NRSO insertion transcoders 220

6.2.4 Drift introduced in INTER type images 226

6.3 Dynamic video composition 231

6.3.1 Space scaling algorithm by an arbitrary integer scale factor 231

6.3.2 Block-based motion re-estimation in the DCT-domain . . 245

6.3.3 Dynamic video composition in the DCT-domain 259

6.4 Conclusions . 272

References . 273

209

6. Experimental Results

6.1 Introduction

This chapter presents the results that were obtained from the set of experimental

procedures that were conducted in order to properly assess and evaluate the static

and dynamic video processing algorithms, proposed in the scope of this thesis.

The evaluation of the transcoding architectures proposed in chapter 4, providing

the insertion of Non-Regular Shaped Objects (NRSOs) in the compressed DCT-

domain, is addressed in section 6.2. Section 6.3 presents the experimental results

corresponding to the set of dynamic video compositing techniques, proposed in chap-

ter 5. In particular, in section 6.3.1 it is presented the evaluation of the space scaling

algorithm by an arbitrary integer scale factor, described in section 5.2; section 6.3.2

addresses the assessment of the block-based motion re-estimation algorithm in the

compressed DCT-domain, described in section 5.3; and section 6.3.3 presents the

evaluation of the DCT-domain dynamic video composition architecture, proposed

in section 5.4.

The performed experiments were based on a collection of benchmark standard

test video sequences of classes A, B and C of the MPEG-4 Video Verification

Model [65]. Such set includes test video sequences with a frame rate of 30 Frames

per Second (FPS), in both the CIF (352 × 288 pixels) and the QCIF (176 × 144

pixels) formats, characterized by different spatial detail and amount of movement:

• Akiyo (Class A) – characterized by reduced spatial detail and reduced amount

of movement (see fig. 6.1(a));

• Silent-Voice (Class B) – characterized by medium spatial detail and medium

amount of movement (see fig. 6.1(b));

• Coastguard (Class B) – characterized by medium spatial detail and medium

amount of movement (see fig. 6.1(c));

• Carphone (Class C) – characterized by moderate spatial detail and amount

of movement, consisting of local displacements of the head and lips of the

person in the scene, and regular translational movements of the background

(car window) (see fig. 6.1(d));

• Table-Tennis (Class C) – characterized by moderate spatial detail and by a

significant amount of movement, both of translational type (ball) and zoom-

out type (video camera) (see fig. 6.1(e));

• Mobile & Calendar (Class C) – characterized by large spatial detail and a

considerable amount of movement (see fig. 6.1(f)).

All the conducted experiments were carried out by considering a wide range of

quantization steps, in order to assess the influence of the quantization distortion

210

6.1 Introduction

(a) Akiyo. (b) Silent-Voice.

(c) Coastguard. (d) Carphone.

(e) Table-Tennis. (f) Mobile & Calendar.

Figure 6.1: Considered test video sequences.

error in the performance of the transcoding algorithms under evaluation. For each

considered quantization setup (Qk), the obtained gains, both in terms of the out-

put video quality (PSNR) and bit rate, were properly registered. Furthermore, to

emphasize the direct influence of the algorithms under evaluation on the output bit

rate, the output buffer controller of the encoding system was disabled in many of

the experiments that were carried out. This procedure provides a direct assessment

of each algorithm under evaluation, since the obtained differences on the amount of

bits required to encode each frame can be directly assigned to the performance of the

211

6. Experimental Results

probed algorithm. Furthermore, all the experimental procedures also included an

estimation of the computational cost of each algorithm. Such evaluation is based on

the number of times that the most predominant arithmetic operation was performed

during the execution of the algorithm.

6.2 Static video composition§

The performance of the proposed NRSO insertion transcoding architectures was

thoroughly evaluated by undergoing several experiments, both in the pixel-domain

and in the compressed DCT-domain, and by considering four standard QCIF video

sequences of classes A, B and C of the MPEG-4 Video Verification Model [65]:

Akiyo, Silent-Voice, Carphone and Table-Tennis. The first 130 frames of each video

sequence were encoded at 30 FPS with a reference H.263 [30] video transcoding

system, using a GOP length (G) of 15 frames and by considering two different

quantization setups: Q = 4 (step size=8) and Q = 15 (step size=30).

(a) Logo. (b) Subtitle.

Figure 6.2: Considered set of NRSOs (CT = 0).

The logo and subtitle illustrated in figs. 6.2(a) and 6.2(b) were simultaneously

inserted in each of these video sequences at positions (5, 5) and (120, 26), respec-

tively, using a transparency factor α = 0.5. With this setup, 68 out of the 396 blocks

of (N ×N) pixels of each QCIF frame require some processing, corresponding to

a processing rate of 17.2% of the total amount of blocks and of 27.3% of the total

amount of macroblocks, respectively.

The following characteristics of the considered transcoding architectures were

evaluated:

§Some portions of this section appeared in:

[86] - N. Roma and L. Sousa, “Insertion of irregular-shaped logos in the compressed DCT do-
main,” in Proceedings of the IEEE International Conference on Digital Signal Processing
(DSP), vol. 1. Santorini, Greece: IEEE, Jul. 2002, pp. 125–128.

[87] - N. Roma and L. Sousa, “Transcoding architectures for object insertion in compressed
video,” INESC-ID – Lisboa, Portugal, Tech. Rep. RT/006/2002, Oct. 2002.

[88] - N. Roma and L. Sousa, “Fast transcoding architectures for insertion of non-regular
shaped objects in the compressed DCT-domain,” Signal Processing: Image Communica-
tion, vol. 18, no. 8, pp. 659–683, Sep. 2003.

212

6.2 Static video composition

• the quality of the video sequences after the insertion of the NRSOs, assessed

by using the widely adopted PSNR measure and an optimal pixel-domain com-

positing scheme, to obtain the reference (maximum quality) video sequence;

• the bit rate of the resulting video sequences after the insertion of the NRSOs;

• the overall efficiency of each transcoder and the computational load that is

involved in the insertion of the NRSOs in each video sequence, namely, the

number of additions and multiplications;

• the distortion effect that is introduced by the several transcoders, with a special

emphasis on the drift introduced in INTER type images by the open-loop

compressed DCT-domain transcoder.

To ease the representation in the several charts presented in the following subsec-

tions, it was adopted the following nomenclature to identify the considered transcod-

ing architectures:

PDIT-MV – Pixel-domain insertion transcoder with re-estimation of the motion

vectors;

PDIT-nMV – Pixel-domain insertion transcoder without re-estimation of the mo-

tion vectors;

TDIT-CL – Closed-loop compressed DCT-domain insertion transcoder;

TDIT-FCL – Fast computational-reduced closed-loop compressed DCT-domain

insertion transcoder;

TDIT-OL – Open-loop compressed DCT-domain insertion transcoder.

6.2.1 Quality of the encoded video sequences

In fig. 6.3 it is illustrated the variation of the PSNR measure for the four con-

sidered video sequences, using a quantizer setup with Q = 4. As it can be observed

from these charts, the overall quality of the video sequences that were processed

by the compressed DCT-domain transcoders is somewhat higher than the quality

of the sequences that were obtained using the pixel-domain transcoders. This fact

complies with the observations presented in section 3.1.2 for high quality video cod-

ing (using small quantization steps), and can be justified by the higher influence of

the precision errors that are introduced in pixel-domain transcoding architectures.

The exception to this dominant advantage of DCT-domain transcoding archi-

tectures can be found in the results obtained with the open-loop DCT-domain

transcoder for video sequences with greater amounts of movement (Carphone and

Table-Tennis). Although the PSNR measures corresponding to INTRA type im-

ages are still higher than those obtained with the pixel-domain transcoders, the

213

6. Experimental Results

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

40.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Akiyo video sequence.

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Silent-Voice video sequence.

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

38.0

39.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(c) Carphone video sequence.

28.0

30.0

32.0

34.0

36.0

38.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(d) Table-Tennis video sequence.

Figure 6.3: Obtained PSNR level after the NRSOs insertion for sequences Akiyo,
Silent-Voice, Carphone and Table-Tennis using Q = 4.

214

6.2 Static video composition

29.5

30.0

30.5

31.0

31.5

32.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Akiyo video sequence.

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

30.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Silent-Voice video sequence.

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

31.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(c) Carphone video sequence.

22.0

24.0

26.0

28.0

30.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(d) Table-Tennis video sequence.

Figure 6.4: Obtained PSNR level after the NRSOs insertion for sequences Akiyo,
Silent-Voice, Carphone and Table-Tennis using Q = 15.

215

6. Experimental Results

accumulated drift caused a significant degradation in the processing of INTER type

images.

In fig. 6.4 it is presented the set of results that were obtained using the same

video sequences, when adopting a quantization setup with Q = 15. For the Akiyo

video sequence, all DCT-domain transcoders presented better results than the pixel-

domain transcoding architectures. For all other video sequences, the closed-loop

DCT-domain transcoding architectures (TDIT-CL and TDIT-FCL) performed bet-

ter than the PDIT-nMV pixel-domain transcoder, without re-estimation of the mo-

tion vectors. However, for certain segments of some considered video sequences

(e.g.: Carphone), these DCT-domain transcoders presented slightly worse results

than the pixel-domain transcoding architecture that re-estimates the motion vec-

tors (PDIT-MV).

Besides these observations, it is also interesting to note the influence of the

quantization parameter Q on the variation of the resulting PSNR value (see figs. 6.3

29.5

30.0

30.5

31.0

31.5

32.0

32.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [d
B

]

α

PDIT-MV
PDIT-nMV
TDIT-CL
TDIT-FCL
TDIT-OL

(a) Akiyo video sequence.

27.0

27.5

28.0

28.5

29.0

29.5

30.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [d
B

]

α

PDIT-MV
PDIT-nMV
TDIT-CL
TDIT-FCL
TDIT-OL

(b) Silent-Voice video sequence.

26.0

27.0

28.0

29.0

30.0

31.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [d
B

]

α

PDIT-MV
PDIT-nMV
TDIT-CL
TDIT-FCL
TDIT-OL

(c) Carphone video sequence.

24.0

25.0

26.0

27.0

28.0

29.0

30.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [d
B

]

α

PDIT-MV
PDIT-nMV
TDIT-CL
TDIT-FCL
TDIT-OL

(d) Table-Tennis video sequence.

Figure 6.5: Variation of the PSNR level with the transparency factor α after
the NRSOs insertion in sequences Akiyo, Silent-Voice, Carphone and
Table-Tennis, using Q = 15.

216

6.2 Static video composition

and 6.4). In fact, besides the expected decrease of the output video quality when

greater quantization values were used, it should also be noted that the PSNR values

obtained with the several transcoding architectures for Q = 15 not only are more

similar to each other, but they also denote a slower degradation influence of the

introduced drift. Such phenomenon can be observed by noting the smaller dynamic

range of the variation of the video quality levels, between the first and the last

INTER type frame of each GOP.

The exception to this quality performance pattern can be found in the experi-

ments performed with the open-loop DCT-domain transcoder, whose results will be

further discussed in section 6.2.4.

In fig. 6.5 it is presented the variation of the average PSNR level (considering the

whole set of frames of each video sequence) with the transparency factor α. These

charts provide us the ability to observe that the PSNR measure decreases when the

opacity level of the inserted NRSOs is increased. Hence, these results allow us to use

the α factor as a measure of the overall disturbance introduced in the original video

sequence. This behavior complies with the estimation of the amount of distortion

introduced by the open-loop insertion architecture, which was previously presented

in eq. 4.42:

ǫt = α (pu − it) . (6.1)

6.2.2 Bit rate of the encoded video sequences

The average amount of bits required to encode each pixel of the considered

video sequences with the proposed transcoding architectures is presented in figs. 6.6

and 6.7, for the quantization setups with Q = 4 and Q = 15, respectively.

The presented results show that the pixel-domain architecture with re-estimation

of the motion vectors (PDIT-MV) provides the best performance in terms of the

required bandwidth. Such difference is more significant in video sequences with

greater amount of movement. This advantage can be justified by this architecture

capability to better perform the motion compensated prediction encoding in INTER

type images.

Among the remaining transcoder architectures, where the decoded motion vec-

tors are re-used in the transcoding scheme, it is possible to observe that the amount

of bits required to encode each pixel is quite similar, with a slight advantage for

the pixel-domain architecture. In fact, it was observed that the DCT-domain

transcoders require about 10% more bits than the PDIT-nMV transcoder to en-

code the considered frames with a smaller quantization step (Q = 4), and about 2%

more bits to encode the same frames with a greater quantization step (Q = 15).

217

6. Experimental Results

0.0

0.5

1.0

1.5

2.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

bi
ts

 p
er

 p
ix

el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Akiyo video sequence.

0.0

0.5

1.0

1.5

2.0

2.5

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

bi
ts

 p
er

 p
ix

el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Silent-Voice video sequence.

0.0

0.5

1.0

1.5

2.0

2.5

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

bi
ts

 p
er

 p
ix

el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(c) Carphone video sequence.

0.5

1.0

1.5

2.0

2.5

3.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

bi
ts

 p
er

 p
ix

el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(d) Table-Tennis video sequence.

Figure 6.6: Average number of bits required to encode each pixel for the video
sequences Akiyo, Silent-Voice, Carphone and Table-Tennis (Q = 4).

218

6.2 Static video composition

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

bi
ts

 p
er

 p
ix

el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Akiyo video sequence.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

bi
ts

 p
er

 p
ix

el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Silent-Voice video sequence.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

bi
ts

 p
er

 p
ix

el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(c) Carphone video sequence.

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

bi
ts

 p
er

 p
ix

el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(d) Table-Tennis video sequence.

Figure 6.7: Average number of bits required to encode each pixel for the video
sequences Akiyo, Silent-Voice, Carphone and Table-Tennis (Q = 15).

219

6. Experimental Results

The charts presented in fig. 6.6 and in fig. 6.7 also evidence the significant dif-

ference between the amount of bits required to encode INTRA type images and

the amount of bits required to encode INTER type images. Such difference is eas-

ily justified by the absence of any prediction mechanism in the encoding algorithm

of INTRA type images, leading to bit rates much higher (one order of magnitude

greater) than those obtained for INTER type images.

On the other hand, it is also interesting to note the influence of the quantization

parameter Q on the variation of the resulting bit rate (see figs. 6.6 and 6.7). The ob-

served decrease of the amount of bits required to encode each pixel of the considered

video sequences is the result of a greater amount of AC frequency DCT coefficients

that become null within each encoded block. This arises as a consequence of using

greater quantization parameters, which implies a consequent reduction of the spatial

details that are present in the encoded video sequences.

Finally, these charts also illustrate the influence of the amount of movement

that is present in the considered video sequences on the obtained bit rate. Such

phenomenon is easily observed in the Carphone and in the Table-Tennis video se-

quences. In the last one, it is even possible to observe a significant increase of the

required number of bits, starting from frame number 25. Such increase can be justi-

fied by the motion activity contained in this sequence, not only due to the presence

of a zoom-out effect, but also due to a global displacement (to the left) of the camera

device used in the acquisition of this scene.

6.2.3 Efficiency of the NRSO insertion transcoders

In this section, it is presented the computational load required by the proposed

architectures to insert the logo and subtitle in the considered video sequences, both

forQ = 4 andQ = 15. In figs. 6.8 through 6.11 it is presented the observed variations

of the number of required additions and multiplications for the Akiyo and Table-

Tennis video sequences. Entirely similar results, obtained with the Silent-Voice and

Carphone video sequences, are presented in figs. B.3 through B.6, in appendix B.

To accommodate the high dynamic range of the amount of performed operations

presented in all these figures, these charts were represented using a logarithmic scale

in the y axis.

Tables 6.1, 6.2 and 6.3 present some figures of merit concerning the considered

compressed DCT-domain architectures, namely, the minimum, the average and the

maximum relative number of operations required to process the considered video

sequences using the two quantizer setups. For comparison purposes, the values

presented in these tables were normalized in relation to the corresponding compu-

220

6.2 Static video composition

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

su
m

s
pe

r
pi

xe
l

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Additions.

10-1

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
ul

tip
lic

at
io

ns
 p

er
 p

ix
el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Multiplications.

Figure 6.8: Number of operations required to insert the considered NRSOs in the
Akiyo video sequence (Q = 4).

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

su
m

s
pe

r
pi

xe
l

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Additions.

10-1

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
ul

tip
lic

at
io

ns
 p

er
 p

ix
el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Multiplications.

Figure 6.9: Number of operations required to insert the considered NRSOs in the
Akiyo video sequence (Q = 15).

221

6. Experimental Results

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

su
m

s
pe

r
pi

xe
l

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Additions.

10-1

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
ul

tip
lic

at
io

ns
 p

er
 p

ix
el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Multiplications.

Figure 6.10: Number of operations required to insert the considered NRSOs in the
Table-Tennis video sequence (Q = 4).

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

su
m

s
pe

r
pi

xe
l

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Additions.

10-1

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
ul

tip
lic

at
io

ns
 p

er
 p

ix
el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Multiplications.

Figure 6.11: Number of operations required to insert the considered NRSOs in the
Table-Tennis video sequence (Q = 15).

222

6.2 Static video composition

Table 6.1: Relation between the minimum, the average and the maximum num-
ber of operations required by the closed-loop DCT-domain transcoder
(TDIT-CL) and those required by the pixel-domain architecture with-
out re-estimation of the motion vectors (PDIT-nMV).

Video
Sequence

Q = 4 Q = 15

Additions Multiplications Additions Multiplications

min avg max min avg max min avg max min avg max

Akiyo 0.49 0.56 0.76 0.32 0.36 0.53 0.49 0.65 0.91 0.32 0.42 0.63

Silent 0.49 0.81 1.17 0.32 0.53 0.85 0.49 0.94 1.32 0.32 0.63 1.00

Carphone 0.49 1.68 2.76 0.32 1.17 2.10 0.49 1.71 2.53 0.32 1.20 2.08

Table-tennis 0.49 1.82 2.92 0.32 1.27 2.03 0.49 2.02 2.98 0.32 1.41 2.06

Table 6.2: Relation between the minimum, the average and the maximum number
of operations required by the computational-reduced closed-loop DCT-
domain transcoder (TDIT-FCL) and those required by the pixel-domain
architecture without re-estimation of the motion vectors (PDIT-nMV).

Video
Sequence

Q = 4 Q = 15

Additions Multiplications Additions Multiplications

min avg max min avg max min avg max min avg max

Akiyo 0.52 0.54 0.63 0.32 0.34 0.43 0.52 0.59 0.72 0.32 0.38 0.48

Silent 0.52 0.69 0.90 0.32 0.45 0.68 0.52 0.77 1.00 0.32 0.51 0.78

Carphone 0.52 1.24 1.86 0.32 0.84 1.38 0.52 1.26 1.72 0.32 0.86 1.39

Table-tennis 0.52 1.35 2.08 0.32 0.92 1.42 0.52 1.46 2.09 0.32 1.00 1.42

Table 6.3: Relation between the minimum, the average and the maximum num-
ber of operations required by the open-loop DCT-domain transcoder
(TDIT-OL) and those required by the pixel-domain architecture with-
out re-estimation of the motion vectors (PDIT-nMV).

Video
Sequence

Q = 4 Q = 15

Additions Multiplications Additions Multiplications

min avg max min avg max min avg max min avg max

Akiyo 0.01 0.04 0.46 0.00 0.02 0.32 0.01 0.06 0.46 0.00 0.03 0.32

Silent 0.01 0.08 0.46 0.00 0.05 0.32 0.01 0.09 0.46 0.00 0.06 0.32

Carphone 0.05 0.18 0.45 0.03 0.12 0.31 0.07 0.19 0.45 0.04 0.13 0.31

Table-tennis 0.01 0.21 0.45 0.00 0.13 0.31 0.02 0.23 0.45 0.01 0.15 0.31

223

6. Experimental Results

tational load of the pixel-domain architecture without re-estimation of the motion

vectors (PDIT-nMV).

Similarly to the previously presented charts, representing the variation of the

video quality (PSNR) and of the required bandwidth, these charts have a pseudo-

periodic characteristic, corresponding to the processing of the several GOPs, with

distinctive maximums/minimums corresponding to each INTRA type frame. This

fact can be easily justified by the different processing requirements of INTRA and

INTER type images (e.g.: motion estimation/compensation, convolution, etc.).

As it would be expected, the pixel-domain transcoder with re-estimation of the

motion vectors (PDIT-MV) is the most computationally demanding scheme. Since

this architecture does not perform any simplification of the encoding, decoding and

insertion algorithms, the required number of operations to process each block is

always the same, depending only on the type (INTRA/INTER) of the considered

frame. Consequently, by comparing the charts corresponding to the two considered

pixel-domain transcoding architectures (PDIT-MV and PDIT-nMV), it is possible

to conclude that the difference that is observed in the number of required addi-

tions (on average, 200.3 additions/pixel) is mainly due to the huge amount of addi-

tions/subtractions performed by the full-search block-matching motion estimation

algorithm [75], to compute the SAD matching criteria for every candidate MB of

INTER type images. All other processing blocks of these two architectures are ex-

actly the same, leading to the same amount of multiplications that are required by

the two insertion algorithms.

In what concerns the compressed-domain transcoding structures, it is possible to

observe that in most video sequences the computational resources required by DCT-

domain transcoding algorithms are lower than those required by any of the pixel-

domain transcoders. This fact, together with the presented results concerning the

obtained video quality (see section 6.2.1), justify the preference of the closed-loop

DCT-domain transcoding algorithms over the equivalent pixel-domain transcoder

architecture (without re-estimation of the motion vectors). Such computational

advantage is even more significant if the open-loop DCT-domain transcoder is con-

sidered. The number of operations required by this architecture is often one order

of magnitude lower than the number of operations required by the remaining archi-

tectures.

Contrasting with the pixel-domain transcoding architectures, it can also be ob-

served from the charts presented in figs. 6.8 through 6.11 that the amount of compu-

tations required by the DCT-domain transcoders is not constant and varies signifi-

cantly (even for INTER type images) within a certain GOP. In fact, it is possible

224

6.2 Static video composition

to realize that the computational cost of the two proposed closed-loop DCT-domain

architectures (TDIT-CL and TDIT-FCL) has its absolute minimum values (corre-

sponding to 49% of the number of additions and 32% of the number of multiplications

of the PDIT-nMV architecture) at the time instants corresponding to INTRA type

frames. This fact can be easily justified by recalling that for INTRA-type images it

is not necessary to perform the motion compensation prediction, neither the removal

of previously inserted objects from certain MBs of the image being processed. Even

in INTER type images, the number of MBs that require the insertion or removal

of the NRSOs is not always the same, depending on the insertion locations and

on the motion activity of the scene along the time, thus leading to the presented

variation. This phenomenom is emphasized in the charts representing the amount

of computations required to process the Table-Tennis sequence (figs. 6.10 and 6.11).

In fact, three different temporal segments can be distinguished in this sequence:

the segment corresponding to frames 1 through 25; the segment corresponding to

frames 25 through 105; and the segment corresponding to frames 105 through 130.

While in the first and in the third segments the movements presented in the video

sequence are local and restricted to certain regions of the image (e.g.: ping-pong

ball), during the second segment there is a global movement of the whole scene

caused by a zooming-out effect performed by the video acquisition camera. This

zooming-out effect is responsible for a significant increase of the number of MBs

that require some processing, thus justifying the abrupt growth observed in the

charts illustrated in figs. 6.10 and 6.11. Consequently, the presented results show

that this variable computational load should be taken into consideration whenever

this type of transcoding architectures is adopted, since it is greatly dependent on

the motion activity in the scene and on the amount of MBs that are involved in the

insertion of the considered NRSOs.

From the analysis of the obtained results, it can be observed that while the

TDIT-CL architecture required a computational load that varies between 0.36

and 2.02 of the amount of operations required by the PDIT-nMV transcoder, the

TDIT-FCL structure requires an amount of computations that ranges between 0.34

and 1.46 of the load required by the reference architecture. Nevertheless, it still

achieves a video quality very close to the TDIT-CL architecture. Consequently,

from the results presented in tables 6.1 and 6.2 one should conclude that, depending

on the video sequence under processing, compressed DCT-domain insertion algo-

rithms may offer significant advantages in what concerns the computational load,

requiring, in certain cases, an average number of operations that is one half of the

number of operations required by the traditional pixel-domain insertion algorithms.

225

6. Experimental Results

To conclude, a final attention should be given to the number of operations re-

quired by the open-loop DCT-domain architecture (TDIT-OL). As it can be seen

from figs. 6.8 through 6.11, the lines in some of the charts corresponding to the

number of multiplications required in the processing of the considered sequences by

this architecture are not visible. Such cases occur whenever the number of multipli-

cations required to process a given frame was zero. These situations were already

expected and happen whenever there is no motion activity in the regions where the

NRSOs should be inserted. In such circumstances there is no need to perform the

motion compensation algorithm in the transcoder, thus leading to a null number of

multiplications.

Furthermore, from the values presented in table 6.3 and from the charts illus-

trated in figs. 6.8 through 6.11, and by taking into account the description presented

in section 4.3.5, one can conclude that the TDIT-OL architecture provides a signif-

icant saving in the number of operations that are required to perform this insertion

algorithm. As in the other DCT-domain architectures, this saving greatly depends

on the motion activity in the scene and corresponds to a computational load that

ranges between 2% and 23% of the number of operations required by the pixel-

domain architecture (PDIT-nMV). As it was referred before, this computational

saving is mainly due to the absence of the 2-D symmetric convolution block in the

processing of INTER type images. Consequently, and contrasting with the previ-

ously described DCT-domain insertion architectures, the overall computational cost

of this scheme has its maximum when it processes INTRA type images, as it can be

seen in the charts presented in figs. 6.8 through 6.11. As it will be seen in the follow-

ing subsection, this insertion architecture may offer some interesting computational

advantages over the other two architectures in the processing of video sequences

with long GOP structures and characterized by very reduced amounts of movement.

6.2.4 Drift introduced in INTER type images

One of the main causes of distortion in video coding arises from the usage of

quantization. Despite the great compression capability that this functional block

offers, it is the most responsible for the accumulation of quantization errors (drift)

in the encoding of video sequences (see section 3.1.2). Moreover, since the INTER

type frames of a given GOP are encoded using a temporal prediction scheme based

on the other reference frames of that GOP, this degradation effect tends to suffer a

gradual aggravation along the time, as it was already shown in figs. 6.3 and 6.4.

In fig. 6.12 it is illustrated a temporal segment of a decoded GOP, composed

by G = 15 frames, that was obtained by applying the insertion algorithms to the

226

6.2 Static video composition

Table-Tennis video sequence. The reason for choosing this particular video sequence

to illustrate this phenomenom emerges from the fact that it offers the set of worst

case conditions to apply the proposed algorithms (see figs. 6.3(d), 6.4(d), 6.6(d)

and 6.7(d)). The image shown in fig. 6.12(a) is the first frame of that GOP (IN-

TRA type) and will be used as the reference for the following INTER type images.

In fig. 6.12(b) it is illustrated the last frame of the same GOP (INTER type).

Fig. 6.12(c) illustrates the first frame (INTRA type) of the following GOP. This

set of images was obtained with a quantizer setup with Q = 4 and using the pixel-

domain transcoder (PDIT-MV). The usage of such a small quantizer parameter led

to a minimization of the drift introduced along the GOP, as it was already shown

in the chart of fig. 6.3(d).

In fig. 6.13 it is illustrated the last image (frame no.44) of the considered GOP

using the same quantizer and all other proposed architectures for the insertion algo-

(a) Frame no.30
([36.31 dB]).

(b) Frame no.44
([33.92 dB]).

(c) Frame no.45
([36.81 dB]).

Figure 6.12: First frames (fig. 6.12(a) and fig. 6.12(c) - INTRA type) and last
frame (fig. 6.12(b) - INTER type) of two consecutives GOPs of the
Table-Tennis video sequence, using Q = 4 and the pixel-domain
transcoder (with re-estimation of the motion vectors).

(a) Frame no.44
([33.60 dB]).

(b) Frame no.44
([33.93 dB]).

(c) Frame no.44
([34.97 dB]).

(d) Frame no.44
([29.29 dB]).

Figure 6.13: Last frame (INTER type) of the considered GOP of the Table-Tennis
video sequence, processed using: the pixel-domain transcoder with
re-usage of the motion vectors (fig. 6.13(a)); the closed-loop DCT-
domain transcoder (fig. 6.13(b)); the computational-reduced DCT-
domain transcoder (fig. 6.13(c)) and the open-loop DCT-domain
transcoder (fig. 6.13(d)) (Q = 4).

227

6. Experimental Results

rithm: PDIT-nMV (fig. 6.13(a)), TDIT-CL (fig. 6.13(b)), TDIT-FCL (fig. 6.13(c))

and TDIT-OL (fig. 6.13(d)). As it was previously illustrated in fig. 6.3(d), the

PSNR obtained using the pixel-domain transcoder with re-usage of the motion

vectors (PDIT-nMV) is only slightly lower than the PSNR measure obtained us-

ing the pixel-domain insertion algorithm with re-estimation of the motion vectors

(PDIT-MV). In figs. 6.13(b) and 6.13(c) it is illustrated the same image, but ob-

tained with the compressed DCT-domain transcoders: TDIT-CL and TDIT-FCL,

respectively. As it was previously shown in section 3.1.2, the absence of the degra-

dation effect directly introduced by the usage of fixed-precision in the arithmetic

operations that are performed in the computation of both the direct and inverse

DCTs leads to greater PSNR quality measures, obtained with the closed-loop DCT-

domain transcoders, than the quality levels that are obtained with the pixel-domain

insertion algorithm with re-estimation of the motion vectors (PDIT-MV). The sig-

nificant difference that was obtained for the particular case of the computational-

reduced DCT-domain transcoder (TDIT-FCL) of about 1.05 dB can be justified by

the fact that this insertion algorithms only processes the MBs where the NRSO

is supposed to be inserted (and, eventually, the surrounding MBs). Consequently,

the degradation effects that are introduced can be considered as a localized form

of distortion that only affects a restricted sub-region in the image (which tends to

enlarge along the GOP), corresponding to the fraction that is actually affected by

the insertion of the NRSO. If one takes into account that the considered NRSOs

do not significantly change with time, one can naturally consider that, from a mere

subjective point of view, the degradation that is introduced in such areas will not

significantly affect the perception of the rest of the scene. Consequently, they are

not easily perceived by the viewer.

In fig. 6.13(d) it is illustrated the same frame but obtained with the open-loop

DCT-domain transcoder (TDIT-OL). A careful observation of this image provides

the means to further understand the source of the significant degradation effect that

was shown in the chart of fig. 6.3(d). In fact, by comparing this frame with the first

image of the considered GOP (INTRA type image, illustrated in fig. 6.12(a)), one can

easily realize that the gap-line that crosses the characters of the word “WORLD” in

the subtitle of fig. 6.13(d) is almost parallel to the edge of the table. If the description

of the insertion mechanism that is adopted by this scheme is taken into account (see

section 4.3.5), one can easily conclude that this mismatch is mainly caused by a

deficient cancellation of the insertion algorithm, as it was previously discussed in

the last paragraph of section 4.3.5. This phenomenom is particularly perceived at

the presence of significant movement or of highly textured areas, and it gives rise to

228

6.2 Static video composition

a gradual introduction of an observable distortion effect in the neighboring regions

close to the pixels areas where the NRSOs have been inserted. Such effect will

prevail along the whole GOP and can only be removed when a new INTRA type

frame is encoded. In this case, the combination of the presence of the table edge and

of the zooming-out effect caused by the video camera provided the worst processing

conditions which led to an easy perception of this phenomenom and whose distortion

effect was easily noticeable in the chart presented in fig. 6.3(d). Moreover, it also

resulted in an observable increment of the computational load, as it was previously

noted. Were these conditions not satisfied and this degradation would not be easily

perceived by the observer.

Despite this degradation effect, there is still another noticeable phenomenom in

the region covered by the logo that also contributes to the distortion level presented

in the chart of fig. 6.3(d). In fact, if one compares the “flower” logo inserted in this

frame with the logos inserted using the other transcoder architectures, it is possible

to perceive a certain reduction of its luminance level. This fact can be justified

by a deficient processing of the received differences signal (Et) and of the adopted

transparency factor (α) in the processing of INTER type images (see eq. 4.42).

The images shown in figs. 6.14 and 6.15 were obtained in a similar manner

as those presented in figs. 6.12 and 6.13, respectively, but using, in this case, a

quantizer setup with Q = 15. By observing figs. 6.14(b), 6.15(a), 6.15(b) and

6.15(c), it is possible to realize that both the pixel-domain insertion algorithms and

the closed-loop DCT-domain architectures roughly provide the same video quality

levels, as it was previously illustrated in the charts of fig. 6.4(d). On the other hand,

from the observation of fig. 6.15(d), corresponding to the same processed frame but

obtained with the open-loop DCT-domain transcoder (TDIT-OL), it is possible to

perceive a much more serious degradation effect surrounding the NRSO area. As

it was referred before, this degradation is mainly caused by a deficient removal and

insertion of the NRSO data in the processed macroblocks of INTER type images

(see eq. 4.50), resulting from the significant amount of motion activity during this

temporal segment of the video sequence, characterized by a global movement of

the whole scene due to a zooming-out effect performed by the video camera. This

degradation is even worsened by the accumulation of the greater quantization errors

along the encoding of the considered GOP, which significantly affects the possibility

to perfectly remove the NRSO data that was inserted in previously encoded frames.

Even so, it is worth noting that the open-loop DCT-domain insertion architec-

ture still should be considered for certain specific insertion applications, due to the

significant computational savings that it offers. Namely, in those applications where

229

6. Experimental Results

the particular scene characteristics, in terms of the amount of motion and spatial

details, provide the required conditions to keep the distortion level under acceptable

limits. One example of such applications is the processing of sequences containing

a person, or a group of few people, who keep speaking in front of the camera with

a static background. In fact, such type of scene is very common in certain kinds

of television programs, such as “News Reports”, “Weather Forecast” or even “Live

Interviews”. The considered video sequences Akiyo and Silent-Voice are good exam-

ples of this kind of scenes. In fig. 6.16(a) and 6.16(b) it is presented the last frame of

the first GOP of these video sequences. In this processing setup, it was considered

a smaller GOP length (G = 8), in order to restrict the amount of distortion due

to the accumulation of drift. As it can be observed, for these particular conditions,

the amount of distortion that is introduced by this algorithm is still confined within

tolerable levels, from the subjective point of view.

(a) Frame no.30
([29.87 dB]).

(b) Frame no.44
([27.66 dB]).

(c) Frame no.45
([30.16 dB]).

Figure 6.14: First frames (fig. 6.14(a) and fig. 6.14(c) - INTRA type) and last
frame (fig. 6.14(b) - INTER type) of two consecutives GOPs of the
Table-Tennis video sequence, using Q = 15 and the pixel-domain
transcoder (with re-estimation of the motion vectors).

(a) Frame no.44
([27.09 dB]).

(b) Frame no.44
([27.26 dB]).

(c) Frame no.44
([27.34 dB]).

(d) Frame no.44
([22.78 dB]).

Figure 6.15: Last frame (INTER type) of the considered GOP of the Table-Tennis
video sequence, processed using: the pixel-domain transcoder with
re-usage of the motion vectors (fig. 6.15(a)); the closed-loop DCT-
domain transcoder (fig. 6.15(b)); the computational-reduced DCT-
domain transcoder (fig. 6.15(c)) and the open-loop DCT-domain
transcoder (fig. 6.15(d)) (Q = 15).

230

6.3 Dynamic video composition

(a) Frame no.7 [34.75 dB]. (b) Frame no.7 [32.40 dB].

Figure 6.16: Last frame (INTER type) of the Akiyo (fig. 6.16(a)) and Silent-Voice
(fig. 6.16(b)) video sequences, processed using the open-loop DCT-
domain transcoder, with a GOP length G = 8 and Q = 8.

6.3 Dynamic video composition

This section presents the set of experimental results that were obtained to assess

the set of dynamic video compositing techniques, proposed in chapter 5. In partic-

ular, in section 6.3.1 it is presented the evaluation of the space scaling algorithm

by an arbitrary integer scale factor, described in section 5.2; section 6.3.2 addresses

the assessment of the block-based motion re-estimation algorithm in the compressed

DCT-domain, described in section 5.3; and section 6.3.3 presents the evaluation of

the DCT-domain dynamic video composition architecture, proposed in section 5.4.

6.3.1 Space scaling algorithm by an arbitrary integer scale

factor§

Video transcoding structures for spatial downscale comprise several different

stages that must be implemented in order to re-size the incoming video sequence.

In fact, while in INTRA type images only the spatial-domain information has to

be downscaled, in INTER type frames the downscaling transcoder must also take

into account several other processing tasks, as a result of the adopted temporal

prediction mechanism. Some of such tasks involve the re-usage and composition

of the decoded motion vectors, the scaling of the composited motion vectors, the

refinement of the scaled motion vectors, the computation of the new prediction val-

ues obtained by motion compensation, etc. All of such processing steps have been

§Some portions of this section appeared in:

[90] - N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for any arbitrary integer
re-size video downscaling,” EURASIP Journal on Advances in Signal Processing, vol. 2007,
no. 57291, pp. 1–16, Sep. 2007.

231

6. Experimental Results

jointly or separately studied along the last few years [1, 113].

As many other proposals, the research that was carried out in this field (see sec-

tion 5.2) focuses solely on the proposal of an efficient computational scheme to down-

scale the DCT coefficients blocks decoded from the incoming video stream by any

arbitrary integer scaling factor. The evaluation of its performance was carried out by

integrating the proposed downscaling algorithm in a reference closed-loop H.263 [30]

video transcoding system, as shown in fig. 6.17. In this transcoding architecture,

both the MC-DCT and the Transform-Domain Motion Estimation (ME-DCT) mod-

ules were implemented in the DCT-domain. In particular, the motion estimation

module of the encoding part of the transcoder was implemented using the DCT-

domain least squares motion re-estimation algorithm proposed in section 5.3, by

considering a ±1 pixel search range [89]. By adopting this structure, the encoder

loop may compute a new reduced-resolution prediction residual, providing a re-

alignment of the predictive and residual components and thus minimizing the in-

volved drift [114]. Nevertheless, to isolate the proposed algorithm from other en-

coding mechanisms that could interfere in this assessment (such as motion estima-

tion/compensation), a first evaluation considering only the provided static video

quality, by using solely INTRA type images, is presented in subsection B. A perfor-

mance evaluation of the real performance of the algorithm, when processing video

sequences that apply the traditional temporal prediction mechanisms, is presented

in subsection C.

The implemented system was applied in the scaling of a set of several CIF bench-

mark video sequences with different characteristics (Akiyo, Silent-Voice, Carphone,

Table-Tennis and Mobile & Calendar) and using different scaling factors (SF). The

majority of the results that are presented in this section were obtained using the

Mobile & Calendar video sequence and a quantization setup with Q = 4. The pref-

erence for this particular video sequence arises from its peculiar characteristics in

+

-

Q VLC

Q-1

+

+
Memory

MC-DCT

ME-DCT

Q-1

+

+

Frame
Memory

MC-DCT

VLD

MVo

INPUT OUTPUT

0

P

I

P

I

0

P

I

MVi

MV
Composer

MVi MVs

(0,0)

DCT-Domain
Downscaler

MV
Downscaler P

I

Figure 6.17: Integration of the proposed DCT-domain downscaling algorithm in
a H.263 video transcoder.

232

6.3 Dynamic video composition

(a) (b) (c) (d) (e)

Figure 6.18: Space scaling of the CIF Mobile & Calendar video sequence (Q = 4):
(a) original frame; (b) SF = 2; (c) SF = 3; (d) SF = 4; (e) SF = 5.

terms of both the spatial detail and the amount of movement. Nevertheless, the

algorithm was equally assessed with all the remaining considered video sequences

and using a wide range of quantization steps, leading to entirely equivalent results.

For all these experiments, it was considered the block size adopted by most image

and video standards [30]: N = 8.

In fig. 6.18 it is represented the first frame of both the input and output video

streams, considering the Mobile & Calendar video sequence and SF = 2, 3, 4 and 5.

To evaluate the influence of the video scaling on the output bit stream, the same

format (CIF) was adopted for both video sequences, by filling the remaining area

of the output frame with null pixels. By doing so, not only do the two video

streams share a significant amount of the VLC parameters, thus simplifying their

comparison, but it also provides an easy encoding of the scaled sequences, since

their dimensions are often non-compliant with current video standards. Neverthe-

less, only the representative area corresponding to the scaled image was actually

considered to evaluate the output video quality (PSNR) and drift. To do so, several

different alternative approaches could have been adopted to evaluate this PSNR

performance. A methodology that has been adopted by several authors consists in

implementing and cascading an up-scaling and a downscaling transcoders, in order

to compare the reconstructed images at the full-scale resolution [16]. However, since

such approach also introduces a non-negligible degradation effect associated with

the auxiliary up-scaling stage, it was not adopted in the presented experimental

setup. As a consequence, the PSNR quality assessment was carried out by com-

paring each scaled frame (obtained with each algorithm under evaluation), with

a corresponding reference scaled frame, that was carefully computed in order to

avoid the influence of any lossy processing step related to the encoding algorithm.

233

6. Experimental Results

An accurate quantization-free pixel-domain filtering and downsampling scheme was

specially implemented for this specific purpose. This solution has proved to be a

quite satisfactory alternative, when compared with other possible approaches to

compute the scaled reference frame (such as DCT decimation), since it may provide

a precise control over the inherent filtering process.

In the following, the proposed algorithm will be compared with the remaining

considered downscaling algorithms, by considering several different evaluation met-

rics, namely: the computational cost, the static video quality, the introduced drift

and the resulting bit rate.

A - Computational cost

In table 6.4(a), the proposed HDT algorithm is compared with the pixel-domain

transcoder (CPAT) and the DCT decimation transcoder (DDT), in what concerns

the involved computational cost. As it was mentioned before, such computational

cost was evaluated by counting the total amount of multiplications (M) that are

required to implement the downscaling procedure. In order to obtain comparison

results as fair as possible, all the considered algorithms adopted the same number

of DCT coefficients (K) for each of these comparisons and were implemented for

several integer scaling factors (SF).

In the first row of the presented results it is emphasized the expected and sig-

nificant computational advantage provided by the proposed scheme over the trivial

pixel-domain approach, using the whole set of DCT coefficients (CPAT). On the

other hand, the results presented in the second row evidence the clear computational

advantages provided by the proposed scheme when compared with the DCT deci-

mation transcoder (DDT), to downscale the input video sequences by any arbitrary

integer scaling factor. In particular, it can be clearly seen that the HDT approach

presents more significant advantages for scaling factors other than integer powers

of 2, leading to a reduction of the computational cost as high as 5 (SF = 7). Such

phenomenom was already expected and is a direct consequence of the computational

inefficiency inherent to the post-processing discarding stage of the DDT algorithm,

illustrated in fig. 5.1. This computational advantage is even more significant for

higher values of the difference: SF − 2⌊log2 SF⌋.

In table 6.4(b) it is presented the variation of the computational cost of the

considered schemes when a different number of DCT coefficients (K) is used. For

such considered experimental setups, the pixel-domain transcoder (CPAT) adopted

the whole set of DCT coefficients (K = N), while the DCT decimation transcoder

(DDT) adopted K = ⌈N/SF⌉ coefficients, as defined in [48]. As it was predicted be-

234

6.3 Dynamic video composition

Table 6.4: Computational cost comparison of the several considered downscaling
algorithms (CIF Mobile & Calendar video sequence, Q = 4).

(a) Comparison of the proposed algorithm with the other considered schemes in what
concerns the number of multiplications required to process each pixel, for several
scaling factors (SF).

SF 2 3 4 5 6 7 8 9 10 K

M(HDT)
M(CPAT) 0.5 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 KHDT = KCPAT = N

M(HDT)
M(DDT) 0.9 0.7 0.9 0.5 0.3 0.2 0.9 0.7 0.5 KHDT = KDDT =

⌈
N
SF

⌉

(b) Variation of the number of multiplications required to process each pixel with
the number of considered DCT coefficients (K).

Computational
Cost

SF
K

8 7 6 5 4 3 2 1

M (CPAT) 30.4 – – – – – – –

M (HDT) 2 14.8 13.0 11.4 10.1 8.9 7.9 7.1 6.4

M (DDT) – – – – 9.8 – – –

M (CPAT) 27.0 – – – – – – –

M (HDT) 3 9.3 8.0 6.8 5.7 4.8 4.1 3.5 3.1

M (DDT) – – – – – 5.6 – –

M (CPAT) 25.7 – – – – – – –

M (HDT) 4 5.3 4.5 3.8 3.2 2.7 2.3 2.0 1.7

M (DDT) – – – – – – 2.2 –

M (CPAT) 25.2 – – – – – – –

M (HDT) 5 5.4 4.4 3.6 2.9 2.3 1.9 1.5 1.3

M (DDT) – – – – – – 2.7 –

M (CPAT) 24.8 – – – – – – –

M (HDT) 6 4.1 3.4 2.7 2.2 1.7 1.3 1.0 0.8

M (DDT) – – – – – – 3.0 –

M (CPAT) 24.7 – – – – – – –

M (HDT) 7 4.0 3.3 2.6 2.1 1.6 1.2 0.9 0.8

M (DDT) – – – – – – 4.1 –

M (CPAT) 24.5 – – – – – – –

M (HDT) 8 2.1 1.8 1.4 1.2 0.9 0.7 0.6 0.5

M (DDT) – – – – – – – 0.6

M (CPAT) 24.3 – – – – – – –

M (HDT) 9 3.2 2.6 2.0 1.5 1.1 0.8 0.5 0.4

M (DDT) – – – – – – – 0.6

fore (see table 5.2), it can be seen that the computational cost of the proposed HDT

algorithm significantly decreases when the number of considered DCT coefficients

decreases.

The presented results also evidence a direct consequence of the computational

235

6. Experimental Results

advantages provided by the proposed algorithm: for the same amount of multi-

plications (M) and a given scaling factor (SF), the proposed algorithm is able to

process a greater amount of decoded DCT coefficients (K) than the DCT decimation

transcoder (DDT). This fact can be easily observed for the transcoding setup using

SF = 3, illustrated in table 6.4(b). By approximately using the same number of

operations, the DCT decimation transcoder processes only K2 = 9 DCT coefficients

of each block, while the proposed transcoder may process K2 = 25 coefficients. As

it will be shown in subsection E, such advantage will allow this algorithm to ob-

tain scaled images with greater PSNR values in transcoding systems with restricted

computational resources.

B - Static video quality

As it was referred before, to isolate the evaluation of the proposed algorithm from

other processing issues (such as motion vector scaling and refinement, drift compen-

sation, predictive motion compensation, etc.), a first evaluation and assessment of

the considered algorithms was performed using solely INTRA type images. The

comparison of such static video quality performances allows to better understand

the advantages of the proposed approach, by focusing the attention on the most

important aspects under analysis: the accuracy and the computational cost of the

spatial downscaling algorithms. A dynamic evaluation of the obtained video quality

is presented in the following subsection, by also considering the inherent drift that

is introduced when temporal prediction schemes are applied.

Table 6.5 presents the PSNR measure that was obtained after the space scaling

operation for several scaling factors (SF) and considering different amounts of DCT

coefficients (K). Similar results were also obtained for all the remaining considered

video sequences and quantization steps, evidencing that the overall quality of the

resulting video sequences is better when the proposed HDT algorithm is applied.

These performance results were also validated by undergoing a perceptual evaluation

of the resulting video sequences using several different observers, who have confirmed

the obtained quality levels.

The first observation that should be retained from these results is the fact that

the proposed algorithm is consistently better than the trivial cascaded pixel-domain

architecture (CPAT) for the whole range of considered scaling factors. However,

it should be noted that this improvement is not directly owed to the scaling algo-

rithm itself. In fact, when the whole set of decoded DCT coefficients is considered

(K = N), these two algorithms actually make use of quite similar downsampling

filters. Nevertheless, by directly processing the incoming blocks of DCT coefficients

236

6.3 Dynamic video composition

Table 6.5: Comparison of the PSNR quality level [dB] obtained with the consid-
ered downscaling algorithms (CIF Mobile & Calendar video sequence,
Q = 4).

Algorithm SF
K

8 7 6 5 4 3 2 1

CPAT 36.0 – – – – – – –

HDT 2 36.5 36.4 35.2 31.3 31.3 24.6 21.5 18.6

DDT – – – – 31.4 – – –

CPAT 36.1 – – – – – – –

HDT 3 36.7 36.6 36.3 35.6 32.8 28.4 24.8 20.7

DDT – – – – – 27.9 – –

CPAT 36.2 – – – – – – –

HDT 4 36.7 36.6 36.6 36.0 36.0 32.5 32.5 22.0

DDT – – – – – – 32.6 –

CPAT 36.1 – – – – – – –

HDT 5 36.7 36.7 36.5 35.9 34.8 33.8 29.5 23.6

DDT – – – – – – 28.6 –

CPAT 36.2 – – – – – – –

HDT 6 36.8 36.8 36.8 36.5 36.5 34.8 32.0 24.6

DDT – – – – – – 30.2 –

CPAT 36.3 – – – – – – –

HDT 7 36.7 36.7 36.7 36.4 35.4 34.1 31.5 25.2

DDT – – – – – – 28.6 –

CPAT 36.3 – – – – – – –

HDT 8 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0

DDT – – – – – – – 37.0

CPAT 36.3 – – – – – – –

HDT 9 37.0 37.0 36.9 36.6 36.0 35.4 34.2 27.0

DDT – – – – – – – 28.9

in the DCT-domain, the proposed algorithm reduces the total number of arithmetic

operations involved in the scaling, thus reducing the inherent degradation influence

of round-off and truncation errors.

The second observation that is worth noting about the HDT algorithm concerns

the expected decrease of the PSNR measures, when the number of discarded coeffi-

cients increases. Although such decrease may be negligible for greater scaling factors,

its importance is highly significant for smaller scalings of the original sequence.

Finally, a careful observation should be devoted to the comparison of the per-

formances obtained with the proposed algorithm and with the DCT decimation

approach (DDT). As it was previously predicted, although both algorithms provide

quite similar quality performances for scaling factors given by integer powers of 2,

the same does not happen when other scaling factors are considered. In such cases,

237

6. Experimental Results

the results obtained with the proposed HDT approach prove that this algorithm

provides significantly better performances than the DDT algorithm. Moreover, as

it will be observed in subsection E, these better performance results may even be

obtained with fewer arithmetic operations. As a consequence, more decoded DCT

coefficients may be processed with the proposed algorithm than with the DCT dec-

imation approach, thus potentially providing much better quality results.

C - Drift

After a first evaluation of the static video quality provided by the considered

algorithms, a thorough assessment of their performances when processing video se-

quences that apply the traditional temporal prediction mechanisms was carried out.

Such evaluation was conducted by downscaling encoded video sequences with CIF

resolution (352×288 pixels) and GOPs composed by 8 frames, considering both the

proposed hybrid approach (HDT) and the DCT decimation transcoding algorithm

(DDT). To obtain comparison results as fair as possible, both approaches used the

same amount of decoded DCT coefficients: KHDT = KDDT = ⌈N/SF⌉.
In figs. 6.19 and 6.20 it is presented the variation of the PSNR measure obtained

from the downscaling of the first 130 frames of the Akiyo and Mobile & Calendar

video sequences, respectively. These operations considered the scaling factors SF = 3

and SF = 5, and a quantization parameter Q = 4. These two video sequences have

distinct content characteristics: while the Akiyo sequence is characterized by a re-

duced amount of spatial and motion activity, the Mobile & Calendar video sequence

has a significant amount of spatial detail and movement. From the obtained results

it can be observed that the proposed hybrid algorithm (HDT) consistently provides

better quality levels than the DCT decimation approach (DDT), thus confirming

the conclusions that were previously driven from their static behavior.

In table 6.6 it is represented the average PSNR gain provided by the proposed

HDT approach over the DCT decimation scheme, for several other different video

sequences and scaling factors (SF). Such gain was evaluated by computing the

average of the corresponding PSNR difference, for a time period corresponding to 300

frames. Once again, the obtained values demonstrate that while for scaling factors

given by integer powers of 2 the two considered approaches provide quite similar

quality levels (with a slight advantage for the DDT scheme), for scaling factors

other than integer powers of 2 the proposed HDT algorithm can provide significantly

better quality performances. In particular, the results that were obtained with the

Silent-Voice video sequence revealed a notable advantage of the proposed scheme

when processing this sequence. Such advantage comes as a result of the significant

238

6.3 Dynamic video composition

amount of spatial detail in the background of this sequence, which is particularly

affected by the degradation effect introduced by the post-processing discarding step

of the higher frequency DCT coefficients, inherent to the DCT decimation approach.

Hence, these results fully comply with the previously presented static video quality

behavior.

Moreover, the charts presented in figs. 6.19 and 6.20 also evidence that the

effect of the inherent drift on the proposed scheme is not significantly different

from the one observed for the DCT decimation approach. In fact, by adopting

this closed-loop transcoding architecture (see fig. 6.17) to evaluate the proposed

hybrid downscaling algorithm, a new reduced resolution prediction residual signal is

computed in the encoder loop. As a consequence, a realignment of the predictive and

residual components is provided, leading to a minimization of the involved drift [114].

Such drift mainly arises from re-quantization, elimination of some non-zero DCT

35.0

35.2

35.4

35.6

35.8

36.0

36.2

36.4

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

DDT

HDT

(a) Akiyo, SF = 3.

34.0

34.5

35.0

35.5

36.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

DDT

HDT

(b) Akiyo, SF = 5.

Figure 6.19: PSNR measure obtained by downscaling the Akiyo video sequence,
considering Q = 4 and GOP = 8 frames.

239

6. Experimental Results

coefficients and arithmetic fixed precision errors caused by integer truncation, which

will degrade the reference picture used in the temporal prediction mechanism.

To compensate for this gradual degradation along the scaling process, Yin et al.

[114] proposed four drift compensation architectures based on a drift error analysis,

that attempt to reduce the influence of such degradation. Although some of such

proposals are mainly targeted to be applied in open-loop downscaling architectures

(which are naturally more prone to the influence of this degradation effect), some of

the presented approaches could equally be applied to the closed-loop transcoding ar-

chitecture that is considered in this section (e.g. Intra Refresh). However, since the

main scope of the research presented in this section is not the actual video transcod-

ing architecture, but is the proposal of a computational efficient and more accurate

resizing algorithm for any arbitrary integer scaling factor, such compensation ar-

chitectures were not considered. In fact, the proposed downscaling algorithm could

27.0

27.5

28.0

28.5

29.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

DDT

HDT

(a) Mobile & Calendar, SF = 3.

27.5

28.0

28.5

29.0

29.5

30.0

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
S

N
R

 [d
B

]

frame

DDT

HDT

(b) Mobile & Calendar, SF = 5.

Figure 6.20: PSNR measure obtained by downscaling the Mobile & Calendar
video sequence, considering Q = 4 and GOP = 8 frames.

240

6.3 Dynamic video composition

Table 6.6: Video quality (PSNR) gains provided by the proposed HDT algorithm
over the DDT approach, for different scaling factors (SF) and consid-
ering the same number of DCT coefficients: KHDT = KDDT = ⌈N/SF⌉.

Video
Sequence

∆PSNR [dB]

SF = 2 SF = 3 SF = 4 SF = 5 SF = 6 SF = 7 SF = 8

Akiyo −0.28 +0.19 −0.34 +0.51 +0.19 +3.68 −0.03

Silent −0.09 +4.29 −0.54 +8.35 +4.58 +4.17 −0.22

Carphone −0.23 −0.11 −0.28 +0.25 +1.19 +3.81 −0.10

Table-tennis −0.15 +0.34 −0.32 +1.03 +1.24 +2.32 −0.01

Mobile −0.61 −0.06 −0.36 +0.33 +1.35 +2.24 −0.10

equally be implemented in the downsample conversion modules of all architectures

proposed in [114].

D - Bit rate

In table 6.7 it is represented the average bit rate gain provided by the proposed

HDT approach over the DCT decimation scheme for all the considered video se-

quences and scaling factors (SF), where:

∆Bit Rate[%] = 100× bits(HDT)− bits(DDT)

bits(DDT)
. (6.2)

As before, such gain was evaluated by averaging the differences between the

amount of bits required to encode each frame with the two considered algo-

rithms over a time period corresponding to 300 frames, considering Q = 4 and

KHDT = KDDT = ⌈N/SF⌉.
The obtained results evidence a clear advantage of the proposed algorithm over

the DDT approach, since it requires fewer bits (up to 15% less) to encode each frame

Table 6.7: Bit rate gains provided by the proposed HDT algorithm over the DDT
approach, for different scaling factors (SF) and considering the same
number of DCT coefficients: KHDT = KDDT = ⌈N/SF⌉.

Video
Sequence

∆Bit Rate [%]

SF = 2 SF = 3 SF = 4 SF = 5 SF = 6 SF = 7 SF = 8

Akiyo −5.85 −7.05 −2.44 +1.70 −0.63 +5.40 +0.84

Silent −7.70 −10.67 −3.84 −4.05 −5.05 +0.17 −0.80

Carphone −8.67 −14.13 −4.55 −8.10 −3.70 −1.17 +2.85

Table-tennis −9.50 −13.73 −4.03 −5.14 −4.20 +0.62 −2.73

Mobile −12.30 −21.46 −7.68 −14.79 −7.68 −2.77 +1.18

241

6. Experimental Results

of the considered video sequences. Such advantage is mainly due to the use of more

accurate reduced-resolution reference frames in the encoder loop, which provide the

implementation of a much better temporal prediction mechanism, thus resulting

in smaller residuals. In fact, the observed advantage is more significative in video

sequences that present greater amounts of movement, such as the Carphone, the

Table-Tennis and the Mobile & Calendar, where such prediction scheme influences

the efficiency of the video encoder the most.

E - Pre-filtering parameterization

The low-pass pre-filtering stage that is often performed in the inverse DCT pro-

cessing step, described in subsection B of section 5.2.2 (page 174), has been widely

adopted by several authors to reduce the computational cost required by several

transcoding algorithms that are performed directly in the DCT-domain. In this

particular application context, such pre-filtering usually relates the minimum set of

DCT coefficients that should be considered for a given scaling factor (SF), in order

to balance a certain trade-off of the computational cost and avoid the introduction

of noticeable degradation in the output video sequence.

In the following, two entirely different pre-filtering approaches will be proposed,

in order to achieve quite distinct compromises: the minimization of the computa-

tional cost and the maximization of the output video quality. Such trade-offs were

experimentally assessed and a new empirical cost function has been formulated.

Balancing the computational cost

By analyzing the results previously presented in table 6.4(b) and in table 6.5,

it can be observed that the proposed HDT downscaling algorithm is able to pro-

vide significantly better performances than the DCT decimation approach (DDT)

with fewer operations. Consequently, for downscaling operations implemented in

restricted computational environments, where the available amount of arithmetic

operations that can be performed to process each pixel in real-time is limited, the

proposed hybrid algorithm offers the possibility to process more decoded DCT coeffi-

cients than the DCT decimation algorithm, thus potentially providing better quality

results. Table 6.8 illustrates such situation. For each scaling factor (SF), it is pre-

sented the number of DCT coefficients that is considered by the DCT decimation

algorithm (DDT), as well as the number of coefficients that may be processed by

the proposed hybrid algorithm (HDT), when both approaches roughly make use of

the same number of operations. For each of these experimental setups, it is also

presented the corresponding PSNR gain, provided by the proposed HDT approach.

242

6.3 Dynamic video composition

Table 6.8: PSNR gains provided by the proposed approach over the DDT algo-
rithm, when the number of considered DCT coefficients (K) is adjusted
so that both schemes make use of the same computational resources.

SF 2 3 4 5 6 7 8 9

KDDT 4 3 2 2 2 2 1 1

KHDT 5 5 3 5 6 8 2 2

∆PSNR −0.1 dB +7.7 dB −0.1 dB +7.3 dB +6.6 dB +8.1 dB +0.0 dB +5.3 dB

As it can be observed, while for scaling factors given by integer powers of 2 the per-

formances of these two algorithms are quite similar (with a slight advantage for the

DDT algorithm), for scaling factors other than integer powers of 2 and under simi-

lar computational constraints, the proposed HDT algorithm is capable of providing

much better quality results than the DCT decimation approach.

Balancing the output video quality

An alternative perspective to evaluate the proposed algorithm can also be con-

sidered by observing that, besides the significant computational efficiency and the

higher video quality that is obtained with the proposed approach, neither the ob-

tained PSNR measure significantly degrades nor the resulting bit rate considerably

changes when only a moderate number of high order AC frequency DCT coefficients

is discarded.

In figs. 6.21(a) and 6.21(b) it is represented the variation of the PSNR measure

and of the amount of bits required to encode each frame with the adopted max-

imum DCT coefficient index (K), respectively, for three different scaling factors:

SF = 2, 6 and 10. From such plots, it can be observed that both the obtained dis-

tortion level and the variation on the output bit rate are negligible, provided that

the maximum index of the considered DCT coefficients (K) does not become smaller

than a certain level (Kmin). Consequently, it can be experimentally stated that the

best performance results are obtained when such index (K) lies within a certain

interval K ∈ [Kmin, N]. By considering the set of results that were experimen-

tally obtained in this research, it was empirically estimated a possible expression to

compute Kmin for a given scaling factor SF :

Kmin =
⌈√

N2/SF
⌉

(6.3)

This threshold, whose application was verified for several different quantization pa-

rameters (Q), is somewhat more conservative than the minimum index value pro-

posed by Lee et al. [48] (Kmin
Lee = ⌈N/SF⌉), giving rise to better quality results.

243

6. Experimental Results

Table 6.9 presents the values corresponding to the adopted figures of merit

when the usage of the DCT-domain pre-filtering stage is considered in the proposed

HDT algorithm for reduction of the computational cost, with KHDT = Kmin =⌈√
N2/SF

⌉
. Such values were obtained by comparing the proposed algorithm with

the DCT decimation approach (DDT). From the presented results, it can be con-

cluded that the proposed experimental estimation of the optimal pre-filtering setup

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 1 2 3 4 5 6 7 8

P
S

N
R

 [d
B

]

DCT Coefficients (K)

K
=

6

K
=

4

K
=

3

S=2
S=6
S=10

(a) Variation of the obtained video quality (PSNR) with
the maximum index (K) of the considered DCT coeffi-
cients.

 10

 100

 1 2 3 4 5 6 7 8

N
um

be
r

of
 b

its
 [x

10
3]

DCT Coefficients (K)

K
=

6

K
=

4

K
=

3

S=2
S=6
S=10

(b) Variation of the bit rate with the maximum index (K)
of the considered DCT coefficients.

Figure 6.21: Experimental estimation of the optimal number of DCT coefficients
considered by the proposed space scaling algorithm for different scal-
ing factors: SF ∈ {2, 6, 10} (CIF Mobile & Calendar video sequence,
Q = 4).

244

6.3 Dynamic video composition

Table 6.9: Considered figures of merit when the usage of the DCT-domain pre-
filtering stage is considered in the proposed algorithm for reduction of

the computational cost, with KHDT =
⌈√

N2

SF

⌉
.

SF 2 3 4 5 6 7 8 9 10

KDDT 4 3 2 2 2 2 1 1 1

KHDT 6 5 4 4 4 4 3 3 3

∆PSNR [dB] +3.75 +7.73 +3.37 +6.23 +6.23 +6.85 −0.03 +6.50 +6.69

∆Bit-Rate [%] −4.75 −3.30 −2.83 +2.52 −1.69 +6.20 +1.59 −0.35 +3.86

(Kmin) leads to highly efficient transcoding architectures, which still provide good

performance characteristics in what concerns the obtained video quality and the

resulting amount of coded data.

6.3.2 Block-based motion re-estimation in the DCT-

domain§

In section 3.3.5 it was presented a brief overview of some previously proposed

approaches to implement motion estimation procedures in the compressed DCT-

domain. However, as it was also stated, the characteristics of these algorithms do not

always comply with the requisites of the target transcoding system. Either because

they: i) involve a significant computational cost, such as the cascaded transcoders,

proposed by Chen et al. [13], Youn et al. [115]; or ii) provide accuracy levels that do

not make them suitable enough for current video transcoding applications, such as

the convolution based transcoders proposed by Reeves and Kubik [84]; or iii) make

use of other kinds of the discrete sine and cosine transforms of the blocks under

processing, that cannot be directly obtained from the decoded DCT-H.26x/MPEG-

x video stream and have to be computed for an image area that is larger than the

usually adopted (N ×N) block structure, such as the DCT pseudo-phases based

transcoder, proposed by Koc and Liu [41].

Consequently, in section 5.3 it was proposed an alternative motion re-estimation

algorithm that may be implemented in the compressed DCT-domain. Such algo-

rithm provides an alternative and efficient way to refine the MVs required by the

motion compensated prediction mechanism. This scheme makes use of the DCT co-

§Some portions of this section appeared in:

[89] - N. Roma and L. Sousa, “Least squares motion estimation algorithm in the compressed DCT
domain for H.26x/MPEG-x video sequences,” in Proceedings of the IEEE International
Conference on Advanced Video and Signal-Based Surveillance (AVSS). Como - Italy:
IEEE, Sep. 2005, pp. 576–581.

245

6. Experimental Results

efficients directly obtained from the DCT-H.26x/MPEG-x video stream and is based

on the application of an iterative scheme that estimates the new MVs by applying

a Least Squares Estimation (LSE) technique.

To assess the performance of the proposed Transform-Domain Least Squares

Motion Estimation (TD-LSME) algorithm, a simpler version of an H.263 video

transcoding system for DCT-domain video downscaling, as described in section 5.2,

was implemented. This transcoder performs a 1
2
× 1

2
spatial downscaling operation,

as described by Chang and Messerschmitt [11], by representing the image area cor-

responding to each set of four luminance blocks bi,j (with i, j ∈ {0, 1}) that compose

each macroblock of the original frame by a single block b̂ in the scaled frame, as

shown on fig. 6.22.

The block diagram of the implemented transcoding system is presented in

fig. 6.23. The computational cost of this architecture was significantly reduced

by restricting the search range of the motion re-estimation procedure. To achieve

such objective, the information related to the MVs that are decoded from the input

video sequence is used to compute a first prediction of the desired MVs. Hence,

in order to obtain an initial estimate of the MV of each scaled macroblock, Motion

Vector Compositing and Scaling (MVCS) techniques, such as those described in sec-

tion 3.3.4, are applied to the decoded MVs. Among the several different approaches

that have been proposed and considered, it was adopted the Simple Motion Esti-

mation Scaling (SMES) algorithm proposed by Liang et al. [52]. This algorithm

was already presented in subsection B of section 5.4.2 (page 197) and is based on a

spatial activity-area weighted average scheme, previously described in subsection C

of section 3.3.4 (page 102). This algorithm makes use of the number of non-null AC

frequency coefficients of each DCT encoded block, to estimate the spatial activity

of the original macroblocks. Such spatial activity is then used in the computation

b0,0

(8x8)

b0,1

(8x8)

b1,0

(8x8)

b1,1

(8x8)

b
(8x8)

↓2

Figure 6.22: Downsampling four adjacent blocks to obtain a single (8× 8) pixels
block.

246

6.3 Dynamic video composition

of the composited motion vector ṽ:

ṽ =

∑I

i=0

∑J

j=0 vi,j ·αi,j ·Ai,j
∑I

i=0

∑J

j=0 αi,j ·Ai,j

(6.4)

In this equation, αi,j is the spatial activity of macroblock (i, j), measured by the

number of non-null AC frequency coefficients; and Ai,j is a measure of the involved

area, evaluated in terms of the number of pixels of the original macroblock that

is considered in the composition of the transcoded scaled macroblock. For the

considered case, it was assumed that I = J = 1 and Ai,j = N2, ∀i,j.

The adopted scaling factor (SF = 2) is then applied to the composited motion

vectors ṽ:

v̂ =
1

SF
· ṽ (6.5)

To optimize the performance of the refinement stage that follows, sub-pixel precision

levels may be adopted in this MV downscaler block. Hence, the outcome of this

processing module will be a first coarse estimate (v̂) of the MV corresponding to each

macroblock of the downscaled frame. These MVs, as well as the scaled versions of the

current and reference frames resulting from the application of the spatial downscaling

algorithm, are then applied to the proposed TD-LSME algorithm (fig. 5.5) to obtain

an accurate refinement of the desired MV.

Considering that this motion re-estimation algorithm is based on an iterative

scheme, it may be advantageous to impose a limit on the number of iteration steps

that are performed, in order to keep the involved computational cost under con-

trol. In the considered transcoding system, this control of the refinement algorithm

MVCS

Q-1

+

+

Frame Mem.MC-DCT

VLD

0

P

I

MVi

DCT-Domain Spatial
Down-Scaler

Motion Vector
Composition

Input
Sequence

+

-

Q VLC

Q-1

+

+

MVo

P

I

0

P

MC-DCT

Frame Mem.

Output
Sequence

Motion Vector
Down-Scaler

Pixel-Domain
Motion Re-Estimation

IDCT IDCT

 DCT-Domain
Motion Re-Estimation

R

R

S

S

TD-LSME

PD-FSBM

MVCS

Figure 6.23: Block diagram of the DCT-domain video downscaler with MV re-
estimation in the DCT-domain.

247

6. Experimental Results

was implemented by limiting its operation to a maximum of 3 iterations towards

convergence to the final MV, unless an additional constraint, corresponding to the

adopted stopping condition, is met: ‖vi − vi−1‖ < δ, where δ = 0.1 and vn is the

MV estimate obtained after iteration n. Hence, the implemented stopping condition

can be formulated as follows:

Stop the TD-LSME if:

#iteration > MaxIter , with MaxIter = 3;

‖vi − vi−1‖ < δ , with δ = 0.1.
(6.6)

To evaluate the performance of the implemented system, the transcoding ar-

chitecture presented in fig. 6.23 considers and compares three different motion re-

estimation schemes:

MVCS - the MV predictors that are obtained at the output of the Motion

Vector Compositing and Scaling (MVCS) module are directly ap-

plied by the motion compensation block of the encoder side of the

transcoder, thus discarding any refinement step;

TD-LSME - the proposed Transform-Domain Least Squares Motion

Estimation (TD-LSME) iterative algorithm is applied to

the MV predictors obtained at the output of the MVCS module;

PD-FSBM - the MV predictors are used to obtain the search center of an opti-

mal Pixel-Domain Full-Search Block-Matching (PD-FSBM) mo-

tion estimation algorithm, in order to obtain a reference solution

entirely similar to the one that is obtained with traditional cas-

caded pixel-domain approaches.

Hence, the experimental results obtained with the MVCS configuration will provide

the means to evaluate the performance of the proposed algorithm, when compared

with quite common and simpler approaches that do not apply any refinement of the

MVs obtained from the composition and downscaler blocks [12, 52, 108]. On the

other hand, the set of MVs obtained with the PD-FSBM configuration will provide

a comparison of the refined vectors with the MVs that would be obtained by a

traditional cascaded pixel-domain approach, based on the minimization of a given

disparity measure (in this case, the SAD, defined in eq. 3.116).

The evaluation of the considered structures was conducted by applying the

transform-domain downscaler transcoder architecture presented in fig. 6.23, to con-

vert a set of CIF video sequences into the QCIF format, namely, the Carphone, the

Table-Tennis, the Stefan, the Mobile & Calendar and the Football. To better assess

248

6.3 Dynamic video composition

the motion re-estimation capabilities offered by each of the considered algorithms,

the selection of this set of test video sequences took into account their particular

characteristics, both in terms of the presented spatial details and amount of move-

ment. The conducted experiments were carried out by considering a search range

for the motion refinement procedure of ±3 pixels and half-pixel precision to the out-

put re-estimated MVs. To assess the influence of the degradation effect, inherent to

the adopted quantization setup, on the quality of the temporal prediction resulting

from the computed MVs, three different quantization setups (Q ∈ {4, 8, 12}) were

considered in these experiments, by registering the obtained gains, both in terms of

the output video quality (PSNR) and bit rate. Furthermore, to emphasize the direct

influence of the considered motion re-estimation schemes on the output bit rate, the

output buffer controller of the encoding system was disabled, so that the obtained

differences of the amount of bits required to encode each frame can be recognized as

a direct consequence of the considered motion re-estimation modules. To conclude,

a brief discussion about the involved computational cost will also be provided.

A - Motion vectors

The ultimate output of any ME algorithm consists of the set of computed MVs

that are to be used by the motion-compensated temporal prediction mechanism.

Hence, to illustrate the operation of the different ME algorithms that were consid-

ered, in fig. 6.24 it is presented the superposition, in the corresponding pixels area,

of the obtained MV fields, computed along the encoding procedure of a P-type frame

of the Carphone QCIF video sequence. To enhance the MV fields readability, the

amplitude of the represented MVs was enlarged, using a scale factor of 16 pixels.

The first observation that should be retained from fig. 6.24 concerns the dispar-

ity of the MVs obtained, for certain MBs, with the different considered approaches.

Such differences, in particular those that concern the MVs obtained with the simple

MVCS approach, were already expected and are the main motivation for the ap-

plication of the refinement procedure described in this section. In fact, considering

that each MV obtained with the MVCS scheme is just a first and coarse estimate

of the vector that best approximates the global motion of a given pixels area of

the input frame, it should not be a surprise to see that a better and more accurate

estimate can be computed with the optimal and exhaustive PD-FSBM approach.

On the other hand, the observed differences between the MVs computed with the

PD-FSBM and the TD-LSME algorithms deserve further attention. In fact, while

the MVs obtained with the PD-FSBM scheme represent the closest approximation

to the optimal temporal-predictors computed in the pixel-domain, using the SAD

249

6. Experimental Results

 0

 16

 32

 48

 64

 80

 96

 112

 128

 144
 0 16 32 48 64 80 96 112 128 144 160 176

 0

 16

 32

 48

 64

 80

 96

 112

 128

 144

 0 16 32 48 64 80 96 112 128 144 160 176

H
ei

gh
t [

pi
xe

ls
]

Width [pixels]

MVCS
PD-FSBM
TD-LSME

Figure 6.24: Superposition of the MV fields obtained with the considered ME al-
gorithms with the corresponding pixels area of the output downscaled
frame. To enhance the plots readability, the amplitude of the MVs
was enlarged by a factor of 16.

criteria, the MVs obtained with the TD-LSME algorithm represent the solution of

the same estimation problem using a somewhat different criteria: the minimization

of a squared error signal, that is entirely computed in the compressed DCT-domain.

Furthermore, considering that this iterative scheme was implemented using the stop

condition presented in eq. 6.6, the obtained solution should not be expected to be the

optimal MV whenever the iterative procedure is prematurely stopped. Consequently,

as it can be observed in certain MBs, the obtained MVs may present quite different

amplitude values or even point to distinct directions. In the following subsections, it

is presented the main consequences of adopting these distinct solutions provided by

the considered schemes, in what concerns the obtained video quality (PSNR) and

bit rate.

B - Video quality

In table 6.10 it is presented the average PSNR measures that were obtained

with the considered algorithms. To best evaluate the advantages of performing an

additional motion re-estimation step using the composited and scaled MVs, the

PSNR results obtained with the two considered motion re-estimation approaches

250

6.3 Dynamic video composition

Table 6.10: Average PSNR measures obtained with the considered motion re-
estimation approaches.

Video
Sequence

Number of
Frames

Q
PSNR ∆PSNRMVCS

MVCS PD-FSBM TD-LSME

Carphone 300 4 36.90 dB +0.25 dB +0.12 dB

8 32.96 dB +0.35 dB +0.16 dB

12 30.80 dB +0.46 dB +0.22 dB

Table-Tennis 300 4 36.22 dB +0.04 dB −0.07 dB

8 32.44 dB +0.20 dB +0.00 dB

12 30.21 dB +0.29 dB +0.07 dB

Stefan 300 4 35.04 dB −0.20 dB −0.19 dB

8 29.95 dB −0.01 dB −0.04 dB

12 27.03 dB +0.17 dB +0.08 dB

Mobile 300 4 33.85 dB +0.06 dB +0.05 dB

8 28.54 dB +0.10 dB +0.11 dB

12 25.70 dB +0.14 dB +0.13 dB

Football 90 4 36.13 dB −0.14 dB −0.23 dB

8 32.43 dB −0.05 dB −0.23 dB

12 30.44 dB +0.01 dB −0.21 dB

(TD-LSME and PD-FSBM) were presented in terms of the PSNR difference, when

compared with the simple MVCS approach (∆PSNRMVCS).

∆PSNRMVCS(algorithm) = PSNR(algorithm)− PSNR(MVCS) (6.7)

The first observation that is worth noting is concerned with the similar PSNR

measures that were obtained with the two refinement schemes for each of the con-

sidered video sequences and quantization setups, with both positive and negative

variations with magnitude less than 0.5 dB. Such small variation range was already

expected and is a direct consequence of the inhibition of the output buffer con-

troller (as referred before), since all prediction differences could be encoded with the

maximum possible resolution for the considered quantization steps. In fact, in a hy-

pothetical ideal and lossless configuration, the PSNR of the output video sequences

obtained with each of the considered re-estimation algorithms would be exactly the

251

6. Experimental Results

same, independently of the MVs considered in the motion-compensation step, since

the resulting (and possible different) prediction residuals would be encoded at the

maximum precision.

Another interesting observation is concerned with the negative PSNR gains that

were obtained for certain video sequences (mainly, in Stefan and Football). Ac-

cording to what was stated in the previous paragraph, such degradation should be

seen as an indirect consequence of the new refined MVs, obtained from the motion

re-estimation step. In fact, such distinct set of MVs led to different motion compen-

sated residual signals that were more affected by the quantization and arithmetic

round-off errors than those that were obtained by skipping the whole re-estimation

step and by directly using the MVs obtained from the MVCS block. Naturally,

those video sequences with more motion activity and spatial detail are more prone

to these degradation effects, since their DCT encoded blocks present more non-

null DCT coefficients that may be either canceled or distorted by the quantization

procedure.

In addition, it is also worth noting the fact that even the optimal and exhaustive

PD-FSBM algorithm may lead, under these circumstances, to worse results than

the simple MVCS approach. Again, such fact is owed to the several arithmetic

and round-off errors that are introduced by the IDCT processing steps, during the

conversion of the blocks corresponding to both the reference and the search area into

the pixel-domain (see fig. 6.23). In fact, the consequences of such degradation were

already studied in section 3.1.2 and represent the main motivations to develop and

implement video processing algorithms directly in the transform-domain. In this

particular situation, such degradation results in an error signal that will be added

to the pixel values and will deteriorate the block-matching search procedure.

Finally, in fig. 6.25 it is illustrated the variation of the PSNR measure for two

considered video sequences, using a quantization setup with Q = 8. Entirely similar

results were obtained for the remaining video sequences and quantization setups. As

it can be observed, the resulting quality of the video sequences obtained with the

three considered motion re-estimation schemes is quite similar. For these particular

video sequences and quantization setups, the usage of the TD-LSME and PD-FSBM

re-estimation schemes led to better quality performances than those obtained with

the simpler MVCS scheme. Nevertheless, while the PD-FSBM scheme presented

better quality performances in the Carphone video sequence, it was observed that

the TD-LSME algorithm performed better in the Mobile & Calendar video sequence.

252

6.3 Dynamic video composition

32.0

32.5

33.0

33.5

34.0

34.5

35.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
S

N
R

 [d
B

]

frame

MVCS
PD-FSBM
TD-LSME

(a) Carphone video sequence.

27.5

28.0

28.5

29.0

29.5

30.0

30.5

31.0

31.5

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
S

N
R

 [d
B

]

frame

MVCS
PD-FSBM
TD-LSME

(b) Mobile & Calendar video sequence.

Figure 6.25: Obtained PSNR level for the video sequences Carphone and Mobile
& Calendar, using Q = 8.

C - Bit rate

In table 6.11 it is presented the average bit rate performances that were obtained

with the considered algorithms. As before, to better emphasize the advantages of

performing the MV refinement of the composited and scaled MVs, the bit rate results

obtained with the two considered motion re-estimation approaches (TD-LSME and

PD-FSBM) are presented in terms of the bit rate gain, when compared with the

simple MVCS approach:

∆Bit-RateMVCS(algorithm) = 100×Bit-Rate(algorithm)− Bit-Rate(MVCS)

Bit-Rate(MVCS)
(6.8)

As it was referred before, to better illustrate the direct influence of the considered

motion re-estimation schemes on the output bit rate, a variable bit rate configura-

tion was adopted at the encoder side of the transcoder structure, by disabling the

output buffer controller. Consequently, the obtained differences of the amount of

253

6. Experimental Results

Table 6.11: Bit rate measures obtained with the considered motion re-estimation
approaches.

Video
Sequence

Number of
Frames

Q
Bit Rate ∆Bit-RateMVCS

MVCS PD-FSBM TD-LSME

Carphone 300 4 23.2 kbps −23.9 % −13.5 %

8 10.8 kbps −24.9 % −13.9 %

12 6.6 kbps −23.3 % −13.6 %

Table-Tennis 300 4 24.3 kbps −22.4 % −14.0 %

8 12.2 kbps −26.2 % −15.9 %

12 8.1 kbps −26.0 % −15.1 %

Stefan 300 4 82.8 kbps −26.8 % −19.3 %

8 42.4 kbps −29.7 % −21.4 %

12 26.3 kbps −30.9 % −21.9 %

Mobile 300 4 75.5 kbps −5.3 % −2.2 %

8 36.1 kbps −7.7 % −4.0 %

12 21.3 kbps −9.3 % −5.3 %

Football 90 4 43.1 kbps −21.4 % −12.5 %

8 19.8 kbps −22.9 % −13.4 %

12 12.0 kbps −21.8 % −13.1 %

bits required to encode each frame can be regarded as a direct result of the consid-

ered motion re-estimation module, thus minimizing the effect on the output video

quality (as explained before).

However, contrasting with the small variation range that was observed with the

PSNR measures, the bit rate values that were obtained from the conducted exper-

iments with the three different refinement approaches for each of the considered

video sequences and quantization setups denote quite significant gains, provided

by both the TD-LSME and the PD-FSBM schemes, when compared with the bit

rate values obtained with the simpler MVCS approach. Consequently, considering

that the prime purpose of any motion estimation algorithm is the computation of

the best set of MVs that will provide the subsequent motion-compensated temporal

prediction mechanism with the ability to encode a given sequence of images with

the smallest amount of bits as possible, the observed bit rate gains, presented in ta-

254

6.3 Dynamic video composition

ble 6.11, plenty justify the usage of the motion re-estimation block in the transcoding

structure under consideration. In fact, it can be observed that all the conducted

experiments proved effective advantages on performing such refinement step, with

gains that range from 2 % up to 30 %.

Nevertheless, it was also observed that the PD-FSBM algorithm consistently

provides greater bit rate gains than the proposed TD-LSME approach. In fact,

despite the degradation effect resulting from the previously referred arithmetic and

round-off errors, introduced by the IDCT computation blocks that are required by

the PD-FSBM scheme, its exhaustive full-search strategy often provides a better

solution than the one computed with the proposed TD-LSME approach, therefore

leading to better performance results. The main reason for this fact comes as a direct

consequence of a closer approximation of the minimization criteria adopted by the

FSBM, based on the SAD disparity measure, to the differential encoding inherent

to the adopted motion-compensated prediction mechanism. On the contrary, the

0.0

5.0

10.0

15.0

20.0

25.0

30.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

B
it-

R
at

e
[k

bp
s]

frame

MVCS
PD-FSBM
TD-LSME

(a) Carphone video sequence.

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

B
it-

R
at

e
[k

bp
s]

frame

MVCS
PD-FSBM
TD-LSME

(b) Mobile & Calendar video sequence.

Figure 6.26: Obtained bit rate for the video sequences Carphone and Mobile &
Calendar, using Q = 8.

255

6. Experimental Results

proposed scheme is based on an iterative minimization of a squared error signal,

entirely computed in the compressed DCT-domain.

Even so, the results provided by the proposed TD-LSME scheme clearly show

that it is possible to implement efficient motion estimation algorithms in the com-

pressed DCT-domain, by directly using the DCT coefficients data structure obtained

from the received video stream. However, such non-optimal approach still provides

accuracy levels that are high enough to improve the efficiency of the video encoding

data stream. However, contrary to other proposals, in order to proceed with the

search procedure there is no need to implement the inverse DCT computation mod-

ule to transpose the DCT coefficients blocks of both the current and the reference

frames into the pixel-domain.

In fig. 6.26 it is illustrated the variation of the measured bit rate for two consid-

ered video sequences, using a quantization setup with Q = 8. Entirely similar results

were obtained for the remaining video sequences and quantization setups. As it can

be observed, the resulting bit rate corresponding to the video sequences obtained

with the proposed TD-LSME scheme is slightly greater than the obtained with the

PD-FSBM approach. Nevertheless, it is consistently smaller than the bit rate that

would be obtained without the implementation of any motion re-estimation block,

by simply considering the MVs obtained with the MVCS scheme.

D - Computational cost

A fair evaluation of the characteristics of the considered motion re-estimation

algorithms in terms of the involved computational cost requires some preliminary

considerations in terms of their computational characteristics. In fact, contrary to

what was observed in the previous sections about other transcoding processing tasks,

these two MV refinement schemes present quite distinct characteristics in terms of

the most predominant arithmetic operations that are involved. Owing to the com-

putation of the SAD similarity measure, the addition and subtraction arithmetic

functions are the most prevailing operations in the implementation of the exhaus-

tive FSBM pixel-domain ME algorithm (PD-FSBM). In contrast, multiplications

are the most prevailing operations in the TD-LSME algorithm. As a consequence,

to best characterize the computational cost of these transcoder architectures, it was

adopted, as the main figure of merit, the sum of the number of multiplications and

additions/subtractions operations that are required to process each pixel of the orig-

inal frame. It is worth noting that although such approximation may seem to be

somewhat unbalanced, since the multiplication operation is generally more complex

than the addition and subtraction operations, most current general purpose proces-

256

6.3 Dynamic video composition

Table 6.12: Average number of operations (multiplications and addi-
tions/subtractions) required to process each pixel of the original
CIF format frame.

Video
Sequence

Number of
Frames

Q
Op-Count ∆Op-CountMVCS

MVCS PD-FSBM TD-LSME

Carphone 300 4 154.7 +64.6 +50.8

8 152.1 +66.2 +52.3

12 152.3 +66.0 +52.0

Table-Tennis 300 4 92.0 +105.6 +76.3

8 100.7 +98.8 +68.5

12 110.3 +90.9 +64.5

Stefan 300 4 168.3 +62.8 +56.7

8 165.1 +64.0 +57.2

12 163.6 +64.4 +57.2

Mobile 300 4 159.1 +58.2 +42.5

8 152.0 +61.6 +43.0

12 147.3 +64.1 +44.0

Football 90 4 181.9 +59.9 +58.1

8 177.3 +61.5 +55.5

12 175.4 +61.9 +52.9

sors are capable of performing any of these arithmetic operations in just a single

clock cycle. Consequently, such approximation may still be considered reasonably

fair, for most current processor architectures.

In table 6.12 it is presented the average operation-count values that were obtained

with the implemented transcoding structures to process the considered CIF test

video sequences, at 30 FPS. To emphasize the additional computational cost of the

motion re-estimation operation, the number of arithmetic functions corresponding

to the two considered motion re-estimation approaches (TD-LSME and PD-FSBM)

is presented in terms of its relative extra computational cost, when compared with

the number of operations that is required by the most simple approach (MVCS),

without any re-estimation of the MV:

∆Op-CountMVCS(algorithm) = Op-Count(algorithm)−Op-Count(MVCS) (6.9)

257

6. Experimental Results

From the presented values, it can be observed that the proposed transform-

domain LSME approach is characterized by a smaller computational cost than the

exhaustive pixel-domain FSBM algorithm. Hence, besides the important offered

capability to implement a motion estimation procedure directly in the compressed

DCT-domain, the presented scheme may also provide an additional computational

advantage. Such aspect may be regarded as a significant implementation factor,

mainly when this transcoding operation has to be implemented in processing plat-

forms with limited computational capabilities.

In fig. 6.27 it is illustrated the variation of the computational cost that was ob-

served for the Carphone and Mobile & Calendar CIF video sequences, using a quan-

tization setup with Q = 8. Entirely similar results were obtained for the remaining

video sequences and quantization setups. As it can be observed, the computational

cost imposed by the proposed TD-LSME scheme is consistently smaller than the

50.0

100.0

150.0

200.0

250.0

300.0

350.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
pe

ra
tio

ns
 C

ou
nt

 p
er

 p
ix

el

frame

MVCS
PD-FSBM
TD-LSME

(a) Carphone video sequence.

50.0

100.0

150.0

200.0

250.0

300.0

350.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
pe

ra
tio

ns
 C

ou
nt

 p
er

 p
ix

el

frame

MVCS
PD-FSBM
TD-LSME

(b) Mobile & Calendar video sequence.

Figure 6.27: Average number of operations (multiplications and addi-
tions/subtractions) required to process each pixel of the Carphone
and Mobile & Calendar CIF video sequences (Q = 8).

258

6.3 Dynamic video composition

cost of the PD-FSBM approach.

6.3.3 Dynamic video composition in the DCT-domain§

In section 5.4 it was presented a brief overview of a set of different previously

proposed transcoding architectures to perform digital video composition. After a

thorough analysis of the main characteristics of such structures, it was proposed a

new compressed-domain transcoding architecture, which tries to overcome some of

the limitations presented by the former structures in order to improve the resulting

transcoding performance. One of the tackled aspects addresses the implementation

of the temporal prediction mechanism. In fact, most of the previously proposed

structures adopt rather simplistic compositing and re-mapping approaches, that

simply infer the new MVs from those of the original video sequences. In contrast,

by adopting a more efficient DCT-domain motion re-estimation algorithm, that may

consider any dimension for the search area, the presented architecture attempts to

introduce some important improvements in the implementation of the temporal pre-

diction mechanism. Such algorithm potentially contributes to a significant increase

of both the output video quality and the bandwidth efficiency. On the other hand, by

directly operating with the partially decoded DCT coefficients of the involved video

sequences, the proposed approach provides additional advantages in what concerns

the output video quality performance, since the absence of both the IDCT and DCT

processing blocks will naturally make it less prone to round-off and fixed-precision

arithmetic errors. Furthermore, contrary to what happens with most of the previ-

ously proposed approaches, the presented DCT-domain processing scheme does not

impose any limitation on the adopted composition setup and allows each foreground

video sequence to be placed over any location of the background video scene.

To assess the performance of the proposed architecture, this improved DCT-

domain video processing structure was applied in the implementation of several

different composition layouts. Such layouts considered two distinct sets of CIF test

video sequences, composited by the Mobile & Calendar + Carphone sequences, and

by the Coastguard + Silent-Voice video sequences:

PIP setup - the foreground video sequence was scaled by SF = 3 and po-

sitioned inside the background sequence region, at coordinates

(l, c) = (11, 223) (see fig. 6.28(a) and fig. 6.29(a));

§Some portions of this section appeared in:

[91] - N. Roma and L. Sousa, “Fully compressed-domain transcoder for PIP/PAP video compo-
sition,” in Proceedings of the Picture Coding Symposium (PCS), Lisbon - Portugal, Nov.
2007, pp. CD–ROM.

259

6. Experimental Results

(a) PIP setup. (b) PAP setup. (c) POP setup.

Figure 6.28: Experimental results obtained with the considered compositing se-
tups, using the Mobile & Calendar + Carphone CIF video sequences
(Q = 4).

(a) PIP setup. (b) PAP setup. (c) POP setup.

Figure 6.29: Experimental results obtained with the considered compositing se-
tups, using the Coastguard + Silent-Voice CIF video sequences
(Q = 4).

PAP setup - both the foreground and the background video sequences were

scaled by SF = 2 and combined into a single scene, side-by-side

(see fig. 6.28(b) and fig. 6.29(b));

POP setup - the foreground video sequence was scaled by SF = 3 and positioned

over the right side of the background sequence (see fig. 6.28(c) and

fig. 6.29(c));

The set of parameters adopted by these particular setups were carefully chosen

not only because they correspond to quite common layouts used by many video

applications, but also because the adopted insertion coordinates lead to a maxi-

mization of the misalignment between the foreground and background block grids.

Therefore, they provide a practical demonstration of this additional feature, which

has been quite often avoided by other previously proposed approaches. Further-

more, the adopted Least Squares Motion Estimation (LSME) refinement algorithm,

described in section 5.3, was implemented by only considering the lowest (K ×K)

260

6.3 Dynamic video composition

AC frequency DCT coefficients, with K = 4; and a maximum of 3 iterations to

converge to the final MV, unless an additional constraint was met, corresponding to

the adopted stopping condition: ‖vi− vi−1‖ < δ, where δ = 0.1 (see subsection B of

section 5.3.2 (page 187)).

To better assess the performance of the proposed Transform-Domain Video

Compositing Transcoder with Motion Re-estimation (TDVCT-MRE), this struc-

ture was compared against two other approaches: a Pixel-Domain Video Composit-

ing Transcoder (PDVCT), equivalent to [9, 49, 50], but using an additional FSBM

motion refinement block; and a Transform-Domain Video Compositing Transcoder

(TDVCT), equivalent to [67], and that simply adopts the usual straightforward MV

compositing scheme. The conducted experiments were carried out by considering

three different quantization setups (Q ∈ {4, 8, 12}) and by registering the obtained

gains, both in terms of the output video quality (PSNR) and bit rate. As it was

done with the previously presented experimental procedures, to emphasize the direct

influence of the included motion re-estimation module on the output bit rate, the

output buffer controller of the encoding system was disabled, so that the obtained

differences of the amount of bits required to encode each frame can be regarded as

a direct influence of this refinement block. To conclude, a brief discussion about the

involved computational cost is also provided.

A - Video quality

The average PSNR values obtained with the considered video composition setups

for several quantization steps (Q), are presented in table 6.13. The variation of this

video quality measure along the time for the Mobile & Calendar + Carphone and

Coastguard + Silent-Voice composited video sequences is also presented in figs. 6.30

and 6.31.

The obtained results evidence that the proposed DCT-domain transcoder can

provide significant PSNR gains when compared with the other two approaches. In

particular, when compared with the PDVCT architecture, the proposed structure

presents quality gains as high as 2.2 dB. As it was previously referred, such quality

improvements are mainly due to the absence of arithmetic and round-off errors in-

troduced by the DCT and IDCT computational blocks, as well as to the contribution

of the improved temporal prediction mechanism, provided by the included motion

re-estimation computational block. The real contribution of such refinement block

can be particularly observed by comparing the results of the proposed architecture

with the transform-domain transcoder without MV re-estimation (TDVCT). In

fact, these two architectures implement the same transcoding algorithm, apart from

261

6. Experimental Results

Table 6.13: Average PSNR results obtained with the considered video compositing
setups.

Video
Sequences

VC
Setup

Q
PSNR [dB]

PDVCT TDVCT TDVCT-MRE

Mobile+Carphone PIP 4 33.62 34.57 35.84

8 30.37 29.66 30.83

12 27.87 26.89 28.06

PAP 4 38.13 38.09 38.16

8 33.29 33.18 33.30

12 30.69 30.50 30.66

POP 4 34.76 35.69 36.97

8 31.53 30.78 31.99

12 29.04 28.00 29.22

Coastguard+Silent PIP 4 34.56 35.19 36.41

8 31.56 31.22 32.18

12 29.77 29.13 29.98

PAP 4 38.26 38.43 38.37

8 34.38 34.37 34.45

12 32.43 32.28 32.42

POP 4 35.65 36.19 37.42

8 32.58 32.17 33.15

12 30.72 30.04 30.94

the motion re-estimation block. Nevertheless, the proposed TDVCT-MRE structure

still provides quality gains as high as 1.2 dB.

By relating the obtained results with the corresponding compositing setup, it is

also worth noting that these quality gains are particularly notorious in the cases of

the PIP and POP compositions. The reason for such performance differences may

be justified by: i) a greater directly affected area of the PAP setup, leading to the

effective processing of the blocks of the whole output frame area and thus potentially

increasing the introduction of arithmetic and round-off distortion errors; ii) usage

of a scaling factor given by an integer power of 2 (SF = 2), for which the proposed

262

6.3 Dynamic video composition

28.0

29.0

30.0

31.0

32.0

33.0

34.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
S

N
R

 [d
B

]

frame

PDVCT
TDVCT
TDVCT-MRE

(a) PIP setup.

32.5

33.0

33.5

34.0

34.5

35.0

35.5

36.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
S

N
R

 [d
B

]

frame

PDVCT
TDVCT
TDVCT-MRE

(b) PAP setup.

30.0

31.0

32.0

33.0

34.0

35.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
S

N
R

 [d
B

]

frame

PDVCT
TDVCT
TDVCT-MRE

(c) POP setup.

Figure 6.30: Obtained PSNR level for the considered compositing setups using the
Mobile & Calendar + Carphone video sequences (Q = 8).

scaling algorithm does not provide a significative advantage (see subsection B of

section 6.3.1 (page 236)).

263

6. Experimental Results

29.0

30.0

31.0

32.0

33.0

34.0

35.0

36.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
S

N
R

 [d
B

]

frame

PDVCT
TDVCT
TDVCT-MRE

(a) PIP setup.

33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
S

N
R

 [d
B

]

frame

PDVCT
TDVCT
TDVCT-MRE

(b) PAP setup.

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
S

N
R

 [d
B

]

frame

PDVCT
TDVCT
TDVCT-MRE

(c) POP setup.

Figure 6.31: Obtained PSNR level for the considered compositing setups using the
Coastguard + Silent-Voice video sequences (Q = 8).

B - Bit rate

In table 6.14 it is presented the average bit rate performances that were ob-

tained with the implemented algorithms for the several considered composition se-

264

6.3 Dynamic video composition

Table 6.14: Average bit rate results, obtained with the considered video composit-
ing setups.

Video
Sequences

VC
Setup

Q
Bit Rate [kbps]

PDVCT TDVCT TDVCT-MRE

Mobile+Carphone PIP 4 203.3 308.2 221.6

8 105.3 159.5 109.3

12 66.4 101.6 67.5

PAP 4 91.9 102.5 99.2

8 43.6 50.0 47.5

12 26.7 30.9 29.0

POP 4 159.1 246.8 172.9

8 82.6 128.5 85.6

12 52.3 82.3 53.2

Coastguard+Silent PIP 4 85.4 144.6 98.1

8 40.8 65.2 44.0

12 26.3 39.3 27.0

PAP 4 39.4 53.9 45.5

8 18.2 25.1 21.3

12 12.1 15.9 13.9

POP 4 69.4 121.8 79.0

8 33.7 57.0 36.3

12 22.0 35.2 22.6

tups and quantization steps (Q). The variation of the output bit rate along the time

for the Mobile & Calendar + Carphone and the Coastguard + Silent-Voice com-

posited video sequences is presented in figs. 6.32 and 6.33, respectively. Contrary

to what was observed for the video quality gains, the bit rate resulting from the

proposed transcoding architecture slightly exceeded the bit rate obtained with the

pixel-domain approach (PDVCT). Nevertheless, such result was already expected.

As it was previously observed in subsection A of section 6.3.2 (page 249), while

the MVs obtained with the pixel-domain FSBM algorithm represent the optimal

solution of the desired temporal prediction scheme (using the SAD criteria), the

265

6. Experimental Results

MVs obtained with the adopted LSME algorithm represent the solution of the same

estimation problem using a somewhat different criteria. Once again, such criteria

100.0

150.0

200.0

250.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

B
it-

R
at

e
[k

bp
s]

frame

PDVCT
TDVCT
TDVCT-MRE

(a) PIP setup.

20.0

40.0

60.0

80.0

100.0

120.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

B
it-

R
at

e
[k

bp
s]

frame

PDVCT
TDVCT
TDVCT-MRE

(b) PAP setup.

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

220.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

B
it-

R
at

e
[k

bp
s]

frame

PDVCT
TDVCT
TDVCT-MRE

(c) POP setup.

Figure 6.32: Obtained bit rate for the considered compositing setups using the
Mobile & Calendar + Carphone video sequences (Q = 8).

266

6.3 Dynamic video composition

is based on the minimization of a squared error signal, that is entirely computed

in the compressed DCT-domain. Furthermore, as it was also previously observed,

20.0

40.0

60.0

80.0

100.0

120.0

140.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

B
it-

R
at

e
[k

bp
s]

frame

PDVCT
TDVCT
TDVCT-MRE

(a) PIP setup.

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

B
it-

R
at

e
[k

bp
s]

frame

PDVCT
TDVCT
TDVCT-MRE

(b) PAP setup.

20.0

40.0

60.0

80.0

100.0

120.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

B
it-

R
at

e
[k

bp
s]

frame

PDVCT
TDVCT
TDVCT-MRE

(c) POP setup.

Figure 6.33: Obtained bit rate for the considered compositing setups using the
Coastguard + Silent-Voice video sequences (Q = 8).

267

6. Experimental Results

this iterative scheme was implemented using a stopping condition that may prevent

it to achieve the optimal MVs. Even so, from the results presented in table 6.14

and in figs. 6.32 and 6.33, it can be observed that the proposed TDVCT-MRE ap-

proach provides bit rate performance levels quite close to the optimal performances

provided by the FSBM-based pixel-domain approach (PDVCT).

However, the same does not happen when the proposed video composition ar-

chitecture (TDVCT-MRE) is compared with the simplest approach, without re-

estimation of the MVs (TDVCT). The average bit rate results, presented in ta-

ble 6.14, as well as its variation along the time, illustrated in figs. 6.32 and 6.33,

clearly evidence that the enhanced temporal prediction mechanism, provided by the

proposed MV re-estimation module, leads to a significant reduction of the output

bit rate. Such reduction may lead to bandwidth gains as high as 35%.

C - Computational cost

Similarly to what was performed in the evaluation of the computational cost of

the proposed LSME algorithm (see subsection D of section 6.3.2 (page 256)), the

absence of a predominant arithmetic operation in the implementation of the con-

sidered compositing architectures leads to the usage of the sum of the number of

multiplications and additions/subtractions operations that are required to process

each pixel of the original frame, as the main figure of merit that best character-

izes the computational cost of each transcoding architecture. As a consequence,

in table 6.15 it is presented the average operation-count values that were obtained

with the implemented algorithms for the several considered composition setups and

quantization steps (Q). The variation of this computational cost estimate along the

time for the Mobile & Calendar + Carphone and the Coastguard + Silent-Voice

composited video sequences is presented in figs. 6.34 and 6.35.

From the obtained results, it may be observed that for all the conducted experi-

ments, the TDVCT architecture presented the lowest values of the operation-count

per pixel metric. Such fact arises from the absence of any motion re-estimation pro-

cedure in the transcoder architecture, which led to the lowest video quality levels, as

well as the highest bit rate results, as it was previously referred. As a consequence,

the following analysis will be mainly focused on the comparison of the computa-

tional cost of the PDVCT and of the TDVCT-MRE architectures, since the motion

refinement modules included in their structure potentially provide them with better

video quality and coding efficiency performances.

Besides the considered transcoding architecture, the number of performed arith-

metic operations that were obtained for each configuration evidence that the com-

268

6.3 Dynamic video composition

Table 6.15: Experimental average operation-count results, obtained from the con-
sidered video compositing setups.

Video
Sequences

VC
Setup

Q
Op-Count

PDVCT TDVCT TDVCT-MRE

Mobile+Carphone PIP 4 274.2 246.6 377.1

8 274.0 236.8 360.4

12 273.8 232.0 349.5

PAP 4 517.3 321.0 482.6

8 517.1 311.6 461.2

12 517.0 307.1 447.7

POP 4 284.4 243.4 353.3

8 284.2 233.5 337.3

12 284.1 228.7 328.1

Coastguard+Silent PIP 4 272.1 168.2 285.8

8 271.8 164.0 275.3

12 271.8 165.2 277.6

PAP 4 515.1 216.2 382.7

8 514.8 212.5 365.7

12 514.8 215.2 356.7

POP 4 282.5 165.4 257.8

8 282.1 161.1 249.9

12 282.1 162.2 251.3

putational cost clearly depends on the processed video sequences and on the imple-

mented compositing setup. In fact, while the PIP and POP configurations presented

a significant advantage of the PDVCT structure over the proposed TDVCT-MRE

architecture in the processing of the Mobile & Calendar + Carphone composition,

the processing of the Coastguard + Silent-Voice composition revealed that these two

architectures present a quite similar computational cost.

Moreover, besides this dependence on the video sequences contents and on the

composition setup, the computational cost estimates obtained for all the considered

PAP compositions demonstrate that the proposed DCT-domain approach may pro-

269

6. Experimental Results

vide significant computational advantages over the pixel-domain transcoder. Such

situation may be justified by the larger directly affected area of this configuration,

0.0

100.0

200.0

300.0

400.0

500.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
pe

ra
tio

ns
 C

ou
nt

 p
er

 p
ix

el

frame

PDVCT
TDVCT
TDVCT-MRE

(a) PIP setup.

100.0

200.0

300.0

400.0

500.0

600.0

700.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
pe

ra
tio

ns
 C

ou
nt

 p
er

 p
ix

el

frame

PDVCT
TDVCT
TDVCT-MRE

(b) PAP setup.

0.0

100.0

200.0

300.0

400.0

500.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
pe

ra
tio

ns
 C

ou
nt

 p
er

 p
ix

el

frame

PDVCT
TDVCT
TDVCT-MRE

(c) POP setup.

Figure 6.34: Obtained operation-count for the considered compositing setups us-
ing the Mobile & Calendar + Carphone video sequences (Q = 8).

270

6.3 Dynamic video composition

which implies the effective processing of the whole composited frame. In fact, be-

sides the computational advantages provided by the proposed LSME algorithm over

0.0

100.0

200.0

300.0

400.0

500.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
pe

ra
tio

ns
 C

ou
nt

 p
er

 p
ix

el

frame

PDVCT
TDVCT
TDVCT-MRE

(a) PIP setup.

100.0

200.0

300.0

400.0

500.0

600.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
pe

ra
tio

ns
 C

ou
nt

 p
er

 p
ix

el

frame

PDVCT
TDVCT
TDVCT-MRE

(b) PAP setup.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
pe

ra
tio

ns
 C

ou
nt

 p
er

 p
ix

el

frame

PDVCT
TDVCT
TDVCT-MRE

(c) POP setup.

Figure 6.35: Obtained operation-count for the considered compositing setups us-
ing the Coastguard + Silent-Voice video sequences (Q = 8).

271

6. Experimental Results

the FSBM algorithm implemented by the PDVCT structure (see subsection D of

section 6.3.2 (page 256)), it should be recalled that the implemented DCT-domain

scaling algorithm only requires one half of the number of operations performed by

the equivalent pixel-domain approach (see table 6.4).

Consequently, depending on the particular compositing video manipulation that

is to be implemented by a given video processing system, these potential compu-

tational advantages, together with the significant video quality performance results

and a coding efficiency level that provides a bit rate quite close to the optimal

one (provided by an exhaustive ME refinement algorithm), justify the consideration

of the proposed compressed-domain transcoding architecture to implement video

compositing in the DCT-domain.

6.4 Conclusions

The several experimental procedures that were conducted in the scope of the

presented research were described in this chapter. A thorough discussion of the

obtained results was also presented, providing a detailed evaluation of the objective

and subjective video quality levels that are achieved by the proposed static and the

dynamic video processing algorithms. This evaluation also considered the resulting

bit rate of the processed video sequences, as well as the computational cost associated

with these transcoding architectures.

In particular, in section 6.2 it was shown that DCT-domain insertion architec-

tures can offer significant advantages, both in terms of image quality and compu-

tational cost. They also provide the possibility to easily adapt the computational

requirements of the insertion architecture to the particular characteristics of the

target application, adjusting the desired trade-off between image quality and com-

putational cost.

In section 6.3.1 it was presented the evaluation of the proposed transcoding al-

gorithm for video downscaling in the transform-domain by any arbitrary integer

scaling factor. The obtained experimental results have shown that the proposed al-

gorithm provides significant advantages over the usual DCT decimation approaches,

both in terms of the involved computational cost, of the output video quality and of

the resulting bit rate. Such advantages are even more significant for scaling factors

other than integer powers of 2, leading to a reduction of the computational cost as

high as 5. Quite significant PSNR gains are also achieved, when compared with the

usual DCT decimation techniques.

The assessment of the proposed block-based motion re-estimation algorithm,

272

implemented in the compressed DCT-domain, was presented in section 6.3.2. The

obtained experimental results have shown that the proposed algorithm can be re-

garded as a viable alternative to significantly enhance the quality of the temporal

prediction adopted in processed video sequences, by providing the means to compute

or refine the MVs in the compressed DCT-domain. The experimental procedures

that were carried out have shown that the proposed refinement algorithm may pro-

vide reductions of the obtained bit rate up to 30%, when compared with a simple

MV re-usage and compositing approach.

Finally, in section 6.3.3 it was presented an evaluation of the proposed transcoder

architecture to perform video composition in the compressed DCT-domain. The

proposed structure not only allows the insertion of the foreground video sequences

at any arbitrary location and independently of the usual (N ×N) block grid, but it

also includes a quite efficient DCT-domain least-squares motion re-estimator module

that significantly improves the temporal prediction mechanism. The experimental

results that were obtained with this architecture have shown that it may provide

PSNR gains as high as 2.2 dB, when compared with a traditional DCT-domain

approach that does not perform any re-estimation of the composited MVs.

References

[1] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcoding: An overview

of various techniques and research issues,” IEEE Transactions on Multimedia,

vol. 7, no. 5, pp. 793–804, Oct. 2005.

[9] S.-F. Chang and D. G. Messerschmitt, “Compositing motion-compensated

video within the network,” in Proceedings of the International Workshop on

Multimedia Communications (MULTIMEDIA). IEEE, Apr. 1992, pp. 40–56.

[11] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-

DCT compressed video,” IEEE Journal on Selected Areas in Communications,

vol. 13, no. 1, pp. 1–11, Jan. 1995.

[12] J. Chen, U.-V. Koc, and K. J. R. Liu, Design of Digital Video Coding Systems

- A Complete Compressed Domain Approach. Marcel Dekker, 2002.

[13] M.-J. Chen, M.-C. Chu, and C.-W. Pan, “Efficient motion-estimation algorithm

for reduced frame-rate video transcoder,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 12, no. 4, pp. 269–275, Apr. 2002.

273

[16] R. Dugad and N. Ahuja, “A fast scheme for image size change in the compressed

domain,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 11, no. 4, pp. 461–474, Apr. 2001.

[30] ITU-T Recommendation H.263 - “Video Coding for Low Bitrate Communica-

tion”, ITU-T, Feb. 1998.

[41] U.-V. Koc and K. J. R. Liu, “DCT-based motion estimation,” IEEE Transac-

tions on Image Processing, vol. 7, no. 7, pp. 948–965, Jul. 1998.

[48] Y.-R. Lee, C.-W. Lin, S.-H. Yeh, and Y.-C. Chen, “Low-complexity DCT-

domain video transcoders for arbitrary-size downscaling,” in Proceedings of the

IEEE International Workshop on Multimedia Signal Processing (MMSP), Sep.

2004, pp. 31–34.

[49] C.-H. Li, H. Lin, C.-N. Wang, and T. Chiang, “A fast H.264-based picture-in-

picture (PIP) transcoder,” in Proceedings of the IEEE International Conference

on Multimedia and Expo (ICME), vol. 3. IEEE, Jun. 2004, pp. 1691–1694.

[50] C.-H. Li, C.-N. Wang, and T. Chiang, “A low complexity picture-in-picture

transcoder for video-on-demand,” in IEEE International Conference on Wire-

less Networks, Communications and Mobile Computing, vol. 2, Jun. 2005, pp.

1382–1387.

[52] Y. Liang, L.-P. Chau, and Y.-P. Tan, “Arbitrary downsizing video transcoding

using fast motion vector re-estimation,” IEEE Signal Processing Letters, vol. 9,

no. 11, pp. 352–355, Nov. 2002.

[65] MPEG-4: Video Verification Model - version 18.0 - ISO/MPEG N3908,

MPEG, Jan. 2001.

[67] Y. Noguchi, D. G. Messerschmitt, and S.-F. Chang, “MPEG video compositing

in the compressed domain,” in Proceedings of the IEEE International Sympo-

sium on Circuits and Systems (ISCAS), vol. 2. IEEE, May 1996, pp. 596–599.

[75] P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI architectures for video com-

pression - a survey,” Proceedings of the IEEE, vol. 83, no. 2, pp. 220–246, Feb.

1995.

[84] R. Reeves and K. Kubik, “Compressed domain image matching using sym-

metric convolution,” in Proceedings of IEEE Region 10 Annual Conference on

274

Speech and Image Technologies for Computing and Telecommunications - TEN-

CON’97. Brisbane, Queensland: Queensland QUT Publications, Dec. 1997.

[86] N. Roma and L. Sousa, “Insertion of irregular-shaped logos in the compressed

DCT domain,” in Proceedings of the IEEE International Conference on Digital

Signal Processing (DSP), vol. 1. Santorini, Greece: IEEE, Jul. 2002, pp. 125–

128.

[87] N. Roma and L. Sousa, “Transcoding architectures for object insertion in com-

pressed video,” INESC-ID – Lisboa, Portugal, Tech. Rep. RT/006/2002, Oct.

2002.

[88] N. Roma and L. Sousa, “Fast transcoding architectures for insertion of non-

regular shaped objects in the compressed DCT-domain,” Signal Processing:

Image Communication, vol. 18, no. 8, pp. 659–683, Sep. 2003.

[89] N. Roma and L. Sousa, “Least squares motion estimation algorithm in the

compressed DCT domain for H.26x/MPEG-x video sequences,” in Proceedings

of the IEEE International Conference on Advanced Video and Signal-Based

Surveillance (AVSS). Como - Italy: IEEE, Sep. 2005, pp. 576–581.

[90] N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for any ar-

bitrary integer re-size video downscaling,” EURASIP Journal on Advances in

Signal Processing, vol. 2007, no. 57291, pp. 1–16, Sep. 2007.

[91] N. Roma and L. Sousa, “Fully compressed-domain transcoder for PIP/PAP

video composition,” in Proceedings of the Picture Coding Symposium (PCS),

Lisbon - Portugal, Nov. 2007, pp. CD–ROM.

[108] Y.-P. Tan, Y. Liang, and H. Sun, “On the methods and performances of ratio-

nal downsizing video transcoding,” Signal Processing: Image Communication,

vol. 19, pp. 47–65, 2004.

[113] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proceedings

of the IEEE, vol. 93, no. 1, pp. 84–97, Jan. 2005.

[114] P. Yin, A. Vetro, B. Liu, and H. Sun, “Drift compensation for reduced spatial

resolution transcoding,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 12, no. 11, pp. 1009–1020, Nov. 2002.

[115] J. Youn, M.-T. Sun, and C.-W. Lin, “Motion vector refinement for high per-

formance transcoding,” IEEE Transactions on Multimedia, vol. 1, no. 1, pp.

30–40, Mar. 1999.

275

276

7
Conclusions and Future Research

Directions

Contents
7.1 Conclusions . 278

7.2 Future research directions 282

References . 285

277

7. Conclusions and Future Research Directions

This final chapter concludes this thesis and presents an overview of the main

achievements that resulted from the described research work. A brief discussion

of the most important accomplishments will be presented, as well as some relevant

open issues and possible future research directions.

7.1 Conclusions

From the research work that was conducted in the scope of this thesis, it re-

sulted the proposal of a set of efficient algorithms and processing architectures to

implement video composition transcoding operations of precoded video sequences,

directly in the DCT-domain. Two particular video compositing operations were

specially considered by this research: static video composition and dynamic video

composition.

The most significant results and conclusions of this thesis are summarized bellow.

• Efficient transcoding algorithms and architectures for static video

composition

A comprehensive class of static video composition structures for the insertion

of stationary or quasi-stationary non-regular shaped objects, such as visible

logos or subtitles, was presented. Such structures are based on a DCT-domain

compositing technique and make use of a symmetric convolution operator of

the even type-II DCT.

Based on these techniques, new and efficient processing algorithms were pre-

sented. Such algorithms not only directly operate with the decoded DCT-

coefficients received from the incoming compressed video stream, but they

also restrict their processing to the set of pixels corresponding to the objects

that are intended to be inserted in the video scene. Moreover, by using the

proposed techniques, the presence of undesired semi-transparent rectangular

regions around the inserted irregular-shaped objects was circumvented.

From the developed research work, it was proposed a class of fast transcoding

architectures to insert non-regular shaped objects in compressed video signals.

The proposed transcoders incorporate the developed logo insertion module on

their structure, to manipulate the DCT coefficient blocks of the decoded video

streams.

A detailed analysis of the main characteristics of the considered transcoding

architectures has shown that DCT-domain transcoders, when compared with

their corresponding pixel-domain counterparts, may provide significant advan-

tages, both in terms of the subjective video quality and of the resulting com-

278

7.1 Conclusions

putational cost. Depending on the video sequence under processing and on the

corresponding amount of movement that it contains, compressed DCT-domain

insertion algorithms may require as few as 50% of the number of operations

required by the traditional pixel-domain insertion algorithms. Moreover, the

distinctive features presented by the proposed architectures provide the means

to adapt the insertion scheme to the particular requirements of the target ap-

plication.

• Efficient transcoding algorithms and architectures for dynamic video

composition

Contrasting with the static video compositing schemes, the proposed algo-

rithms for dynamic video composition manipulate most of the data structures

that are processed by the several modules of the video encoder.

An efficient transcoding architecture to perform the composition of several pre-

coded video sequences was presented. The proposed architecture provides the

composition operation of one or more “foreground” video sequences over the

displaying area corresponding to the “background” video sequence. By directly

operating with the partially decoded DCT coefficients of the involved video

sequences, the proposed approach provides significant advantages in what con-

cerns the output video quality performance. Such enhancement is mainly due

to the absence of both the IDCT and DCT processing blocks, which makes

it less prone to round-off and fixed-precision arithmetic errors. When com-

pared with a pixel-domain approach, such quality gains can be as high as

2 dB. Moreover, when compared with other previous proposals, the presented

approach significantly improves the temporal prediction mechanism of the out-

put video sequence, by incorporating the developed DCT-domain motion re-

estimation algorithm. Contrary to the refinement schemes that were proposed

by other authors, this re-estimation procedure may consider any dimension

for the search area, leading to an inherent improvement of the output video

quality and to a significant reduction of the required bit rate. When the pro-

posed video composition architecture is compared with a simpler transform-

domain approach, without re-estimation of the MVs, such reduction may lead

to bandwidth gains as high as 35%. Furthermore, the presented DCT-domain

approach does not impose any restriction on the composition setup, allow-

ing each “foreground” video sequence to be placed over any location of the

“background” video scene. Such important feature offers a flexible and easy

implementation mechanism for most current video composition setups, such

as PIP, PAP and POP.

279

7. Conclusions and Future Research Directions

• Improved DCT-domain video processing operations

Several common video processing operations, required by the proposed

transcoding algorithms for video composition, had to be adapted and trans-

posed into the DCT-domain. In certain cases, some important changes and

improvements were actually proposed and introduced. Such improvements

were very important not only to optimize the processing of the video objects,

by directly using the DCT coefficients of the decoded video objects, but also

to better adapt and suit their implementations to the data structures adopted

by the considered video standards.

A special emphasis was devoted to the improvement of the following two im-

portant operations:

◦ DCT-domain video space-scaling

An innovative and efficient hybrid transcoding algorithm for video down-

scaling in the transform domain, by any arbitrary integer scaling factor,

was proposed. Due to its particular good adaptation to the block-based

data structures of most video standards, this algorithm offers a consider-

able advantage in what concerns the computational cost, by taking ad-

vantage of the scaling mechanism and by only performing the operations

that are really needed to compute the desired output values. Although

such computational cost greatly depends on the considered scaling factor,

the conducted experimental procedures revealed that the number of op-

erations required by the proposed DCT-domain algorithm may be as few

as 30% of those required by an equivalent pixel-domain implementation.

On the other hand, when compared with a DCT decimation procedure,

the proposed algorithm presented particularly significant advantages for

scaling factors other than integer powers of 2. In such cases, the pro-

posed scheme only needs about 20% of the operations required by the

DCT decimation approach.

In order to meet a wide range of computational restrictions that may

be imposed by the adopted implementation system, an optional combi-

nation of the presented algorithm with high frequency DCT coefficients

discarding techniques was also proposed. It provides a flexible complex-

ity scalability feature and it gives rise to an adaptable trade-off between

the involved scalable computational cost and the resulting video qual-

ity and bit rate. By applying a pre-filter mechanism to implement such

trade-off and to balance the computational cost of these two considered

DCT-domain approaches, it was observed that the proposed algorithm is

280

7.1 Conclusions

able to process more decoded DCT coefficients than the DCT decimation

approach (leading to video quality advantages as high as 7 dB). More-

over, for certain considered setups, such improvement was also obtained

with a reduction of the output bit rate.

◦ DCT-domain motion estimation

A new compressed-domain ME algorithm was proposed. This algorithm

is based on an iterative scheme that estimates the new MVs by applying a

LSE technique. This algorithm makes use of the DCT coefficients directly

obtained from the input video stream and provides an efficient alterna-

tive to refine, or even to re-compute, the set of MVs that are required

to implement the motion compensated prediction mechanism of the out-

put video sequence. By comparing the obtained experimental results with

those that resulted from simply re-using the MVs decoded from the input

video stream, it was observed that the refined MVs (obtained with the

proposed algorithm) provide a significant improvement of the temporal

prediction mechanism of the processed video sequences, leading to a con-

sequent reduction of the output bit rate as high as 20%. Such significant

results evidence that the computed MVs may be regarded as good approx-

imations of the optimal MVs, estimated with a pixel-domain exhaustive

search. Nevertheless, contrasting with a pixel-domain full-search block-

matching approach, the proposed algorithm offers the possibility to scale

the involved computational cost according to the restrictions imposed by

the adopted processing system. Whenever the number of required opera-

tions has to be restricted, the proposed ME algorithm may consider only

an arbitrary subset of non-null DCT coefficients.

The set of improvements resulting from the proposal of these two algorithms

was particularly important to the development of the previously described

compressed-domain video compositing algorithms. While the proposed down-

scaling algorithm significantly contributes to provide this compositing archi-

tecture with particularly good video quality performances, the new compressed

domain ME algorithm actively contributes to a reduction of the resulting bit

rate, by improving the temporal prediction of the processed video sequences.

• Optimization of the considered transcoding algorithms and archi-

tectures

The proposal of the several transcoding algorithms that were presented in

this thesis was complemented with the development of several DCT-domain

281

7. Conclusions and Future Research Directions

transcoding architectures that implement the considered video processing op-

erations. Nevertheless, a tight relation between the transcoding algorithms

development stage and the architectures design phase was considered. This

relation is highly important, in order to cope with the several restrictions that

are usually imposed both by the data structures associated to the considered

video standards, and by the computational and memory access requirements

and characteristics of the target implementation platforms.

From the obtained results, it was shown that DCT-domain transcoding archi-

tectures may offer significant advantages not only in terms of image quality,

but also in terms of the computational cost. Moreover, the presented study

devoted a particular attention to certain trade-offs that are inherent to most

of the considered transcoding structures. Such trade-offs focused the following

key factors, that significantly affect the actual feasibility of the transcoders in

current video processing systems: i) the involved computational cost, ii) the

output video quality, and iii) the resulting bit rate. Consequently, many of

the algorithms and architectures that were proposed in this thesis offer the

possibility to properly adapt the computational cost required by the several

involved operations with both the resulting bit rate and the real-time and

video quality requirements of the intended transcoding system. In order to

attain such objective, a flexible scaling of the overall complexity level that is

involved in each operation, as well as an accurate assessment of the resulting

influence on both the obtained video quality and bit rate, were carefully an-

alyzed. By adopting such approach, it was possible to confer the transcoder

designer the possibility to trade-off the involved computational cost with the

resulting output video quality performance and the obtained bit rate, in order

to easily adapt the computational requirements of the processing architecture

to the particular characteristics of the target application.

7.2 Future research directions

From the author’s point of view, the work herein presented raises a series of

interesting problems and lines of research that are important enough to require

further investigation in the near future. Some of the most interesting open directions

for further developments and improvements of this work include the following issues:

1. Integration, in a single framework, of the proposed transcoding algorithms and

architectures for both static and dynamic video composition. To accomplish

such integrated and generalized video composition transcoding framework, the

282

7.2 Future research directions

previously defined concepts of static and dynamic composition operations of

video objects will have to be revised. In particular, the adaptation of some

of the developed techniques (such as spatial downscaling and motion estima-

tion in the DCT-domain), in order to support the processing of Non-Regular

Shaped Objects will have to be considered. In the same trend, the adaptation

of the insertion techniques presented in chapter 4, in order to consider the

implementation, in a particular efficient way, of the composition operation of

video objects characterized by non-constant texture components will have to

be studied and further investigated.

2. Adaptation of the proposed transcoding algorithms and architectures to the

coding techniques adopted by some of the most recent video standards, such as

the H.264/AVC [31]. Contrasting with previously proposed standards based on

the even type-II DCT, such as the H.261 [29], H.263 [30], MPEG-1 Video [26],

MPEG-2 Video [27] and MPEG-4 Visual [28], this standard makes use of the

Integer Discrete Cosine Transform (IntDCT) to circumvent the accuracy mis-

match in the computation of the transform at the encoder and decoder ends

of the video transmission system.

However, despite the orthogonal nature and the computational simplicity that

is offered by this alternative transform, the extension of some of the algo-

rithms and architectures that were proposed in this thesis to these video stan-

dard requires the analysis and the implementation of some important math-

ematical relations in the scope of this alternative transform-domain, such as

the multiplication-convolution property and the derivative operator. These re-

lations are required for the implementation of the static video composition

transcoding techniques for the insertion of visible video objects, defined in

section 4.2, and to allow the application of the LSE technique in the motion

re-estimation procedure that was proposed in section 5.3.

3. Adaptation and extension of the proposed transcoding architectures to the

processing structures of the several video standards that have been adopted

by most current multimedia applications. Some particular examples of these

adaptation needs are the following:

• Support for both interlaced and non-interlaced frame encoding mech-

anisms: considering that the luminance blocks structure is different for

frame DCT encoding and for field DCT encoding, the proposed composit-

ing transcoding techniques will have to be properly adapted in order to

283

7. Conclusions and Future Research Directions

support video standards that make use of this mechanism (e.g.: MPEG-2

Video [27], etc.).

• Support for enhanced temporal prediction mechanisms based on the usage

of multiple reference frames to predict both the P-frames and the B-

frames.

• Support for temporal prediction mechanisms using variable block size

in the motion compensation procedure, such as those used in the

H.264/AVC [31] video standard.

• Support for spatial prediction mechanisms of INTRA type frames: this

technique is adopted by the most recently proposed video standards (e.g.:

H.264/AVC [31]), where each INTRA-coded region may be predicted by

considering the previously encoded areas as references.

4. Development and design of optimized arithmetic units targeting the require-

ments of the proposed transcoding algorithms and architectures for video com-

position. In addition, specially efficient frame memory modules and the cor-

responding access mechanisms should also be investigated, in order to allow

an highly efficient concurrent execution of the several blocks that integrate a

video transcoding system.

5. Development and design of dedicated computational structures to implement

the proposed transcoding algorithms and architectures, by adopting concurrent

and parallel execution models of the several computational units. In particular,

the following computational paradigms deserve a special attention:

• System-On-Chip (SOC) versus System-On-Board (SOB) alternatives to

implement high performance embedded systems for video transcoding,

as well as a detailed study and a comparison analysis of the specific

requirements and performance potentials of each of these alternatives;

• Multi-core parallel systems, where some particularly interesting research

aspects concerning the adopted computational architectures, the inter-

core communication techniques, as well as the subjacent memory access

mechanisms deserve further research. Some examples of these systems

are the Cell architecture [68], from IBM, and the several recently pro-

posed stream-based computing models, based on Graphics Processing

Units (GPUs) [70].

These lines of research represent an interesting set of promising directions to continue

and further develop the investigation and the set of contributions presented in this

284

thesis about high performance transform domain video transcoding systems for video

composition.

References

[26] MPEG-1: ISO/IEC JTC1 CD 11172 - “Coding of moving pictures and asso-

ciated audio for digital storage media up to 1.5 Mbit/s – Part 2: Video”, ISO,

1992.

[27] MPEG-2: ISO/IEC JTC1 CD 13818 - “Generic coding of moving pictures and

associated audio – Part 2: Video”, ISO, 1994.

[28] MPEG-4: ISO/IEC 14496-2:2004. Information technology – Coding of audio-

visual objects – Part 2: Visual, ISO, 2004.

[29] ITU-T Recommendation H.261 - “Video Codec for Audiovisual Services at p×64

Kbit/s”, ITU-T, Mar. 1993.

[30] ITU-T Recommendation H.263 - “Video Coding for Low Bitrate Communica-

tion”, ITU-T, Feb. 1998.

[31] ITU-T Recommendation H.264, “Advanced Video Coding for Generic Audiovi-

sual Services”, ITU-T, May 2003.

[68] K. O’Brien, A. Eichenberger, K. O’Brien, M. Gschwind, and P. Wu, “Archi-

tecture and compilation techniques for CELL (tutorial),” in Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques

(PACT), Sep. 2005.

[70] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,

and T. J. Purcell, “A survey of general-purpose computation on graphics hard-

ware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

285

286

Appendices

287

288

A
Application of the pseudo-phases

shift estimation to 2-D signals

289

A. Application of the pseudo-phases shift estimation to 2-D signals

The pseudo-phases technique for extracting shift values from the DCT pseudo-

phases, described in subsection D of section 3.3.5, (page 113), can be extended to

the 2-D case and be directly applied to the problem of motion estimation. To clarify

the following description, it will be assumed a translation motion model in which a

given object moves translationally by mx in the horizontal direction and by my in

the vertical direction, between the time instances corresponding to two consecutive

frames, taken at instants t − 1 and t, respectively. The formulation of such model

was illustrated in fig. 3.30 and is also reproduced in fig. A.1, to ease the following

description.

(mx , my)

Frame t -1

Frame tN

N

Figure A.1: Adopted translation motion model.

By following a procedure entirely similar to the 1-D case, the extension of

the DCT pseudo-phases technique is accomplished by computing a set of required

trigonometric transforms. Hence, the current frame (xt) should be fed into 2-D

DCT/DST cores to calculate the following transforms: DCCT-IIe, DCST-IIe,

DSCT-IIe and DSST-IIe. Each of these transforms is defined as a 2-D separable

function, computed with 1-D DCT-IIe/DST-IIe kernels.

Xcc
t (k, l) =

4

N2
ξ (k) ξ (l)

N−1∑

m,n=0

xt(m,n) cos

(
k
(
m+ 1

2

)
π

N

)
cos

(
l
(
n + 1

2

)
π

N

)
,

with k, l ∈ {0, . . . , N − 1} (A.1)

Xcs
t (k, l) =

4

N2
ξ (k) ξ (l)

N−1∑

m,n=0

xt(m,n) cos

(
k
(
m+ 1

2

)
π

N

)
sin

(
l
(
n+ 1

2

)
π

N

)
,

with k ∈ {0, . . . , N − 1} and l ∈ {1, . . . , N} (A.2)

290

Xsc
t (k, l) =

4

N2
ξ (k) ξ (l)

N−1∑

m,n=0

xt(m,n) sin

(
k
(
m+ 1

2

)
π

N

)
cos

(
l
(
n + 1

2

)
π

N

)
,

with k ∈ {1, . . . , N} and l ∈ {0, . . . , N − 1} (A.3)

Xss
t (k, l) =

4

N2
ξ (k) ξ (l)

N−1∑

m,n=0

xt(m,n) sin

(
k
(
m+ 1

2

)
π

N

)
sin

(
l
(
n+ 1

2

)
π

N

)
,

with k, l ∈ {1, . . . , N} (A.4)

or symbolically,

Xcc
t = DCCT-IIe(xt)

Xcs
t = DCST-IIe(xt)

Xsc
t = DSCT-IIe(xt)

Xss
t = DSST-IIe(xt)

Just like the 2-D DCT/DST cores of the first kind (DCCT-Ie, DCST-Ie,

DSCT-Ie and DSST-Ie) of the previous frame (xt−1) should be computed with 1-D

DCT-Ie/DST-Ie kernels:

Zcc
t−1 (k, l) =

4

N2
ξ (k) ξ (l)

N−1∑

m,n=0

xt−1(m,n) cos

(
kmπ

N

)
cos

(
lnπ

N

)
,

with k, l ∈ {0, . . . , N} (A.5)

Zcs
t−1 (k, l) =

4

N2
ξ (k) ξ (l)

N−1∑

m,n=0

xt−1(m,n) cos

(
kmπ

N

)
sin

(
lnπ

N

)
,

with k ∈ {0, . . . , N} and l ∈ {1, . . . , N − 1} (A.6)

Zsc
t−1 (k, l) =

4

N2
ξ (k) ξ (l)

N−1∑

m,n=0

xt−1(m,n) sin

(
kmπ

N

)
cos

(
lnπ

N

)
,

with k ∈ {1, . . . , N − 1} and l ∈ {0, . . . , N} (A.7)

Zss
t−1 (k, l) =

4

N2
ξ (k) ξ (l)

N−1∑

m,n=0

xt−1(m,n) sin

(
kmπ

N

)
sin

(
lnπ

N

)
,

with k, l ∈ {1, . . . , N − 1} (A.8)

291

A. Application of the pseudo-phases shift estimation to 2-D signals

or symbolically,

Zcc
t−1 = DCCT-Ie(xt−1)

Zcs
t−1 = DCST-Ie(xt−1)

Zsc
t−1 = DSCT-Ie(xt−1)

Zss
t−1 = DSST-Ie(xt−1)

Similarly to the 1-D case, it is possible to derive a set of equations to relate the

DCT/DST coefficients of xt−1(m,n) with those of xt(m,n):

Zt−1(k, l) · θ(k, l) = xt(k, l), for k, l ∈ {1, . . . , N − 1} (A.9)

where:

Zt−1(k, l) =

+Zcc
t−1(k, l) −Zcs

t−1(k, l) −Zsc
t−1(k, l) +Zss

t−1(k, l)

+Zcs
t−1(k, l) +Zcc

t−1(k, l) −Zss
t−1(k, l) −Zsc

t−1(k, l)

+Zsc
t−1(k, l) −Zss

t−1(k, l) +Zcc
t−1(k, l) −Zcs

t−1(k, l)

+Zss
t−1(k, l) +Zsc

t−1(k, l) +Zcs
t−1(k, l) +Zcc

t−1(k, l)

, (A.10)

θ(k, l) =

gcc
mxmy

(k, l)

gcs
mxmy

(k, l)

gsc
mxmy

(k, l)

gss
mxmy

(k, l)

=

cos
[

kπ
n

(
mx + 1

2

)]
cos
[

lπ
n

(
my + 1

2

)]

cos
[

kπ
n

(
mx + 1

2

)]
sin
[

lπ
n

(
my + 1

2

)]

sin
[

kπ
n

(
mx + 1

2

)]
cos
[

lπ
n

(
my + 1

2

)]

sin
[

kπ
n

(
mx + 1

2

)]
sin
[

lπ
n

(
my + 1

2

)]

(A.11)

and

xt(k, l) =

Xcc
t (k, l)

Xcs
t (k, l)

Xsc
t (k, l)

Xss
t (k, l)

. (A.12)

The matrix Zt−1(k, l) ∈ R4×4 is denoted as the system matrix at (k, l). At the

boundaries of each block, the DCT coefficients of xt−1(m,n) and xt(m,n) have an

1-D relationship, as given by:

+Zcc
t−1(k, l) −Zcs

t−1(k, l)

+Zcs
t−1(k, l) +Zcc

t−1(k, l)

cos
[

lπ
N

(
my + 1

2

)]

sin
[

lπ
N

(
my + 1

2

)]

 =

X
cc
t (k, l)

Xcs
t (k, l)

for k = 0, l ∈ {1, . . . , N − 1} , (A.13)

292

+Zcc
t−1(k, l) −Zsc

t−1(k, l)

+Zsc
t−1(k, l) +Zcc

t−1(k, l)

cos
[

kπ
N

(
mx + 1

2

)]

sin
[

kπ
N

(
mx + 1

2

)]

 =

X
cc
t (k, l)

Xsc
t (k, l)

for l = 0, k ∈ {1, . . . , N − 1} , (A.14)

+Zcc
t−1(k, l) −Zcs

t−1(k, l)

+Zcs
t−1(k, l) +Zcc

t−1(k, l)

cos
[

lπ
N

(
my + 1

2

)]

sin
[

lπ
N

(
my + 1

2

)]

 = (−1)mx

X
sc
t (k, l)

Xss
t (k, l)

for k = N, l ∈ {1, . . . , N − 1} , (A.15)

+Zcc
t−1(k, l) −Zsc

t−1(k, l)

+Zsc
t−1(k, l) +Zcc

t−1(k, l)

cos
[

kπ
N

(
mx + 1

2

)]

sin
[

kπ
N

(
mx + 1

2

)]

 = (−1)my

X
cs
t (k, l)

Xss
t (k, l)

for l = N, k ∈ {1, . . . , N − 1} , (A.16)

(−1)my Zcc
t−1(k, l) = Xcs

t (k, l)

for k = 0, l = N, (A.17)

(−1)mx Zcc
t−1(k, l) = Xsc

t (k, l)

for k = N, l = 0. (A.18)

Four different directions may be considered for an object displacement in a 2-D

space: NE (mx > 0, my > 0), NW (mx < 0, my > 0), SE (mx > 0, my < 0),

SW (mx < 0, my < 0). As it was seen for the 1-D case, the orthogonal equation

for the DST-IIe kernel (see eq. 3.140) can be applied to the pseudo-phase gs
m(k)

to determine m and to obtain the direction and magnitude of the shift. On the

other hand, to characterize de displacement (mx, my) in the 2-D case, it is necessary

to compute the pseudo-phases gsc
mxmy

and gcs
mxmy

. By taking the previously defined

block boundary equations into consideration (see eq. A.13-A.18), two pseudo-phases

functions can be defined as follows:

fmxmy
(k, l) =

gcs
mxmy

(k, l), for k, l ∈ {1, . . . , N − 1} ,
Zcc

t−1
(k,l)Xcs

t (k,l)−Zcs
t−1

(k,l)Xcc
t (k,l)

[Zcc
t−1

(k,l)]
2

+[Zcs
t−1

(k,l)]
2 , for k = 0, l ∈ {1, . . . , N − 1} ,

Zcc
t−1

(k,l)Xcs
t (k,l)+Zsc

t−1
(k,l)Xss

t (k,l)

[Zcc
t−1

(k,l)]
2

+[Zsc
t−1

(k,l)]
2 , for l = N, k ∈ {1, . . . , N − 1} ,

Xcs
t (k,l)

Zcc
t−1

(k,l)
, for k = 0, l = N,

(A.19)

293

A. Application of the pseudo-phases shift estimation to 2-D signals

gmxmy
(k, l) =

gsc
mxmy

(k, l), for k, l ∈ {1, . . . , N − 1} ,
Zcc

t−1
(k,l)Xsc

t (k,l)−Zsc
t−1

(k,l)Xcc
t (k,l)

[Zcc
t−1

(k,l)]
2

+[Zsc
t−1

(k,l)]
2 , for l = 0, k ∈ {1, . . . , N − 1} ,

Zcc
t−1

(k,l)Xsc
t (k,l)+Zcs

t−1
(k,l)Xss

t (k,l)

[Zcc
t−1

(k,l)]
2

+[Zcs
t−1

(k,l)]
2 , for k = N, l ∈ {1, . . . , N − 1} ,

Xsc
t (k,l)

Zcc
t−1

(k,l)
, for k = N, l = 0.

(A.20)

By computing the inverse transform functions (IDCST-IIe and IDSCT-IIe) of

these two pseudo-phases, and by taking into account the orthogonal properties of

the even type-II cosine and sine transforms (see eqs. 3.140 and 3.141), it is possible

to obtain:

DCS(m,n) = IDCST-IIe
(
ξ(k)ξ(l)fmxmy

(k, l)
)

=
4

N2

N−1∑

k=0

N∑

l=1

ξ2(k)ξ2(l)fmxmy
(k, l) cos

[
kπ

N

(
m+

1

2

)]
sin

[
lπ

N

(
n+

1

2

)]

= [δ(m−mx) + δ(m+mx + 1)] · [δ(m−my)− δ(m+my + 1)] ,
(A.21)

DSC(m,n) = IDSCT-IIe
(
ξ(k)ξ(l)gmxmy

(k, l)
)

=
4

N2

N∑

k=1

N−1∑

l=0

ξ2(k)ξ2(l)gmxmy
(k, l) sin

[
kπ

N

(
m+

1

2

)]
cos

[
lπ

N

(
n+

1

2

)]

= [δ(m−mx)− δ(m+mx + 1)] · [δ(m−my) + δ(m+my + 1)] .
(A.22)

Similarly to the 1-D case, the above 2-D IDCT-IIe and IDST-IIe inverse trans-

forms limit the observable index space of the DCS and DSC functions, defined

in eqs. A.21 and A.22, to the first quadrant of the entire index space, as it is

shown in fig. A.2 (represented as gray shaded areas). If mx is positive, the ob-

servable peak value of DSC(m,n) will be positive, independently of the sign of my,

since DSC(m,n) = δ(m−mx) · [δ(n−my) + δ(n+my + 1)] in the observable index

space. Similarly, if mx is negative, the observable peak value of DSC(m,n) will be

negative, since DSC(m,n) = −δ(m+mx + 1) · [δ(n−my) + δ(n+my + 1)] in the

observable index space. Hence, the sign of the observable peak value of DSC(m,n)

determines the sign of mx. The same observation can be formulated by applying

DCS(m,n) to the evaluation of the sign of my.

Consequently, the displacement d = (mx, my) can be obtained by locating the

peaks of DSC(m,n) and DCS(m,n) in the observable region Φ = {0, . . . , N − 1}2.

294

my

mmx

nmx > 0
my > 0

-(my+1)

m

mx > 0
my < 0

mx

n

my

m-(mx+1)

nmx < 0
my > 0

m

mx < 0
my < 0

n

-(my+1)

-(mx+1)

Positive Peak Value Negative Peak Value

(a) From DCS.

my

mmx

nmx > 0
my > 0

-(my+1)

m

mx > 0
my < 0

mx

n

my

m-(mx+1)

nmx < 0
my > 0

m

mx < 0
my < 0

n

-(my+1)

-(mx+1)

Positive Peak Value Negative Peak Value

(b) From DSC.

Figure A.2: Application of the sinusoidal orthogonal principle to DCS and DSC
pseudo-phases to evaluate the direction and magnitude of the shift
between two 2-D signals.

295

A. Application of the pseudo-phases shift estimation to 2-D signals

Table A.1: Methodology to determine the direction of the displacement (mx, my)
from the signs of DSC(m,n) and DCS(m,n) in the observable region
Φ = {0, . . . , N − 1}2.

Sign of
DSC Peak

Sign of
DCS Peak Peak Index Motion Direction

+ +
(
mx, my

)
NE

+ -
(
mx,−(my + 1)

)
SE

- +
(
−(mx + 1), my

)
NW

- -
(
−(mx + 1),−(my + 1)

)
SW

In table A.1 it is summarized the methodology to determine the direction of the

displacement (mx, my) from the signs of DSC(m,n) and DCS(m,n) functions. Once

the direction is found, the displacement magnitude d can be obtained as:

mx =

iDSC = iDCS, if DSC(iDSC, jDSC) > 0,

−(iDSC + 1) = −(iDCS + 1), if DSC(iDSC, jDSC) < 0
(A.23)

my =

{
jDCS = jDSC, if DCS(iDCS, jDCS) > 0,
−(jDCS + 1) = −(jDSC + 1), if DCS(iDCS, jDCS) < 0

(A.24)

where:

(iDCS, jDCS) = arg max
m,n∈Φ

|DCS(m,n)| , (A.25)

(iDSC, jDSC) = arg max
m,n∈Φ

|DSC(m,n)| . (A.26)

Koc and Liu empirically formulated a peak selection rule to choose the best

(iD, jD) index of these peaks in situations where the presence of noise makes them

inconsistent. Such proposed rule was stated in terms of a minimum Non-Peak-

to-Peak Ratio (NPR). This measure is defined as the ratio of the average of all

absolute non-peak values to the absolute peak value, giving rise to values in the

interval 0 ≤ NPR ≤ 1, and presenting the null value (NPR = 0) when applied to an

impulse function δ(m,n). This arbitration rule is stated as follows:

(iD, jD) =

{
(iDSC, jDSC) , if NPR(DSC) < NPR(DCS),
(iDCS, jDCS) , if NPR(DSC) > NPR(DCS).

(A.27)

Furthermore, in situations where slow motion is preferred, Koc and Liu suggested

looking for the peak value in a zig-zag search pattern along the several coefficients

of the block, as usually used in run-length coding algorithms adopted in standard

video coders. By starting from the index (0, 0), the DCS or DSC peaks are scanned

296

according to a zig-zag search pattern, marking each point as the new peak index if

the value at that point (i, j) is larger than the current peak value by more than a

considered threshold. By adopting this procedure, large spurious spikes at the higher

index points will not affect the performance and also improve the noise immunity.

297

A. Application of the pseudo-phases shift estimation to 2-D signals

298

B
Computational cost efficiency of
the NRSO insertion transcoders

299

B. Computational cost efficiency of the NRSO insertion transcoders

This appendix presents complementary experimental results concerning the com-

putational load required by the proposed NRSO insertion transcoding architectures.

The experimental setup is entirely similar to the evaluation procedure that was de-

scribed in section 6.2.3 and was applied to insert the logo and subtitle presented in

figs. B.1(a) and B.1(b) in the Silent and Carphone video sequences, illustrated in

figs. B.2(a) and B.2(b), respectively. Similarly to what was done in section 6.2.3

two quantization setups were considered: Q = 4 and Q = 15.

(a) Logo. (b) Subtitle.

Figure B.1: Considered set of NRSOs (CT = 0).

(a) Silent-Voice. (b) Carphone.

Figure B.2: Silent-Voice and Carphone test video sequences.

In figs. B.3 through B.6 it is presented the observed variations of the number

of required additions and multiplications for the considered video sequences. To

accommodate the high dynamic range of the number of performed operations pre-

sented in all these figures, these charts were represented using a logarithmic scale in

the y axis.

300

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

su
m

s
pe

r
pi

xe
l

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Additions.

10-1

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
ul

tip
lic

at
io

ns
 p

er
 p

ix
el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Multiplications.

Figure B.3: Number of operations required to insert the considered NRSOs in the
Silent-Voice video sequence with Q = 4.

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

su
m

s
pe

r
pi

xe
l

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Additions.

10-1

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
ul

tip
lic

at
io

ns
 p

er
 p

ix
el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Multiplications.

Figure B.4: Number of operations required to insert the considered NRSOs in the
Silent-Voice video sequence with Q = 15.

301

B. Computational cost efficiency of the NRSO insertion transcoders

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

su
m

s
pe

r
pi

xe
l

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Additions.

100

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
ul

tip
lic

at
io

ns
 p

er
 p

ix
el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Multiplications.

Figure B.5: Number of operations required to insert the considered NRSOs in the
Carphone video sequence with Q = 4.

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

su
m

s
pe

r
pi

xe
l

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(a) Additions.

101

102

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

m
ul

tip
lic

at
io

ns
 p

er
 p

ix
el

frame

PDIT-MV PDIT-nMV TDIT-CL TDIT-FCL TDIT-OL

(b) Multiplications.

Figure B.6: Number of operations required to insert the considered NRSOs in the
Carphone video sequence with Q = 15.

302

Bibliography

303

304

[1] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcoding: An overview

of various techniques and research issues,” IEEE Transactions on Multimedia,

vol. 7, no. 5, pp. 793–804, Oct. 2005.

[2] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE

Transactions on Computers, vol. C-23, no. 1, pp. 90–93, 1974.

[3] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for images,”

Transactions of the Institute of Electronics, Information and Communication

Engineers (IEICE), vol. E71, no. 11, pp. 1095–1097, 1988.

[4] P. Assunção and M. Ghanbari, “Buffer analysis and control in CBR video

transcoding,” IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 10, no. 1, pp. 83–92, Feb. 2000.

[5] P. Assunção and M. Ghanbari, “Post-processing of MPEG2 coded video for

transmission at lower bit rates,” in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), Gorgia

USA, May 1996, pp. 1998–2001.

[6] P. Assunção and M. Ghanbari, “A frequency-domain video transcoder for

dynamic bit-rate reduction of MPEG-2 bitstreams,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 8, no. 8, pp. 953–967, Dec.

1998.

[7] V. Bhaskaran and K. Konstantinides, Image and Video Compression Stan-

dards: Algorithms and Architectures, 2nd ed. Kluwer Academic Publishers,

Jun. 1997.

[8] W.-K. Cham, “Family of order-4 four-level orthogonal transforms,” IEE Elec-

tronic Letters, vol. 19, no. 21, pp. 869–871, Oct. 1983.

[9] S.-F. Chang and D. G. Messerschmitt, “Compositing motion-compensated

video within the network,” in Proceedings of the International Workshop on

Multimedia Communications (MULTIMEDIA). IEEE, Apr. 1992, pp. 40–56.

[10] S.-F. Chang and D. G. Messerschmitt, “A new approach to decoding and

compositing motion-compensated DCT-based images,” in Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), vol. 5. IEEE, apr 1993, pp. 421–424.

305

[11] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-

DCT compressed video,” IEEE Journal on Selected Areas in Communications,

vol. 13, no. 1, pp. 1–11, Jan. 1995.

[12] J. Chen, U.-V. Koc, and K. J. R. Liu, Design of Digital Video Coding Systems

- A Complete Compressed Domain Approach. Marcel Dekker, 2002.

[13] M.-J. Chen, M.-C. Chu, and C.-W. Pan, “Efficient motion-estimation algo-

rithm for reduced frame-rate video transcoder,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 12, no. 4, pp. 269–275, Apr.

2002.

[14] W.-H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational algorithm

for the discrete cosine transform,” IEEE Transactions on Communications,

vol. COM-25, pp. 1004–1009, Sep. 1977.

[15] “Condor webpage,” http://www.cs.wisc.edu/condor, 2008.

[16] R. Dugad and N. Ahuja, “A fast scheme for image size change in the com-

pressed domain,” IEEE Transactions on Circuits and Systems for Video Tech-

nology, vol. 11, no. 4, pp. 461–474, Apr. 2001.

[17] A. Eleftheriadis and D. Anastassiou, “Constrained and general dynamic rate

shaping of compressed digital video,” in Proceedings of the IEEE International

Conference on Image Processing (ICIP), Arlington, Virginia, U.S.A., Oct.

1995.

[18] I. Foster, The Grid: Blueprint for a New Computing Infrastructure, 2nd ed.

Morgan Kaufmann, 2004.

[19] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,”

in Proceedings of the IFIP International Conference on Network and Parallel

Computing (NPC), vol. LNCS 3779. Springer-Verlag, 2006, pp. 2–13.

[20] K.-T. Fung, Y.-L. Chan, and W.-C. Siu, “Dynamic frame skipping for high-

performance transcoding,” in Proceedings of the IEEE International Confer-

ence on Image Processing (ICIP), Oct. 2001, pp. 425–428.

[21] “Globus webpage,” http://www.globus.org, 2008.

[22] A. Haar, “Zur theorie der orthogonalen funktionen-systeme [on the theory of

orthogonal function systems],” Mathematische Annalen, no. 69, pp. 331–371,

1910.

306

http://www.cs.wisc.edu/condor
http://www.globus.org

[23] H. Hedberg and P. Nilsson, “A survey of various discrete transforms used in

digital image compression algorithms,” in Proceedings of the Swedish System-

On-Chip Conference, Bastad - Sweden, Apr. 2004.

[24] Q. Hu and S. Panchanathan, “Image/video spatial scalability in compressed

domain,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 23–

31, Feb. 1998.

[25] J.-N. Hwang, T.-D. Wu, and C.-W. Lin, “Dynamic frame-skipping in video

transcoding,” in Proceedings of the IEEE International Workshop on Multi-

media Signal Processing (MMSP), 1998, pp. 616–621.

[26] MPEG-1: ISO/IEC JTC1 CD 11172 - “Coding of moving pictures and asso-

ciated audio for digital storage media up to 1.5 Mbit/s – Part 2: Video”, ISO,

1992.

[27] MPEG-2: ISO/IEC JTC1 CD 13818 - “Generic coding of moving pictures

and associated audio – Part 2: Video”, ISO, 1994.

[28] MPEG-4: ISO/IEC 14496-2:2004. Information technology – Coding of audio-

visual objects – Part 2: Visual, ISO, 2004.

[29] ITU-T Recommendation H.261 - “Video Codec for Audiovisual Services at

p× 64 Kbit/s”, ITU-T, Mar. 1993.

[30] ITU-T Recommendation H.263 - “Video Coding for Low Bitrate Communica-

tion”, ITU-T, Feb. 1998.

[31] ITU-T Recommendation H.264, “Advanced Video Coding for Generic Audio-

visual Services”, ITU-T, May 2003.

[32] JPEG: ITU-T Recommendation T.81 - “Digital compression and coding of

continuous-tone still images”, ITU-T, 1993.

[33] ITU-T/SG16/VCEG (Q.6), H.26L Test Model Long-Term Number 8 (TML-

8), ITU-T, Video Coding Experts Group (VCEG), Sep. 2001.

[34] A. K. Jain, Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[35] J. R. Jain and A. K. Jain, “Displacement measurement and its application

in interframe image coding,” IEEE Transactions on Communications, vol.

COM-29, no. 12, pp. 1799–1808, Dec. 1981.

307

[36] G. Keesman, R. Hellinghuizen, F. Hoeksema, and G. Heideman, “Transcoding

of MPEG bitstreams,” Signal Processing: Image Communication, vol. 8, pp.

481–500, 1996.

[37] B. Kernighan and D. Ritchie, The C Programming Language, 2nd ed. Prentice

Hall Software, 1988.

[38] U.-V. Koc and K. J. R. Liu, “Low-complexity motion estimation scheme utiliz-

ing sinusoidal orthogonal principle,” in Proceedings of the IEEE International

Workshop on Visual Signal Processing and Communications (VSPC), New

Brunswick, NJ, Sep. 1994, pp. 57–62.

[39] U.-V. Koc and K. J. R. Liu, “Discrete-cosine/sine-transform based motion

estimation,” in Proceedings of the IEEE International Conference on Image

Processing (ICIP), vol. 3, Austin, Texas, Nov. 1994, pp. 771–775.

[40] U.-V. Koc and K. J. R. Liu, “Adaptive overlapping approach for DCT-based

motion estimation,” in Proceedings of the IEEE International Conference on

Image Processing (ICIP), Washington, DC, 1995.

[41] U.-V. Koc and K. J. R. Liu, “DCT-based motion estimation,” IEEE Trans-

actions on Image Processing, vol. 7, no. 7, pp. 948–965, Jul. 1998.

[42] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-

compensated interframe coding for video conferencing,” in Proceedings of the

National Telecommunications Conference, New Orleans, LA, Nov. 1981, pp.

G5.3.1–G5.3.5.

[43] W. Kou and T. Fjällbrant, “A direct computation of DCT coefficients for a

signal block taken from two adjacent blocks,” IEEE Transactions on Signal

Processing, vol. 39, no. 7, pp. 1692–1695, Jul. 1991.

[44] R. Kresch and N. Merhav, “Fast DCT domain filtering using the DCT and

the DST,” IEEE Transactions on Image Processing, vol. 8, no. 6, pp. 821–833,

Jun. 1999.

[45] A. Y. Lan and J.-N. Hwang, “Scene context dependent reference frame place-

ment for MPEG videocoding,” in Proceedings of the IEEE International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, Munich

- Germany, Apr. 1997, pp. 2997–3000.

308

[46] Y.-R. Lee and C.-W. Lin, “DCT-domain spatial transcoding using generalized

DCT decimation,” in Proceedings of the IEEE International Conference on

Image Processing (ICIP), Genoa - Italy, Sep. 2005.

[47] Y.-R. Lee, C.-W. Lin, and C.-C. Kao, “A DCT-domain video transcoder for

spatial resolution downconversion,” in Proceedings of the International Con-

ference on Recent Advances in Visual Information Systems, Mar. 2002, pp.

207–218.

[48] Y.-R. Lee, C.-W. Lin, S.-H. Yeh, and Y.-C. Chen, “Low-complexity DCT-

domain video transcoders for arbitrary-size downscaling,” in Proceedings of

the IEEE International Workshop on Multimedia Signal Processing (MMSP),

Sep. 2004, pp. 31–34.

[49] C.-H. Li, H. Lin, C.-N. Wang, and T. Chiang, “A fast H.264-based picture-in-

picture (PIP) transcoder,” in Proceedings of the IEEE International Confer-

ence on Multimedia and Expo (ICME), vol. 3. IEEE, Jun. 2004, pp. 1691–

1694.

[50] C.-H. Li, C.-N. Wang, and T. Chiang, “A low complexity picture-in-picture

transcoder for video-on-demand,” in IEEE International Conference on Wire-

less Networks, Communications and Mobile Computing, vol. 2, Jun. 2005, pp.

1382–1387.

[51] H. Li and H. Shi, “A fast algorithm for reconstructing motion compensated

blocks in compressed domain,” Journal of Visual Languages and Computing,

vol. 10, no. 6, pp. 607–623, Dec. 1999.

[52] Y. Liang, L.-P. Chau, and Y.-P. Tan, “Arbitrary downsizing video transcoding

using fast motion vector re-estimation,” IEEE Signal Processing Letters, vol. 9,

no. 11, pp. 352–355, Nov. 2002.

[53] J. S. Lim, Two-Dimensional Signal and Image Processing. Prentice-Hall,

1990.

[54] C.-W. Lin and Y.-R. Lee, “Fast algorithms for DCT-domain video transcod-

ing,” in Proceedings of the IEEE International Conference on Image Processing

(ICIP), Thessaloniki - Greece, Oct. 2001, pp. 421–424.

[55] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block

motion vectors,” IEEE Transactions on Circuits and Systems for Video Tech-

nology, vol. 3, no. 2, pp. 148–157, Apr. 1993.

309

[56] S. Liu and A. C. Bovik, “Local bandwidth constrained fast inverse motion com-

pensation for DCT domain video transcoding,” in Proceedings of the IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP),

Salt Lake City, UT, May 2001.

[57] S. Liu and A. C. Bovik, “Local bandwidth constrained fast inverse motion com-

pensation for DCT-domain video transcoding,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 12, no. 5, pp. 309–319, May 2002.

[58] S. A. Martucci, “Symmetric convolution and discrete sine and cosine trans-

forms,” IEEE Transactions on Signal Processing, vol. SP-42, no. 5, pp. 1038–

1051, May 1994.

[59] S. A. Martucci, “Image resizing in the discrete cosine transform domain,”

in Proceedings of the IEEE International Conference on Image Processing

(ICIP), vol. 2, Washington D.C. - USA, Oct. 1995, pp. 244–247.

[60] “Matlab webpage,” http://www.mathworks.com/products/matlab, 2008.

[61] J. Meng and S.-F. Chang, “Embedding visible video watermarks in the com-

pressed domain,” Proceedings of the IEEE International Conference on Image

Processing (ICIP), vol. 1, pp. 474–477, 1998.

[62] N. Merhav and V. Bhaskaran, “A fast algorithm for DCT-domain inverse

motion compensation,” in Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, Atlanta, GA,

USA, May 1996, pp. 2307–2310.

[63] N. Merhav and V. Bhaskaran, “Fast algorithms for DCT-domain image down-

sampling and for inverse motion compensation,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 7, no. 3, pp. 468–476, Jun. 1997.

[64] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. Legall, MPEG video

compression standard. Chapman & Hall, 1996.

[65] MPEG-4: Video Verification Model - version 18.0 - ISO/MPEG N3908,

MPEG, Jan. 2001.

[66] B. K. Natarajan and B. Vasudev, “A fast approximate algorithm for scaling

down digital images in the DCT domain,” in Proceedings of the IEEE Inter-

national Conference on Image Processing (ICIP), vol. 2, Washington D.C. -

USA, Oct. 1995, pp. 241–243.

310

http://www.mathworks.com/products/matlab

[67] Y. Noguchi, D. G. Messerschmitt, and S.-F. Chang, “MPEG video compositing

in the compressed domain,” in Proceedings of the IEEE International Sympo-

sium on Circuits and Systems (ISCAS), vol. 2. IEEE, May 1996, pp. 596–599.

[68] K. O’Brien, A. Eichenberger, K. O’Brien, M. Gschwind, and P. Wu, “Archi-

tecture and compilation techniques for CELL (tutorial),” in Proceedings of

the International Conference on Parallel Architectures and Compilation Tech-

niques (PACT), Sep. 2005.

[69] “Octave webpage,” http://www.octave.org, 2008.

[70] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,

and T. J. Purcell, “A survey of general-purpose computation on graphics hard-

ware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

[71] K. Panusopone, X. Chen, and F. Ling, “Logo insertion in MPEG transcoder,”

in Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), Salt Lake City - USA, May 2001.

[72] Y. S. Park and H. W. Park, “Arbitrary-ratio image resizing using fast DCT

of composite length for DCT-based transcoder,” IEEE Transactions on Image

Processing, vol. 15, no. 2, pp. 494–500, Feb. 2006.

[73] V. Patil, R. Kumar, and J. Mukherjee, “A fast arbitrary factor video resizing

algorithm,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 16, no. 9, pp. 1164–1171, Sep. 2006.

[74] F. Pereira and T. Ebrahimi, Eds., The MPEG-4 Book. Prentice Hall PTR,

2002.

[75] P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI architectures for video com-

pression - a survey,” Proceedings of the IEEE, vol. 83, no. 2, pp. 220–246, Feb.

1995.

[76] B. Porat, A Course in Digital Signal Processing. John Wiley & Sons, Inc.,

1997.

[77] T. Porter and T. Duff, “Compositing digital images,” Proceedings of the ACM

International Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH), vol. 18, no. 3, pp. 253–259, Jul. 1984.

[78] W. K. Pratt, Digital Image Processing. John Wiley & Sons, Inc., 1978.

311

http://www.octave.org

[79] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image cod-

ing,” Proceedings of the IEEE, vol. 57, no. 1, pp. 58–68, Jan. 1969.

[80] W. K. Pratt, W.-H. Chen, and L. R. Welch, “Slant transform image coding,”

IEEE Transactions on Communications, vol. 22, no. 8, pp. 1075–1093, Aug.

1974.

[81] M. Püschel and J. M. F. Moura, “The algebraic approach to the discrete

cosine and sine transforms and their fast algorithms,” Society for Industrial

and Applied Mathematics Journal on Computing, vol. 32, no. 5, pp. 1280–1316,

2003.

[82] K. R. Rao and P. Yip, Discrete Cosine Transform: algorithms, advantages

and applications. Academic Press, Inc., 1990.

[83] R. Reeves, “Image matching in the compressed domain,” Ph.D. dissertation,

Queensland University of Technology, Australia, 1999.

[84] R. Reeves and K. Kubik, “Compressed domain image matching using sym-

metric convolution,” in Proceedings of IEEE Region 10 Annual Conference

on Speech and Image Technologies for Computing and Telecommunications -

TENCON’97. Brisbane, Queensland: Queensland QUT Publications, Dec.

1997.

[85] J. Ridge, “Efficient transform-domain size and resolution reduction of images,”

Signal Processing: Image Communication, vol. 18, no. 8, pp. 621–639, Sep.

2003.

[86] N. Roma and L. Sousa, “Insertion of irregular-shaped logos in the compressed

DCT domain,” in Proceedings of the IEEE International Conference on Digital

Signal Processing (DSP), vol. 1. Santorini, Greece: IEEE, Jul. 2002, pp. 125–

128.

[87] N. Roma and L. Sousa, “Transcoding architectures for object insertion in

compressed video,” INESC-ID – Lisboa, Portugal, Tech. Rep. RT/006/2002,

Oct. 2002.

[88] N. Roma and L. Sousa, “Fast transcoding architectures for insertion of non-

regular shaped objects in the compressed DCT-domain,” Signal Processing:

Image Communication, vol. 18, no. 8, pp. 659–683, Sep. 2003.

312

[89] N. Roma and L. Sousa, “Least squares motion estimation algorithm in the

compressed DCT domain for H.26x/MPEG-x video sequences,” in Proceedings

of the IEEE International Conference on Advanced Video and Signal-Based

Surveillance (AVSS). Como - Italy: IEEE, Sep. 2005, pp. 576–581.

[90] N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for any ar-

bitrary integer re-size video downscaling,” EURASIP Journal on Advances in

Signal Processing, vol. 2007, no. 57291, pp. 1–16, Sep. 2007.

[91] N. Roma and L. Sousa, “Fully compressed-domain transcoder for PIP/PAP

video composition,” in Proceedings of the Picture Coding Symposium (PCS),

Lisbon - Portugal, Nov. 2007, pp. CD–ROM.

[92] C. L. Salazar and T. D. Tran, “On resizing images in the DCT domain,” in Pro-

ceedings of the IEEE International Conference on Image Processing (ICIP),

vol. 4, Oct. 2004, pp. 2797–2800.

[93] K.-D. Seo and J.-K. Kim, “Motion vector refinement for video downsampling

in the DCT domain,” IEEE Signal Processing Letters, vol. 9, no. 11, pp. 356–

359, Nov. 2002.

[94] K.-D. Seo and J.-K. Kim, “Fast motion vector re-estimation for transcoding

MPEG-1 into MPEG-4 with lower spatial resolution in DCT-domain,” Signal

Processing: Image Communication, vol. 19, no. 4, pp. 299–312, Apr. 2004.

[95] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to lower

spatio-temporal resolution and different encoding formats,” IEEE Transac-

tions on Multimedia, vol. 2, no. 2, pp. 101–110, Jun. 2000.

[96] T. Shanableh and M. Ghanbari, “Transcoding of video into different encoding

formats,” in Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), vol. 4, Jun. 2000, pp. 1927–1930.

[97] T. Shanableh and M. Ghanbari, “Transcoding architectures for DCT-domain

heterogeneous video transcoding,” in Proceedings of the IEEE International

Conference on Image Processing (ICIP), Thessaloniki - Greece, Oct. 2001.

[98] T. Shanableh and M. Ghanbari, “Hybrid DCT/pixel domain architecture for

heterogeneous video transcoding,” Signal Processing: Image Communication,

vol. 18, no. 8, pp. 601–620, Sep. 2003.

313

[99] B. Shen and I. K. Sethi, “Block-based manipulations of transformed-

compressed images and videos,” ACM Multimedia System Journal, vol. 6,

no. 2, pp. 113–124, Mar. 1998.

[100] B. Shen, I. K. Sethi, and V. Bhaskaran, “DCT convolution and its application

in compressed domain,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 8, no. 8, pp. 947–952, Dec. 1998.

[101] B. Shen, I. Sethi, and B. Vasudev, “Adaptive motion-vector resampling for

compressed video downscaling,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 9, no. 6, pp. 929–936, Sep. 1999.

[102] H. Shu and L.-P. Chau, “An efficient arbitrary downsizing algorithm for video

transcoding,” IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 14, no. 6, pp. 887–891, Jun. 2004.

[103] H. Shu and L.-P. Chau, “A resizing algorithm with two-stage realization for

DCT-based transcoding,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 17, no. 2, pp. 248–253, Feb. 2007.

[104] B. C. Smith and L. A. Rowe, “Algorithms for manipulating compressed im-

ages,” IEEE Computer Graphics and Applications, pp. 34–42, Sep. 1993.

[105] G. Strang, “The discrete cosine transform,” Society for Industrial and Applied

Mathematics Review, vol. 41, no. 1, pp. 135–147, 1999.

[106] H. Sun, W. Kwok, and J. Zdepski, “Architectures for MPEG compressed

bitstream scaling,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 6, no. 2, pp. 191–199, Apr. 1996.

[107] H. Sun, X. Chen, and T. Chiang, Digital Video Transcoding for Transmission

and Storage. CRC Press, 2004.

[108] Y.-P. Tan, Y. Liang, and H. Sun, “On the methods and performances of ratio-

nal downsizing video transcoding,” Signal Processing: Image Communication,

vol. 19, pp. 47–65, 2004.

[109] A. Vetro, P. Yin, B. Liu, and H. Sun, “Reduced spatio-temporal transcoding

using an INTRA refreshing technique,” in Proceedings of the IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), 2002, pp. IV723–IV726.

314

[110] Z. Wang, “Fast algorithms for the discrete W transform and for the discrete

Fourier transform,” IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 32, no. 4, pp. 803–816, Aug. 1984.

[111] S. Wee and B. Vasudev, “Splicing MPEG video streams in the compressed do-

main,” in Proc. IEEE Workshop on Multimedia Signal Processing, Princeton,

Jun. 1997.

[112] J. W. C. Wong and O. C. Au, “Modified predictive motion estimation for

reduced-resolution video from high-resolution compressed video,” in Proceed-

ings of the IEEE International Symposium on Circuits and Systems (ISCAS),

vol. 4, 1999, pp. 524–527.

[113] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proceedings

of the IEEE, vol. 93, no. 1, pp. 84–97, Jan. 2005.

[114] P. Yin, A. Vetro, B. Liu, and H. Sun, “Drift compensation for reduced spatial

resolution transcoding,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 12, no. 11, pp. 1009–1020, Nov. 2002.

[115] J. Youn, M.-T. Sun, and C.-W. Lin, “Motion vector refinement for high per-

formance transcoding,” IEEE Transactions on Multimedia, vol. 1, no. 1, pp.

30–40, Mar. 1999.

[116] W. Zhu, K. H. Yang, and M. J. Beacken, “CIF-to-QCIF video bitstream down-

conversion in the DCT domain,” Bell Labs Technical Journal, vol. 3, no. 3,

pp. 21–29, Jul. 1998.

315

316

	Titlepage
	Abstract and Keywords
	Abstract
	Keywords

	Resumo e Palavras Chave
	Resumo
	Palavras Chave

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Main objectives
	1.3 Summary of original contributions
	1.4 Computational framework
	1.5 Organization of the thesis
	References

	2 The Discrete Cosine Transform
	2.1 Introduction
	2.2 Definition
	2.2.1 Extension properties of sampled data beyond original boundaries
	2.2.2 Discrete cosine transforms
	2.2.3 Discrete sine transforms
	2.2.4 Inverse transforms
	2.2.5 Main properties

	2.3 Multidimensional transforms
	2.4 Application of the DCT to image and video coding
	2.4.1 One-dimensional discrete cosine transform
	2.4.2 Two-dimensional discrete cosine transform

	2.5 Multiplication-convolution property
	2.5.1 Generic discrete trigonometric transform
	2.5.2 Definition
	2.5.3 Fast computation of the convolution operation in the DCT-domain

	2.6 Conclusion
	References

	3 Video Transcoding in the DCT-Domain
	3.1 Introduction
	3.1.1 Computational efficiency
	3.1.2 Reduced influence of degradation effects
	3.2 Video transcoding architectures
	3.2.1 Pixel-domain transcoding architectures
	3.2.2 DCT-domain transcoding architectures

	3.3 Video processing algorithms in the DCT-domain
	3.3.1 Motion compensated temporal prediction
	3.3.2 Bit rate and quality adaptation
	3.3.3 Space scaling
	3.3.4 Motion vector composition
	3.3.5 Motion estimation
	3.3.6 Time scaling

	3.4 Conclusions
	References

	4 Static Video Composition
	4.1 Introduction
	4.2 Objects insertion
	4.2.1 Insertion of irregular shaped objects in the pixel-domain
	4.2.2 Insertion of objects in the compressed DCT-domain

	4.3 Transcoding architectures for insertion of non-regular shaped objects
	4.3.1 Pixel-domain transcoder with re-estimation of motion vectors
	4.3.2 Pixel-domain transcoder without re-estimation of motion vectors
	4.3.3 Compressed DCT-domain transcoder
	4.3.4 Computational-reduced compressed DCT-domain transcoder
	4.3.5 Open-loop compressed DCT-domain transcoder

	4.4 Conclusions
	References
	5 Dynamic Video Composition
	5.1 Introduction
	5.2 Space scaling algorithm by an arbitrary integer scale factor
	5.2.1 Downscaling algorithms by an arbitrary scale factor
	5.2.2 Proposed downscaling approach
	5.2.3 Algorithm

	5.3 Block-based motion re-estimation in the DCT-domain
	5.3.1 Linear least squares estimation
	5.3.2 Least squares motion estimation
	5.3.3 Least squares motion estimation in the DCT-domain

	5.4 Dynamic picture composition in the DCT-domain
	5.4.1 Proposed transcoder architecture
	5.4.2 Frame scaling
	5.4.3 DCT-domain frame composition
	5.4.4 Motion vector re-estimation

	5.5 Conclusions
	References
	6 Experimental Results
	6.1 Introduction
	6.2 Static video composition
	6.2.1 Quality of the encoded video sequences
	6.2.2 Bit rate of the encoded video sequences
	6.2.3 Efficiency of the NRSO insertion transcoders
	6.2.4 Drift introduced in INTER type images

	6.3 Dynamic video composition
	6.3.1 Space scaling algorithm by an arbitrary integer scale factor
	6.3.2 Block-based motion re-estimation in the DCT-domain
	6.3.3 Dynamic video composition in the DCT-domain

	6.4 Conclusions
	References

	7 Conclusions and Future Research Directions
	7.1 Conclusions
	7.2 Future research directions
	References

	Appendices
	A Application of the pseudo-phases shift estimation to 2-D signals
	B Computational cost efficiency of the NRSO insertion transcoders

	Bibliography

