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a b s t r a c t 

The increasing importance of GPUs as high-performance accelerators and the power and 

energy constraints of computing systems, make it fundamental to develop techniques for 

energy efficiency maximization of GPGPU applications. Among several potential techniques, 

dynamic voltage and frequency scaling (DVFS) stands out as one of the most promising 

approaches. Hence, novel DVFS-aware performance and power classification models are 

herein proposed that correlate application characteristics and GPU architecture features. 

In particular, by analysing the utilization of graphics and memory components at a single 

voltage and frequency levels, the proposed classification methodologies are able to pre- 

dict the impact of DVFS on GPGPU applications execution time and power and energy 

consumption. The accuracy of the proposed approach is validated on two modern NVIDIA 

GPUs from the Maxwell and Pascal generations, by relying on 35 benchmarks from the 

Rodinia, Polybench, Parboil, SHOC and CUDA SDK suites. Experimental results show that 

the proposed approach can typically predict the optimal operating frequencies of graph- 

ics and memory subsystems, attaining up to 36% energy savings (average of 16%), which 

correspond to an average deviation of 0.74% regarding the optimal case. Moreover, when 

considering a maximum performance penalty of 10%, up to 26% energy savings are still 

attained. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

General purpose accelerators have already gained a firm presence in most modern high-performance computing (HPC)

ystems. In particular, the Graphics Processing Units (GPUs), are commonly used to increase the resulting system perfor-

ance when executing applications from many commercial and scientific domains. This can be easily observed at the most

ecent version of the TOP500 list (June 2017): 88 of these systems are equipped with accelerators, where 72 of them use

PUs. However, such an established adoption of GPUs intensifies the importance to find reliable mechanisms that ensure the

aximum efficiency of the computing system, both in terms of performance and (most importantly) energy consumption.

ccordingly, significant research efforts are being put forth in the investigation of Dynamic Voltage and Frequency Scaling

DVFS) techniques (one of the most used power management strategies), due to the inherent potential for significant power

nd energy savings in many of the computer system components [1–5] . 

Studying the effects of DVFS on the resulting energy-efficiency of computing systems requires analysing its impact on

ifferent applications, as general-purpose applications can largely vary in the way they use the computational and memory
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b  
esources of the devices where they are executing [6,7] . While some applications perform a large number of computational

perations for each loaded data (more compute-intensive ), other applications may perform very few (more I/O- or memory-

ntensive ). Although the resulting performance of the former type of applications is more likely to scale proportionally with

he frequency of the cores (highest frequency ≡ best performance), this behaviour is not guaranteed for the latter set of ap-

lications. Additionally, most standard applications fall somewhere between these extremes, increasing the characterization

omplexity. However, knowing the type of application executing can lead to interesting opportunities for energy savings.

or instance, certain applications can be executed at lower frequency levels with negligible performance drop-off. Identi-

ying these classes of applications can lead to significant energy savings, since lower operating frequency leads to lower

ower consumption. Hence, to conduct this type of analysis, it is fundamental to adopt methodologies that allow a proper

lassification of the application workloads. 

Some previous studies on workload characterization in the GPU-domain used Principal Component Analysis (PCA) and

ierarchical clustering [7–9] , which make the understanding of each resulting class harder (from the computing architecture

erspective) and do not necessarily result in an accurate energy-aware classification. Other works depend on GPU simulators

nd performance counters that are non-existent in real hardware devices, rendering these approaches impossible to replicate

n real systems. Furthermore, most existing GPU simulators are based on the NVIDIA Tesla and Fermi microarchitectures,

hich have already been followed by Kepler (2013), Maxwell (2014) and Pascal (2016). A different approach towards DVFS

onsists in the development of accurate performance and power models that allow predicting the GPU behaviour under

ifferent voltage and frequency scenarios [10–21] . However, while detailed performance and power models may ultimately

roduce more accurate results, the herein presented work shows that application classification is a more convenient and

iable approach not only to identify remarkable energy-savings opportunities, but also to achieve near-optimal results in

erms of energy savings. 

Accordingly, the main contribution of the presented research is to provide a new classification methodology for GPGPU

pplications, allowing an easy identification of which applications can benefit from DVFS, in terms of energy savings. To

hat goal, separate methodologies to classify GPU applications are proposed, focusing on the effects of DVFS on their per-

ormance and power consumption, based on how the applications exploit the different GPU resources. The classifiers are

rained offline, using a collection of synthetic benchmarks, and can be used to classify any application using hardware per-

ormance events gathered during its execution on a single operating frequency. The resulting class is able to characterize

ow the frequency scaling will affect the application execution time or power consumption, for all the remaining operating

requencies. 

The proposed methodology was validated using a set of 35 applications from different relevant benchmark suites (Par-

oil [22] , Rodinia [23] , SHOC [24] , Polybench [25] and CUDA SDK [26] ), on two modern GPU devices: GTX Titan X and

itan Xp, from the Maxwell and Pascal microarchitectures, respectively. The experimental results show that the proposed

ethodologies are able to accurately and consistently classify the considered GPU applications in terms of their behaviour

n performance, power and energy consumption. The proposed classification methodology allows finding a near-optimal pair

f operating frequencies (core and memory), which can result on average energy-savings of 16% (20%), and on peak energy-

avings that are as high as 36% (32%) on the Maxwell GPU (Pascal GPU). Additionally, in situations where a decrease in

he processing performance is not allowed or highly discouraged, the proposed methodology is still able to find real oppor-

unities for energy-efficiency with a limited performance trade-off ( e.g. , < 10%), resulting in average energy-savings of 9%

n the Maxwell GPU (16% on Pascal), although in some classes such savings can even be as high as 22% with only a 0.2%

erformance trade-off. Accordingly, the most significant contributions of this paper are the following: 

• Analysis of the impact of DVFS on the performance and power consumption of different types of GPU benchmarks on

real hardware; 
• Novel application-classification scheme based on GPU performance and power metrics, able to characterize the impact of

DVFS on the execution of different types of applications, for a wide range of GPU operating frequencies, validated with

standard applications on real GPU devices; 
• Application of the proposed classification methodologies to optimize: (i) the consumed energy; (ii) the energy v.s. per-

formance trade-off; and (iii) the exploitable energy-savings ranges. 

The rest of this paper is organized as follows. In Section 2 , the prevalent GPU architectures are briefly discussed, as well

s the impact of DVFS on the performance and power consumption of different applications. Section 3 presents the pro-

osed methodologies to classify GPU applications into classes with similar characteristics. Section 4 validates the proposed

ethodologies using a set of 35 standard applications. Finally, Section 5 applies the proposed methodologies to find the

est operating frequencies for the different applications, in order to maximize the energy-savings. Section 6 compares the

roposed methodology with the current state of the art, and finally Section 7 concludes the manuscript. 

. Analysis of the DVFS impact on GPGPU applications 

Similarly to other computing systems, the architecture of current GPU devices allows for the different components to

e clocked at distinct and independent frequencies. Fig. 1 presents a simplified representation of a modern GPU device,
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Fig. 1. Existing frequency domains in modern GPU devices ( e.g. NVIDIA Kepler, Maxwell and Pascal GPUs). 

Fig. 2. DVFS impact on two distinct Rodinia applications on a NVIDIA GTX Titan X, where F CoreRef = 1164 MHz . 
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ontaining two distinct frequency domains: the Graphics (or Core) domain and the Memory domain. 1 The Graphics domain

ncludes both the streaming-multiprocessors (SMs) and the L2 cache, while the Memory domain includes only the device

ain memory, i.e. DRAM memory. Scaling the frequency of each domain can have different results on an application ex-

cution, largely depending on the considered application characteristics [27] . While it can be expected that a decrease of

he core frequency ( F Core ) and voltage ( V Core ) will cause the kernel 2 execution time to increase ( T ∝ 

1 
F Core 

) and the resulting

ower consumption to decrease ( P dynamic ∝ V Core 
2 F and P static ∝ V e γV Core ), the application performance and power consump-

ion over different frequencies are highly dependent on the way the application exploits each of the GPU subsystems. In

act, it has been shown that accurately predicting the impact of DVFS in the execution time or power consumption often

equires the usage of complex predictive models [28,29] . Accordingly, it is important to understand the effects of DVFS on

oth the execution time ( t ) and power consumption (P), in order to be able to extract meaningful conclusions relative to

he behaviour of the resulting energy consumption (E) over different frequencies ( E = P × t). 

To illustrate the referred problem, Fig. 2 presents one example with two applications that have their execution time

ffected very differently when the core and memory frequencies are scaled, namely Hotspot (from Rodinia) and Blackscholes

from CUDA SDK). For Hotspot (see Fig. 2 a), the kernel execution time always scales inversely with the core frequency ( F Core ).

owever, for the Blackscholes case (see Fig. 2 b), it is possible to maintain the overall kernel execution time while scaling

own the core frequency, as long as the memory keeps operating at the higher frequency. It can also be observed that the

ffects of scaling the memory frequency in the execution time are also very different in the two applications. While for

he Blackscholes ( Fig. 2 b) there is a significant increase in the execution time when the memory frequency is decreased, the

erformance of Hotspot ( Fig. 2 a) is not affected by the same change. 
1 This setup is currently used by several NVIDIA GPU microarchitectures, such as Kepler, Maxwell and Pascal. 
2 Kernel: routine to be executed in a massively parallel fashion on a GPU device by multiple threads. 
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Fig. 3. Examples of DVFS impact on overlapped instructions. The instructions pairs ( Mem1 , Comp1 ) and ( Mem2 , Comp2 ) require full synchronization. 
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Accordingly, this manuscript proposes two separate methodologies to classify any application according to the impact

f DVFS in the resulting execution time and power consumption. Finally, by combining the two approaches it is possi-

le to infer how the energy-consumption will change when the frequency of the cores and of the memory are scaled.

ections 2.1 and 2.2 describe the DVFS impact on the applications execution time and power consumption, respectively. 

.1. DVFS impact on the applications performance 

The impact of DVFS on an application execution time is a complex problem that requires deep understanding of the GPU

rchitecture. In particular, one of the GPU main design goals concerns the use of multiple groups of parallel threads ( warps

n NVIDIA nomenclature) to hide instruction latency. However, in many applications it is not always possible to hide the

nstruction latency with other warps. Therefore, when analysing the applications performance, from the perspective of their

ottlenecks and limiting factors, most works tend to consider two main types of applications [3,30,31] : (1) compute-bound ,

here the execution time is mainly determined by the performance of the processing components; and (2) memory-bound ,

here the execution time mainly depends on the bandwidth and latency of the memory hierarchy when satisfying memory

ccess requests. Accordingly, the adopted setup in terms of the core and memory operating frequencies (F Core and F Mem 

) will

esult in different performance versus power patterns if a certain kernel is more memory-bound or more compute-bound. 

Moreover, while one kernel may be compute-bound at a certain operating frequency state, it may become memory-

ound at different core and/or memory frequency states. To illustrate such condition, Fig. 3 a presents the relative weight

ariation of the memory and compute operations of one given kernel for three different scenarios. At frequency state (F C1 ,

 M1 ), the execution of both Mem1 and Comp1 instructions occur at the same time and both finish their execution at the

ame instant. In this example, the subsequent instructions Mem2 and Comp2 require full synchronization but since both

nstructions finish at the same time, the latency of the threads waiting to be issued is fully hidden by the threads currently

xecuting. However, if the core frequency is increased to a higher value (F C2 ) and/or the memory frequency is decreased to

 lower value (F M2 ) such that 
F M2 
F C2 

< 

F M1 
F C1 

, there will be a time interval where only the Mem instructions are executing on

he GPU, meaning that there are not enough threads executing Comp instruction that can hide the latency of the threads

aiting on pending memory operations. Hence, at frequency state (F C2 , F M2 ) the application is considered to be memory-

ound, since its performance bottleneck depends on the latency of the memory operations. If, on the contrary, the operating

requencies were set to state (F C3 , F M3 ), such that 
F M3 
F C3 

> 

F M1 
F C1 

, the execution of the Comp instructions would be longer than

he Mem instructions, meaning the performance is limited by the compute instructions, thus resulting in a compute-bound

lassification. 

As a result, the commonly used binary classification ( compute or memory-bound ) may not be valid for all combinations

f frequency levels. In the remainder of this work an application is considered memory-bounded at frequency F Mem _ i if

ith that memory frequency, there is at least one core frequency (within the range allowed by the device) where the

pplication performance is limited by the accesses to the DRAM. On the other hand, if with memory frequency set to F Mem _ i

he application is never bounded by DRAM accesses (for all core frequencies), the application is considered to be compute-

ounded at frequency F Mem _ i . 
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Fig. 4. DVFS-aware performance classes depending on the DRAM and Graphics utilization. 
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In the two extreme scenarios, where the memory throughput is extremely low compared with the core ( 
F Mem 

F Core 
→ 0 ) or

xtremely high ( 
F Mem 

F Core 
→ ∞ ) it is trivial to classify any given application in the memory-bound and compute-bound classes,

espectively. Accordingly, as the ratio 
F Mem 

F Core 
is decreased from ∞ (for example by fixing F Core constant and decreasing F Mem 

),

ore and more applications initially classified as compute-bound will start becoming memory-bound at each memory fre-

uency level. Fig. 3 b presents one example of such a scenario, where the performance behaviour of four different kernels

hange as the memory frequency varies. It is important to stress that since all possible values of 
F Mem 

F Core 
can be achieved by

xing one of the values constant and scaling the other, for the sake of simplification the value of F Core is considered con-

tant, without loss of generality. When the memory frequency is scaled down between any two frequency levels ( e.g. from

 Mem5 to F Mem3 ), the amount of time required to satisfy all DRAM accesses will increase, and therefore, one of four possible

cenarios will occur: 

1. Kernel 1: The application was already memory-bound at the highest memory frequency ( F Mem5 ), so it will remain

memory-bound at any other lower memory frequency; 

2. Kernel 2: The application was well balanced as both the Mem and Comp instructions start and finish at the same time;

since a decrease of the memory frequency will mostly affect the Mem instructions, the application will become memory-

bound at F Mem3 ; 

3. Kernel 3: The application was compute-bound , but as soon as the memory frequency reduces to values lower than F Mem4 

the performance of the application starts being limited by the DRAM bandwidth, therefore being memory-bound at fre-

quency F Mem3 ; 

4. Kernel 4: The application was compute-bound at F Mem5 and it remains compute-bound at the lower memory frequency

F Mem3 . 

Hence, considering that one of the objectives of this work is to provide a DVFS-aware classification for the resulting

erformance of GPU applications, this classification must be able to characterize how the execution time of each application

hanges when core and memory DVFS is applied. Therefore, the proposed methodology to characterize the impact of DVFS

n the applications performance will have to depend on the memory frequency levels of the GPU device. 

Since GPU devices do not provide any performance counters that immediately define what type of application is running

nd how its execution is affected by frequency scaling, it is important to choose the relevant counters that can be used

o indirectly infer this information. The impact of DVFS in the execution time of an application depends mostly on how

t utilizes the GPU resources. In particular, since GPU applications are usually able to exploit the inherent parallelism of

he device, the applications execution time is a result of the overlap of the several instructions executed by the multiple

arps. Since the memory and compute instructions are generally overlapped during the execution, the impact of DVFS on

n application performance will be dependent on the utilization of both the Memory and Graphics resources. Additionally,

ince different instructions can be executed on distinct functional units of the Graphics domain (single precision, double

recision, special function, load/stores, etc.), the utilization of the Graphics domain resources will be mostly related with

he component with the highest utilization of that domain. Hence, depending on the utilization ratio of the Memory and

raphics resources( DRAMUtil . 
GraphicsUtil . 

), different classes of applications can be considered. By taking into consideration which of the

wo GPU domains is more dominant, such classes can be grouped in three main levels (see also Fig. 4 ): 

1. Applications that are memory-bound at the highest allowed memory frequency level ( F Mem _ high ), and therefore at all other

lower memory frequency levels if they exist (see Class TA in Fig. 4 ). These applications have a very high DRAM utilization

and their execution time is highly affected by changes in the memory frequency. Additionally, as a consequence of the

compute instructions being often stalled due to memory dependencies, they are also characterized by a low utilization

of the major graphics components (shared memory, floating-point units, etc.). 

2. Applications that are compute-bound at F Mem _ low 

, and therefore at all other higher memory frequency levels. The execu-

tion of these applications is not significantly affected by changes in the memory frequency, but it is highly dependent on
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Table 1 

Power consumption for matrixMul- 

CUBLAS kernels with different iterations. 

15 iters 1500 iters 

(3505, 975) 226 W 239 W 

(810, 595) 116 W 120 W 
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the core operating frequency. Such applications (see Class TC in Fig. 4 ) are characterized by a high graphics utilization

and a low memory utilization. 

3. Applications that scale with both memory and core frequencies (see Class TB in Fig. 4 ). If multiple memory frequency

levels are available, it is possible to subdivide this class into multiple classes, which will include the applications that

are compute-bound at F Mem _ high and change to memory-bound at the lower memory frequency levels. By considering one

distinct class for each additional memory frequency level, it will allow the distinction between applications that become

memory-bound at different memory frequency levels, resulting in better accuracy in the characterization. 

Section 3 will detail further how the boundaries between the classes can be obtained, with an example of the utilization

f the proposed approach on a real GPU device. 

.2. DVFS impact on the applications power consumption 

As it was previously seen, the execution of instructions on different components of the GPU is often partially or fully

verlapped. However, the power consumption of the several different components cannot be hidden or masqueraded, and

ust be always combined together in order to obtain the total power consumption of the GPU. 

When considering the instantaneous power consumption (P Total ) [18] of a CMOS circuit, one must take into account

oth its dynamic (P Dynamic ) and static (P Static ) fractions, as P Total = P Dynamic + P Static . Additionally, when considering both

oltage and frequency scaling, these two fractions of the total power consumption have different scaling behaviours, as

 Dynamic ∝ V 

2 F [32] and P Static ∝ V ̂  I leak [33] , where F denotes the operating frequency, V the chip supply voltage and 

ˆ I leak is the

ormalized leakage current for a single transistor, dependent on the threshold voltage ( V th ) and on the temperature. These

ormulations relate to the instantaneous power consumption of each separate device component. In a device with more than

 single frequency domain ( e.g. GPU) the total power consumption can be expressed as: 

P GPU = P Graphics ( F core , V core ) + P Memory ( F mem 

, V mem 

) , (1)

here P Graphics and P Memory represent the power consumption of the graphics and memory domains, respectively. In fact,

ach of these parts can be further decomposed into the several parcels of the power that is consumed by each of the in-

ernal components of that domain (processing cores, LD/ST units, shared memories, L2 cache, etc). However, since device

anufacturers do not fully disclose the design of each architecture, several of the parameters that are required for an accu-

ate power modelling are usually unknown. Additionally, it is not easy to measure or infer the instantaneous static/dynamic

ower parcels in current GPU devices. In fact, most modern GPUs only provide one single counter to report the instanta-

eous power consumption of the whole GPU board, combining information from multiple contributing domains (Memory

nd Graphics) in an undisclosed manner, making it a very hard task to distinguish all the separate effects contributing to

hat value. Accordingly, this work will not focus on characterizing each individual parcel of the power consumption of a

iven application, but rather the average total, at the device level, during the whole application execution. 

Finally, to analyze DVFS impact, this work focuses on the relative difference in the GPU power consumption between

he different frequency levels. The proposed methodology does not take into account the influence of temperature in the

PU power consumption. While taking it into consideration could potentially be beneficial when creating a power model of

he architecture (since the value of leakage current ˆ I leak quadratically increases with temperature [18] ), it is less significant

hen classifying the impact of DVFS on the power consumption ( i.e. , the relative change in power consumption). 

As an example, Fig. 5 presents the power consumption and temperature of the GTX Titan X GPU during the execution of

wo variations of the same application, on two frequency configurations: ( F Mem 

= 3505 MHz, F Core = 975 MHz) and ( F Mem 

=
10 MHz, F Core = 595 MHz). The two applications execute the same matrixMulCUBLAS kernel, repeated a different number

f times (15 and 1500), thus leading to different GPU active times. It can be seen that, as expected, the application running

or a longer period of time causes the GPU temperature to increase, which in turn increases the GPU power consumption.

owever, although there is a power consumption increase due to temperature variations (up to 13W at the highest frequency

etting, as shown in Table 1 ), when looking at the relative changes in the power consumption, the impact of the temperature

s almost non-existent (see Fig. 6 ), which means the two applications can be classified similarly. 

Regarding the effects of DVFS, Fig. 7 presents an example of the overlap (in time) of the memory and computational

nstructions of two ideal applications, and how the total execution time of each application is affected by core frequency

caling (in both examples, the memory voltage and frequency levels are fixed to a constant value). The application with

igher DRAM utilization (see Fig. 7 a) has its execution mostly dominated by the memory accesses, specifically to DRAM.

ince in this example only the F Core is changing (decreasing), the instantaneous power consumption remains constant for
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Fig. 5. GPU power consumption and temperature obtained during the execution of the matrixMulCUBLAS kernel with square matrices of size 8192 with two 

different durations (with 15 and 1500 repetitions of the kernel, i.e. with 6 and 330 seconds, respectively). Here are presented the results for two distinct 

GPU configurations on the Titan X GPU: ( F Mem = 3505 MHz, F Core = 975 MHz) and ( F Mem = 810 MHz, F Core = 595 MHz). 

Fig. 6. Power consumption for matrixMulCUBLAS kernels with different number of iterations, on NVIDIA’s GTX Titan X. 
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ll components whose utilization is not changed by the core frequency downscaling, which includes both the static and

ynamic power consumption of the components in the memory domain. Furthermore, since the total execution time ( T ) does

ot change, the average power consumption of these components will also remain constant. On the contrary, the graphics

omain will be highly affected by the core frequency downscaling, resulting in an increase of the execution time of the

ompute instructions ( T 2 ). In fact, by taking into account the previous considerations relative to the instantaneous power,

t can be expected that the power consumption will downscale on the components utilized by the compute instructions.

y combining all the effects (F Core and V Core downscaling), the average power consumption is expected to decrease with

 Core V Core 
2 . 

On the other hand, the application with high SM utilization (see Fig. 7 b) presents an increase of its total execution time

from T to T ′ ) when the core frequency is decreased. Similarly to the previous case, the instantaneous power consumption of
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Fig. 7. Expected impact of DVFS on the execution time of two ideal applications (in both cases F Mem is constant). 

Fig. 8. DVFS-aware power classes depending on the DRAM and Graphics utilization. The example power consumption curves were obtained on NVIDIA’s 

GTX Titan X, for the Blackscholes, Lud, spmv and GEMM benchmarks. 
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he SM components will downscale with F Core V Core 
2 . However, since the performance bottleneck is now associated with the

ompute instructions, the observed increase of the total execution time will increase their contribution to the total power

onsumption of the device. In other words, the contribution of the memory components to the power consumption of the

hole application will decrease, since the same number of memory operations is being executed, but scattered for a longer

eriod of time, as the memory components now spend more time idling than before ( T 4 decreases and T 5 increases). This

ill result in a greater decrease of the average power consumption than the previous F Core V Core 
2 . 

A similar approach could be applied to analyse the impact of memory frequency scaling in the average power con-

umption of different applications, also resulting in two distinct behaviours depending on how the GPU resources are being

tilized. Accordingly, depending on the combined resource utilization of the two GPU domains, it is possible to identify the

lasses presented in Fig. 8 . The definition of each proposed class, depending on how their power consumption changes with

he frequency of the cores and memory, is: 

1. Class PA: higher sensibility to memory frequency changes, lower sensibility to core frequency changes; 

2. Class PB: higher sensibility to memory frequency changes, higher sensibility to core frequency changes; 
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Fig. 9. Overview of the proposed procedure to classify the DVFS impact on the performance/power consumption of GPU applications. 
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3. Class PC: lower sensibility to memory frequency changes, lower sensibility to core frequency changes; 

4. Class PD: lower sensibility to memory frequency changes, higher sensibility to core frequency changes. 

Unlike the performance characterization, the number of identified classes in this characterization does not need to scale

ith the number of memory frequency levels available in the GPU device. The only special case is when there is only

ne memory frequency available (rare case in modern GPU devices), in which there is no need to characterize applications

egarding the impact of memory frequency downscaling on their executions, therefore only being possible to identify two

lasses (Classes PA and PB ). 

By taking into consideration the set of observations laid out in this section, the following section applies the proposed

eneric performance and power classification to a real GPU device, and derives a methodology to obtain the boundaries of

he performance and power classes ( Section 3.2 ). 

. Application characterization procedure 

The description of the conceived methodology to obtain the performance and power-aware characterizations of any given

pplication will be conducted by using a representative example using a NVIDIA GTX Titan X GPU. The selection of this par-

icular GPU device to test the impact of DVFS on the applications execution arises not only from its greater offer of different

ore frequency levels (43 non-idle levels) and memory (DRAM) frequency levels (3 non-idle levels), but also because it

rovides a convenient interface to measure the power consumption at runtime. 

Fig. 9 presents an overview of the proposed procedure to classify the DVFS impact on the performance (or power-

onsumption) of GPU applications. To train the classifiers a collection of synthetic benchmarks is used, with their execution

ime and power consumption measured at all allowed operating frequency levels. In order to characterize how each appli-

ation is stressing the GPU components, a group of hardware performance events is also measured at a single (reference)

perating frequency. Based on the gathered metrics, an hierarchical clustering algorithm is used to define the class of each

ynthetic benchmark, used later in the supervised training of the neural-network classifier. Once the classifier is trained, it

llows the characterization of that given architecture and how DVFS impacts the execution of different types of applications.

he following sections further detail each of the steps of the procedure presented in Fig. 9 . 

.1. Synthetic benchmarking and profiling 

In order to classify any given application it is first necessary to characterize the adopted GPU device, more specifi-

ally how DVFS impacts the execution time and power consumption of different types of applications. This is usually done

hrough the execution and profiling of a controlled set of synthetic benchmarks designed for this specific purpose. Accord-

ngly, and since the DVFS impact on the application execution is related to how the resources of the Graphics and Memory

omains are utilized, different benchmark applications need to be created, with varying levels of utilization of the two GPU

omains. 

Fig. 10 presents the basic structure of one of the developed synthetic GPU kernels. By executing multiple kernels with

istinct values of the NUM _ ITERS parameter, different combinations with different ratios between the number of memory

ccesses and the amount of computations can be tested. Each synthetic benchmark was executed at all supported frequency

evels, during which the execution time and power consumption were accurately measured, in order to evaluate how each

pplication is affected by frequency scaling. The utilization of the several GPU resources by the different kernels was also

uantified, by measuring several hardware performance events during the execution of each kernel. However, unlike the

xecution time and power consumption, these values are measured at a single frequency level. Since the highest operating
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Fig. 10. Example PTX code from one of the developed synthetic kernels. 

Table 2 

Metrics used in the DVFS-aware performance and power classification methodologies. 

Metric name Description Used in 

Performance Power 

DRAM Transactions Number of reads and writes to DRAM memory YES YES 

L2 Transactions Number of reads and writes to L2 cache YES YES 

Shared Transactions Number of reads and writes to shared-memory YES YES 

FU Single Utilization † level of the single-precision function units YES YES 

FU Double Utilization † level of the double-precision function units YES YES 

FU Special Utilization † level of the special function units YES YES 

FU Texture Utilization † level of the texture function units NO YES 

Registers Number of registers used per thread NO YES 

Occupancy Ratio of active warps on an SM with the maximum NO YES 

number supported by the SM 

† Utilization: Ratio of the experimentally achieved throughput of each unit with respect to the theoretical 

peak. 
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requency level is the one that usually provides the best-performance, the performance events were measured at this level

on GTX Titan X: F Mem 

= 3505 MHz and F Core = 1164 MHz). 

The impact of DVFS in the performance and power-consumption of applications is in both cases dependent on how

he GPU components are being utilized. However, the components most relevant and how to take them into account may

iffer between the two classifications. While in the performance classification the interesting metrics refer to the utilization

f the most predominant components, i.e. the ones with higher probability to be limiting the performance, in the power

lassification the considered metrics are the aggregate utilization of all components, since the device power consumption is

he sum of the power consumption of each individual component. Additionally, the components with the greatest influence

n the performance may also differ from those with the highest influence on the power consumption (see [19,20,34] ), i.e.

he performance metrics that will be utilized for the two classification methodologies may be different. 

The set of performance counters that were used to quantify the utilization of the two GPU domains in the NVIDIA GTX

itan X GPU are presented in Table 2 . The number of registers used per thread can be obtained at compile time by using the

vcc compiler [35] , while the remaining performance counters can be measured using the nvidia profiler ( nvprof ) [36] during

he execution of the kernels. The DRAM bandwidth is computed as follows: 

DRAM Bandwidth = 

DRAM Transactions × Transaction _ width 

Execution _ time 
, (2)

here DRAM Transactions and Execution _ time are measured by the profiler, while Transaction _ width is a characteristic of the

PU microarchitecture. The shared-memory and L2 bandwidths are computed similarly. The quantification of the DRAM and

raphic domains utilization that are used in the proposed DVFS-aware performance classification are computed as follows:

DRAM Util = 

DRAM Bandwidth 

DRAM Peak _ Bandwidth 

(3)

Graphics Peak _ Util = max 
All _ components 

{ δi · Utilization i } (4)
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Fig. 11. Performance and Power characterization of synthetic GPU benchmarks on NVIDIA’s GTX TITAN X. 
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For the DVFS-aware power classification, the Graphics domain utilization is computed as follows: 

Graphics Agg _ Util = 

1 ∑ 

i ω i 

All _ components ∑ 

i 

ω i · Utilization i (5) 

The values of the coefficients δi and ω i , in Eqs. (4) and (5) , are architecture specific and correspond to the weight of

he component i to the overall performance (or power consumption) of the Graphics domain. The determination of these

arameters can be done through proper modelling of the architecture, as previously suggested in [34] (valid for GPUs from

he Fermi microarchitecture). Nevertheless, for the sake of simplification, the rest of this manuscript will assume δi = ω i = 1 .

.2. Defining the class boundaries 

After the execution and profiling of all the synthetic kernels, it is possible to group the benchmarks according to the

VFS impact on their execution. In order to separate them into clusters with similar characteristics, a clustering approach is

sed. Although multiple algorithms can be used in this context, techniques leading to spherical clusters were avoided ( e.g. ,

-Means). The hierarchical clustering technique was selected, since it directly specifies a hierarchy of groups and therefore

implifies the selection of the optimal number of clusters. 

The set of features used by this clustering procedure are the resulting changes in the execution time (or power con-

umption), caused by memory and core frequency scaling, i.e. the value of the increase (or decrease) of the execution time

or power consumption) in each frequency level, relative to the one achieved at the reference frequency configuration (on

TX Titan X: F Mem 

= 3505 MHz and F Core = 1164 MHz). During this hierarchical clustering procedure, the euclidean distance

 distance metric ) is used to quantify the similarity between applications and the Ward’s criteria ( linkage criteria ) is used for

luster merging, since it minimizes the within-cluster variance. The considered cut in the tree was performed in order to

btain the desired number of classes. As previously stated, in order to accurately identify the benchmarks that transition

rom compute-bound to memory-bound at each memory frequency level, the total number of performance classes is related

ith the number of memory frequencies available in the GPU device. On this particular GPU device, the performance classi-

cation will consider four classes of applications, namely two extreme classes TA and TC (hereafter referred to as T1 and T4 )

nd two middle classes T2 and T3 , corresponding to two subdivisions of TB in Fig. 4 ), associated with the two lower mem-

ry operating frequencies. For the power classification the suggested set of classes (4) will be considered ( P1 - P4 ). Fig. 11 a

resents the result of the hierarchical clustering using the power consumption features. 

Finally, for each classification methodology (performance or power), after all the synthetic benchmarks have been as-

igned to one of the four clusters, a classifier must be trained to allow the classification of new (unseen) applications. Al-

hough multiple algorithms exist in the literature, neural networks (NN) are herein adopted due to their recognized capacity

o model complex non-linear problems. In order to validate the classifier the set of synthetic benchmarks is randomly di-

ided into two subsets: training-set and validation set. Hence, a neural networks topology with two fully-connected hidden

ayers was devised, where the sigmoid function is used as the activation function on all neurons. The performance network

as layer sizes 40 and 10, while the power network has layer sizes 20 and 40. The input nodes are then fed with the values

f the Graphics and Memory resource utilizations, with the neural network being trained to identify the classes assigned

uring the hierarchical clustering stage. 

Figs. 11 b and c depict the set of synthetic benchmarks used for the performance and power classifications, respectively,

s well as the obtained classes and their respective boundaries. It can be seen that, for the performance classification the

VFS impact on the performance is solely dependent on the ratio DRAMUtil . 
GraphicsUtil . 

, resulting in linear boundaries, while for the

ower classification this relationship is not linear. 

It is important to stress that given the small sizes of the neural-networks, the time required to train is relatively small. In

act, the biggest effort in the training phase of our classification methods is in the execution of all the synthetic benchmarks
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n the available frequency configurations. Nonetheless, this is a step that is performed once (offline) and therefore will

ot have any impact in the application execution time. During application execution, it is only necessary to run the neural

etwork for inference, corresponding, on average, to less than a second on an Intel i7 4500U processor. 

.3. Extension to other architectures 

While the proposed methodology mainly considers a NVIDIA GPU from the Maxwell microarchitecture, it is possible

o make some considerations regarding its extension to other architectures. The proposed approach assumes that the GPU

evice has two independent frequency domains, which is the case for all recent GPU devices (both NVIDIA and AMD).

ince the execution of the synthetic benchmarks tries to cover a considerable range of possible combinations of resource

tilization from the two GPU domains, it is possible to adapt the executed set to the considered GPU device. Additionally,

s it was previously mentioned, the suggested number of performance classes depends on the available number of memory

requency levels on the considered device (see Section 2.1 ). On the other hand, the number of suggested power classes,

or any GPU with more than a single memory frequency levels is four (see Section 2.2 ). However, if future GPUs continue

ncreasing the number of allowed memory and core frequency levels, it is expectable that the number of classes should be

ncreased as well. When considering a different number of classes than those considered in this section, convenient changes

hould also be applied to the hierarchical clustering stage, specifically, in the cut-off point of the dendrogram tree, in order

o obtain the desired number of clusters. 

Accordingly, given the generality of the proposed methodologies, it is clear that they can be straightforwardly extended

o other GPUs. In fact, given the current evolution trend of NVIDIA GPUs, it is expected that the proposed approach will

nly keep getting more interesting, since every new generation has been introducing larger ranges of allowed frequencies

or both the core and memory domains. 

. Validation of the classification algorithms 

To evaluate the proposed methodology, several CUDA-based application benchmarks from the Parboil [22] , Rodinia [23] ,

HOC [24] , Polybench [25] and CUDA SDK [26] suites (see Table 3 ) were executed on two GPU devices from different NVIDIA

icroarchitectures: GTX Titan X (Maxwell microarchitecture) and Titan Xp (Pascal microarchitecture). The Maxwell GPU

Pascal GPU) provides a user-level interface to scale the core operating frequency between different levels, within the 595-

164MHz (582-1911MHz) range, and the DRAM frequency in 3 (2) non-idle levels: 810, 3300 and 3505 MHz (5705 and

705 MHz). Additionally, at the lowest memory frequency, i.e. 810 MHz, the GTX Titan X GPU allows to further downscale

he core frequency into 21 additional levels, down to 135 MHz. In both GPUs, the default frequency setup corresponds to

 dynamically managed frequency state, denoted as Auto-boost [37] , used to boost the applications performance, by in-

reasing GPU core and memory frequencies when sufficient power and thermal headroom is available. Notwithstanding, to

pply the proposed performance and power classification model, it is herein assumed that the GPU operates at the highest

ser-controlled core and memory frequency levels (i.e., F Mem 

= 3505 MHz and F Core = 1164 MHz for the Maxwell GPU and

 Mem 

= 5705 MHz and F Core = 1911 MHz for the Pascal GPU). Hence, each benchmark is only executed at such reference

requency level, where the performance counters values were measured using the NVIDIA Profiler [36] . Accordingly, based

n: (i) the gathered values of the performance counters; (ii) the proposed classification scheme (see Fig. 9 ); and (iii) the

lassifiers trained using the synthetic benchmarks (see Figs. 11 b and c), each application was subsequently classified in one

erformance class and one power class. 

Finally, to validate and evaluate the attained classifications, each application was also executed at all user-controlled

emory and core frequency levels, including with the activation of the Auto-boost feature. At each frequency configuration,

he execution time of applications was accurately measured using the NVIDIA Profiler [36] and the GPU power consumption

as obtained using the NVML [38] library, which is a C-based API that allows amongst other things, monitoring the state

f the GPU. In some NVIDIA GPU devices, as is the case for both the considered devices, it is possible to use NVML to

et the current power draw of the device. Through experimental testing, it was determined that the refresh rate of the

alues obtained using NVML is about 100ms. Accordingly, a GPU power measuring tool was implemented, which samples

he GPU power draw every 25 ms. The kernels from the applications with smaller execution times were repeated until each

ernel was executed for at least 1s, in order to increase the accuracy of the measured samples. The power consumption of

ach kernel was computed as the average of all gathered samples. For applications with multiple kernels, the total power

onsumption was obtained by averaging the consumption of each kernel weighted with the relative execution time of each

ernel. In order to guarantee the integrity of the measurements taken, all applications (both synthetic and real) are executed

0 times. The values presented correspond to the average results over all the executed runs. 

Sections 4.1 and 4.2 present the results of the proposed performance and power classification methodologies, respectively,

hile Section 4.3 presents the results of combining the two approaches in order to obtain a DVFS-aware energy classification

f GPU applications. 
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Table 3 

Summary of the considered application benchmarks. 

Application Suite Input 

Blackscholes CUDA SDK Default 

conjugateGradientUM CUDA SDK N = 1048577600 

matrixMulCUBLAS CUDA SDK A(6720,5120)xB(5120,3520) 

simpleCUFFT CUDA SDK signal_size = 50 0 0 0 0 0 0 

CUTCP Parboil Large 

Histogram Parboil Large 

LBM Parboil Long 

2MM Polybench Default 

3DCONV Polybench Default 

3MM Polybench Default 

CORR Polybench Default 

COVAR Polybench Default 

FDTD-2D Polybench Default 

GEMM Polybench 2048 ×2048 

GRAMSCHM Polybench Default 

SYRK Polybench Default 

Backprop Rodinia 655360 

CFD Rodinia missile.domn.0.2M 

Gaussian Rodinia 2048 ×2048 

Hotspot Rodinia 1024, 2, 10,0 0 0 

K-Means Rodinia 30 0 0 0 0 0_34f.txt 

LUD Rodinia 8192 ×8192 

ParticleFilter_Float Rodinia -x 256 -y 256 -z 80 -np 50,0 0 0 

ParticleFilter_Naive Rodinia -x 256 -y 256 -z 80 -np 50,0 0 0 

Srad_V1 Rodinia 4096 ×4096 

Srad_V2 Rodinia 4096 ×4096 

Streamcluster Rodinia Default 

BFS SHOC -passes 100 -size 4 

FFT SHOC -passes 100 -size 4 

MD5Hash SHOC -passes 5 -size 4 

Reduction SHOC -iter 10 0 0 -passes 1 -size 4 

S3D SHOC -passes 100 -size 4 

Sort SHOC -passes 100 -size 4 

SPMV SHOC -iter 400 -passes 1 -size 2 

Stencil2d SHOC -passes 1 -num-iters 100 -size 4 

Fig. 12. DVFS-aware performance classification of the tested applications depending on the utilization of the DRAM and Graphics domains, on GTX Titan 

X (Maxwell) with F Mem = 3505 MHz and F Core = 1164 MHz. 

4

 

c  

p  

d  

q  
.1. Performance classification 

Fig. 12 presents the computed values for the DRAM Util and Graphics Peak _ Util for all tested applications and how they are

lassified in the GTX Titan X GPU device according to the previously trained classifier (see Section 3 ). Additionally, Fig. 13

resents how the execution time of the applications of each resulting class is affected by the core and memory frequency

ownscaling, with the presented values being normalized to the execution time of each application at the reference fre-

uency state. To simplify the analysis of the results, a dashed line was added to the graphs in order to show the expected
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Fig. 13. DVFS-Aware Performance classes on GTX Titan X (Maxwell), with F Ref = 1164 MHz. The execution times are normalized to the value at F Mem = 3505 

MHz and F Core = 1164 MHz. 
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xecution time variation for a perfect compute-bound application, where T ∝ 

1 
F Core 

. Finally, a set of markers (1–5) was were

lso added to the figure, to highlight the main takeaways from the results. 

By analysing the results presented in these graphs, it can be concluded that although this device has three memory fre-

uency levels, they are not uniformly separated. In fact, the two highest memory frequency levels (3505 and 3300 MHz) are

o close to each other (only 6% different) that the performance results of all applications did not significantly change be-
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Fig. 14. DVFS-aware performance classification of the tested applications depending on the utilization of the DRAM and Graphics domains, on GTX Titan 

X (Maxwell) with F Mem = 3505 MHz and F Core = 1164 MHz. 
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ween these two levels. Notwithstanding, as there are more significant differences in the power domain, these two memory

evels will be exploited in Section 5 to attain energy savings. 

On the other hand, when analysing the classification results, a set of important observations are attained, which clearly

ustifies the partitions of the applications in these four classes. In particular, by observing marker (1) , it can be seen that

hen F Mem 

= 3505 MHz, for the highest core frequencies (above 1013 MHz, i.e. F Ref / F Core < 1.15), the applications in class T1

ave a variation of their execution time that is lower than the core frequency variation. Hence, at this memory frequency,

hese applications are considered memory-bound . However, at F Core = 1013 MHz ( F Re f /F Core = 1 . 15 ), these applications start

aving their execution time scaling at the same rate as the core frequency (see Fig. 3 a). When the memory frequency is

caled down to 810 MHz (see (2) in Fig. 13 ), there is a significant drop-off in the performance of these applications, which is

xpected since they have very high DRAM utilization (see T1 in Fig. 12 ). Also, as expected at this lowest memory frequency,

he range of core frequencies where these applications have negligible performance drop-off is increased, since it means that

t a lowest memory frequency the core frequency needs to be further decreased for the Graphics components to become

he performance bottleneck. 

Class T2 composes the applications that are compute-bound at F Mem 

= 3505 MHz (see (3a) in Fig. 13 ), since their execu-

ion time always scales with F Core ). However, these applications are memory-bound at F Mem 

= 810 MHz (see (3b) in Fig. 13 ),

ince for high core frequencies the execution time does not scale with F Core . Additionally, the execution time of these appli-

ations also significantly increases when the memory frequency is decreased to the lowest level. However, in a lesser extent

han the applications from cluster T1 (compare (2) and (3b) in Fig. 13 ), which is consistent with their smaller utilization of

he DRAM resources (see T2 Fig. 12 ). 

Furthermore, Class T3 includes the applications that have their execution time scaling with both core and memory fre-

uencies. However, while the same could be potentially said about the applications in the T2 class, the applications in T3

lways have their execution times scale with the core frequency (even at F Mem 

= 810 ), which is not the case for the ap-

lications in T2 (compare (4a) and (4b) in Fig. 13 ). The behaviour of many of the T3 applications is a result of their low

ccupancy of the GPU resources, resulting in a sequential execution of many instructions. 

Finally, class T4 comprises all the applications that can be considered compute-bound at all memory frequency levels (see

he markers (5) in Fig. 13 ), as their execution time always scales inversely with the core frequency and never scales with the

emory frequency (less than 1% performance change when the memory frequency is changed from 3505 MHz to 810 MHz).

Again, it is important to stress that this methodology allows the classification of GPU applications into classes that char-

cterize their performance at all frequency levels, by using the information obtained from their execution at a single core

requency in a real hardware device. 

.2. Power-aware classification 

Fig. 14 presents the utilization level of several components of the Graphics and Memory domains for the tested applica-

ions and how they are classified according to the proposed power-aware classifier (for the Titan X GPU device). The impact

f DVFS in the power consumption of the applications of each class is presented in Fig. 15 . As it was the case for the per-

ormance characterization, all values are normalized to the power consumption at the reference frequencies. The dashed

ine shows the core frequency variation at each level, i.e. applications that follow the line have power consumption scaling
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Fig. 15. DVFS-Aware Power classification on GTX Titan X (Maxwell), with F Ref = 1164 MHz. The power consumptions are normalized to the value at F Mem = 

3505 MHz and F Core = 1164 MHz. 
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inearly with F Core , while applications with a power consumption variation below this line have super-linear scalability with

 Core . 

Each of the resulting classes displays different degrees of sensitivity to variations in the core and memory frequencies.

n particular, when comparing the applications relative power consumption and when F Mem 

decreases from 3505 MHz to

10 MHz (at F Core = F Ref ) - compare the markers (1) in Fig. 15 - it can be perceived that applications from classes P1 and

2 have an higher degree of sensitivity to memory frequency changes, since they achieve power consumptions in the range

rom 70% to 50% of the reference consumption (corresponding to power-savings between 30% and 50%). On the other hand,
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Fig. 16. DVFS-Aware energy classification on GTX Titan X (Maxwell). 
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pplications from classes P3 and P4 display a lower degree of sensitivity to memory frequency changes, since they only

chieve power-savings between 10% and 30%, when the memory frequency is decreased between the same values. 

When analysing the applications power consumption sensitivity to core frequency variations, it can be concluded that,

pplications from classes P1 and P3 display a lower degree of sensitivity than applications from classes P2 and P4 . In

articular, by comparing the applications power consumption variation at F Mem 

= 3505 MHz with the dashed line (see the

arkers (2) in Fig. 15 ), it can be observed that the applications from classes P1 and P3 present a linear or sub-linear scaling

ith the dashed-line in the range F Ref / F Core ∈ [1; 1.25]. On the other hand, for the same core frequency range, applications

rom classes P2 and P4 show a super-linear power consumption drop-off. 

The exception to such trend is presented in Class P2 , for the matrixMulCUBLAS benchmark, which does not fit the profile

f the remaining benchmarks (see the marker (3) in Fig. 15 ). Upon further inspection, it was observed that, during the

xecution of this kernel at the higher frequency levels, the power consumption of the GPU reaches very high levels (close

o the device power cap of 275 W), thus suggesting the effect is due to internal GPU power control mechanisms. Since the

alues presented in Fig. 15 are normalized to the maximum power consumption, which for the matrixMulCUBLAS benchmark

s limited by the device capabilities, the results will be skewed. 

.3. Energy-aware classification 

Since, on the GTX Titan X GPU, the proposed methodologies give rise to four performance classes and four power clas-

ifications for this specific GPU device, it can be defined a set of 16 energy classes. However, it is observed that the set of

ested benchmarks are classified into only 10 out of those 16 classes. Since both performance- and power-aware classifica-

ions are considering the resource utilization of the Graphics and Memory domains, even though they use different ways to

ombine the utilizations of the several components, many of the combinations between performance and power classes are

ery hard to achieve. The results of the obtained 10 energy-aware classes are presented in Fig. 16 , where it is presented the

nergy-savings of all applications for all available frequency levels. The energy-saving ( R ) at frequency state ( F Core , F Mem 

) is
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Fig. 17. DVFS-Aware energy classification on Titan Xp (Pascal). 
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omputed in the following way: 

R (F Core , F Mem 

) = 

E re f − E(F Core , F Mem 

) 

E re f 

, (6)

here E ref is the energy consumption at the reference frequencies ( F Mem 

= 3505 MHz , F Core = 1164 MHz). 

Fig. 17 presents the obtained energy-aware classes of applications on the Titan Xp GPU (Pascal microarchitecture). Since

n this device there are only two memory frequency levels, the proposed classification methodology will result in three

erformance classes. Combining these classes with the four power classes will ultimately result in 12 energy classes, some

f which will again be unoccupied. The larger range of operating core frequencies available in this GPU device (compared

ith Maxwell GPU), results in a larger range of core frequencies where the applications with very high DRAM utilization

Class E1 ) decrease power consumption without losing performance: from 1911 MHz down to 1404 MHz ( vs. 1164-1013 MHz

n Maxwell). On the other hand, the lack of a low memory frequency level results in less interesting energy-savings oppor-

unities for applications with high graphics utilization and low DRAM utilization (Class E12 ). 

As it can be seen, by combining the results of the two proposed classification methodologies, a set of classes that suc-

essfully group together applications with similar energy consumption curves can be obtained. The result of this classifica-

ion can be used in many different ways to maximize the energy-efficiency of computational systems, some of which are

roposed in Section 5 . 

. Application-aware DVFS 

By providing a systematic mechanism to characterize the impact of DVFS on the energy-consumption of any GPU appli-

ation, the proposed DVFS-aware classification methodologies create many interesting opportunities to improve the energy-

fficiency of HPC systems. In fact, since the impact of DVFS on the energy consumption combines the performance and

ower classifications of the application, by considering the average trend among all applications in the class, it is possible

o predict how the energy consumption of each application will change with the frequency scaling of each GPU domain.

ections 5.1 and 5.2 address two different ways to use these classification methodologies, namely to choose the best op-

rating frequencies (core and memory), in order to solely maximize energy-savings or to try to maximize energy-savings

ithout decreasing the performance more than a defined threshold. Section 5.3 addresses another possible usage of these

lassification methodologies, that combines the predicted frequency ranges with the energy-savings, in order to select the

ost convenient operating frequency for a scenario where multiple distinct applications are simultaneously running on the

PU device. 

.1. Optimal frequency for maximizing energy-savings 

Just as the impact of DVFS in the energy consumption of applications within the same class is very similar between

hem, it can also be observed that, all applications of the same class have the same (or very similar) optimal operating
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Fig. 18. Achieved energy-savings for the selected and optimal frequency levels, on GTX Titan X (Maxwell). 
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requencies (memory and core frequencies that minimize the energy consumption on that device). Hence, by considering

he average of the optimal frequencies from the synthetic benchmarks of each class (referred in this section as selected

requencies), it is possible to attain significant energy-savings. Accordingly, Fig. 18 A depicts the optimal core and memory

requencies for each application executed on GTX Titan X, as well as the selected per-class core and memory frequencies. 

As expected, applications with very high core utilizations (classes E10, E11, E12, E15 and E16 ) are able to decrease the

emory frequency to the minimum value, while applications with high DRAM utilization (classes E1 and E2 ) require the

emory frequency to be set to the highest value. 

On the other hand, it is interesting to note that contrary to what one might expect, the applications from the class E1

High DRAM / Low Graphics) have higher optimal core frequencies than the applications from class E16 (Low DRAM / High

raphics). The former group of applications are able to downscale the core frequency (with F Mem 

= 3505 MHz) in order

o achieve a lower energy consumption, while the applications from class E16 are able to decrease the core frequencies

ven further (with F Mem 

= 810 MHz), which is a result of the interaction between the two power components from Eq. 1 .

owever, since these applications (class E16 ) are very compute-intensive they will have an high performance drop-off when

unning at the middle core frequency levels, which will be further analysed in Section 5.2 . 
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Fig. 19. Achieved energy-savings for the selected and optimal frequency levels, when the maximum allowed performance drop-off is of 10%, on GTX Titan 

X (Maxwell). 
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Fig. 18 B presents the energy-savings obtained with the selected frequency levels in relation to: (i) the reference fre-

uency; (ii) to the NVIDIA Auto-boost; and (iii) to the worst case, i.e. the highest energy-consumption of each application.

s it can be seen, all applications can achieve lower energy consumptions than the ones obtained using the reference fre-

uency (frequency state with highest performance), and only three applications would have lower energy consumption using

VIDIA’s Auto-Boost. On average, using the selected pair of frequencies would wield 16% energy-savings compared with the

eference, and 13% in relation to the Auto-Boost. Additionally, some applications (classes E12, E15 and E16 ) can even achieve

reater energy-savings, prompted by the fact that they can decrease the memory frequency to 23% of its reference value,

aking them achieve close to 36% energy-savings. 

Although the proposed procedure to choose the selected frequencies does not guarantee optimal energy-savings, i.e. the

elected frequency is not always equal to the optimal one, from the results presented in Fig. 18 C, it can be seen that the

ifference between optimal configuration (horizontal line at 100%, representing the lowest energy consumption) and the

ne obtained using the selected frequencies is very small, with an average of 0.74% difference between the selected and the

ptimal energy consumptions. 

.2. Optimal frequency for energy v.s. performance trade-off

Another interesting situation to consider is the maximization of the applications energy-efficiency without sacrificing

heir performance. Considering a situation where at most a 10% drop-off in performance is allowed, and comparing it to

he performance of the reference frequency state, the results presented in Fig. 19 can be obtained, for the GTX Titan X GPU.

gain, by choosing the newly selected frequencies, all applications are able to achieve lower energy consumptions than the

ne at the reference state. Additionally, all obtained energy-savings using the selected frequency levels are at most 3% distant

rom the optimal energy-savings, with average energy-savings of 9% versus the reference and 7% versus the Auto-boost setup.

It is interesting to note that the applications with the greater gains are those with either a very high DRAM utilization

nd low Graphics utilization (class E1 ), or the applications in the other extreme (classes E15 and E16 ). As it was previously

een, this happens mainly in the first type of applications (class E1 ), since at the highest memory frequency it is possible

o downscale the core frequency while achieving very negligible performance drop-off. These types of applications can save

p to 16% with less than 10% increase in their execution time. On the other hand, applications from classes E15 and E16

re able to run at the lowest memory frequency with negligible performance drop-off. For example, if just the memory
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Table 4 

Summary of energy-savings opportunities enabled by the proposed classification methodologies on GTX Titan X (Maxwell). 

The presented values correspond to the average results of all applications in that class on the selected frequency configuration 

comparing with the reference frequency configuration ( F Mem = 3505 MHz and F Core = 1164 MHz). 

GTX Titan X Energy classes E1 E2 E5 E6 E7 E10 E11 E12 E15 E16 ALL 

Section 5.1 Energy-savings 11% 10% 6% 10% 6% 27% 18% 28% 31% 32% 16% 

Performance drop-off 4% 6% 11% 16% 13% 38% 66% 59% 38% 35% 31% 

Section 5.2 Energy-savings 11% 10% 5% 7% 7% 0% 3% 26% 25% 25% 9% 

Performance drop-off 3% 6% 8% 8% 8% 0% 8% 9% 9% 10% 7% 

Table 5 

Summary of energy-savings opportunities enabled by the proposed classification 

methodologies on Titan Xp (Pascal). Reference frequency configuration: F Mem = 5705 

MHz and F Core = 1911 MHz. 

Titan Xp Energy classes E1 E6 E7 E8 E12 ALL 

Section 5.1 Energy-savings 22% 20% 9% 17% 23% 20% 

Performance drop-off 0% 25% 18% 28% 27% 18% 

Section 5.2 Energy-savings 22% 16% 4% 13% 18% 16% 

Performance drop-off 0% 8% 7% 8% 8% 6% 
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requency was reduced to 810 MHz, while keeping the core frequency at 1164 MHz, all of the applications from these two

lasses would achieve near 20% energy-savings with an increase of their execution time of less than 1%. In the case where

 10% performance drop-off is allowed, they can achieve up to 26% energy-savings. 

Table 4 summarizes the results of Sections 5.1 and 5.2 , presenting the average energy-savings and performance trade-off

f the applications from each energy class on the GTX Titan X GPU (Maxwell), when comparing the results at the selected

requency configuration with the ones obtained at the highest performance frequency (reference) configuration. Table 5

resents equivalent results for the Titan Xp GPU (Pascal). The Pascal GPU device has a larger range of core and a smaller

ange of memory operating frequencies compared to the ones in the considered Maxwell GPU device. This results in the

bserved larger energy-savings for the applications with high DRAM utilization (compare class E1 on Pascal with classes E1

nd E2 on Maxwell) and in the lower energy-savings for the applications with high Graphics and low DRAM utilizations

compare class E12 on Pascal with classes E12, E15 and E16 on Maxwell). 

.3. Energy savings ranges 

In certain situations it may be more important to identify the range of setups corresponding to near optimal results (or

n this case, the range of operating frequencies that result in energy-savings comparing with the reference state), rather

han the optimal conditions for running a certain application. This can be especially useful in a situation where multiple

istinct applications are to be executed in parallel, or even in a situation where a single application requires calling multiple

eterogeneous kernels. In such a scenario, it is possible for the optimal frequencies to be different for each kernel. Hence,

xing the operating frequency at the optimal values for one of the kernels could actually result in a residual (or null)

nergy-saving when considering the remaining kernels. Furthermore, it is not always feasible to be constantly changing the

perating frequency to the optimal values each time a new instance of the kernels are executed. 

One solution for this specific problem is to find the operating frequency ranges where energy-savings are possible for

ach individual kernel and combining the collected ranges, in order to identify the core and memory frequency ranges that

an achieve energy-savings for all the considered applications. Fig. 20 a presents the execution time and power consumption

hanges of three applications ( FDTD-2D, CORR and MD5Hash ) from three distinct energy classes (classes E1, E11 and E16 ,

espectively). It is also depicted the average variation of the execution times and power consumption from the synthetic

enchmarks of each class. The fact that they are from different energy classes means they most likely have different optimal

requencies. The objective is thus to find a range of frequencies where all three applications are able to save energy, when

ompared to the reference state (if such a range exists). 

Using the execution time and power consumption variation curves of the synthetic benchmarks, depicted in Fig. 20 a,

t is possible to identify the energy-savings ranges, as they correspond to the frequency levels where the observed power

ariation is higher than the performance variation, i.e. the power decrease is more significant than the increase in the

xecution time. This can be seen in Fig. 20 a by identifying the frequencies where the power variation curve is below the

xecution time variation curve. 

With the frequency ranges that are identified for each application, it is possible to plot the histogram presented in

ig. 20 b, where the intersection of the three energy-savings ranges is depicted. This figure also presents the difference

o the actual energy-saving frequency ranges of each application. It can be seen that, while there are some miss-predicted

requency levels in the edges of the ranges, using the synthetic benchmarks still allows the identification of which frequency

anges enable all three applications to achieve a lower energy-consumption than the one achieved at the reference level. The
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Fig. 20. Energy-aware analysis of three distinct applications ( FDTD-2D, CORR and MD5Hash ) on a GTX Titan X. 
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ptimal range for a set of multiple applications may not even include the optimal frequencies of each individual application,

hich is exactly the case for this particular set of applications, since the optimal frequency for the MD5Hash benchmark

s F Mem 

= 810 MHz, while the FDTD-2D benchmark (and all applications from class E1 ) does not save energy at the lowest

emory frequency. 

. Related work 

Over the past few years, there has been a significant effort in the research community to study the effects of DVFS in

PGPU systems. Several techniques have been proposed, which can be divided in three main subjects: (i) works that study

he impact of DVFS in the execution of applications; (ii) works that study classification techniques for GPU applications; and

iii) works that propose runtime models for the prediction of performance and/or power-consumption of GPU applications. 

Regarding the effects of DVFS on distinct applications, Jiao et al. [39] studied the impact of core and memory frequency

caling on three applications with different characteristics on a GTX 280 GPU (Tesla microarchitecture). The authors ob-

erved that the impact of frequency scaling on the performance and power consumption was dependent on the applications

haracteristics, since some were more sensitive than others to the scaling of each frequency domain. Ma et al. [3] proposed

n energy management framework for CPU-GPU heterogeneous systems, able to distribute the workload between the two

ystems, and to perform dynamic core and memory frequency scaling of the GPU. Results on a NVIDIA GeForce 8800 GPU

Tesla), allowed achieving about 6% of system (CPU+GPU) and 14.5% of GPU energy-savings. Ge et al. [4] also applied DVFS

n a GPU-accelerated system with a Tesla K20c GPU (Kepler). The authors observed that the effects of DVFS on GPU are

astly different than those on the CPU, since the highest GPU frequencies always resulted in the best energy-efficiency (for

heir set of three tested applications). Mei et al. [2] studied the effects of scaling the voltage and frequency of the cores, as

ell as the scaling of the memory frequency, on the energy-efficiency of different applications on a GTX 560Ti GPU (Fermi).

he authors observed an average of 20% reduction of energy consumption and concluded that the optimal setting (core

oltage, core frequency and memory frequency) is dependent on the application characteristics. More recently, the authors
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pplied the same approach on a GTX 980 GPU (Maxwell microarchitecture) [27] with similar results, concluding that finding

he optimal setting is a challenge that needs to be addressed, since significant energy-savings can be achieved by applying

VFS techniques. Sethia et al. [40] designed a dynamic runtime system to optimize the GPU kernel launch parameters and

ore and memory frequencies, depending on the application characteristics. The authors classified applications into three

lasses: compute-, memory- and cache-intensive , based on the GPUWattch characterization, achieving 15% energy-savings. 

The majority of previous works on workload characterization on HPC systems (mainly CPUs) involve the combination of

rincipal Component Analysis (PCA) and hierarchical clustering [41–44] . As a consequence, some previous studies on work-

oad characterization in the GPU-domain have tried to exploit similar approaches. In particular, Kerr et al. [8] characterized

TX workloads using a GPU simulator with the purpose of optimizing the applications. Che et al. [7] performed a diversity

nalysis of the Rodinia benchmark suite, using a GTX 480 GPU (Fermi). In the same trend, Adhinarayanan et al. [9] also

rovided an automated framework for characterizing and subsetting GPU workloads, by also relying on PCA and hierarchical

lustering. However, while this approach has the advantage of reducing the dimensionality of the problem, it makes the

nderstanding of each resulting class harder (from the computing architecture perspective) and does not necessarily result

n an accurate energy-aware classification. 

In our previous work [45] , a similar methodology to the one used in the herein manuscript was proposed for DVFS-aware

lassification of GPGPU Applications. However, the work focused on a NVIDIA Tesla K40c GPU from the Kepler microarchi-

ecture, a GPU with a much smaller range of allowed frequencies than the herein considered GTX Titan X and Titan Xp,

ith only four core frequency levels and a single memory level. For this reason, the maximum energy-savings that were

chieved were only 8%. However, even with the small range of frequencies available, it is still possible to identify benefits

n performing both performance and power characterization of GPU applications, as energy-savings opportunities are still

vailable. 

A different alternative approach towards DVFS consists in the development of accurate performance and/or power models

hat allow predicting the GPU behaviour under different voltage and frequency scenarios. GPU performance models are

sually developed based on GPU pipeline analysis [10,13,14,18] , trying to capture the execution characteristics of GPGPU

pplications. As an example, Nath et al. [14] developed a runtime analytical performance model able to predict the changes

n performance when the frequency is scaled with an average accuracy of 4%. However, they require the addition of logic

o the GPU scoreboard, making it infeasible to replicate in a real GPU device. Another common approach uses statistical

ethods and GPU performance counters [12,15] , which while usually simpler to apply on real hardware, usually result in

arge prediction errors. Regarding the research on GPU DVFS runtime power modelling, one common approach relies on

mpirical methods, which require a break-up of GPU micro-architectures, and usually requiring analyzing the kernel binary

ode [18,34] . Moreover, these approaches are often product-specific and difficult to port to different devices. An alternative

pproach is using statistical methods, which rely on the measurement of hardware counters, used to create the runtime

ower model by either regression [46,47] or machine learning approaches [13,15] . While easier to implement, the regression

ased methods fail to capture the inherent non-linearity of modern GPU devices, resulting in large prediction errors (from

5% to 23.5% in [47] ), while the neural-network solution better suits the complicated data dependencies, resulting however

n higher complexity output models, with still non-insignificant prediction errors (10% in [15] ). 

Accordingly, while detailed performance and power models may ultimately produce more accurate results, the herein

resented work shows that application classification, into a small number of DVFS-aware classes, is a rather convenient and

iable approach not only to identify remarkable energy-savings opportunities, but also to achieve near-optimal results in

erms of energy savings. 

. Conclusions 

This work proposes a new methodology to classify GPU applications based on the resulting effects of DVFS on their

xecution time and power consumption. Although existing classification techniques are not targeted for this specific goals,

ften resulting in many wrongly classified applications when performance and power consumption are considered, the ex-

erimental results obtained with the proposed methodology demonstrate the benefits of this kind of approach. The proposed

lassification scheme allows application characterization on any modern GPU device, regarding the DVFS impact on its exe-

ution. It is based on a preliminary profiling of a set of synthetic benchmarks, followed by a training phase of a classifier.

nce the classifier is trained, it is possible to classify any GPU application into a specific class that characterizes the variation

f its performance (or power consumption) in the presence of frequency scaling (Core or Memory), by using the information

btained from the execution of each application at a single frequency state. The performance and power classes allow the

efinition of distinct energy-aware classes of applications that present a similar behaviour in the presence of DVFS. By using

hese energy-aware classes it was possible to define the optimal pair of operating frequencies (core and memory), resulting

n the GTX Titan X GPU (Titan Xp GPU) on average energy-savings of 16% (20%), corresponding to a 0.74% (0.4%) devia-

ion from the optimal, and in certain applications achieving energy-savings as high as 36% (32%). Additionally, the proposed

ethodologies also allowed to identify DVFS settings that can obtain up to 22% energy-savings at a cost of only 0.2% of

erformance loss. The analysis of the developed work allows us to conclude that even better opportunities for maximizing

he applications energy-efficiency could be exploited if GPU manufacturers offered more liberty to choose the operating

requency of the different device domains (specially in the memory domain), since with more allowed frequencies available
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etween the maximum and minimum levels, higher energy-savings could be achieved for applications with heterogeneous

sage of the device resources. 
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