
Stream Oriented Modular Architecture with
Polymorphic Processing Engines

Andriy Gorobets, Frederico Pratas, Nuno Roma and Pedro Tomás
INESC-ID, IST, Universidade de Lisboa

Email: {andriy.gorobets,fcpp}@ist.utl.pt,{Nuno.Roma,Pedro.Tomas}@inesc-id.pt

Abstract—Stream computing has shown to be an effective
technique to decouple communication from computation in many
application domains. It provides an efficient mitigation of band-
width restrictions, by reducing the amount of memory accesses
and by maximizing the available computational resources, poten-
tiating the parallel processing using multiple execution engines.
However, it frequently implies significant development costs, since
efficient stream-based architectures are usually attained through
application-specific full-custom processors, often tightened to the
application at hand. To circumvent this limitation, a modular
stream computing architecture aiming generic and high per-
formance applications is presented. The proposed architecture,
designed for reconfigurable hardware, is composed of modular
processing engines that can be customized by the end-user in
many ways, such as in terms of their number, type and precision
of the functional units. Furthermore, these processing engines
are designed as programmable cores, allowing the execution of
a wide set of applications using the same configuration. From
the conducted evaluation by using a series of benchmark case
studies, it was observed that the proposed architecture achieves
competitive results when compared with alternative solutions.

Keywords—Stream Computing, Polymorphic Engine, Reconfig-
urable Hardware

I. INTRODUCTION

Nowadays integrated circuit technologies provide high
computational power on a single chip. This allows to increase
the amount of hardware to support intensive data parallel
processing. Despite such computational potential, it is often
difficult to keep all the available computational resources busy,
either due to data dependencies, or simply because the applica-
tion is not able to exploit all the available computational units,
resulting in practical inefficiencies. Moreover, the memory
and interconnections bandwidth is frequently a limiting factor.
Thus, it is important to choose the appropriate architecture, as
well as the programming approach, that maximizes the usage
of the on-chip computational power.

Traditional general purpose processors adopt a computing-
in-time paradigm, which focuses on low level organization to
efficiently solve instruction dependencies and improve serial
applications. However, this requires a huge amount of control
logic. General purpose processors have also evolved in the
direction of increasing its processing capacity, by increasing
the amount of logic dedicated to arithmetic computations.
Current general purpose processors already implement data
parallel processing techniques such as vector processing and
functional parallelism in multi-core processors. However, such
conventional processing models are unable to maximally ex-
ploit the parallelism made available by several data intensive
and highly demanding applications. While data prefetching
mechanisms can help minimizing the limitations for memory-
bounded applications, it is difficult to efficiently use all the

available computing resources. In such cases, the adoption of
dataflow processing is recognized as a viable approach.

The dataflow execution model applies a computing in space
paradigm, where data is streamed through processing elements.
As a consequence, a dataflow application is organized as
a sequence of arithmetic kernels, each representing a data
operation. An important characteristic of this model is the data
locality of all intermediate results. Usually, only the initial
inputs or final results must be provided from/to an external
data storage. Overall, this model explores the locality and
parallelism that is present in applications. Data locality greatly
reduces the external memory bandwidth requirements, thus
increasing functional units occupation and reducing energy
consumption. Since most computationally demanding appli-
cations present high levels of data and functional parallelism,
the streaming model shows to be an attractive solution.

While many attempts to develop highly efficient stream-
based architectures have been made (e.g., [4, 9]), they are
typically constrained to either a single or a very reduced
set of applications. As a result, these solutions are not very
flexible (with low or no programmability), and require long
development time. Furthermore, many applications not only
require processing efficiency but also programmability [2].
Attempts to build programmable stream-based architectures
have also been made, e.g., [5, 3, 6]. However, many of these
architectures are similar to that of modern Graphics Processing
Units (GPUs), that rely on the SIMD approach, allowing the
execution of the same instruction simultaneously on a vast
number of arithmetic functional units. This raises important
constraints when the kernel applied to the stream of data limits
processing coalescence. Moreover those solutions rely on an
external processor which organizes data into ordered streams
and sends them to the stream processor. This poses important
limitations on the flexibility for some applications that require
complex memory data access patterns and/or reuse [8]. Fur-
thermore, typical stream-based programmable architectures do
not allow using custom-based arithmetic, resulting in decreased
operating frequency, nor using special functional units leading
certain operations to be performed in software. Finally, in
many cases, the architectures are focused in high performance
computing system with unlimited power and area constraints,
which poses important constraints for embedded systems.
While attempts to build configurable or even reconfigurable
architectures have been made (e.g., [10, 11]), they have limited
programmability, making application developing a challenge.
During the past few years new embedded systems have ap-
peared, where reconfigurable logic, used to accelerate the
most demanding parts of the applications, coexists on a single
chip with a general purpose CPU (e.g., Xilinx Zynq-7000
EPP, which includes a dual-core ARM Cortex-A9 CPU). This



Fig. 1: Overview of main architectural blocks.

reduces the communication time between the CPU and the
reconfigurable accelerators, as well as the power consumption.

In this work, a modular and fully programmable stream-
based architecture for high efficiency computing purposes is
proposed. A possible embodiment of such an architecture is
also presented, along with a set of tests in order to assess its
efficiency. The proposed architecture supports some level of
customization, depending on the target application, in order
to minimize hardware resources. On the other hand, for a
given fixed configuration, the offered programmability allows
the execution of a vast set of different applications depending
on the number and type of involved functional units, without
requiring hardware reconfiguration.

II. PROPOSED MODULAR STREAMING ARCHITECTURE

The proposed architecture takes the basic principles pro-
posed in [10]. It consists of a modular programmable stream-
oriented processor that can work either autonomously or with
a host processor, playing the role of an accelerator. Figure 1
depicts a generic overview of the main architectural blocks: i)
a custom number of independent Kernel modules that can be
either fully custom modules or programmable cores; and ii) a
Local Shared Memory, which serves as buffer for input and
output streams and also for storing intermediate results.

A. Kernel
Kernels operate on streams i.e., they receive the data from

an incoming input stream, execute a number of operations on
it and deliver the results. Results are either stored in a memory
buffer for further processing by the next Kernel, or sent back
as the output of the processor.

Herein, we focus on a programmable microarchitecture
with support for Kernels that can be customized in terms of
quantity and functionality. This modular infrastructure supports
the same architecture (in terms of working principles, structure,
and programming model) independently of the application
needs, being only constrained by resource availability. Each
programmable Kernel is a multi-thread processor, with multi-
ple instruction dispatchers sharing the same instruction set and
the same functional units. This reduces the hardware resources
for control and maximizes the usage of computational power.

Figure 2 shows the block diagram of the proposed pro-
grammable Kernel that is proposed in this work. It is composed
of N Dispatchers, responsible for executing the control path
of the application, a number of shared Functional Units that
carry out the operations, a Data Stream Manager responsible
for managing data streams between Shared Memory and Dis-
patchers, and various Interconnection Networks to efficiently
transfer data between the different units.

B. Dispatcher
Each Dispatcher is responsible for handling the correct

operation of the control-flow model. It consists of a fully
programmable general purpose processor, with the reduced

Fig. 2: Block diagram of the devised Kernel definition.

Fig. 3: Superpipelined Dispatcher architecture.

!

"!
#$

%&
'(!

)*
+,

"!
#$

"&
'(!

)*
+,

"!
#$

!&
'-

%,

#(.

-/&'(!)*+,

"!#$!&'-%,

"!#$%&'(!)*+,

"!#$"&'(!)*+,

0."11

-/&'-%,%234&" %234&%
5636728&
9:7;<=6&
#6>?=@67=

%234&
!%

%234&
!"

!

!"#$%&'(")*%
+)$#",

+7<A&-%

<;" <;%
-#%./

-#%&0")($%
+)$#",

&0")($%
123405

&0")($%
6403405

7(285%9%(2*%7%(")%(::)55)*%;2%(%
*#4<=)><4??)";2@%?(5';#2

%" %" %"

"!#$!&'(!)*+,

Fig. 4: Stream Register File and the Register Invalidation Table are
accessed on the ID&OF stage and Write Back stage.

Instruction Set of the Microblaze softcore. The Dispatcher’s
microarchitecture consists of four pipeline stages: Instruction
Fetch, Instruction Decode and Operand Fetch (ID&OF), Exe-
cute and Write Back, here part of the execution may be carried
by the external pipelined Functional Units (see Fig. 3).

On the first stage, the instruction to execute is fetched from
a shared Instruction Memory (outside the Dispatcher). On the
second stage, the instruction is decoded and the operands are
fetched from the Stream Register File (SRF), which serves for
data input/output and to store temporary values while operating
over streaming data (see Fig.4). From the Dispatcher’s point of
view, these accesses are done in a uniform way. To accomplish
that, the decoding of standard instructions was modified to
support selection of source and destination streaming operands
(general purpose register vs stream register).

The ID&OF stage also includes a special block, the Reg-
ister Invalidation Table (RIT), responsible for solving data
hazards (see Fig.4). When an operation is issued for execution,
the position on the RIT corresponding to the destination
register is set, invalidating it. Then, only when the result is
written to the SRF during the write back stage, can this value
be validated. As such, when the operands are fetched, in the



Fig. 5: Block diagram of the devised Polymorphic FU structure.

ID&OF stage, the RIT has to be consulted to check if all the
operands are valid; if they are not, the Dispatcher stalls.

Each instruction can either correspond to a data processing
operation or a control operation. In the first case, the operation
is executed on the respective Functional Unit (FU), usually
external to the Dispatcher. All Dispatchers also contain an
internal FU (FU 0), on the Execute stage, to execute simple
operations, such as logic and fixed point arithmetic (addi-
tion/subtraction) for control flow operations and reductions.
Moreover, it requires much less hardware resources than shared
FUs, such as those operating on floating point numbers. As
such, it is advantageous to keep it inside the Dispatcher. When
an operation is to be executed on an external FU, it is placed
in a FIFO buffer after fetching its operands. The FIFO has two
main advantages: i) when the target FU is busy the Dispatcher
does not have to stall, as long as the FIFO is not full; and ii)
if a Dispatcher stalls and there is some valid data in the FIFO,
it is still issued to the respective FU.

Finally, the Write Back stage manages the results of the
different FUs to the SRF. Results can come from one of
three sources: Jump Control Unit for branch instructions, FU0
and any of the external FUs. Data elements coming from the
external FUs have priority over internal data giving priority to
older instructions and avoiding stalling the shared FUs. When
a conflict occurs, the Dispatcher stalls for one cycle, allowing
external data to be written to the SRF.

C. Functional Unit
Each Kernel may include several independent FUs, which

are defined as polymorphic blocks that may contain already
existing, or custom operational units. As shown in Figure 5,
each FU contains an Operational Unit (OU), with several
pipeline stages, a control block, and an output FIFO.

Input data coming from the Dispatchers is divided between
operands, which are fed to the OU, and control signals. The
control signals are used by the unit itself, and to generate
stream control data required by the WB engine. When the
operation is finished, both the stream control data and the
results are concatenated and written into the output FIFO. As
in the Dispatcher, this FIFO plays an important buffering role,
allowing the FU to continue operating even when the WB stage
is not able to consume the data, as long as the FIFO is not
full. This allows minimizing the number of stalls of the FU.

Kernels also contain a local memory shared by the Dis-
patchers, used for intermediate results and auxiliary constants.
This memory adopts the same interface of a generic FU.

D. Local Interconnect
Two unidirectional and independent networks were specifi-

cally developed for the interconnection between the Dispatch-
ers and the several FUs, namely for ISSUE and WB. Both
networks support a generic number of masters and slaves, and
both operate in a crossbar switch mode allowing data from

IF
ID/OF

Local 
RF

Stream
Intercon

Shared 
Memory+ Addr Data

Data Stream Manager

Fig. 6: Data Stream Manager block diagram.

different masters to be simultaneously transferred, as long as
the destination slave is not the same. In both cases, a low
latency high bandwidth crossbar switch is used to minimize the
impact of this network. The operations issued from Dispatchers
to the FU’s mainly consists of: two operands, the sender’s
Dispatcher ID and the destination register address. Conversely,
during WB operation data consists of the result, the destination
address of the SRF the Dispatcher ID and FU ID.

III. DATA STREAMING

To enable stream computing, a data streaming framework
was also integrated into the system, which is based on the
structure proposed in [10], [8]. This section describes the
main blocks responsible for the stream management inside the
Kernel, comprehending the Data Stream Manager (DSM), SRF
and Interconnect (see Fig.2).

A. Data Stream Manager
The DSM is the unit responsible for handling all data

transfers between the local buffer memory and the Dispatchers.
It mainly consists of a programmable core with an instruction
set very similar to one used to program the Dispatchers. There
are two main types of instructions: i) internal, to control the
execution flow and calculate the data addresses to fetch the
data; and ii) external, to load data to the Dispatcher’s SRF. The
DSM adopts a pipelined architecture with two stages for inter-
nal instructions, and three stages for external ones. It contains
a set of general purpose registers, to store results of internal
instructions. Figure 6 illustrates the devised architecture of the
DSM. The first stage consists of the instruction fetch, while the
second stage decodes the instruction, fetches the operands from
the local Register File (RF), and executes the operation. After
that, for internal instructions the result is written to the local
RF and a new instruction is fetched. For external instructions,
a third stage is still used for memory accesses. In case of a
stream loading operation, the data is then sent to the Dispatcher
through the Interconnect.

The implemented DSM instruction set features additional
instructions to leverage the implementation and manipulation
of complex data patterns, thus providing an efficient means to
accelerate and mitigate the memory accesses. In particular, the
new Load Pattern instruction gives support for the execution
of regular memory accesses, with the ability to consider a
user defined stride and number of transfers. As
a consequence, this instruction allows the replacement of a
significant amount of control related instructions and signals,
being able to transfer one operand from up to two independent
data vectors on each clock cycle, without any control overhead.
A corresponding Store Pattern instruction was also introduced
in the instruction set, offering similar capabilities to transfer
the outgoing processed stream.

The execution flow of the DSM depends on the status
of the SRF input and output banks. In some cases, each



Fig. 7: Structure of the Stream Register File.

Kernel may feature two DSMs, to keep the loading and storing
transactions independent thus increasing efficiency. This also
improves scalability, in terms of the number of Dispatchers.

B. Stream Register File
The SRF is divided in five register banks (see Figures

III-B and 7). One bank of general purpose registers is used
to store auxiliary variables and intermediate results. There
are four FIFO fashioned banks for buffering inputs (A, B)
and outputs (DA, DB). Operations on data from a given
input bank are associated to its counterpart output bank in a
paired way (A/DA, B/DB). Thus, banks A and B support the
implementation of a double buffering transfer strategy. This
mechanism allows the DSM and the Dispatchers to operate
independently: while the DSM loads/writes data to/from one
bank pair, the Dispatcher processes the data from another. As
a result, the Dispatcher is alleviated from executing load or
store operations when operating on streams. Instead, it simply
fetches the operands from its register file. Furthermore, the
status signals from the input and output banks are used to
control the DSM flow and the Interconnect arbitration.

C. Stream Manager Interconnect
To connect the Data Stream Manager to the Dispatchers,

a high bandwidth, bidirectional network infrastructure sup-
porting a generic number of masters (M) and one or two
slaves was developed. When two Stream Managers co-exist
inside the same Kernel, the Interconnect operates in a crossbar
switch mode, where the Dispatchers play the role of masters.
As such, they are the peers that initiate each transaction.
Accordingly, each Dispatcher issues a read/write operation
when new operands have to be loaded/outputted to/from the
SRF. Different applications may require different types of
arbitration. Thus, data may be transferred to the Dispatchers
either individually or as a broadcast.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed architecture,
the whole computational structure was prototyped and eval-
uated in a Virtex-7 FPGA device (XC7VX485T-2). For such
purpose, a set of benchmarking case studies were considered
in this evaluation. This section presents a comprehensive
description of those case-studies and a discussion of the results.

1) Reference Processor: To assess the attained perfor-
mance, the proposed solution was compared with a conven-
tional General Purpose Processor (GPP). A modified version of
the MB-Lite processor [7] was adopted as baseline, consisting
on a 5-stage pipelined embedded architecture implementing the
Microblaze ISA. As shown in Fig. 8, the baseline architecture
includes a superpipelined execution stage, with a set of internal
FUs, in contrast with the proposed architecture, where most
FUs are external to the Dispatcher modules and shared among

WBIF ID/OF

Instruction

MUL
(2)

MUL
(3)

MUL
(1)

MUL
(4)

FADD
(1)

FADD
(N)

MEMEX

Fig. 8: General overview of the baseline superpipelined architecture.

them, which imposes two implicit overhead cycles: one for
issuing the operation to the FU and another for transferring the
results back to the Dispatcher. To make the comparison fair, the
number of pipeline stages for the baseline internal FUs is set to
be equal to the one used by the proposed processor. Moreover,
while the baseline processor extensively adopts forwarding
techniques to reduce the number of execution stalls during
the execution, the proposed Dispatcher simply stalls until the
dependency is solved. Nevertheless, the proposed architecture
still offers significant advantages in terms of the computational
performance when compared with conventional GPPs.

2) Case Study: Single Precision Inner Product: The vector
dot product is a frequent operation in many domains. It consists
of multiplications and accumulations over two data arrays.
A data parallel approach is used herein, where a set of D
Dispatchers in a Kernel processes 1

D part of the data. Hence,
the scalability of the system mainly depends on the capability
of the DSM to provide the input data. The load pattern instruc-
tion that is executed on the DSM is in charge of loading the
data without interruptions, such that it can provide Dispatchers
with interleaved values from each vector. This prefetching
of the input data greatly simplifies the programming and
execution of the Kernel, providing a significant increase of its
overall efficiency, since the Dispatchers input banks receive
the elements from both vectors in order.

The dot product example reinforces the usefulness and
advantages of the application of double buffering techniques
on the SRF. The Dispatcher repeatedly executes only three
instructions (i.e., FMUL, FADD, BRANCH), as long as there
is any data available to be processed. The loading of the
operands from the input stream buffer is completely handled in
background. Just like in the baseline architecture, the adopted
pipelined multiplier structure forces the accumulation instruc-
tion to wait until it finishes. Nevertheless, the accumulation
instruction does not introduce any stall in the Dispatcher since
it does not create any dependency.

On the other hand, the baseline architecture requires two
extra instructions to load the operands in each iteration, and
a third one for loop control. Hence, considering that the input
data is fetched from a cache with L elements per line and
with a miss penalty of N cycles (corresponding to the number
of cycles to bring data from the outer memory level to the
L1), and by taking into account that the two input vectors are
separately stored in the input data buffer, each line provides L
operands from each vector. Hence, since it is necessary to read
data from both vectors for each iteration, two cache misses will
occur every L iterations.

Figure 9 depicts the obtained speed-up for different number
of Dispatchers and considering that the baseline and the pro-
posed processors operate at the same frequency. Furthermore,
different organizations of the reference processor cache were



Fig. 9: Speed-up for different number of Dispatchers and different
cache characteristics.

!"

!#

!$

%&'()*+,-,../-0'()+'0.*1

2*'()*+,-
,../-

0'()+'0.*1

!3

Fig. 10: Data management for the 2D convolution operation

assumed. In particular, it was considered an L1 data cache in
the reference processor with a miss penalty (to access L2) of 8
and 10 clock cycles, with a block size of 4 or 8 32-bits words.
Naturally, these rather optimistic cache organizations greatly
benefit the baseline (in detriment of the proposed architecture).
Nevertheless, the proposed architecture was still able to clearly
gain, in terms of the offered performance.

The distribution of the input data by all Dispatchers implies
a final reduction operation that must be carried by a single
Dispatcher. The reduction Dispatcher reads the partial results,
produced by other Dispatchers, from the intra-kernel memory.
As a result, the overhead of the final accumulation grows with
the number of Dispatchers, as shown in Fig. 9, where speed-up
decays with the number of Dispatchers.

This case study used three shared FUs: a floating point
multiplier with 8 clock cycles of latency; a floating point adder
with 11 cycles of latency; and a small intra-kernel memory.
The resource usage for different Kernel configurations are
presented in Table I. The resources allocated to the Kernel
grow proportionally with the number of Dispatchers.

3) Case Study: Image Convolution: The 2D convolution
operation is extensively used by many image processing
applications. Usually, a small filter matrix sweeps through
the input image matrix to execute the convolution operation,
which consists in multiplying all positions of the filter by
the correspondent positions of the input matrix, with a final
accumulation of the result. For each location of the filter
relatively to the input matrix, one output value is produced.
Two main issues have to be taken into account: i) the best
way to exploit the parallelism, and ii) the reuse of data, in
order to minimize the number of accesses to the output matrix
and, in turn the required bandwidth.

Figure 10 depicts the parallelization approach and respec-
tive data patterns taken in order to reuse the input data both
horizontally and vertically. The problem is distributed such that
each Dispatcher processes one column of the output matrix.
Each iteration the DSM sends part of the input line to be
processed. To reduce contention on the DSM Interconnect and
increase data reutilization, the DSM broadcasts the operands
to all Dispatchers. This increases the scalability of the system.
From the DSM point of view data is streamed in columns of

Fig. 11: Filter of 3x3 Fig. 12: Filter of 5x5

Fig. 13: Conceptual data flow for the CNN case study.

(D+K-1) elements, (with filter size equal to KxK), which are
controlled by two for loops. On each iteration, each Dispatcher
processes its K elements, ignoring the rest.

Broadcasting of the input data implies that all the Dispatch-
ers are ready to receive new data. This imposes an implicit
synchronization between Dispatchers. Nevertheless, as stated
before, the Dispatchers execution is carried in parallel with the
data transfers, due to the double-buffering mechanism in place.
Thus, the adopted structure of the SRF allows to implicitly
synchronize the Dispatchers, by using status signals from the
input and output banks.

The results obtained for a variable number of Dispatchers
are shown in Fig. 11. The presented results do not take into
account any cache misses that may occur on the baseline
processor, the optimistic baseline results assume that the image
either fits entirely in the L1 cache or it is loaded by using a
perfect data prefetching mechanism. Naturally, the speed-up
of the proposed architecture would be substantially higher if
neither of the previous conditions are met and the data would
first have to be loaded from L2 or global memory.

The high performance that is achieved for this example
is obtained due to two main factors. Firstly, the existence of
multiple Dispatchers in the Kernel allows reusing the input
data in both the horizontal and vertical directions. Also, the
broadcasting of the data is particularly beneficial to the pro-
posed architecture, since it avoids the occurrence of contention
in the Interconnect and starving situations.

It is worth noting that larger filters may require partial
caching of the filter data. This can be efficiently accomplished
either by adjusting the size of the SRF; or by using an intra-
kernel local memory, interfaced as a general purpose FU and
shared among the Dispatchers. An example of the results
obtained with a 5x5 filter is shown in Fig. 12.

For this case study two shared FUs were used: an integer
multiplier with 6 cycles of latency, and a small intra-kernel
memory. The accumulations were performed in the FU0 of
each Dispatcher. Table II presents the amount of resources
used in this case study. Once again, the used resources are
proportional to the number of Dispatchers. Furthermore, since
the two case studies mainly differ in the type of multiplier and
adder structures, the differences in resources between them are
minimal (excluding the number of DSPs).

4) Case Study: Convolutional Neural Network: The last
case study presented executes a Convolutional Neural Network



TABLE I: Resources used for different number of Dispatchers for the
inner product case study.

Available 2 D’s 4 D’s 8 D’s
#LUTs 303600 6558 11144 20523
#Registers 607200 7624 12724 22867
#Block RAM 1030 18 19 21
#DSP 2800 8 8 8
Max. frequency [MHz] - 176 152 134

TABLE II: Resources used for different number of Dispatchers for
the image convolution case study.

Available 2 D’s 4 D’s 8 D’s
#LUTs 303600 5724 10226 19407
#Registers 607200 6445 11526 21663
#Block RAM 1030 18 19 21
#DSP 2800 4 4 4
Max. frequency [MHz] - 176 152 134

(CNN) topology for handwritten digit recognition similar to
one presented in [1]. This example is interesting because it
allows to build a multi-Kernel system deploying the previously
introduced Kernels as basic blocks. The conceptual data flow
is depicted in Fig. 13 where the layers of the CNN are assigned
to respective Kernels as follows: i) C1 (K1): first convolution
layer, executes the convolution on a single input image (29x29)
using 5 convolutional filters of 5x5, it results in 5 feature
maps of 25x25; ii) PL1 (K2): max pooling layer followed by
sigmoid function, executes max pooling on each input map,
reducing it to half of the original size, and applies a sigmoid
function on each element, it outputs 5 feature maps of 13x13;
iii) C2 (K3&K4): second convolution layer, which is applied
to 5 input features using 50 filters (5x5x5) – K3 executes
multiple regular convolutions on each input feature, while K4
accumulates groups of 5 maps into a single feature, by adding
the respective elements – this layer produces 50 features of
9x9; iv) PL2 (K5): a second max pooling layer with sigmoid
function, which returns 50 maps of 5x5; v) FC1 (K6) a fully
connected layer that computes 100 dot products across all
output elements of PL2 using the respective weights from data
memory, it produces 100 output elements; and vi)FC2 (K6):
a second fully connected layer that performs 10 dot products
across 100 input elements and its respective weights, producing
10 outputs, one per decimal digit.

Table III shows the number of Dispatchers allocated to
each Kernel, while Table IV shows the amount of hardware
resources used by the system. The size of each Kernel takes
into account the demand of the respective layer in order to
increase the overall performance. K3 is the heaviest Kernel
with 8 Dispatchers. It executes most convolutions. Also K6
has 8 Dispatchers since it has to execute 100 dot products with
vectors of 1250 elements. The remaining Kernels are small and
do not contribute significantly to the total execution time.

In order to compare the obtained results with the baseline,
we considered a multiprocessor system where each processor
replaces one Kernel. This is the same approach followed in
the previous case studies. We also verified that generally, a
Kernel with N Dispatchers executes a program approximately
N times faster than the baseline (near to linear speed-up).

Using the configuration presented in Table III, the achieved
speedup for the proposed system is approximately 7x. This can
be explained by the load distribution among the Kernels. Since
the speed-up tends to be dominated by the largest Kernels
which compute the slowest layers.

TABLE III: Dispatchers allocated to each Kernel
K K1 K2 K3 K4 K5 K6

#Dispatchers 4 2 8 2 2 8

TABLE IV: Resources used for the CNN case study.
Available Used

#LUTs 303600 66212
#Registers 607200 74187
#Block Ram 1030 115
#DSP 2800 24
Max. frequency [MHz] - 134

V. CONCLUSIONS

With the increasing interest of the market in the low power
devices, and the increasing interest of the community in data
intensive applications, solutions such as the one proposed here
will have a strong impact in the near future. In this paper
we propose a modular and fully programmable stream-based
architecture that contrasts with other dedicated structures that
can hardly be modified to different application domains. We
have shown with several sound case studies how the modular
nature of this architecture promotes an easy adaptation and
customization of its processing structure to the targeted appli-
cation domain, as well as an efficient utilization of the required
hardware resources. It was also shown that the performance of
the proposed data-stream architecture scales almost linearly
when multiple dispatchers are implemented in the kernel. For
multi-kernel applications the performance depends on load
distribution, allowing to achieve even higher efficiency.

ACKNOWLEDGMENTS

This work was partially supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT)
under projects Threads (ref. PTDC/EEA-ELC/117329/2010),
P2HCS (ref. PTDC/EEI-ELC/3152/2012) and project PEst-
OE/EEI/LA0021/2013.

REFERENCES
[1] Kumar Chellapilla, Sidd Puri, Patrice Simard, et al. High performance

convolutional neural networks for document processing. In IWFHR,
2006.

[2] William J Dally, Ujval J Kapasi, Brucek Khailany, et al. Stream
processors: Progammability and efficiency. Queue, 2(1):52, 2004.

[3] William J Dally, Francois Labonte, Abhishek Das, et al. Merrimac:
Supercomputing with streams. In ICS, page 35. ACM, 2003.

[4] Amir Hormati, Manjunath Kudlur, Scott Mahlke, et al. Optimus: efficient
realization of streaming applications on FPGAs. In CASES, pages 41–50.
ACM, 2008.

[5] Ujval J Kapasi, William J Dally, Scott Rixner, et al. The Imagine stream
processor. In ICCD, pages 282–288. IEEE, 2002.

[6] Brucek K Khailany, Ted Williams, Jim Lin, et al. A programmable 512
GOPS stream processor for signal, image, and video processing. JSSC,
43(1):202–213, 2008.

[7] T. Kranenburg and R. van Leuken. MB-LITE: A robust, light-weight
soft-core implementation of the MicroBlaze architecture. In DATE, pages
997–1000, March 2010.

[8] Sérgio Paiágua, Frederico Pratas, Pedro Tomás, et al. Hotstream:
Efficient data streaming of complex patterns to multiple accelerating
kernels. In SBAC-PAD, pages 17–24. IEEE, 2013.

[9] Oliver Pell, Oskar Mencer, Kuen H. Tsoi, et al. Maximum performance
computing with dataflow engines. In HPRC, pages 747–774. Springer,
2013.

[10] Frederico Pratas, Pedro Tomás, Pedro Trancoso, et al. Energy efficient
stream-based configurable architecture for embedded platforms. In
SAMOS, pages 193–200. IEEE, 2012.

[11] Ying Wang, Xuegong Zhou, Lingli Wang, et al. SPREAD: A streaming-
based partially reconfigurable architecture and programming model.
IEEE Trans. VLSI Syst., 21(12):2179–2192, 2013.


