
Efficient HEVC Decoder for Heterogeneous
CPU with GPU Systems

Biao Wang, Mauricio Alvarez-Mesa,
Chi Ching Chi and Ben Juurlink
AES, Technische Universität Berlin
Email: biaowang@win.tu-berlin.de,

{mauricio.alvarezmesa,
chi.c.chi, b.juurlink}@tu-berlin.de

Diego F. de Souza, Aleksandar Ilic,
Nuno Roma and Leonel Sousa

INESC-ID, IST, Universidade de Lisboa
Rua Alves Redol 9, 1000-029, Lisbon, Portugal

Email: {diego.souza,aleksandar.ilic,
nuno.roma,leonel.sousa}@inesc-id.pt

Abstract—The High Efficiency Video Coding (HEVC) standard
provides higher compression efficiency than other video coding
standards but at the cost of increased computational load,
which makes it hard to achieve real-time encoding/decoding
of high-resolution, high-quality video sequences. In this paper,
we investigate how Graphics Processing Units (GPUs) can be
employed to accelerate HEVC decoding. GPUs are known to
provide massive processing capability for throughput computing
kernels, but the HEVC entropy decoding kernel cannot be
executed efficiently on GPUs. We therefore propose a complete
HEVC decoding solution for heterogeneous CPU+GPU systems,
in which the entropy decoder is executed on the CPU and the
remaining kernels on the GPU. Furthermore, the decoder is
pipelined such that the CPU and the GPU can decode different
frames in parallel. The proposed CPU+GPU decoder achieves an
average frame rate of 150 frames per second for Ultra HD 4K
video sequences when four CPU cores are used with an NVIDIA
GeForce Titan X GPU.

I. INTRODUCTION

The High Efficiency Video Coding (HEVC) standard [1]
has established itself as the state of the art in video coding,
providing a 50% bitrate reduction with the same subjective
quality when compared to H.264 [2]. Such a compression
improvement, however, is achieved at the cost of an increase
of the computation load for encoding and decoding the video
sequences. Fortunately, the HEVC standard has been designed
by taking into account parallel computing architectures.

In particular, in order to achieve higher performance, Single
Instruction, Multiple Data (SIMD) instructions are usually
exploited on CPU architectures. In [3], Chi et al. proposed
a set of optimizations for the HEVC decoder by considering
all major SIMD ISAs. At the end, the proposed parallel HEVC
decoder is able to process up to 133 frames per second
(FPS) and 37.8 FPS for Full HD and 2160p video sequences,
respectively, on a single core Intel processor.

SIMD execution is also exploited on Graphics Processing
Unit (GPU) devices, which are able to deliver higher per-
formance levels than the CPUs in applications with massive
parallelism and little execution divergence. In addition, GPUs
are already present in most computing devices, from state-
of-the-art desktop machines to embedded systems, including
tablets and smartphones. Consequently, GPU devices represent
an attractive opportunity to offload the most computational

demanding HEVC procedures from the CPU. However, GPU
acceleration of the HEVC decoder procedure is not a trivial
task. First, each decoding procedure should be completely
redesigned to potentiate the exploitation of the parallelism and
to reduce the execution path divergence. Second, a careful
design has to be made in order to exploit multiple levels of
parallelism between CPU and GPU.

In a first approach to attain efficient heterogeneous HEVC
decoder implementations, some modern GPUs integrated
dedicated hardware structures to perform video decoding
(e.g., NVIDIA’s PureVideo [4]). However, most of such
hardware-based HEVC decoders offer poor flexibility, mainly
because of their hardware-specific codec support. Moreover,
only a few specific NVIDIA GPUs provide HEVC decoding
capabilities through hardware [5] (e.g., the state-of-the-
art NVIDIA GeForce GTX Titan X that is used in this
paper does not offer such capability). Regarding software
decoding on GPUs, Ittian system presented an HEVC
decoder [6] based on their Mali-T604 GPU. In the same
trend, Strongene developed another decoder implementation
for AMD GPUs [7]. Nevertheless, neither of them are free
nor have scientific evaluation for their implementations.

In this paper, an efficient parallelization of the HEVC
decoder for heterogeneous CPU+GPU platforms is presented.
To attain such objective, most of the HEVC procedures
had to be re-designed so that sequential entropy decoder is
executed on the CPU and the remaining decoding kernels
are migrated and further optimized to be executed on the
GPU [8]–[12]. Furthermore, a pipeline decoding scheme has
been implemented between the CPU and the GPU, where both
devices execute their tasks in parallel. In accordance, the main
contributions of this paper are: i) optimized GPU algorithms
for inverse transform, motion compensation, intra-prediction,
and the in-loop filters. ii) a pipelined decoding scheme exe-
cuted on the CPU+GPU platform: tasks assigned to the CPU
and GPU devices can be executed in parallel. The proposed
heterogeneous decoder is able to outperform the state-of-the-
art CPU-based HEVC decoder [3] when the number of CPU
cores is relatively small. In particular, it achieves a speedup
of 2.2× when two CPU cores are employed and 1.8× when
four CPU cores are used to decode Ultra HD 4K sequences.

The remaining sections are organized as follows. Section II
presents the design of the parallel decoding scheme on CPU
and GPU, and the performance results are discussed in Sec-
tion III. Finally, the conclusions are drawn in Section IV.

II. PROPOSED CPU+GPU HEVC DECODING SCHEME

To properly distribute the decoding tasks between the CPU
and the GPU, a parallelism analysis for different kernels is
performed. Then, the work flow of the offloaded kernels on
the GPU is elaborated. Finally, the pipelined decoding scheme
between the CPU and the GPU is presented.

A. Task Distribution between CPU and GPU
The HEVC decoding procedures can be divided into:

Entropy Decoder (ED), Inverse Transform (IT), Intra Predic-
tion (IP), Motion Compensation (MC), and In-Loop Filters
(ILF) which in turn contains the Deblocking Filter (DBF)
and the Sample Adaptive Offset (SAO) filter. However, not
all of these decoding procedures present the same suitability
for GPU processing measured in terms of the amount of
offered parallelism and execution divergence. Table I presents
a qualitative analysis of all decoding procedures, which are
a major concern for efficient GPU execution. As it can be
observed, most of the decoding procedures expose a high level
of parallelism, allied with a low execution divergence. The
only exception is the ED, which is divergent and dependent
at bit level. As such, it should be executed by the CPU, while
the remained procedures are offloaded onto the GPU.

TABLE I
QUALITATIVE ANALYSIS OF THE HEVC DECODING KERNELS IN TERMS OF

PARALLELISM AND EXECUTION DIVERGENCE.

Type HEVC decoding procedures
ED IT MC IP DBF SAO

Parallelism very low high high medium high very high
Divergence very high low low medium low very low

B. Optimization of the Decoding Procedures for GPU Execu-
tion

Optimized CPU implementations such as the one presented
in [3] performs the HEVC decoding procedures at block-level

to exploit the data locality. The herein proposed GPU-based
procedures, however, are performed at frame-level, which
increases the parallelism for GPU execution.

Moreover, all targeted GPU kernels have been implemented
using Compute Unified Device Architecture (CUDA), accord-
ing to the following 3-level bottom-up organization: thread,
thread block, and grid. A thread is an instance of one specific
kernel and is executed in lock-step within a group of 32 threads
(or warps in CUDA’s terminology). A thread block consists of
a set of threads whose size can be configured and it is usually
specified as a multiple of warps. At the top level, a grid is
a set of thread blocks. In accordance, all targeted kernels are
mapped to one entire frame. Their thread block setups, how-
ever, varies depending on each procedure’s implementation.

Figure 1 presents the execution order of decoding kernels
within the proposed CPU+GPU decoder. When the entropy
decoding is performed on the CPU, all GPU kernel inputs are
collected and stored in CPU Host Memory. A Host to Device
(H2D) memory transfer is followed after all kernel inputs are
complete. When they are transferred to GPU Global Memory,
the GPU kernels can be launched. For each GPU kernel, their
thread block mapping is shown at the bottom. These decoding
modules will be briefly introduced since their algorithm has
been elaborated individually in [8]–[12]. For all target kernels,
one common optimization is concerned with their ability to
support video sequences with 10-bit depth, while previous
approaches could only decode bitstreams with 8-bit depth.

As in [9], the warps of the IT GPU kernel are assigned
according to the block partitioning obtained from the
bitstream. The new optimizations that were herein introduced
for the IT GPU kernel consist of: i) better data packing: the
required data is stored in a 2 bytes word per 8×8 block, which
includes the block sizes, transform flags, prediction type; and
ii) inter predicted blocks: the new IT GPU kernel already
supports the inverse transform of inter predicted blocks,
which have not been considered for the intra decoder in [9].

If the current frame contains both intra and inter predicted
blocks (i.e., not an I frame) the MC kernel (see Fig. 1) is
launched with the motion vector (MV), reference indexes (RE-
FIdx), and the corresponding decoded pictures. In Fig. 1, the

All
Kernel
Inputs

Coeff. MV,
REFIdx

Pred.
mode BS Offset

types
Decoded
Frames

Entropy IT I Frame? MC+ IP+ DBF SAO

CPU Thread Block 8 warps 4 warps 8 warps 2 warps 2 warps GPU
Mapped Samples 32×32 64×32 FR×64 256×8 64×64

H2D Block size, pred.
type, transform flags

Global MemoryHost Memory

No

Yes

Fig. 1. Work flow overview of proposed CPU+GPU decoder for one specific frame. The entropy decoding module is assigned on the CPU and remaining
kernels are offloaded on the GPU. Thread block level mapping is described at the bottom within GPU block.

MC kernel is followed with a “+” symbol to indicate that the
reconstruction procedure (predicted samples + residual data) is
done within the kernel. Herein, 4 warps (one thread block) are
assigned to perform the inter prediction of a 32×64 samples of
the frame (as in [10]). In addition, the new set of optimizations
that are now proposed include: i) 8K video support: since the
maximum value of the motion vector in [10] is not enough to
point to a reference area for 8K sequences, the motion vectors
are now represented by a 64-bit word for each 8×8 block;
and ii) in-place reference frames: since in-loop filters are
performed in the GPU, all frames are decoded and stored in
the GPU Global Memory, avoiding the memory transfers for
reference frames between the CPU and the GPU.

The IP kernel is performed after MC due to the intrinsic data
dependencies of the reconstructed neighboring blocks (see
Fig. 1). If the current frame is encoded as I frame, with only
intra predicted blocks, then the IP kernel is started right after
the IT kernel. As it was proposed in [9], each warp performs
the intra prediction of all blocks or sub-blocks in a 8-sample
row of the frame. Similarly, the thread block of this kernel
consists of 8 warps, which perform a frame row with a height
of 64 samples (FR×64), thus accomplishing a wavefront
approach for the whole frame. The herein considered
optimizations over [9] correspond to: i) better data packing:
4 bytes per each 8×8 block of the frame, which store the
prediction mode (Pred. mode) for the luma and chroma
components; ii) inter predicted neighboring: additional
conditions must be verified if neighboring blocks were inter
predicted, while all blocks were intra predicted in [9].

After the IP kernel, the reconstruction frame is generated
and DBF is applied to reduce the blocking artifact. It contains
two filters: the horizontal filter and the vertical filter. These two
filters can be independently processed for each 8×8 block,
as shown in Fig. 2. For each sub-filter, two edges in the
same direction can be processed at the same time. The thread
mapping of the DBF has been optimized over [11] and [12],
where an area of 256×8 samples is cooperatively processed
by two warps within a thread block. When the horizontal filter
starts, each warp maps to a set of 256×4 samples, where each
thread maps to one horizontal edge of 8×4 samples. When the
vertical filter starts, each warp maps to a set of 128×8 samples,
where each thread maps to one vertical edge of 4×8 samples.

Finally, the SAO kernel is followed to complete the entire
decoding procedure. Compared to [12], vector processing

8×8 grid edges

v0

v1

v2

v3

v4

v5

v6

v7

h0 h1 h2 h3

h4 h5 h6 h7

horizotnal filter

Tid 1

Tid 0

vertical filter

Tid 0 Tid 1

Fig. 2. Deblocking filter thread mappings, each two threads operate on an
independent block of 8×8 samples.

0 1

.
31

thread.x

0

1
thread.y

ThreadBlock→ CTB(64×64)

height
32 samples

..

..

.

..

..

.

Thread→ 2×32 samples

Fig. 3. SAO thread mappings, each thread block is mapped to a set of 64×64
samples and each thread operates on 2×32 samples.

operation is enabled by adopting a new thread mapping (see
Fig. 3), where two warps are assigned for each thread block
and each of them is responsible for 64×32 samples. Each
thread is mapped to two samples (apart horizontally) and
iterates its operations vertically 32 times. A vector operation
with two elements is performed, making each thread able to
process two samples in parallel.

C. Pipelined Decoding on CPU and GPU

Figure 4 presents the proposed pipelined decoding scheme
with two different CPU thread configurations: with a single
CPU thread (Fig. 4a) and with two CPU threads (Fig. 4b).
As can be noticed, the decoding tasks of the CPU and of the
GPU are designed to be executed in parallel with a single or
multiple CPU threads.

If a single CPU thread is used (see Fig. 4a), the Thread
0 starts the entropy decoding of Frame 0, whose dependent
frames are assumed to be completed. When the entropy
decoding for Frame 0 is concluded, the required kernel data is
transferred to the GPU and the corresponding GPU kernels can
be launched. After, the Thread 0 starts the entropy decoding of
Frame 1, since the kernel launches are asynchronous. Under
this specific circumstance, the ED procedure of Frame 1 will
be overlapped with the GPU kernels of Frame 0. Although the
kernels from Frame 1 could start as soon as Frame 1 ED proce-
dure finishes, the kernels are stalled due to the motion compen-
sation data dependencies, since, in this case, Frame 0 is a refer-
ence frame of Frame 1. To ensure these data dependencies, the
kernels of a specific frame are launched only if all its reference
frames have been completely decoded. The overall process is
repeated to Frame 2 and so on. If two or more frames are
independent from each other, their kernels can be executed
concurrently according to the available GPU resources.

When multiple CPU threads are employed, the ED proce-
dure of different frames can be performed in parallel (see
Fig. 4b). The synchronization between the CPU decoding
tasks is performed on Coding Tree Unit (CTU) line basis. In
particular, a CPU thread starts entropy decoding a new CTU
line of a frame only after the motion vectors of its co-located
area on the previous frames have been entropy decoded.

In both configurations, kernels of a frame are queued in
the same CUDA Stream, where each frame is assigned to
its own CUDA Stream. This setup allows concurrently kernel
execution of independent frames, where there is no data depen-
dencies between them. No synchronization is needed between
GPU kernels, since they are issued in order in a CUDA Stream.

Time

ED ED

Kernels Kernels

Thread 0 CPU

GPU

ED

Frame 2Frame 1Frame 0

(a) One CPU thread.

Time

ED

ED

Kernels Kernels

Thread 0

Thread 1 CPU

GPU

ED

Frame 2Frame 1Frame 0

(b) Two CPU threads.

Fig. 4. Pipelined decoding scheme between CPU and GPU with multiple
CPU Threads configurations.

Moreover, the GPU sets a flag in the CPU Host Memory
as soon as a frame has been completely decoded through
the cudaStreamAddCallback function. In this way, before
launching the GPU kernels, all reference frames completion
flags are checked, to ensure that the motion compensation
kernel for the current frame can be started.

III. EXPERIMENTAL EVALUATION

To evaluate the proposed CPU+GPU decoder approach,
it was executed on a state-of-the-art heterogeneous platform
equipped with an Intel Xeon E5-2699 CPU and an NVIDIA
GeForce GTX Titan X GPU. The host CPU consists of 18
cores with both turbo boost and hyperthreading disabled. The
Titan X GPU contains 24 stream multiprocessors (SMMs) and
it is shipped with 12 gigabytes of GDDR5 memory. The two
devices are connected via a PCIe 3.0× bus. The proposed
decoder was compiled with GCC 4.8.4 using -O3 optimization
level and was run on Kubuntu 14.04 distribution with Linux
kernel 3.16. The CUDA kernels were developed with CUDA
Toolkit 7.5 using version 352.63 of the graphics driver.

The test video sequences used for the conducted evaluation
consist of two sets: the recommended JCT-VC Class B test
set [13] and five 4K (2160p) sequences from EBU UHD-1 [14]
(i.e., Lupo confetti, fountain lady, rain fruits, studio dancer
and waterfall pan), referred herein as Class U. All video
sequences were encoded with the four recommended Quan-
tization Parameter (QP) values (22, 27, 32 and 37) using the
following two configurations: All Intra and Random Access.
Moreover, neither Tiles nor Wavefront Parallel Processing
(WPP) are employed, which represents the worst case for the
CPU decoder in terms of parallelism and data locality. Since
the proposed decoder supports both Main and Main10 profiles,
Class B and Class U sequences were encoded with 8 and 10
bit depths, respectively.

A. Sequential Execution Profile

In the first part of the evaluation, each GPU-based HEVC
procedure is compared with a state-of-the-art HEVC decoder
proposed in [3] (named as CPU-opt), by considering the
overall frame processing time. Figure 5 presents the average
decoding time per frame (in milliseconds) for both HEVC
decoders, i.e., CPU-opt and the proposed CPU+GPU (C+G),

when considering all QPs, configurations and classes. The
decoding procedures are separated into six stages: i) Entropy
Decoder (ED); ii) memory upload from the host to the device
(H2D); iii) Inverse Transform (IT); iv) Motion Compensation
(MC); v) Intra Prediction (IP); and vi) In-loop Filters (ILF).

In general, with only one CPU core, the proposed C+G
decoder outperforms the CPU-opt decoder in all considered
cases. In particular, for Class U (see Fig. 5a and 5b) and
QP=22 (worst case scenario), the proposed C+G decoder
achieves 119.1 ms and 43.9 ms for All Intra and Random
Access configuration, respectively, while the CPU-opt decoder
executes in 150.3 ms and 69.8 ms. When higher QP values
are considered, the average decoding time of both decoders
are reduced. This is specially noted in the entropy decoder
procedure. Nevertheless, all remaining decoding procedures
of the proposed C+G approach are significantly reduced in
all QP values when compared with CPU-opt. Furthermore,
an average speedup of 1.4× for All Intra configuration and
1.8× for Random Access configuration are observed for the
C+G decoder over CPU-opt for the Class U benchmark set.
If the ED procedure is disregarded, the corresponding average
speedups are as high as 2.9× and 5.1×. A higher performance
is obtained for the Random Access configuration because the
most time consuming module, MC, is significantly accelerated
by the GPU kernel. Specifically, 21.5×, 1.2×, 11.0×, and
2.1× speedups are achieved for the ILF, IP, MC, and IT
procedures, respectively, when processing the Random Access
configuration of Class U.

On the other hand, the proposed C+G decoder also intro-
duces two intrinsic overheads. First, the memory copy from
CPU to GPU (H2D), which is required to transfer all the data
under processing. Second, the ED procedure also includes a
time overhead that is required to collect and pack the data for
the GPU kernels. Such increased average processing time for
ED and H2D in the Random Access configuration is 3× larger
than in All Intra mode, since the MC data is not necessary for
the latter configuration. These two overheads are negligible
with lower QP values, since the overall average decoding time
is high. However, the performance degradation is noticeable
for videos sequences with higher QPs, due to the smaller work-
load. For example, when QP=22, the overheads are responsible
for 1.6% and 10.3% of the total decoding time for All Intra
and Random Access configuration, respectively. While, for
QP=37, the overheads of the respective configurations account
for 12.0% and 33.9% of the total decoding time.

In what concerns Class B (see Fig. 5c and 5d), the ratio of
the average ED processing time over the total decoding time
is higher than the same ratio for the Class U. For example,
even for the Random Access configuration, the ED procedure
is responsible for up to 46.1% of the decoding time (on
average), while this fraction is around 32.7% in Class U. As
a consequence, the overall speedups of the C+G decoder over
the CPU-opt are significantly reduced. Specifically, an average
speedup of 1.4× is achieved for the Random Access configu-
ration for the proposed decoder over the CPU-opt decoder.

 0

 20

 40

 60

 80

 100

 120

 140

 160

CPU-opt

C+G
CPU-opt

C+G
CPU-opt

C+G
CPU-opt

C+G

QP 22 QP 27 QP 32 QP 37

Ti
m

e
p

er
 F

ra
m

e
[m

s]

ED
H2D

IT
MC

IP
ILF

(a) Class U (3840×2160) – All Intra configuration.

 0

 10

 20

 30

 40

 50

 60

 70

CPU-opt

C+G
CPU-opt

C+G
CPU-opt

C+G
CPU-opt

C+G

QP 22 QP 27 QP 32 QP 37

Ti
m

e
p

er
 F

ra
m

e
[m

s]

ED
H2D

IT
MC

IP
ILF

(b) Class U (3840×2160) – Random Access configuration.

 0

 10

 20

 30

 40

 50

 60

 70

CPU-opt

C+G
CPU-opt

C+G
CPU-opt

C+G
CPU-opt

C+G

QP 22 QP 27 QP 32 QP 37

Ti
m

e
p

er
 F

ra
m

e
[m

s]

ED
H2D

IT
MC

IP
ILF

(c) Class B (1920×1080) – All Intra configuration.

 0

 5

 10

 15

 20

 25

 30

CPU-opt

C+G
CPU-opt

C+G
CPU-opt

C+G
CPU-opt

C+G

QP 22 QP 27 QP 32 QP 37
Ti

m
e

p
er

 F
ra

m
e

[m
s]

ED
H2D

IT
MC

IP
ILF

(d) Class B (1920×1080) – Random Access configuration.

Fig. 5. Average decoding time per frame by the CPU-opt CPU decoder and by the proposed C+G decoder with different QP values for Class U and Class B.

B. Multi-core and CUDA Streams Performance Evaluation

The overall performance of both the proposed C+G decoder
and the CPU-opt state-of-the-art decoder are presented in
Fig. 6. For both decoders, 32 frames can be simultaneously
processed in parallel provided that there are enough CPU
cores available and the frame dependencies are satisfied (e.g.,
all reference frames are decoded). For the C+G decoder, 32
CUDA Streams are employed since each frame has its own
CUDA Stream. Each obtained frame rate value is an average
that considers all QP values and tested sequences, when
separated by class, configuration and number of CPU cores.

As expected, and independently of the considered class and
configuration, the performance of both decoders rise when the
number of CPU cores increases (see Fig. 6). Nevertheless,
there are saturation points where both approaches no longer
achieve better performance with a higher number of CPU
cores. These saturation points are due to two main factors:
i) restrictions of the available resources and ii) the entropy
decoder ratio over the overall decoding time. In fact, although
the CPU-opt decoder can theoretically process up to 18 frames
in parallel with 18 CPU cores, the C+G decoder is limited
by the amount of available resources and the number of
concurrency of the GPU kernels. Moreover, the ratio of the
entropy decoder processing time over the overall decoding
time has a direct effect in the workload balance between CPU
and GPU. For example, in the Random Access configuration
of Class U, where the entropy decoder ratio is 32.7% with
one CPU core, the saturation point of the C+G decoder is
achieved with only 8 CPU cores (see Fig. 6b). On the other

hand, since the entropy decoder ratio is higher for the All Intra
configuration, the proposed decoder saturates around 12 CPU
cores, where the GPU resources become the limiting factor.

Although the C+G decoder saturates earlier in the Random
Access configuration, the performance gain over the CPU-opt
decoder is more significant for a lower number of CPU cores.
This effect can be visualized when less than 8 CPU cores are
used, where the gap between the two decoders is larger for
Random Access than for All Intra configuration, as shown in
Fig. 6a and 6b. For example, the C+G decoder delivers 80 FPS
with 2 CPU cores and 148 FPS with 4 CPU cores, while the
corresponding performance values of the CPU-opt decoder are
only 37 FPS and 78 FPS, respectively. When executing with
the same performance, the proposed C+G decoder requires
a lower number of CPU cores, e.g., to achieve 80 FPS and
150 FPS, 4 and 8 cores are needed for the CPU-opt decoder.

For Class B, the proposed decoder outperforms the CPU-opt
decoder in all tested configurations, because of a higher frac-
tion of the sequential decoding part (in other words, a higher
entropy decoder ratio). Only when a higher number of CPU
cores is used does the performance of both decoders converge.

Speedups of 1.2× and 1.4× are obtained with 18 CPU cores
for the CPU-opt decoder over the C+G decoder in All In-
tra and Random Access configuration, respectively. However,
since most current desktop systems are equipped with less than
8 CPU cores, this decoder implementation can hardly be ex-
ploited by commonly used heterogeneous platforms. As such,
since the proposed C+G decoding scheme always outperforms
the state-of-the-art CPU-opt decoder for a lower number of

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1 2 4 8 12 16 18

Fr
am

e
s

p
e

r
se

co
n

d
 [

FP
S]

Number of CPU cores

CPU-opt
C+G

(a) Class U (3840×2160) – All Intra configuration.

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 12 16 18

Fr
am

e
s

p
e

r
se

co
n

d
 [

FP
S]

Number of CPU cores

CPU-opt
C+G

(b) Class U (3840×2160) – Random Access configuration.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 12 16 18

Fr
am

e
s

p
e

r
se

co
n

d
 [

FP
S]

Number of CPU cores

CPU-opt
C+G

(c) Class B (1920×1080) – All Intra configuration.

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 12 16 18

Fr
am

e
s

p
e

r
se

co
n

d
 [

FP
S]

Number of CPU cores

CPU-opt
C+G

(d) Class B (1920×1080) – Random Access configuration.

Fig. 6. Average frame rate obtained with the proposed C+G decoder and with the state-of-the-art CPU-opt decoder for Class U and Class B, when considering
a variable number of CPU cores.

CPU cores, the proposed C+G decoder implementation is the
most suited for nowadays heterogeneous platforms.

IV. CONCLUSIONS

In this paper, an efficient collaborative CPU+GPU decoding
scheme is proposed for the HEVC standard. In particular, a
task partition is proposed, where the entropy decoder pro-
cedure is preserved on the CPU side and all the remaining
procedures are offloaded onto the GPU. In addition, frame-
level parallelism is exploited between CPU and GPU, where
CPU multi-core decoding is effectively implemented within
the proposed heterogeneous CPU+GPU decoder.

The proposed decoder is evaluated on a work station desk-
top, where it is compared to a state-of-the-art CPU decoder [3].
The proposed decoding scheme provides both acceleration
and offloading capabilities when CPU multi-core decoding is
enabled, which can be employed in most of consumer level
desktops. When considering Ultra HD 4K videos, the proposed
CPU+GPU decoder achieves 80 FPS with only 2 cores and
150 FPS with 4 cores for Random Access configuration,
which makes 4K@60p and 4K@120p possible with low CPU
resources.

ACKNOWLEDGMENT

This work was supported by national funds through FCT
(Fundação para a Ciência e a Tecnologia), under projects
PTDC/EEI-ELC/3152/2012 and UID/CEC/50021/2013. It has
received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement
No 688759 (LPGPU2). Diego F. de Souza also acknowledges
FCT for the Ph.D. scholarship SFRH/BD/76285/2011.

REFERENCES

[1] JCT-VC, High Efficient Video Coding (HEVC), ITU-T Recommendation
H.265 and ISO/IEC 23008-2, ITU-T and ISO/IEC JTC 1, Apr. 2013.

[2] J. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,
“Comparison of the coding efficiency of video coding standards –
including high efficiency video coding (HEVC),” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1669–
1684, Dec. 2012.

[3] C. C. Chi, M. Alvarez-Mesa, B. Bross, B. Juurlink, and T. Schierl,
“SIMD acceleration for HEVC decoding,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 25, no. 5, pp. 841–855,
May 2015.

[4] NVIDIA, “NVIDIA PureVideo HD Technology,” http://www.nvidia.
com/page/purevideo hd.html, Jul. 2007.

[5] ——, “NVIDIA Video Decoder (NVCUVID) Interface,” https://
developer.nvidia.com/nvidia-decoder, Nov. 2015.

[6] Ittiam system, “GPU Compute accelerated HEVC decoder,” http://www.
ittiam.com/products/software-ips/video/h265-hevc, Dec. 2014.

[7] Strongene, “Strongene OpenCL H.265/HEVC Decoder for Windows,”
http://www.strongene.com/en/downloads/downloadCenter.jsp, Jul. 2014.

[8] D. F. de Souza, N. Roma, and L. Sousa, “OpenCL parallelization of
the HEVC de-quantization and inverse transform for heterogeneous plat-
forms,” in Signal Processing Conference (EUSIPCO), 2014 Proceedings
of the 22nd European, Sept. 2014, pp. 755–759.

[9] D. F. de Souza, A. Ilic, N. Roma, and L. Sousa, “GPU-assisted HEVC
intra decoder,” Journal of Real-Time Image Processing, 2015.

[10] ——, “GPU acceleration of the HEVC decoder inter prediction module,”
in 2015 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), Dec. 2015, pp. 1245–1249.

[11] D. F. de Souza, N. Roma, and L. Sousa, “Cooperative CPU+GPU
deblocking filter parallelization for high performance HEVC video
codecs,” in Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, May 2014, pp. 4993–4997.

[12] D. F. de Souza, A. Ilic, N. Roma, and L. Sousa, “HEVC in-loop
filters GPU parallelization in embedded systems,” in 2015 International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), July 2015, pp. 123–130.

[13] F. Bossen, “Common test conditions and software reference configura-
tions,” Doc. JCTVC-L1100 of JCT-VC, Jan., 2013.

[14] “European broadcasting union,” http://tech.ebu.ch/testsequences/uhd-1.

