
https://doi.org/10.1007/s11265-020-01626-y

A Compute Cache System for Signal Processing Applications

João Vieira1 ·Nuno Roma1 ·Gabriel Falcao2 · Pedro Tomás1

Received: 13 July 2020 / Revised: 3 November 2020 / Accepted: 10 December 2020
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Nowadays, processing systems are constrained by the low efficiency of their memory subsystems. Although memories
evolved into faster and more efficient devices through the years, they were still unable to keep up with the computational
power offered by processors, i.e., feed the processors with the data they require at the rhythm it is consumed. Consequently,
with the advent of Big Data, the need for fetching large amounts of data from memory became the most prominent
performance bottleneck. Naturally, several approaches seeking to mitigate this problem have arisen through the years, such
as application-specific accelerators and Near Data Processing (NDP) solutions. However, none were capable to offer a
satisfactory general-purpose solution without imposing rather limiting constraints. For instance, NDP solutions often require
the programmer to have low-level knowledge of how data is physically stored in memory. In this paper, we propose an
alternative mechanism that operates at the cache level, leveraging both proximity to the data and the parallelism enabled
by accessing an entire cache line per cycle. We detail the internal architecture of the Cache Compute System (CCS)
and demonstrate its integration with a conventional high-performance ARM Cortex-A53 Central Processing Unit (CPU).
Furthermore, we assess the performance benefits of the novel CCS using an extensive set of microbenchmarks as well as six
kernels widely used in the context of Convolutional Neural Networks (CNNs) and clustering algorithms. Results show that
the CCS provides performance improvements ranging from 3.9× to 40.6× regarding the six tested kernels.
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1 Introduction

General-purpose processors have evolved to offer signif-
icant processing throughput by integrating multiple cores
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and efficient vector Functional Units (FUs). However, the
memory subsystem is often incapable of providing enough
bandwidth to the cores, which negatively affects the per-
formance of the overall system. This widely-known phe-
nomenon was thoroughly addressed by William et al. [1]
and became known as the memory wall. Although its effects
are horizontal to most algorithms and applications, this
issue is most relevant in the context of data-centric appli-
cations, which are common in several domains, including
Machine Learning (ML) and signal-processing. For exam-
ple, in [2], the authors accelerated the k-Nearest Neighbors
(kNN) algorithm by designing custom hardware accelera-
tors and reducing drastically data movements. Their results
show that their architecture can speed up the execution of
the kNN algorithm almost two orders of magnitude, with
proportional energy gains. In their analysis, the authors
conclude that the significant reduction of data move-
ments (and memory accesses) is the key that led to such
advantages.

Moreover, due to the complexity of the memory
hierarchies and the time spend on fetching data, a significant
part of the spent energy is due to moving data across the
memory subsystem. In their work, Aga et al. [3] show
that, on average, 25% of the energy spent by a processing
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system is associated with the data movements within the
memory hierarchy, and between the memory subsystem
and the processing cores (see Fig. 1a). For example,
in [4], the authors report that the energy required by the
Dynamic Random Access Memory (DRAM) is one order
of magnitude superior to the energy spent by the processing
cores while executing a Convolutional Neural Network
(CNN) (see Fig. 1b).

Naturally, several alternative processing paradigms to
circumvent the limitations imposed by the memory sub-
systems have arisen. One of the most common approaches
is to analyze the data pattern of an algorithm and design
a custom accelerator to be implemented in an Application
Specific Integrated Circuit (ASIC) or a Field Programmable
Gate Array (FPGA) that somehow enables more efficient
memory management than that of general-purpose Central
Processing Units (CPUs). However, such solutions are usu-
ally application-specific and are hardly usable for different
workloads.

Another still prominent solution that was first proposed
during the ’80s is called Processing In Memory (PIM)
[5]. Its core idea is to move computations closer to
the memory by repurposing existing DRAM resources to
enable active computation using a technique named bit-line
computation. Due to the internal architecture of DRAMs,
PIM solutions enable massive parallelism. However, they
are only capable of executing simple logic operations
atomically, requiring hundreds of cycles to execute more
complex arithmetic calculations based on those atomic
operations. Moreover, early PIM solutions had limited
compilation support, requiring the programmer to know
low-level details of the memory architecture, and explicitly
write the code of the kernels to be executed in memory.

Figure 1 Average energy distribution: a general-purpose processing
system [3] and b general-purpose processing system while executing a
CNN [4].

In addition, operating data directly in the main memory may
cause coherence issues since some of data may be cached.
Therefore, the operands involved in the PIM operation
have to be flushed from cache before computation and will
remain inaccessible until the computation finishes.

Another factor that made the adoption of early PIM
solutions difficult was the requirement for significant
modifications to the architecture of memory chips, which
generated resistance from the companies fabricating these
devices.

Although PIM has had its ups and downs since the begin-
ning, it ended up being an important alternative processing
solution for memory-bound applications and gave origin to
the Near Data Processing (NDP) paradigm [6]. The NDP
paradigm is a super-set that includes all PIM solutions.
However, unlike PIM, it is not limited to performing com-
putation using exclusively the memories’ internal resources
and allows to use computing elements near (but outside)
the memory devices. During the last decades, several NDP
solutions have emerged and a lot has been learned. For
instance, the complexity of modifying memory devices to
accommodate computing structures has been mitigated by
recent 3D-stacking techniques, which allow placing logic
layers on top of memory cells connected by Through-
Silicon-Vias (TSVs). An example of a device using this
technique is the Hybrid Memory Cube (HMC). Moreover,
the original principles of PIM have been transposed to
different levels of the memory hierarchy, originating sub-
paradigms such as in-/near-cache computing, and different
related technologies, such as Resistive Random Access
Memory (RRAM)-based processing [7].

In this work, the constrained performance of memory-
bound ML and signal processing algorithms is revisited
and new alternatives resourcing to NDP solutions are envis-
aged. The proposed approach consists of a Cache Compute
System (CCS) based on the solutions presented in [8, 9] that
couples a Single Instruction Multiple Data (SIMD) unit
to the Last Level Cache (LLC) of a general-purpose
CPU. Differently from previous proposals, this CCS archi-
tecture is based on robust fully-digital FUs, capable of
implementing complex arithmetic, shift, and logic oper-
ations atomically. Furthermore, by being coupled to the
LLC, it takes advantage of data locality and automatically
deals with coherence issues that arise from doing compu-
tation directly in the main memory (updating data in the
main memory may conflict with data present in cache).
The presented research also includes a convenient library to
program and control the CCS from plain C code.

All in all, the main contributions of this work are the
following:
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1. Detailed architecture of a CCS based on [8, 9], aiming
at accelerating ML and signal processing algorithms
using the NDP paradigm;

2. Cycle-accurate simulation model of the CCS for the
gem5 architectural simulator;

3. Comprehensive library written in C to program, control
and synchronize the CCS;

4. Thorough performance assessment of the CCS, includ-
ing microbenchmarks and application benchmarks.

The rest of this paper is organized as follows. Section 2
summarizes the most relevant previous work in the field of
NDP. Section 3 provides an overview of the proposed sys-
tem, and Section 4 details the novel architecture. Section 5
explains the simulation and prototyping methodology and
discusses the main experimental results. Finally, Section 6
concludes this paper.

2 RelatedWork

Several approaches have recently been considered for
NDP, including PIM [10–17] and in-/near-cache [3, 18–21]
processing solutions.

In such works, the authors take advantage of the mem-
ories’ high bandwidth and parallelism to perform in-place
computation, therefore reducing both execution time and
energy consumption. As an example, Seshadri et al. [12]
proposed a fast bulk-wise AND and OR mechanism to be
implemented directly in the DRAM chip. The working prin-
ciple of this mechanism lies in bit-line computing, where
multiple lines of the memory array are simultaneously acti-
vated, and the sensed output is the result of a bit-wise
operation. This provides the possibility to perform bit-wise
AND and OR operations over the bits of an entire DRAM
line.

Another example is Pinatubo, proposed by Shuangchen
et al. [13], which is an in-memory processing scheme for
emerging nonvolatile memories. Although the computation
principle also relies on bit-line computation (supporting
AND, OR, XOR, and INV operations), several functions and
libraries are also supplied to take advantage of the com-
puting capabilities. Pinatubo also attempts to bypass
complex issues such as the operands being in differ-
ent sub-arrays or banks. However, no solutions are pro-
posed when the operands are in different higher lev-
els of the memory architecture, such as different ranks.
Furthermore, all of these solutions rely on bit-line com-
putation, which limits their Instruction Set Architecture
(ISA) to a few bit-wise operations. In contrast, the
work presented in this paper offers a rich ISA cur-
rently composed of 47 instructions, allowing to perform

a large set of operations.
Ahn et al. [22] introduced the concept of PIM-Enabled

Instructions (PEIs). Their work relies on existing PIM-
enabled architectures, therefore requiring no modifications
to the compiler or the programming paradigm. They propose
adding dedicated hardware structures to decide whether
PIM instructions should be executed in memory or near the
host processor (in specific hardware units), depending on
the locality of the operands. To solve data dependencies,
they rely on the existing cache coherence mechanisms (a
strategy that is also adopted in this work).

Under a different approach, works such as [15, 16]
leverage the processing capabilities of emerging RRAM
technologies to accelerate the execution of CNNs. CNNs are
a subclass of ML algorithms whose workload is over 90%
composed of convolutions [23]. Therefore, accelerating the
convolution operation through the analog computing capa-
bilities of RRAM arrays results in significant performance
enhancement and energy reduction. The working princi-
ple of analog RRAM-aided convolution relies on unrolling
multi-dimensional convolutions in one-dimension opera-
tions (dot products). Then, half of the operands are encoded
in the memristors as impedance values, and the other half is
encoded as voltage levels that are imposed on the word lines.
The impedance values encoded in the memristors weight
the voltages in the word lines, resulting in an output cur-
rent that represents the analog dot product of two vectors,
which is then read by Analog to Digital Converters (ADCs).
Although RRAM-based processing enables massive advan-
tages in terms of performance and energy efficiency, it also
presents serious drawbacks: (1) it requires expensive ADCs
that do not only significantly increase the chip area but also
augment the energy requirements [24]; (2) the error intro-
duced during the computation is substantial, mostly due to
process variations [25] and temperature fluctuations [26],
which severely compromises the reliability of the results.

Aga et al. [3] propose a cache computing architecture
where the cache resources are re-purposed to perform active
computation. Unlike PIM solutions, where the computation
takes place in the main memory, this solution takes
advantage of the locality of the operands, present in many
data-centric applications. This architecture provides two
different computing mechanisms: one in-cache that can only
be used when the operands share the same cache line,
and another near-cache. It supports ten operations in total
and provides the programmer with explicit functions and
libraries to make use of the compute cache mechanisms. The
computation can occur in any of the cache levels.

Although representing important contributions, these
previously proposed architectures show significant perfor-
mance degradation when the operands are misaligned or on
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different levels of the memory hierarchy. Furthermore, their
analog computing approach may also introduce significant
errors that compromise the results. In contrast, the proposed
solution minimizes the impact of the operands being split
across different lines in the cache or even when the cache
alignment between operands is different. This is achieved
by loading them into an input buffer and selecting only the
valid items from the cache line. Also, since the proposed
architecture is fully digital, it delivers robustness and is less
error-prone.

Also following this paradigm, Subramaniyan et al. [18]
suggest exploiting the last level caches to perform active
computation optimized for the Non-deterministic Finite
Automata (NFA) computational model. Differently from
traditional PIM approaches, including Micron’s DRAM-
based automata processor [27], the Cache Automaton relies
on cutting edge Static Random Access Memory (SRAM)
cache technology, which provides faster and more energy-
efficient memories. The switch architecture, responsible for
coordinating the access to the common buses, is redesigned
to support the automata processing features, as well as the
line multiplexing for sense-amplifying. Compiler support
is also provided, which automates the process of mapping
real-world NFAs to the Cache Automaton. Although this
architecture provides an astonishing peak speedup of 3840×
over a conventional x86 CPU, it is application-specific and
cannot be used for other purposes.

Despite all the efforts, there are still two important issues
that were not addressed by any of the previous works: (1) as
these solutions are mostly application-specific, they provide
small ISAs mostly limited to bit-wise operations, which
limits the range of applications for which they are effective;
(2) the performances of these architectures are severely
degraded when the operands are in different levels of the
memory hierarchy. In contrast, the proposed engine, based
on the works devised in [8, 9], makes use of a conventional
arithmetic and logic vector unit supporting a much wider
range of operations than conventional NDP solutions while
enabling massive parallelism by processing up to an entire
cache row per cycle. Furthermore, the proposed CCS is
fully digital, which represents an advantage over error-
prone analog RRAM-aided processing. In [8], a proof-of-
concept of the proposed architecture was fully implemented
and validated in Hardware Description Language (HDL)
using a simple soft-core and a minimalist (non-virtual)
memory hierarchy. The work presented in [9] re-purposes
the previous architecture, extending it to support operations
commonly used by CNNs. In this work, the architecture of
the proposed CCS is explained in much greater detail, a
complete flow to integrate it with a general-purpose CPU
is presented (including the details of how it is coupled to
the remainder system), an optimized software framework to

control the CCS is proposed, and a set of benchmarks is
explored to evaluate its performance benefits.

3 SystemOverview

From the system point of view, the CCS consists of a
device that is tightly connected to the memory hierarchy of
a conventional processing system. As shown in Fig. 2, the
CCS is connected to the processing system at two levels:
(1) at the processor level, through which the processor
communicates with the CCS by reading and writing the
internal registers of the CCS’ Programming Interface (PI);
(2) at the LLC level, using the memory bus of the shared
LLC, from where the CCS issues data requests and outputs
the commands’ results. The following subsections detail the
internal architecture of the proposed solution as well as how
it operates.

3.1 Near-Cache Compute Structure

The proposed CCS is composed of several independent
FUs that are managed by a common control unit, which
allows operating over data directly fetched from the cache
using a SIMD paradigm. The CCS is meant to be integrated
with general-purpose (possibly multi-core) processors and
their respective memory subsystems. Therefore, it includes
all the necessary mechanisms to support the complexity
of such systems: (1) from the processor side, the CCS
receives commands from (any of) the processing core(s),
indicating the addresses of the input and output data, the
size of the operands, and the operation to be performed;
(2) given the existence of a virtual memory subsystem, the
CCS translates the virtual addresses that were provided by
the CPU using its own independent Translation Lookaside

Figure 2 Block diagram of the proposed system integrating a
processing core with the CCS.
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Buffer (TLB), which is synchronized with the processor’s
TLB; (3) the commands are executed by the order of arrival,
and the CCS offers synchronization mechanisms to ensure
that two sequential commands do not conflict; (4) the CCS
gathers the data required by the executing command by
issuing read requests to the cache, receiving an entire cache
line atomically; (5) after executing the command, the CCS
writes the results directly into the cache, one line at a time.

After receiving a command for execution, the CCS sends
a data read request to the cache. Since most systems
feature inclusive caches, it is guaranteed that the retrieved
data is up-to-date. If the requested data is present in the
cache, it is retrieved immediately. Otherwise, the request is
forwarded to the main memory. Naturally, while not being
able to receive the data, the CCS enters an idle state, which
(depending on the implementation) can be either executing
no instruction or clock gating, disabling the CCS while it is
not in use. For operations requiring two vector operands, the
CCS fetches the operands sequentially. After gathering the
first operand, the CCS stores it in a buffer and waits for the
second operand. As soon as all the required data is available,
the CCS starts executing the command.

Depending on the operation type, the execution can take
from one to several clock cycles to complete. However,
since the CCS is fully pipelined, it becomes available for
receiving the next command right after all the previous
operands were fetched and the previous command started
executing. Figure 3 depicts two execution examples of
commands that require different numbers of clock cycles to
complete ((Rectified Linear Unit (ReLU) and dot-product),
as well as a top-level schematics of the CCS tree-shaped
internal architecture composed of several levels of FUs

Figure 3 Execution of two different instructions in the CCS: a ReLU;
b dot-product.

(which is discussed in detail in Section 4). The first
command (a) performs an element-wise operation over all
the elements of the vector operand, taking at most two
clock cycles to complete. On the other hand, the second
command (b) combines all the elements of the operands
into a single one and takes a number of cycles at least
equal to the number of levels of the tree-shaped CCS.
When the execution terminates, the results are stored again
in the LLC, invalidating any outdated data in the upper
cache levels, and the processor is notified. If the operation
executed by the CCS produces a vector as result (which is
at most the size of a cache line), the elements are written
back to the cache in parallel. For the currently supported
instructions, the size of the output vector is the same as the
operands’.

The proposed CCS essentially presents four advantages
when compared to existing scalar or vector processors: (1)
it makes extensive use of data locality, which is particularly
advantageous in data-centric applications with regular
memory access patterns; (2) since data is not moved all the
way from the cache to the processing cores, less energy is
spent on data transfers; (3) by exploiting the high bandwidth
that is available near the cache, it is possible to achieve
high-performance levels resulting from vectorization, by
operating in up to an entire cache line in parallel; (4) due
to the proposed CCS structure, FUs at different levels can
be programmed to perform different operations, making it
possible to execute complex commands.

3.2 Concurrent Operation

From the point of view of the host CPU, the CCS behaves
like an independent co-processor that fetches, operates, and
writes data in parallel without run-time intervention of the
CPU. The only interactions between the CCS and the CPU
happen when programming the CCS and inquiring its state
(to determine whether the execution has finished and the
results are available). Naturally, while the CCS is operating,
the processor is free to execute a different workload, as
long as there are no dependencies with the data being
computed by the CCS. From a programming perspective,
these dependencies are left to the programmer to resolve.
Before reading or writing data that conflicts with the results
calculated by the CCS, the programmer has to ensure that
those results are available for being used. Otherwise, write-
after-read and write-after-write conflicts may take place.
Luckily, standard synchronization mechanisms can be used
to work around this issue, such as mutexes, semaphores, and
barriers.

Since the CCS operates at cache level, all the inherent
coherence mechanisms are used. For instance, when writing
the results to the cache, any outdated data in upper cache
levels is automatically invalidated. Therefore, as long as the
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programmer guarantees correct synchronization between
the commands running in the CCS and the workload being
executed in the CPU, no other data hazards are possible.

3.3 Integration with Hierarchical Caches

On multi-level cache systems, the CCS may be integrated
at any level of the cache hierarchy or even at multiple
levels. For instance, several instances of the CCS can be
coupled to each level of cache, maximizing the attained
parallelism. On the other hand, a single instance of the
CCS can be used to minimize the hardware and power
overhead. In this respect, integrating the CCS with the
LLC seems to be the most interesting option since: (1) it
provides the maximum proximity with the data that resides
in the main memory (allowing to reduce the traffic across
the upper memory hierarchy); (2) usually, the LLC is the
largest level of cache, which positively affects the number
of expected cache hits; (3) since the LLC is usually shared
by the several cores, all the issues that could arise from
writing to the cache are automatically solved by the existing
coherence protocol, which ensures that upper cache levels
are updated. Moreover, operating at the LLC level also
reduces contention with the processing cores, which is
useful for task-level parallelism.

4 The CCS Compute Architecture

The internal architecture of the proposed CCS is com-
posed of several FUs, each one implementing a set of atomic
arithmetic, shift, and logic operations. These FUs are micro-
programmed by a central control unit, allowing to exe-
cute complex commands using multiple FUs in a SIMD
manner.

4.1 Programming Interface

To instruct the CCS to execute a command, the processor
programs the CCS by writing in the memory-mapped
registers of its PI. Each command contains information
about the operands to be processed, the computation to be
performed, and the destination in memory of the result. The
CCS supports 47 distinct commands (which are summarized
in Table 1) that can be classified according to three different
criteria:

1. The class of mathematical operations: integer arith-
metic, shift, or logic;

2. The type of the operands: two vectors (VOP2), a vector
and a constant (VCOP), or a single vector (VOP1);

3. The class of functional operation: map or reduce.

Table 1 CCS’ currently supported commands classified regarding
their class of mathematical operations, type of operands, and class of
functional operation.

Instr Description

Arithmetic VOP2 ADDVV r[i] = a[i] + b[i] map
SUBVV r[i] = a[i] − b[i]
MULVV r[i] = a[i] × b[i]
SSDVV r = ∑

i (a[i] − b[i])2 reduce
SADVV r = ∑

i |a[i] − b[i]|
IPVV r = ∑

i a[i] × b[i]
VCOP ADDVC r[i] = a[i] + k map

SUBVC r[i] = a[i] − k

MULVC r[i] = a[i] × k

VOP1 COMP2V r[i] = −a[i]
ADDV r[i] = ∑

i a[i] reduce
MAXV r[i] = max(a)

MINV r[i] = min(a)

LESSVC r[i] =
{
1 , a[i] < k

0 , otherwise
map

GRTRVC r[i] =
{
1 , a[i] > k

0 , otherwise

EQUVC r[i] =
{
1 , a[i] = k

0 , otherwise

SQV r[i] = a[i]2
ABSV r[i] = |a[i]|
RELUV r[i] =

{
a[i] , a[i] > 0

0 , otherwise

Shift VOP2 SLLVV r[i] = sll(a[i], b[i])
SRLVV r[i] = sll(a[i], b[i])
SLAVV r[i] = sla(a[i], b[i])
SRAVV r[i] = sra(a[i], b[i])
ROLVV r[i] = rol(a[i], b[i])
RORVV r[i] = ror(a[i], b[i])

VCOP SLLVC r[i] = sll(a[i], k)

SRLVC r[i] = srl(a[i], k)

SLAVC r[i] = sla(a[i], k)

SRAVC r[i] = sra(a[i], k)

ROLVC r[i] = rol(a[i], k)

RORVC r[i] = ror(a[i], k)

Logic VOP2 ANDVV r[i] = a[i] and b[i]
NANDVV r[i] = a[i] nand b[i]
ORVV r[i] = a[i] or b[i]
NORVV r[i] = a[i] nor b[i]
XORVV r[i] = a[i] xor b[i]
XNORVV r[i] = a[i] xnor b[i]

VCOP ANDVC r[i] = a[i] and k

NANDVC r[i] = a[i] nand k

ORVC r[i] = a[i] or k
NORVC r[i] = a[i] nor k
XORVC r[i] = a[i] xor k
XNORVC r[i] = a[i] xnor k

VCOP NOTV r[i] = not a[i]
ANDV r[i] = a[0] and · · · and a[B − 1] reduce
ORV r[i] = a[0] or · · · or a[B − 1]
XORV r[i] = a[0] xor · · · xor a[B − 1]
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4.2 Compute Infrastructure

The CCS is composed of several levels of quasi-generic FUs
arranged in a pipelined binary tree, as shown in Fig. 4. To
ensure the aimed performance and energy gains, some archi-
tectural aspects have been considered concerning the inte-
gration of the CCS with the conventional memory subsys-
tem of a processing system and the CCS’ internal compute
structure.

4.2.1 Integration with the Data Cache

Differently from most general-purpose processors, the CCS
does not read/write a single word from/to the cache. Instead,
it fetches/stores an entire cache line atomically. For the
VOP2 commands, the CCS sequentially fetches the two
vector operands using the same input bus. First, one of
the operands is fetched from the cache and stored in a
buffer. Then, the other operand is fetched, fulfilling all the
requirements for starting execution.

Whenever the operands are not in cache, they are auto-
matically fetched from the main memory to the cache,
similarly to what would happen if they were requested by a
general-purpose processor. Since the CCS is coupled to the
LLC, the largest cache level, loading the vector operands
from the main memory does not necessarily increase the
number of collisions between the data being used by the
processing cores and those used by the CCS. In fact, most

Figure 4 Processing structure of the CCS.

LLCs are not only larger but also have higher associativity
than upper cache levels. Thus, the data being evicted due
to loading the operands required by the CCS will be (most
probably) the least used, minimizing the negative effects on
the processor’s performance.

4.2.2 Pipeline Functional Units

To maximize the CCS’ throughput, the processing structure
integrates a pipelined binary tree, with each level imple-
menting different arithmetic, shift, and logic operations,
depending on the command being executed.

The operands (fetched from the cache) are delivered to
the first level FUs and the computation starts as soon as all
the operands are available (see Fig. 4).

The pipelined CCS datapath is composed of three
different types of FUs, as shown in Fig. 5. The first level
is composed by type A FUs (see Fig. 5a), integrating an
adder/subtracter, a shifter and a logic unit. The first level
of the CCS is responsible for several element-by-element
operations, including: ADD, SUB, COMP2, SLL, SRL, SRA,
ROL, ROR, AND, NAND, OR, NOR, XOR, XNOR, NOT, and
element-wise comparison.

The second level of the CCS is composed by type B FUs
(see Fig. 5b), being capable of computing the following
operations: MUL, SQ, and ABS. Type B units are the only
that include an integer multiplier, since many commands
supported by the proposed CCS require, at most, one multi-
plication. The multiplier was included in the second (rather
than the first) level because commands such as SSDVV
require one operation before multiplication. Other common
operations that require multiplication (e.g. IPVV) do not
require any operation before multiplication (thus, skipping
the entire first level of the CCS), but require a reduction step
afterward, which is compatible with the used approach.

All the other pipeline stages of the CCS are only used
by commands of type reduce. These computing stages
are equipped with type C FUs (see Fig. 5c), which only
implement arithmetic (except multiplication) and logic
instructions: ADD, MAX, MIN, AND, OR, and XOR. For
these units, only an adder/subtracter and a logical unit are
required.

The operation at each level is controlled by control
signals that are decoded by the CCS from the command
issued by the processor.

4.2.3 Pipeline Dataflow

There are four computing levels of the CCS that produce
output. The command being executed determines which
of the four outputs is valid and when. The first level
produces the output for all operations of type map that do
not involve multiplication (which is only implemented in

1179J Sign Process Syst (2021) 93:1173–1186



Figure 5 FUs that compose the proposed CCS: a first level units, integrating an adder/subtracter, a shifter and a logical unit, b second level units
containing an adder/subtracter and a multiplier, and c remaining FUs, including only an adder/subtracter and a logical unit.

the second level). Therefore, the output of map operations
involving integer multiplication may only be collected in
the second level. The output of operations of type reduce
can be produced in two levels of the CCS: the last and the
second to last. If the vector operands involved in the reduce
operation fit within a line of cache (i.e., the operands are
entirely processed in a single run of the CCS), then the
output is collected in the second to last level. Otherwise,
the operands cannot be processed in a single run of the
CCS, since there are not enough resources to process all
the elements simultaneously (the operands are too large). In
that case, the command is automatically split into multiple
pipelined operations, and the last level of the CCS is used
to accumulate the sub-results of each operation until all
elements are processed.

4.3 Programming the CCS

The programming of the CCS by the processor is done using
the provided PI. This interface is composed of memory-
mapped registers through which the CPU specifies the
command to be executed, an optional constant, and the
descriptors for the operands and the result. Additionally,
there is a memory-mapped register in the CCS’ PI
through which the processor instructs the CCS to start
executing the command. As soon as all the operands
required by the command are fetched to the CCS, the
computation starts. When it finishes, the results are written
back to the cache and the processor is informed that

the results are available through another register in the
CCS’ PI.

To facilitate the process of writing the parameters into
the programming registers and controlling the CCS, a fully
optimized library is provided that exports a set of routines
that can be straightforwardly used by the programmer. The
library has the following four routines:

1. ccs_setup(<args>) writes the following parameters
(<args>) of a command to the CCS’ PI:

• cmd_id: command identifier;
• op_len: length of the vector operands;
• k: optional constant;
• opa_addr: start address of the first vector operand;
• opb_addr: start address of the second vector

operand;
• res_addr: start address of the result;
• stride: stride of the operands (and the result for

applications of type map).

2. ccs_start() instructs the CCS to start executing the
command previously configured in its PI;

3. ccs_check() verifies if the previous command has
finished and the CCS is ready to receive a new
command;

4. ccs_wait() hangs until the previous command has
finished and the CCS becomes ready to receive a new
command.

Listing 1 shows the code of a two-dimensional convolu-
tion using the library provided with the CCS.
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Listing 1 Implementation of a 2D convolution using the provided CCS
library

All the developed routines were tuned at assembly level
to ensure that the maximum optimization is achieved. For
example, Listing 2 illustrates the implementation of these
low-level routines using ARM assembly.

5 System Evaluation

To assess the performance benefits of the proposed CCS,
a gem5-based simulation environment was developed. The
following subsections explain the evaluation methodology
and discuss the main experimental results.

5.1 Methodology

An accurate model of the proposed CCS was developed and
integrated with the gem5 model of an in-order ARM CPU
equipped with a NEON SIMD unit. The CPU model was
further improved with the parameters found in the gem5-
X [28] framework to produce reliable results regarding the
ARM Cortex-A53 CPU. The CCS was connected to the
CPU through its data port and to the LLC (in this case
the L2 cache) using the existing memory bus. Since the
architecture of the CCS is highly pipelined (and additional
pipeline stages can still be added if necessary to further
reduce the critical path without affecting performance),
it was considered that the CCS can operate at the same
frequency of the CPU core.

An additional module was also used to forward the
memory requests from the CPU to the memory subsystem
or between the CPU and the CCS’ PI, depending on the
target address. If the target address of the request is reserved
to the CCS’ PI, the module forwards the request to the
CCS. Otherwise, the request is forwarded to the memory
subsystem. The translation of the virtual addresses of the
operands into their correspondent physical addresses (at the

Listing 2 Low-level routines written in ARM assembly to program
and control the CCS from plain C code

cache) is ensured by a dedicated TLB that is synchronized
with the processor’s TLB, as explained in Section 3.

The conceived CCS model was designed to target fixed-
point vector operations. Since the size of a cache line in the
reference CPU is 64 bytes wide, the developed model of
the CCS can process up to 64 bytes of data per clock cycle.
In this evaluation, the CCS was configured as a vector FU
capable of processing up to 16 words of 32 bit each, 32
16-bit words or 64 8-bit words.

5.2 Experimental Results and Discussion

To assess the performance of the proposed CCS, two
different evaluation procedures were considered. First, a set

1181J Sign Process Syst (2021) 93:1173–1186



of microbenchmarks was executed, each corresponding to a
single CCS command involving vector operands of the size
of a cache line, and the results were compared with those
obtained using the CPU core. Second, six kernels commonly
used by CNNs and clustering algorithms were evaluated.
Five of the kernels are commonly used by CNNs. The sixth
kernel consists of the distance computation phase of the
kNN clustering algorithm, which is also common to other
algorithms (e.g., k-Means). The tested kernels as well as the
used parameters are presented in Table 2.

The CPU baseline was fully optimized using all the
compiler optimizations, including vectorization support.
Additionally, it was considered that the operands were
stored in the memory hierarchy level closer to where the
computation took place (L1 cache when using the CPU and
LLC when using the CCS).

Figure 6 shows the results obtained for each microbench-
mark.

As expected, commands of type map take fewer cycles
to complete than commands of type reduce, and, overall,
the CCS shows significant performance benefits across
all the microbenchmarks. The microbenchmark associated
with the highest performance improvement was the ROLVV

Table 2 Parameters of the kernels used to assess the benefits offered
by the CCS.

Parameter Value CCS/GPU

Iterations

Conv 1D Data size (length) 1000 (1000) 1000

Kernel size 15

2D Data size (length) {100, 100} 10000

(10000)

Kernel size {3, 3}
3D Data size (length) {10, 10, 10} 1000

(1000)

Kernel size {3, 3, 3}
Max Pool Data size {99, 99} 1089

(length) (9801)

Patch size {3, 3}
Stride size {3, 3}

ReLU Data size {100, 100} 10000

(length) (10000)

kNN k 4 1000

Distance SSDVV

Training 1000

Testing 1

Features 16

Classes 8

command, which requires several operations when executed
by the processor’s Arithmetic and Logic Unit (ALU), but a
single one when implemented by the CCS.

Also, Fig. 7 shows the variation of the performance
gains with the size of the operands for a command of type
map (ADDVV) and a command of type reduce (ADDV). As
expected, the performance gains increase with the size of
the operands due to the pipeline architecture of the CCS.
When the vector operands are too big, requiring a command
to be split in several runs, the CCS issues the requests for the
operands in sequence, one per cycle, and starts performing
the computation as soon as the operands of the first run
arrive. Since the requests for the operands of the second run
were issued right after the requests for the operands of the
first run, the second run can be executed immediately after
the first, in a pipelined manner. Therefore, the executing
time of the two runs is much lower than twice the execution

0 20 40 60 80 100

Clock Cycles

ADDVV
SUBVV
MULVV
SSDVV
SADVV

IPVV
ADDVC
SUBVC
MULVC

COMP2V
ADDV
MAXV
MINV

LESSVC
GRTRVC

EQUVC
SQV

ABSV
RELUV
SLLVV
SRLVV
SLAVV
SRAVV
ROLVV
RORVV
SLLVC
SRLVC
SLAVC
SRAVC
ROLVC
RORVC
ANDVV

NANDVV
ORVV

NORVV
XORVV

XNORVV
ANDVC

NANDVC
ORVC

NORVC
XORVC

XNORVC
NOTV
ANDV

ORV
XORV

CPU only CPU + CCS

Figure 6 Performance results of a set of microbenchmarks, each one
corresponding to a CCS command, when executed using only the
reference CPU or the CCS.
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Figure 7 Variation of performance gains with the size of the operands
for a command of type map (ADDVV) and a command of type reduce
(ADDV).

time of a single run. On the other hand, processing a vector
operand twice as big in the CPU takes approximately twice
as many cycles.

Figures 8 and 9 depict the execution time associated with
the processing of the six kernels using vector operands with
32-bit elements. For visualization purposes, the results are
normalized to the number of cycles required to process 64
bytes of data. As expected, the CCS allows for significant
performance benefits on all tested kernels. In particular,
the ReLU kernel presents the highest speedup of 40.6×
(for vectors of 8-bit elements, as shown in Fig. 10) due to
its greater complexity when executed on a general-purpose
CPU, contrasting with the single execution cycle required
in the CCS. It is also worth mentioning that, although
processing times are still dominated by memory accesses,
the time spent by the CCS accessing memory is significantly
lower than that of the CPU. Therefore, the performance
benefits associated with the CCS have two complementary
sources: (1) fewer memory accesses when compared to a
conventional general-purpose CPU; and (2) more efficient
implementation of complex operations that may otherwise
take tens of cycles on a conventional general-purpose CPU.

0 100 200 300 400 500

Clock Cycles

CONV 1D (CPU)
CONV 1D (CCS)
CONV 2D (CPU)
CONV 2D (CCS)
CONV 3D (CPU)
CONV 3D (CCS)

MAX POOL (CPU)
MAX POOL (CCS)

RELU (CPU)
RELU (CCS)

Compute time Memory Access Time

Figure 8 Performance results regarding five kernels commonly used
by CNNs, showing the time dedicated to accessing the memory and
the actual computation time.

0 0.4 0.8 1.2 1.6 2

Clock Cycles 10 5

KNN (CPU)
KNN (CCS)

Compute time Memory Access Time

Figure 9 Performance results regarding the distance computation
phase of the kNN algorithm, showing the time dedicated to accessing
the memory and the actual computation time.

Furthermore, it is also noticeable that the convolution
benchmarks do not attain higher speedups when using
vectors of smaller elements (8-bit and 16-bit) (see Fig. 10).
This is due to the fact that the NEON SIMD engine (used
when executing kernels on the CPU) is capable of operating
four 32-bit elements, eight 16-bit elements or sixteen 8-bit
elements simultaneously. Therefore, both the CCS and the
NEON engine consume the same amount of data per cycle
regardless of the operands’ representation. However, the
Max Pool and the ReLU benchmarks do not use the SIMD
unit of the processor due to their complex implementation.
Therefore, reducing the size of the elements to half increases
the number of clock cycles required to process a 64-byte
vector. Naturally, reducing the size of the elements to 16-bit
for the Max Pool and the ReLU benchmarks increases the
speedup attained by the CCS 1.7× and 1.5×, respectively.
Reducing the precision of the operands even further to 8-
bit increases the performance benefits of the CCS 3.7× and
2.5×, respectively.

Finally, to further evaluate the advantages brought by the
novel CCS, the proposed experimental evaluation also con-
sidered an alternative accelerating infrastructure similar to
those that are typically found in a general-purpose com-
puter, namely Graphics Processing Units (GPUs). In accor-
dance, parallelized versions of the previously discussed
benchmarks were produced and executed in two different
GPU devices (GPU 1: GeForce GTX 1080 Ti; GPU 2:

0 5 10 15 20 25 30 35 40 45 50

Speedup

CONV 1D

CONV 2D

CONV 3D

MAX POOL

RELU

KNN

8 bit 16 bit 32 bit

Figure 10 Speedup allowed by executing six kernels using the CCS.
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Table 3 Thousands of cycles spent by the studied six kernels when
executed using only the CPU, the CCS, or a GPU device (GPU 1:
GeForce GTX 1080 Ti; GPU 2: TITAN RTX).

CPU
only

CPU +
CCS

CPU + GPU 1 CPU + GPU 2

Kernel Transfers Total Kernel Transfers Total

Conv 1D 210 32 236 2124 2360 42 504 546

2D 1406 320 108 2952 3060 20 408 428

3D 343 46 278 1882 2160 38 330 368

Max Pool 135 35 94 1744 1838 16 304 320

ReLU 4440 270 26 946 972 12 308 320

kNN 166000 25891 62000 194000 456000 56000 96000 152000

TITAN RTX). Table 3 shows the performance results (in
thousands of clock cycles) obtained while executing the
kernels using these GPUs and compares them with the CPU
and the proposed CCS.

In general, it was observed that the GPUs perform
significantly worse than the CPU-only and the CCS
systems, which can be explained by the fact that the tested
kernels are DRAM-bound. Hence, while the CCS focus
on processing at the DRAM’s peak bandwidth with a
low latency, the GPU’s performance is highly limited by
the additional overheads of transferring data between the
external DRAM and the GPU’s global memory. Therefore,
even though the GPU’s relative performance improves for
larger datasets, it is always bound by data transfers for the
CCS’ application use cases. Furthermore, processing on the
GPUs leads to an overhead associated with the launching of
threads in the GPU.

On the other hand, the CCS allows a much higher
bandwidth to the memory, spends virtually no time
transferring the operands and storing the results, and does
not have an overhead associated with launching threads.

Furthermore, the available hardware in GPU devices
highly surpasses that of the CCS. Naturally, this imposes
a significant overhead in terms of both the global system’s
hardware and energy requirements, which is not always
compatible with the system’s constraints (e.g., edge devices
which are highly constrained in terms of both hardware and
energy supply).

6 Conclusions and FutureWork

This paper proposes a novel architecture to explore
the performance benefits of NDP. The devised CCS is

meant to be integrated with a common general-purpose
CPU, and operates over data directly fetched from the
cache, leveraging both proximity to the data (fetching
and storing data becomes less time consuming) and
the access to an entire cache line simultaneously. For
evaluation purposes, the CCS was integrated with a high-
performance ARM Cortex-A53 CPU and simulated using
the gem5 architectural simulator. A comprehensive software
framework was developed to program and synchronize
the CCS from plain C code. Results show that the CCS
provides significant performance benefits in the form of
reduced memory communications and increased processing
power. Six kernels commonly used in the context of CNNs
and clustering algorithms were tested, with the obtained
speedups ranging from 3.9× to 40.6×. Additionally, GPU-
parallelized versions of the tested kernels were used to
compare the performance of the CCS with conventional
GPU devices, which allowed to conclude that the CCS
presents a better alternative than a GPU whenever the
application is DRAM-bound.

6.1 FutureWork

The evaluation of the CCS architecture has shown the
benefits of offloading certain memory-bound workloads
to a NDP co-processor. However, multiple optimizations
are still possible to maximize the applications and the
performance of this mechanism. Presently, the CCS only
supports the execution of a single command each time
it is programmed. A natural development is to allow the
CCS to execute kernels composed of multiple commands
without the need for reprogramming between them. This
would not only reduce the programming overhead but
also allow to explore other optimization techniques such
as command rescheduling and data prefetching. Another
possible research direction is to extend the CCS and couple
it to several levels of the memory hierarchy, allowing
the same co-processor to fetch data from several sources
depending on the locality of the operands.
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