
J Supercomput (2018) 74:2314–2328
https://doi.org/10.1007/s11227-018-2260-6

Stream data prefetcher for the GPU memory interface

Nuno Neves1 · Pedro Tomás1 · Nuno Roma1

Published online: 27 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Data caches are often unable to efficiently cope with the massive and simul-
taneous requests imposed by the SIMT execution model of modern GPUs. While
software-aided cache management techniques and scheduling approaches were early
considered, efficient prefetching schemes are regarded as the most viable solution
to improve the efficiency of the GPU memory subsystem. Accordingly, a new GPU
prefetchingmechanism is proposed, by extending the stream computingmodel beyond
the actual GPU processing core, thus broadening it toward the memory interface. The
proposed prefetcher takes advantage of the available cache management resources and
combines a low-profile architecture with a dedicated pattern descriptor specification,
which is used to explicitly encode each kernel memory access pattern. The obtained
results show that the proposed mechanism increases the L1 data cache hit rate by an
average of 61%, resulting in performance speedups as high as 9.2× and consequent
energy efficiency improvements as high as 11×.

Keywords GPU Prefetching · Stream-based Prefetching · Data-pattern encoding ·
Assisted memory access

B Nuno Neves
nuno.neves@inesc-id.pt

Pedro Tomás
pedro.tomas@inesc-id.pt

Nuno Roma
nuno.roma@inesc-id.pt

1 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol,
9, 1000-029 Lisbon, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2260-6&domain=pdf
http://orcid.org/0000-0003-0628-2259
http://orcid.org/0000-0001-8083-4432
http://orcid.org/0000-0003-2491-4977


Stream data prefetcher for the GPU memory interface 2315

1 Introduction

The increasing demand for computation that was observed in the last decade, allied
with the critical energy consumption and cost constraints, has pushed the adoption of
Graphics Processing Units (GPUs) as massively parallel and high-performance com-
puting devices. However, despite the rather consolidated architecture and execution
model that has been adopted for GPUs, the large amount of simultaneously executing
threads (up to thousands) often imposes a significant pressure into their communicating
infrastructures, leading to highly penalizing contentions in the memory accesses [3].

In an effort to tackle such issues, GPUs have been introducing larger and more
elaborate cache hierarchies. This, in turn, allowed the deployment of a wider range
of applications, but at a cost of relying on intensive, complex and hardly manageable
memory access patterns [9]. On the other hand, due to the large amount of concurrently
executing threads, GPUs cannot directly utilize Central Processing Unit (CPU)-like
cache structures. This frequently leads to an increased contention to move data from
the main memory to caches, often degrading (instead of improving) the resulting
performance [8,21,23]. Moreover, given the number of requests for distinct memory
regions, data locality is often poorly exploited, resulting in very low cache hit rates
and increased access latencies [8,21,23].

Some emerging solutions consider the adaptation and deployment of widely known
CPU-like prefetching mechanisms in GPUs, while keeping in mind that conventional
CPU techniques are not particularly suited forGPUs, due to the greater amount of avail-
able parallelism (as a matter of fact, they can even degrade the performance [2,12]).
Most of these solutions are deployed both at software and hardware levels and rely
on feedback-driven mechanisms to adapt the prefetching scheme and its intensity to
the application being executed. Some example solutions include inter-warp prefetch-
ing [12], also allied with adapted warp scheduling mechanisms [10] and adaptive
intra-warp collaboration [19].

However, even though these adaptive prefetching schemes are able to solve some
of the above mentioned issues, they still rely on mechanisms based on runtime access
stride detection and smart prediction systems. These, in turn, require complex control
schemes and a considerable amount of additional computation and training time. As
a result, many of these approaches may ultimately lead to performance degradations
in adverse scenarios (increased contention in the communication infrastructures when
the prediction fails) and to higher energy consumption (unnecessary data requests
from the main memory).

In contrast, it is herein considered the possibility of gathering and describing the
memory access patterns beforehand (with compile-time analysis or through man-
ual input) in order to deploy far simpler and more efficient data fetch mechanisms
at runtime. In particular, it is proposed a stream-based prefetching mechanism that
adopts explicit memory access pattern description encodings (based on [15]) and
relies on a low-profile buffered prefetcher that is aggregated in the GPU memory
interface. The proposed mechanism takes advantage of theMiss Status Hold Registers
(MSHRs) of the L1 data cache of each Streaming Multiprocessor (SM), by indepen-
dently prefetching the required data for a given issued cooperative thread array (CTA).
It also transparently intercepts the cache miss memory requests, serving them either

123



2316 N. Neves et al.

with buffered prefetched data or merging them with outstanding prefetch requests in
the MSHRs. Such an approach allows the deployment of an autonomous prefetch-
ing scheme that does not rely on complex monitoring and feedback-based control
substructures, in turn eliminating detection overheads and reducing the amount of
contention and the pressure to the memory subsystem. Hence, the main contributions
of this manuscript are as follows:

– A new offline data-pattern description specification for GPU applications that is
able to encode the exact memory access pattern of a given application kernel;

– A novel stream prefetching mechanism for GPU accelerators, to be integrated in
their memory subsystem, to transparently perform data fetch operations, by taking
advantage of the available data management resources;

– A low-profile buffered prefetcher architecture for GPU L1 data caches, supported
by a memory address generation unit that deploys the proposed data-pattern
description specification.

The proposed prefetching mechanism was implemented and thoroughly simu-
lated with the GPGPU-Sim simulator [3]. The resulting implementation was then
experimentally evaluated by considering a significant subset of the Rodinia [4] and
Polybench [6] benchmark suites. The obtained results show that the proposed mech-
anism provides an increase of the L1 cache hit rate of 61% (on average), resulting
in average performance speedups of 3× when compared with traditional approaches.
The attained performance gains allow global energy consumption savings of 39% (on
average) and consequent energy efficiency improvements of 3.8×.

The remaining of this manuscript is organized as follows. In Sect. 2, it is presented
the current state-of-the-art and a overview onGPUprefetching. Section 3 describes the
proposed stream prefetching mechanism. In Sect. 4, it is detailed the stream prefetcher
architecture. Section 5 presents the obtained experimental results, followed by the
conclusions (in Sect. 6) addressing the main contributions and achievements.

2 Background and related work

Despite their massively parallel computing structure, GPUs can only partly mitigate
the inherent pressure in themainmemory subsystem by exploiting a Single-Instruction
Multiple-Thread (SIMT) execution paradigm, where a massive amount of threads is
launched at each SM, in groups denoted as thread blocks (or CTAs). The threads of
each CTA are then executed in fixed-sized batches (namedwarps), in which all threads
simultaneously execute the same instruction. In order to deal with the long memory
access (and inherent execution) latencies, warps are switched and enqueued while
data dependencies and outstanding memory requests are resolved. This is essentially
accomplished by increasing the amount of on-the-fly parallelism, in order to hide the
instruction execution latency behind the computation of other threads.

However, due to the long access times of the global memory, the SIMT architecture
and the warp switching mechanisms, by themselves, can hardly mitigate the imposed
overheads, especially when dealing with general purpose applications with complex
access patterns. In the particular case of NVIDIA GPU architectures [16,17], each
SM typically integrates L1 CTA-private caches (constant, texture and data) and a

123



Stream data prefetcher for the GPU memory interface 2317

Fig. 1 Application profiles [computational intensity (issued instructions/memory accesses), cache miss
rate, percentage of issued load instructions and normalized IPC] for subsets of the Rodinia [4] and Poly-
bench [6] benchmark suites

local shared memory used for inter-CTA communication. Due to the high volume
of simultaneous requests, cache misses are registered in dedicated Miss Status Hold
Registers (MSHRs) and scheduled to the subsequent memory level [16]. Furthermore,
in order to efficiently manage the available memory bandwidth, requests to contiguous
memory positions are grouped together in coalescing units in the L1 caches [16].

2.1 GPU cache performance

The addition of cache memories to the base SM architecture allowed for a signifi-
cant mitigation of the contention and long memory access latencies. However, they
cannot efficiently deal with the massive amount of threads executed by each SM
and they are not well suited to deal with the complexity and demand of the memory
access patterns of certain high-performance computing (HPC) kernels. This problem
is clearly highlighted by the observed L1 cache miss rates (up to 94%), and by its
impact on the system’s performance (shown in Fig. 1 for representative subsets of
the Rodinia [4] and Polybench [6] benchmark suites). In particular, besides thread
management, scheduling and profiling techniques [13,20], only emergent prefetching
techniques [2,10,12,19] have proven to be able to deal with such drawbacks.

2.2 GPU prefetching overview

This trend on the adoption of new prefetching techniques is justified by the inherent
characteristics of current HPC applications. In fact, the straightforward introduction
of prefetching mechanisms to execute memory-bound applications (with lower com-
putational intensity—see Fig. 1) inherently allows remarkable improvements of the

123



2318 N. Neves et al.

performance and cache efficiency [15]. However, cache inefficiencies resulting from
complex memory access patterns (namely poor spatial and temporal locality) can only
be significantly mitigated with aggressive predictive techniques and software-aided
control, monitoring and feedback mechanisms to manage the prefetching proce-
dure [2,10,12].

An early solution proposed a many-thread aware prefetching mechanism [12] that
combines both software and hardware approaches to hide the communication latency.
To achieve this, inter-thread prefetching is performed by making a group of threads to
prefetch the data for subsequently scheduled threads. This scheme is deployed at both
software and hardware levels, together with an adaptive training algorithm for auto-
matic management. In [10], the authors acknowledge that existing warp scheduling
policies cannot cope with conventional data prefetching, since the scheduling of con-
secutive warps easily incurs prefetch requests for common memory regions, leading
to increased communication and contention. In order to tackle this issue, the authors
propose an alternative warp scheduling policy, allied with a simple prefetcher, to sep-
arate, in runtime, the scheduling of consecutive warps. Hence, by organizing distant
warps in different fetch groups, they do not immediately execute one after the other,
therefore avoiding overlapping prefetch requests.

To mitigate possible early evictions of prefetched data, [11] proposes a prefetch-
ing mechanism, targeting graph algorithms, that detects specific load instructions in
hardware and injects instructions into the pipeline to prefetch data into spare (unused)
registers. The prefetcher is combinedwith a compile-timemechanism to identify target
loads.

Although successful, the previously referred software-based approaches still rely
on complex hardware control structures and inter-thread prefetching operations, which
can be ineffective in certain applications [2]. To address such concerns, a low-overhead
prefetcher is proposed in [19], which dynamically adapts to the address patterns found
in both graphics and scientific applications. This prefetcher deploys a dynamic and
adaptive prediction scheme that adjusts the prefetching distance through an intra-warp
collaboration approach.

However, due to their predictive nature and the required control overheads, not
only do these techniques reportedly show some non-neglectable prefetching inac-
curacies [19], but they also fall short when dealing with complex memory access
patterns and they impose an increased amount of hardware resources (depicted in
Fig. 2, 1). In contrast, the stream-like processing paradigm usually adopted at the
GPU SM processing structures can be extended toward the memory interface [18],
with the allied advantage of not relying on complex predictive structures and elab-
orate feedback-based monitoring techniques. However, such a streaming paradigm
must be self-managed and transparent to the GPU SMs architecture, as well as easily
integrated into the memory subsystem (as shown in Fig. 2, 2). Furthermore, in order
to avoid prediction overheads and prefetching inaccuracies, the prefetcher should be
implemented by relying on explicit access patterns for the kernel in execution. Such
a stream-like paradigm can be supported either on programmer-provided pragmas or
by specific profiling and pre-analysis of the code, to extract/model and encode the
memory access patterns of each kernel, subsequently feeding them to the on-chip
prefetchers [15].

123



Stream data prefetcher for the GPU memory interface 2319

Fig. 2 Conceptual operation of a typical predictive prefetcher against a pattern-encoded approach

3 Proposed GPU Stream-based prefetching

The proposed mechanism is based on application-specific data-pattern descriptions,
explicitly defined by the programmer (or extracted by the compilation toolchain).
In accordance, the adopted prefetching structures are programmed with the memory
access pattern of a given kernel, hence eliminating the need for predictive runtime
analysis and avoiding the deployment of complex prefetch decision control structures.

Several approaches can be considered regarding the granularity of a prefetching
mechanism and the context level at which it is applied. In fact, it is common to exploit
prefetching techniques at a thread-level granularity [12], which in practice incurs a
warp-level prefetching, since all threads of a given warp simultaneously perform the
memory accesses. However, although such a fine-grained prefetching allows data to
be fetched in the exact same order in which warps are scheduled, it also requires
active complex control and monitoring infrastructures (including modifications to the
scheduler itself [2,10]).

On the other hand, if a more coarse-grained approach is considered, other trans-
parent and fully autonomous prefetching mechanisms can be explored. In particular,
a CTA-level prefetching granularity is adopted by the proposed mechanism, target-
ing the deployment of a low-profile and transparent stream-based communication
paradigm. Hence, all memory access pattern descriptions are encoded with a CTA-
level granularity, with the valid assumption that their corresponding warps are initially
scheduled in order and switched in a round-robin fashion [3,21]. By designing the pro-
posed mechanism in such a way that it fetches and buffers data as soon as a CTA is
launched, any warp-reordering effects are mitigated by making data available as soon
as possible.

123



2320 N. Neves et al.

3.1 Data stream pattern representation

Usually, the memory access patterns of most general purpose GPU applications are
explicitly coded by the programmer, since the development and optimization of the
kernels requires specific code and data transformations in order to attain efficient
per-thread and per-warp memory access sequences, therefore maximizing coalescing
and minimizing contention. In a similar approach, the memory access patterns can
be extracted and manually encoded in a pattern description code. Notwithstanding,
although not herein considered, such procedures can also be performed with the aid of
compile-time analysis algorithms, including memory access tracing [1,9], complex-
ity analysis [22] and polyhedral analysis [7]. Similar techniques will be considered
in future implementations, regarding the integration of these tools in compile-time
toolchains of parallel programming languages (such as OpenCL and OpenACC).

Notwithstanding, the adoption of an explicit data-pattern representation allows
indexing an ample subset of regular memory access patterns, since most complex pat-
terns can be exactly described by an aggregate of n-dimensional affine functions [5].
Accordingly, each data stream can be defined by a set of n-dimensional descrip-
tors, each encapsulating the set of parameters required to generate the sequence of
addresses. This way, any data-pattern descriptors are embedded and sent together with
the binary of the compiled kernel code, either: (i) by encoding all patterns/kernel phases
in a single hierarchical descriptor, merging all data patterns in the same encoding; or
(ii) by providing a list of descriptors to the SM (ordered by execution phase) that
are resolved in sequence. Then, when a given CTA is launched to a SM, the descrip-
tor code is extracted and sent to a prefetcher module (see Sect. 4), along with the
parameters identifying the CTA. Subsequently, the prefetcher decodes and initializes
its descriptors and initiates the corresponding data fetch procedure.

Accordingly, a CTA-level prefetching encoding specification is herein proposed
(based on [15]). It adopts a three-dimensional (n=3) base descriptor, in order to match
as much as possible with the thread distribution topology in a CUDA block [16],
hence ensuring an efficient description of most regular patterns of general purpose
applications. As such, any given memory access pattern can be represented by the
tuple presented in Eq. 1, specifying the starting address of the first memory block
(offset), the size of each contiguous block (hsize), the starting position of the next
contiguous block with relation to the previous (stride), the number of repetitions of
the two previous parameters (vsize), the starting of the next pattern represented by
the previous parameters (span) and the number of repetitions of the four previous
parameters (dsize).

Descriptor Specification : {offset, hsize, stride, vsize, span, dsize} (1)

The affine nature of the proposed encoding is able to exactly describe determinis-
tic memory access patterns. Furthermore, it can also be used to accelerate irregular
applications that do not present deterministic memory accesses before runtime. This is
done by encoding a slightly larger memory region where data are likely to be accessed
at runtime, instead of the exact access sequence. Furthermore, such an approach takes
advantage of the data organization optimizations that are typically performed in the

123



Stream data prefetcher for the GPU memory interface 2321

Fig. 3 Example data-pattern descriptor specification and its decoding for the 2D Convolution application,
of the Polybench [6] benchmark suite

development of irregular applications, allowing an initial population of the memory
resources with the targeted memory region.

3.2 Pattern description code integration

According to the GPU’s SIMT execution model, the data processed by each thread
in a CTA can be indexed by using predefined system variables containing the corre-
sponding thread and CTA identifiers. Hence, although the assigned kernel code is the
same, each CTA initializes the values of such variables with its own runtime identi-
fication parameters, thus defining the memory regions that each thread will access.
By following the same principle, the fields of the adopted descriptor specification can
be initially encoded by taking advantage of the same CTA identification parameters,
since the memory access pattern of a given kernel is essentially the same for all of its
CTAs.

Figure 3 presents an example corresponding to the 2D Convolution benchmark,
from the Polybench [6] suite. In order to perform the required computations, an input
matrix is divided in blocks, which are assigned to different CTAs. There, each thread
calculates a single element of the output matrix. The indexing of each element is
performed (as usual) with the native block identification and dimension primitives of
the CUDA programming language (as depicted in Fig. 3). As such, it is possible to
also use those variables to encode a generic descriptor representing the data pattern of
each CTA and, in turn, decode it for a specific CTA when it is launched to the GPU
(see Fig. 3).

4 Data stream prefetcher

The proposed streamprefetchingmechanism (defined in Sect. 3)was implemented and
integrated in the adopted NVIDIA FermiTM GPU architecture [16], in parallel with
the existing L1 data caches (see Fig. 4). Nevertheless, although this architecture was
selected due to its support by GPGPU-Sim [3] simulator, the proposed mechanism is

123



2322 N. Neves et al.

Fig. 4 Integration of the proposed stream prefetching mechanism in the SM’s L1 memory sub-hierarchy
and prefetecher architecture

architecture-independent and can be straightforwardly implemented in recentNVIDIA
architectures [17]. In fact, neither the L1 data/texture cache unification nor the new
dynamic parallelism features, recently introduced in NVIDIA GPUs [17], affect or
compromise the proposed prefetcher’s integration in the memory hierarchy.

The implemented stream prefetcher is responsible for issuing prefetch requests,
encoded with the proposed data-pattern descriptors. It also intercepts and merges
cache miss requests with prefetch requests and serves them with prefetched data. Its
architecture comprehends: (i) a dedicated controller module, responsible for accepting
incoming descriptors and for initializing them with CTA configuration parameters, as
well as managing the prefetcher operation; (ii) an Address Generation Unit (AGU),
which solves the proposed pattern description specification and generates its corre-
spondingmemory access sequence; and (iii) a prefetch request coalescing unit, entirely
similar to the original one from the SM’s caches.

When a CTA is issued on a SM by the GPU’s workload distribution engine (the
GigaThread Engine, in NVIDIA GPUs [16]), its memory access pattern description
code is loadedwith the kernel code and sent to the streamprefetcher controller, together
with the configuration parameters of theCTA (depicted in Fig. 4).Upon their reception,
the controller initializes the descriptors with the parameter values and stores them in
a dedicated scratchpad memory.

In turn, the proposed stream prefetcher is itself integrated with the conventional
GPU cache hierarchy. Hence, the generated memory address requests are coalesced
by a dedicated prefetch coalescing unit and sent to the global memory. Moreover,
the stream requests issued to the global memory bypass the L2 cache banks, to avoid

123



Stream data prefetcher for the GPU memory interface 2323

the introduction of more contention and to not interfere with the coherency policy
of the shared cached data. Upon reception of the requested data streams, they are
stored in a convenient prefetch buffer, which works in parallel with the L1 data cache.
The deployment of such a structure results from the fact that the prefetched data are
obtained before it is needed by the processing infrastructure and can easily replace
data that are being used at the time. As such, it not only allows possible prefetching
overheads to be hidden but also avoids filling up the cache memory with prefetch data,
which could otherwise incur in premature cache line eviction, and ultimately degrade
the overall performance.

Accordingly, the requests to identical memory regions issued either by the stream
prefetcher AGU or by miss requests from the L1 cache, are merged and registered
in the MSHR. This way, requests issued by the cache can be checked, by the stream
prefetcher, against the data already stored in the prefetch buffer. In case the required
data are present, it is immediately copied to theL1 cache and sent to the SM.Otherwise,
themiss request is eithermerged to an outstanding prefetch request or simply registered
and sent to the L2 cache.

To efficiently generate thememory access pattern described by the adopted descrip-
tor specification, the AGU architecture (depicted in Fig. 4) must execute in the least
number of clock cycles (per memory address) as possible, by iterating over each
descriptor (described in Eq. 1 and Sect. 3.1). In order to keep the architecture foot-
print as low as possible, it is based solely on binary adders, divided by three parallel
functional blocks (stride control, offset control and count control), and a register bank
to store the iteration status. Each block performs one iteration per clock cycle, corre-
sponding to the computation of the current memory address, the multiplication factors
for the next iteration and subsequent descriptor state, together with its corresponding
control flags.

The stream prefetcher also integrates a dedicated unit responsible for managing the
execution of the AGU. Hence, after receiving a given descriptor code, it activates the
address generation procedure and the corresponding memory request issuing and coa-
lescing mechanisms. These procedures are performed independently of the remaining
prefetcher operations and execute until the completion of the access pattern encoded
in the descriptor being solved.

5 Experimental evaluation

The proposed stream prefetching mechanism was integrated in the GPGPU-Sim [3]
cycle-accurate simulator (version 3.2.2), whose most recent supported NVIDIA archi-
tecture corresponds to the FermiTM GPU (GTX480) [16]. The adopted simulator
configuration is detailed in Table 1, together with the considered subsets of the
Rodinia [4] and Polybench [6] benchmark suites. Power consumption was estimated
with the GPUWattch [14] tool. All the benchmark application workloads were fully
simulated for the baseline and stream prefetching architectures. The obtained results
are shown in Fig. 5, with the benchmarks ordered by computational intensity (see
Sect. 2).

123



2324 N. Neves et al.

Table 1 GPGPU-Sim configuration for a NVIDIA FermiTM architecture model (left) and adopted
Rodinia [4] and Polybench [6] benchmark applications and datasets (right)

SIMT core 16 cores, SIMT width=32,

5-Stage pipeline, 1.4GHz

Core 48KB scratchpad, 32768 registers,

Resources 32 MSHRs, 1536 threads, 48 warps

L1 Cache 32KB/core, 4-way, 128B line,

coalescing enabled

Stream 32KB prefetch buffer (per core),

Prefetcher 1KB descriptor memory

L2 Cache 8 banks, 128KB/bank, 16-way,

128B line, write-through policy

Scheduling LRR warp scheduling,

Policy round-robin CTA scheduling

Interconnect 32B channel width, 1.4GHz,

BW= 350GB/s per direction

DRAM Model FR-FCFS Scheduling, 924 MHz,

6 GDDR5 MCs, BW=8Bytes/Cycle

GDDR5 tCL = 12 ns, tRP = 12 ns, trC = 40 ns,

Timing tRAS = 28 ns, tRCD = 12 ns, tRRD = 6 ns

Application Benchmark suite Input size

lud_cuda Rodinia [4] 256

dwt2d Rodinia [4] 1024× 1024

backprop Rodinia [4] 65,536

srad_v2 Rodinia [4] 2048× 2048

needle Rodinia [4] 2048

3DConvolution Polybench [6] 256× 256× 256

gemm Polybench [6] 512× 512× 2

2DConvolution Polybench [6] 4096× 4096

gaussian Rodinia [4] 512

euler3d Rodinia [4] 97K

bfs Rodinia [4] 1M nodes

bicg Polybench [6] 16M

mvt Polybench [6] 16M

atax Polybench [6] 16M

gesummv Polybench [6] 16M

The graph presented in Fig. 5a depicts the attained L1 data cache efficiency. As
it can be observed, a significant cache hit-rate improvement is obtained (between
34 and 82%), resulting in a clear relation between the performance and cache effi-
ciency improvements, and the computational intensity of each considered application

123



Stream data prefetcher for the GPU memory interface 2325

A

C

B

D

Fig. 5 Relative L1 cache hit-rate improvement, resulting performance speedup and energy efficiency for
the adopted benchmark set

(compare also with Fig. 1). Moreover, the measured improvements reflect the allied
capabilities that are provided by the proposed stream prefetcher to mitigate the cache
performance degradation effects of memory-bound applications and complexmemory
access behaviors. In particular, it shows hit-rate improvements between 68 and 82%
for the euler3d, gaussian, atax, bicg, gesummv and mvt memory-bound
applications. The exception concerns the bfs benchmark, where a smaller improve-
ment is observed (58%), due to its irregular data access nature [4]. Although slightly
less effective for the remaining compute-bound applications, the proposed prefetching
mechanism still allows a significant average cache hit-rate improvement of 61.3%.

From the graph presented in Fig. 5b, it is possible to ascertain that the proposed
stream prefetching mechanism allows performance speedups (IPC change against
baseline setup) as high as 9.2× (in memory-bound applications), resulting from an
early prefetching of the exact data sequence and from a mitigation of the number of
compulsory misses. In general, the attained performance gains range from 2.8× and
3.1×, measured for the 3DConvolution and euler3d, up to the higher speedups
of 5.7× and 9.2×, in the bicg and gesummv applications, respectively. These values
show the ability of the proposed stream prefetching mechanism to hide long mem-
ory accesses (and mitigate their performance degradation). Moreover, it is shown that
even though computationally intensive applications inherently tend to masquerade the
impact of the communication infrastructure on the global application performance,
they can still achieve a significant performance improvement when aided by the pro-
posed mechanism.

To complete the evaluation of the proposed GPU stream prefetchingmechanism, an
energy efficiency study was also conducted regarding the adopted set of benchmarks.

123



2326 N. Neves et al.

From the results presented in Fig. 5c, it is possible to ascertain that the energy consump-
tion reduction is directly related to the attained performance gains (i.e., resulting from
the execution time reduction). As a result, the proposedmechanism allows energy con-
sumption reductions from 7 up to 90%, corresponding to the most compute-bound and
memory-bound applications, respectively. This is inherently reflected in the considered
performance-energy consumption efficiency metric (Instructions/Joule), presented in
the table and graph depicted in Fig. 5d. It shows that the prefetching mechanism
increases the efficiency of all benchmark applications. As expected from the previ-
ously presented performance gains, a major efficiency improvement is observed for
memory-bound applications, leading to a maximum of 11.6× efficiency improvement
in the bicg application. The impact of the prefetching mechanism is also highlighted
for the most computational intensive applications, incurring in at lest 1.2× energy
efficiency improvements, in the dwt2d and backprop benchmarks.

The attained cache efficiency and instructions per clock cycle (IPC) improvements
support the gains and capabilities of the proposed stream prefetching mechanism.
These gains also evidence the fact that an exact description of the kernel memory
access sequence allows an accurate and efficient prefetching procedure. Since it does
not rely on complex feedback and monitoring mechanisms, consequently eliminating
control overheads and prefetching inaccuracies, the proposedmechanism is capable of
providing full coverage for deterministic memory access sequences, while still reduc-
ing non-negligible waiting times reported in approaches such as [11] and [19]. In fact,
adaptive state-of-the-art approaches report prefetching accuracies not greater than 89%
[10] and 93.5% [19]. Notwithstanding, while the achieved cache hit-rate improvement
is in line with other methods [10,19], the elimination of complex control and monitor-
ing delays, combined with the adopted CTA-level prefetching synchronization, results
in higher (3x) performance speedups (on average).

6 Conclusion

To address the limitations of current GPU data cache hierarchies and prefetching
schemes, a stream prefetching mechanism, adopting an efficient data-pattern descrip-
tor specification, is presented. The proposed mechanism is able to encode the exact
memory access pattern of a given application kernel and is supported by a new low-
profile buffered prefetcher that is aggregated to the GPUmemory interface. Moreover,
it takes advantageof the existingdata cachemanagement resources of theGPU, in order
to mitigate otherwise added contention andmemory traffic. The proposed prefetcher is
also able to intercept cache miss memory requests, serving them either with buffered
prefetched data or merging them with outstanding prefetch requests in the MSHRs.

The proposed stream prefetching mechanism was integrated in the GPGPU-Sim
simulator [3] and an experimental evaluation was conducted for a significant subset of
the Rodinia [4] and Polybench [6] benchmark suites. When compared with traditional
approaches, the obtained results show that the proposed mechanism is capable of
increasing the L1 data cache hit rate by an average of 61%, resulting in performance
speedups as high as 9.2× and consequent energy efficiency improvements as high as
11.6×.

123



Stream data prefetcher for the GPU memory interface 2327

Acknowledgements This workwas partially supported by national funds through Fundação para a Ciência
e a Tecnologia (FCT) under project UID/CEC/50021/2013 and research grant SFRH/BD/100697/2014.

References

1. Amilkanthwar M, Balachandran S (2013) CUPL: A compile-time uncoalesced memory access pattern
locator for CUDA. In: Proceedings of the 27th ACM International Conference On Supercomputing.
ACM, pp 459–460

2. Arnau JM, Parcerisa JM, Xekalakis P (2012) Boosting mobile GPU performance with a decoupled
access/execute fragment processor. ACM SIGARCH Comput Archit News 40(3):84–93

3. Bakhoda A, Yuan GL, Fung WW, Wong H, Aamodt TM (2009) Analyzing CUDA workloads using a
detailed GPU simulator. In: IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp 163–174

4. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee SH, Skadron K (2009) Rodinia: a benchmark
suite for heterogeneous computing. In: IEEE International Symposium on Workload Characterization
(IISWC), pp 44–54

5. Ghosh S, Martonosi M, Malik S (1997) Cache miss equations: An analytical representation of cache
misses. In: ACM International Conference on Supercomputing. ACM Press, pp 317–324

6. Grauer-Gray S, Xu L, Searles R, Ayalasomayajula S, Cavazos J (2012) Auto-tuning a high-level
language targeted to GPU codes. In: Innovative Parallel Computing (InPar), 2012. IEEE, pp 1–10

7. Grosser T, Groesslinger A, Lengauer C (2012) Polly—performing polyhedral optimizations on a low-
level intermediate representation. Parallel Process Lett 22(04):1250010

8. Jia W, Shaw K, Martonosi M (2014) MRPB: Memory request prioritization for massively parallel
processors. In: 2014 IEEE 20th International Symposium onHigh Performance Computer Architecture
(HPCA). IEEE, pp 272–283

9. JiaW, ShawKA,Martonosi M (2012) Characterizing and improving the use of demand-fetched caches
in GPUs. In: Proceedings of the 26th ACM International Conference on Supercomputing. ACM, pp
15–24

10. JogA,KayiranO,MishraAK,KandemirMT,MutluO, Iyer R, Das CR (2013)Orchestrated scheduling
and prefetching for GPGPUs. ACM SIGARCH Comput Archit News 41(3):332–343

11. Lakshminarayana NB, Kim H (2014) Spare register aware prefetching for graph algorithms on gpus.
In: IEEE 20th International Symposium on High Performance Computer Architecture (HPCA), pp
614–625

12. Lee J, Lakshminarayana NB, Kim H, Vuduc R (2010) Many-thread aware prefetching mechanisms
for GPGPU applications. In: 43rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp 213–224

13. Lee S, Kim K, Koo G, Jeon H, Ro WW, Annavaram M (2015) Warped-compression: enabling power
efficient GPUs through register compression. In: 42nd Intl Symposium on Computer Architecture.
ACM, pp 502–514

14. Leng J, Hetherington T, ElTantawy A, Gilani S, Kim NS, Aamodt TM, Reddi VJ (2013) GPUWattch:
enabling energy optimizations in GPGPUs. ACM SIGARCH Comput Archit News 41(3):487–498

15. Neves N, Tomás P, Roma N (2017) Adaptive in-cache streaming for efficient data management. IEEE
Trans Very Large Scale Integr (VLSI) Syst 25(7):2130–2143

16. NVIDIA (2009) NVIDIA’s Next Generation CUDATM Compute Architecture: FermiTM. NVIDIA,
Santa Clara, Calif, USA

17. NVIDIA (2016) NVIDIA GP100 Pascal Architecture. White paper (Online). https://images.nvidia.
com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

18. Panda R, Eckert Y, Jayasena N, Kayiran O, Boyer M, John LK (2016) Prefetching techniques for
near-memory throughput processors. In: Proceedings of the 2016 International Conference on Super-
computing, ICS ’16. ACM, New York, pp. 40:1–40:14

19. Sethia A, Dasika G, Samadi M, Mahlke S (2013) APOGEE: Adaptive prefetching on GPUs for energy
efficiency. In: Proceedings of the 22nd International Conference on Parallel Architectures and Com-
pilation Techniques. IEEE, pp 73–82

20. StephensonM,Hari SKS,LeeY,EbrahimiE, JohnsonDR,NellansD,O’ConnorM,Keckler SW(2015)
Flexible software profiling of GPU architectures. In: 42nd International Symposium on Computer
Architecture. ACM, pp 185–197

123

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf


2328 N. Neves et al.

21. Torres Y, Gonzalez-Escribano A, Llanos DR (2011) Understanding the impact of CUDA tuning
techniques for Fermi. In: International Conference on High Performance Computing and Simulation
(HPCS). IEEE, pp 631–639

22. Wu B, Zhao Z, Zhang EZ, Jiang Y, Shen X (2013) Complexity analysis and algorithm design for reor-
ganizing data tominimize non-coalescedmemory accesses onGPU. ACMSIGPLANNot 48(8):57–68

23. Xie X, Liang Y, Wang Y, Sun G, Wang T (2015) Coordinated static and dynamic cache bypassing
for GPUs. In: 2015 IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). IEEE, pp 76–88

123


	Stream data prefetcher for the GPU memory interface
	Abstract
	1 Introduction
	2 Background and related work
	2.1 GPU cache performance
	2.2 GPU prefetching overview

	3 Proposed GPU Stream-based prefetching
	3.1 Data stream pattern representation
	3.2 Pattern description code integration

	4 Data stream prefetcher
	5 Experimental evaluation
	6 Conclusion
	Acknowledgements
	References




