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In this work, we present an optimized perturbative quantum mechanics/molecular mechanics
(QM/MM) method for use in Metropolis Monte Carlo simulations. The model adopted is particu-
larly tailored for the simulation of molecular systems in solution but can be readily extended to other
applications, such as catalysis in enzymatic environments. The electrostatic coupling between the QM
and MM systems is simplified by applying perturbation theory to estimate the energy changes caused
by a movement in the MM system. This approximation, together with the effective use of GPU
acceleration, leads to a negligible added computational cost for the sampling of the environment.
Benchmark calculations are carried out to evaluate the impact of the approximations applied and the
overall computational performance. Published by AIP Publishing. https://doi.org/10.1063/1.5009820

I. INTRODUCTION

The theoretical treatment of chemical systems in solu-
tion is still a major challenge today. Although much progress
has been made in the description of condensed phase through
parametrised molecular mechanics (MM) force fields,1–3 we
are still far from a well-defined standard approach to reac-
tivity in solution. Whenever an explicit description of the
electronic structure is required, one is left with the question
of how to include the solvent effects in the quantum mechan-
ical (QM) calculations. The use of hybrid QM/MM models
for condensed phase has been a popular approach for several
years. Through the use of multiscale modeling, the application
range of QM has been expanded to fields such as enzymatic
catalysis4–6 and surface and material sciences,7–9 just to name
a few. However, this all comes at a cost. Even a rather simple
QM calculation on a dozen atoms can outweigh the cost of
MM energy and gradient evaluations in a complete simulation
box.

Particularly limiting to the application of QM/MM meth-
ods is the problem of configurational sampling, perhaps even
more than the limitation in the QM system size. In order to
sample the configurational space of interest, simulations span-
ning over hundreds of picoseconds (or even nanoseconds) may
be required. These are, however, prohibitively expensive. In
the case of molecular dynamics (MD), all components of the
system have to evolve concurrently. This requires several thou-
sand QM calculations. This is mainly due to the environment
and its large number of degrees of freedom. Even when the
impact on the computed property is small, proper configura-
tional sampling is required, otherwise one will be at risk of
introducing a bias.

Sequential QM/MM approaches are oftentimes used in
this context. Classical simulations can generate the ensem-
ble followed by a limited number of QM/MM calculations
on a subset of configurations. A recent study10 investigated

systematically the impact of the force field used in the classi-
cal simulations on the final QM/MM results. It turns out that
the accuracy is mostly determined by the latter choice and
that standard transferable force fields can lead to very large
errors. Except for a tedious system-specific reparametrization,
only a sampling at the QM/MM level can avoid this error
completely.

Continuum solvation models are a different approach
to describe solvation which altogether avoid the sampling
problem. The most popular examples include the conductor-
like screening model (COSMO),11 the polarizable continuum
model (PCM),12 or the somewhat more recent solvation model
based on the solute density (SMD).13 This class of methods
describe the solvent as a continuum around the solute. Com-
mon to all of them is the construction of a cavity on which sur-
face charges are computed to describe the electrostatic inter-
action. The cavity can, for example, be constructed of scaled
van der Waals (vdW) radii or as the solvent accessible surface.
The results are rather sensitive to the construction of the cav-
ity. The surface charges are determined self-consistently and
therefore allow for mutual polarization between the solute and
the continuum.

The COSMO-RS14 model improves upon this contin-
uum description. The approximate structure of the solvent
is taken into account by computing the probability distribu-
tion of the screening charge density from a COSMO calcu-
lation. Surface patches are constructed and the electrostatic
interaction is computed as a sum of pairwise interactions of
these patches. The perfectly adapted charges of the contin-
uum are therefore substituted by the more realistic surface
patches. Additional terms for the description of hydrogen
bonds and dispersion effects are added. Also models like
PCM or SMD add further terms, e.g., for the formation of
the cavity and the dispersion interaction.12,13 These terms are
commonly related to macroscopic properties like the surface
tension.
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Continuum models are an effective way to include the
polarization of the solvent molecules which in a simple
QM/MM approach is often neglected. However, the descrip-
tion of the entropic effect is not very well defined due to the
lack of solvent degrees of freedom. Also specific and direc-
tional interactions like hydrogen bonds are not included or
only described in an approximate way. Heterogeneous envi-
ronments like solvent mixtures, ions in solution, or even pro-
tein environments can be difficult to describe with continuum
models.

A very different approach is the reference interaction
site model15,16 (RISM) which instead of exploring the phase
space is based on spatial distributions. By solving an Ornstein-
Zernike type integral equation, the solvation structure is
obtained and analytical expressions for the solvation thermo-
dynamics can be derived. In order to solve these equations,
an additional closure relation is required, e.g., the hypernetted
chain (HNC) closure17,18 or the Kovalenko-Hirata (KH) clo-
sure.19 This approach is computationally very efficient since no
explicit simulation is required. A recent development by Kast
and co-workers computes the expensive electrostatic interac-
tions in reciprocal space reducing the computational costs even
further.20

However, RISM can also lead to thermodynamic incon-
sistent results. For example, the pressure can be calculated
directly and indirectly from the compressibility or internal
energy and these three results can differ greatly. Further-
more, interaction sites of molecular species are considered
non-bonded by the widely used HNC closure relation which
results, for example, in a non-physical dependence on the
so-called auxiliary sites that just label a fixed point inside
of the molecule. The excess chemical potential is overesti-
mated for hydrophobic hydration, and steric constraints are
violated.21 In fact, the choice of the right closure relation
is not clear as other relations have different problems, like
the KH closure relation which is known to create too broad
distributions.22

Perturbative Monte Carlo QM/MM (PMC QM/MM),
first suggested by Truong and Stefanovitch,23 was a promis-
ing alternative to solve the sampling problems in QM/MM
calculations. In this method, the coupling between the two
regions is approximated by first-order perturbation theory,
leading to a simple electrostatic 2-body term. This allows
for the effective application of Metropolis Monte Carlo, even
though no efficient implementation has been presented to
date. There is also little information on how the method fairs
in a realistic simulation case, involving hundreds of solvent
molecules and with extended simulation times. The algorithm
has to be designed to take full advantage of the separation
between the QM and MM calculations. This was not possi-
ble at the time the method was proposed, given that hybrid
architectures were not available. In this work, we discuss a
multi-device parallel approach to PMC, using the Metropolis
MC sampling and a mixed QM/MM method for the energy
calculation.

In Sec. II, we start by reviewing the original method and
discuss its extension to periodic systems. Given that examples
in the application of PMC are somewhat limited, we com-
pare the results of a standard PMC implementation to full

QM/MM results. We then proceed to analyse the impact of
specific approximations used in our scheme, in particular the
update of the QM system density and the numerical integration
grid. We also briefly discuss the GPU acceleration although
the interested reader should refer to Ref. 24 for more infor-
mation. A series of benchmark applications are discussed,
comparing with experiment and previous condensed phase
calculations.

II. METHOD

Simulation systems in a QM/MM run are composed
of a region of interest (in some cases referred to as active
site) and an immersive environment. The latter can be a
protein and/or solvent molecules. For simplicity, we will
mostly refer to solvent environments in this work. Figure 1
shows a schematic example of how such a system could look
like. We reduce it to a very simple case: a single molecule,
which is treated at the QM level, and two solvent molecules,
treated at the MM level. By applying Metropolis MC, a
molecule will be randomly picked and then translated and
rotated to generate a new structure. This last MC step will be
either accepted or rejected, according to the resulting energy
change.

The total energy in a QM/MM calculation can be
expressed as

EQM/MM = EQM + EMM + EC
QM/MM + EvdW

QM/MM, (1)

where the first two terms on the right-hand side represent the
internal energy of the QM and MM subsystems, and the last
the interaction between the two, Coulomb (EC

QM/MM) and van

der Waals (vdW, EvdW
QM/MM).

If a molecule in the MM subsystem is moved, all terms in
Eq. (1) will be affected, not only the force field terms. Charges
are being moved and the wave function/density of the QM
subsystem will change as a result of this variation. This would
require a new SCF cycle for each MC step. Since the compu-
tational efficiency of the Monte Carlo method relies on the use
of 2-body potentials, there really is no advantage in the use of
conventional QM/MM in this context.

Truong and Stefanovich23 proposed the use of first order
perturbation theory to approximate the electrostatic coupling
between the QM and MM subsystems. If a set of partial charges
is moved from the position vector set {rα} to a new {r′α}, the
energy change in the terms EQM and EC

QM/MM will be given
by

FIG. 1. A system composed of one QM molecule (1, red) and two MM solvent
molecules (2 and 3, green). For each MC step, the difference in energy between
the molecule moved (2) and every other molecule has to be computed, but at
different levels of theory.
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∆(EQM + EC
QM/MM) = 〈Ψ′ |ĤQM +

∑
i

∑
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)
.

(2)

The indices i and A run over the solute electrons and nuclei,
respectively. The wave function Ψ is calculated for the initial
position of the lattice, with the wave function Ψ′ being the
converged solution for the new charge position. Partial sums
restricted to the charges which have been moved are marked
with a prime. As it can be observed, this amounts to a full
new calculation of the QM subsystem energy although the
only change occurred in the electrostatic field around it. The
electronic part also includes a sum over all charges, even if the
latter have not been changed in the MC step.

Alternatively, the value can be approximated by pertur-
bation theory. The difference in the Coulomb operator from
the initial and final states corresponds to the perturbation. In
first-order, this is given by

∆(EQM + EC
QM/MM) ≈ 〈Ψ|

∑
i

′∑
α

(
qα

|r′α − ri |
−

qα
|rα − ri |

)
|Ψ〉

+
∑

A

′∑
α

(
qαZA

|r′α − rA |
−

qαZA

|rα − rA |

)
.

(3)

The energy change is now calculated by two rather simple
sums. The electronic part corresponds to trivial nuclear inter-
action integrals on the basis of the original wave function. This
will, of course, only hold as long as the perturbation is small.
Extension to second-order perturbation theory would include
density relaxation effects (such as in the approach suggested
by Gao and co-workers25). Although this is straightforward
and could contribute to a better coupling to the environ-
ment, it would lead to a break-down of the 2-body interaction
potential.

We have opted for a different approach. Technically, the
use of Eq. (3) would imply that the QM wave function/density
only needs to be recomputed if the solute moves. However,
one can also perform updates in the QM density in regular
intervals, thereby adapting the latter to the changes in the sol-
vent. This will keep the effect of the perturbation small and
the approximation more reliable. We will discuss the effect of
such updates later in the text.

With the use of first-order perturbation theory, two major
goals are achieved. First of all, the computation of the QM/MM
electrostatic interactions is extremely facilitated. Second, and
perhaps the most important fact, one obtains an energy expres-
sion for use in MC simulations which is strictly based on
2-body interactions. In between density updates, a large num-
ber of solvent movements can be carried out using Eq. (2) for
the electrostatic component, leading to an effective sampling
of the environment.

Our implementation of the PMC QM/MM method works
in two main cycles.

(a) QM update—the electronic density of the QM region
is constructed (in this work we have applied DFT so
that this step consists of solving the corresponding SCF
cycles).

(b) PMC cycle—K PMC steps are taken in the MM sys-
tem, while keeping the QM region static. The density
from the previous QM update is used. Each step con-
sists in selecting, translating, and rotating a random MM
molecule (Fig. 1). After this perturbation, the changes
in the van der Waals and Coulomb energy of the system
must be computed and checked for acceptance.

The Coulomb QM/MM procedure, whereby the charge-
electron interaction integrals are computed, stands as the bot-
tleneck of each PMC cycle step. The interested reader should
refer to Ref. 24 for details on the GPU implementation and
how the two cycles can be overlapped for maximal computa-
tional efficiency.

In order to compute periodic systems, special care has to
be taken about electrostatics since the latter are long-ranged
and their contribution non-convergent. The most standard
approach to the problem is the use of Ewald summations or
methods thereof derived. We opted for a different approach.
QM periodic calculations are usually carried out in small
simulation boxes, given the inherent computational cost and
unfavourable scaling with system size. In such cases, an Ewald
sum stands as the most reasonable option. However, since the
environment is described at the MM level, we can increase its
size with relative ease and routinely compute large simulation
boxes, much larger than plane wave calculations or other peri-
odic QM alternatives. With large box lengths, the use of shifted
potentials becomes viable.26 We have opted for the functional
form

Vshift =



1
r −

1
rc

+ 1
r2

c
(r − rc) r < rc

0 r ≥ rc

. (4)

It has been shown for classical simulations that the energetics
and dynamics are reproduced remarkably well by a shifted
force potential. Energy difference, velocity, and torque vectors
have been compared to results from the Ewald summation and
they are nearly identical. Furthermore, velocity autocorrelation
functions and powerspectra have been compared to evaluate
the short- and long-time dynamics which again compare well
to the reference.26

For each {atom, grid point} pair, the corresponding
energy variation term is computed, according to their distance
in space. This variation is in respect to the previous set of
coordinates of the changed molecule. The usage of a cutoff
distance results in four possible space regions and four slightly
different energy expressions. However, the computation of the
∆EC

MM and ∆EvdW
MM terms has similar algorithm structures and

this leads to no significant penalty in the performance.

A. Density update

The density updates can be carried out with varying fre-
quency. The theoretical limits are well defined with the exact
QM/MM simulation on the one side and the frozen density
approximation on the other. However the result of the frozen
density approximation depends strongly on the actual solvent
configuration in which the density is generated. Free energy
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FIG. 2. Free solvation energy simulations with PMC with increasing fre-
quency of density updates for one QM water in the TIP3P solvent. Top:
First λ step. Bottom: Distributions of interaction energies between QM and
environment.

perturbation (FEP) calculations have been carried out to com-
pute the absolute solvation free energy of water in water.
Water as a strongly polar medium is expected to show a strong
dependence on the updates and is well-suited as a hard bench-
mark system. The results in Fig. 2 show the first step of the
decoupling of the electrostatic interaction between the QM
subsystem and the MM environment. Simulations have been
carried out with increasing frequency of density updates. A
single MC chain with 40 M steps has been analyzed.

The simulations indicate that the free energies of simu-
lations are very stable with regard to the number of updates.
The result changes by only about 2 kJ/mol when the num-
ber of updates is increased up to 50 k steps. Decreasing the
updates even further to 5 M steps, only 8 densities are generated
for the whole simulation. Here a much larger deviation

FIG. 3. RMSD of the electrostatic interaction for different grids with the exact
results as a reference for snapshots of a PMC simulation of a capped arginine
cation in TIP3P water.

becomes apparent. This is a prototypical example for the
dependence on the updates. However, the sign of the devia-
tion can be easily reversed and it depends in the case of very
few updates strongly on the configurations which are used for
these updates.

The influence on the set of configurations that is generated
during the simulations can be very well monitored with the
distribution of interaction energies between the QM water and
the solvent. As shown in Fig. 2, the shift in these distributions
follows the trend observed in the free solvation energies. It
becomes evident that not only the energetics are influenced but
also that a different part of the configurational space is sampled
with less updates. Based on these results, we opt for an update
frequency of 20 k steps which strikes a good balance between
computational costs and accuracy. The choice has been made
based on the study of several simulations. We provide a few
more examples in the supplementary material.

B. Integration grid

The accuracy of the computed electrostatic interaction
depends not only on the QM update frequency but also on
the underlying grid used for the numerical integration. The
grids for the description of the electronic charge density were
constructed by following the scheme of Mura and Knowles27

(α = 1 and m = 3) or Becke28 (α = 1) for the radial distribu-
tion and the scheme of Lebedev29 (lmax = 53) for the angular
distribution.

The dependence on the radial distribution of the grid has
been investigated on 85 snapshots of a simulation of a capped
arginine cation in TIP3P water. The exact electrostatic interac-
tion has been computed with Molpro by neglecting periodicity
and compared with the results from the grids. The root-mean
square deviations (RMSDs) between grid and exact results are
shown in Fig. 3. Both grids converge to the exact result with
increasing target accuracy and differences are only visible for
a low accuracy. With a target accuracy of 10�7 or smaller, the
errors are below 0.6 kJ/mol for both grids.

In order to evaluate the impact of the grid target accuracy
on the stability of the simulation, PMC simulations starting
from the same structure and with the same seeds have been
carried out. In Fig. 4, the relative potential energy is plotted
for simulations with varying grid sizes, using a simulation with

FIG. 4. Comparison of relative potential energies of PMC simulations of the
same trajectory with different grid sizes. � log(target accuracy) is given in the
legend with the reference being 11.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-039747
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FIG. 5. Decoupling of the electrostatic interaction of a free energy pertur-
bation calculation for ethanol in water with PMC with different grid sizes.
� log(target accuracy) is given in the legend and the energies are relative to
11. The shaded area denotes 5% of the free energy (≈1.8 kJ/mol).

a 10�11 Eh grid as reference. One can see that with an accuracy
of 10�10 and 10�9 Eh, the error is well below 0.5 kJ/mol. For
10�8 and 10�7 Eh, the error increases up to about 1.2 kJ/mol.

It is important to note that the structures are exactly the
same during this window. An exception is the simulation with
an accuracy of 10�5 Eh. The difference in the energies is large
enough that at about step 8200, the Metropolis MC acceptance
criteria produce a different geometry and the Markov chains
diverge from each other. At this point, the simulation cannot be
compared directly to the reference. Due to the way the Markov
chains are constructed, the error does not accumulate over the
course of the simulation.

After this detailed comparison of single energy terms and
Monte Carlo steps, the overall effect of the grid on a free energy
perturbation simulation has been evaluated. The free energy
of solvation has been computed for a single ethanol molecule
in water. The results of the first half of this simulation—the
electrostatic decoupling—are shown in Fig. 5. The target accu-
racy for the grid has been varied between 10�4 and 10�11 Eh. It
can be seen that the difference between the more accurate grids
is lower than 5% of the free energy or about 1.8 kJ/mol. Most
importantly, the error does not accumulate with the FEP steps
and is well within the limits of the statistical precision of these
simulations. This explains also the rather arbitrary ordering of
the results. Due to the non-systematic nature of the error, the
overall effect on the simulations is rather low even for small
grids with a target accuracy of up to 10�6 Eh. If the grid size is
even further reduced, a systematic overestimation of the free
energy can be observed and the error is an order of magnitude
larger and accumulates with the lambda steps.

III. COMPUTATIONAL DETAILS

All QM calculations in the PMC simulations described
in this manuscript have been carried out with a development
version of Molpro.30 Unless otherwise noted, B3LYP/def2-
TZVP31 including a D3 dispersion correction32,33 with Becke-
Johnson type damping34 has been used. A level shift of�0.3 Eh

has been applied to improve the convergence of the SCF QM
calculations. The integration grid for the perturbative steps
has been constructed according to Mura and Knowles27 for

the radial grid and according to Lebedev for the angular grid28

with an increased target quadrature accuracy in Molpro of 10�7

Eh for the computation of the density and the default settings
for the computation of the energy. Updates of the density have
been carried out every 20 k steps.

The different solvent molecules have been described by
the OPLS-AA force field, always using a rigid internal geom-
etry. Periodic boundary conditions and cutoffs for the van der
Waals and electrostatic interactions of 10 Å and 12 Å, respec-
tively, have been used for all simulations. A temperature of
298 K has been used for simulations or free energy correc-
tions. The step size of the Monte Carlo translational steps has
been adjusted in order to achieve an acceptance ratio of about
20% and the rotation steps fixed to 10◦.

The tests for different grids featured in Sec. II B have
been carried out with density-fitting35 approximations and the
PBE36 functional.

Free energy differences with the PMC approach have been
computed by the use of free energy perturbation theory (FEP)
protocols. Simulations have been carried out in forward and
reverse directions. Uncorrelated frames of these simulations
have been analysed with the Bennett acceptance ratio (BAR)
method.37 Autocorrelation functions as well as BAR were
computed through the use of the pymbar program.38,39

IV. RESULTS AND DISCUSSION

Benchmarking computational methods for systems in
solutions can be an intricate task. Aside from solvation ener-
gies, there are little experimental data which can be compared
to theory in a straightforward fashion. Concentration effects,
diffusion, and the inherent difficulty of measuring data in solu-
tion all lead to an uncertainty whether deviations are due to the
model being used or inherent to the experiment. With this in
mind, we considered three main questions to be tackled in our
test applications:

(a) solvent structure, particularly the structure of the first
solvation shells around the QM solute.

(b) Thermodynamics of solvation, which are considered
through the calculation of solvation free energies.

(c) Solvent effects on reactivity, namely, the stabilization of
transition states and/or products.

A. Methyl chloride solvation shell

Solvent effects can be classified according to the dominant
physical interactions at play. The first would be the electrostatic
interaction between the solvent and solute. Another factor in
play is the additional sterical hindrance caused by the solvent40

or dispersion effects which can become quite significant in
the condensed phase. The change of the potential energy of
the solute can be roughly distinguished in three categories.
The direct effect shifts the energies of stationary points, the
geometric effect changes the positions of the stationary points
itself, and the vibrational effect changes the curvature of the
potential energy surface, modifying the vibrational levels and
consequently also the free energy.41

Nucleophilic substitution reactions (SN2) of methyl
halides

X− + RY→ XR + Y−
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have been widely studied over the years and the solvent influ-
ence on this class of reactions has been well established.40–44

For example, the potential of reactions with R = CH3 and X,
Y = Cl changes from a double well potential in gas-phase to
a unimodal potential in an aqueous environment. This causes
transfer rates to be lowered up to 20 times.

Directional interactions, e.g., hydrogen bonds, are of high
importance since they may stabilize specific phase space points
along the reaction coordinate.44 The PMC QM/MM approach,
by allowing the explicit simulation of the solvent structure,
could in principle describe such effects. However, for this
to happen, the molecular interactions have to be properly
described. Since the solute-solvent interactions are described
through classical Lennard-Jones potentials and an electrostatic
interaction term which is only correct up to first-order, the
accuracy of the method should be carefully assessed.

We have studied the solvation shell structure of
methylchloride (MeCl), a commonly used model for this type
of reactions. It is known that simple force fields for water have
issues in the description of local hydrogen bonding structures.
It has been argued that in the context of QM/MM, many of
the hydrogen bond properties can be reproduced.45 We have
carried out PMC calculations of MeCl in aqueous solution
and analysed the solvent structure, making use of geometry
criteria.

A PMC QM/MM simulation of 80 M steps has been car-
ried out with density updates every 20 k steps. Snapshots were
saved every 10 k steps and used for further analysis. For com-
parison, classical MM MC simulations have been carried out
with the same number of steps, whereby also the solute is
described with the OPLS-AA force field.

The distance and angle are defined as depicted in Fig. 6
together with the corresponding angular radial distribution
functions. In the case of PMC QM/MM, a sharp peak is visible

at distances of 2.0-2.5 Å and below 35◦. This peak accounts
for the interaction between the chloride and its first solva-
tion shell. Angles smaller than 30◦ are indicative of hydrogen
bonds.44 In contrast, the wide range of angles at longer dis-
tances which can be observed in the MM MC results is typical
for non-directional interactions. The PMC results are in qual-
itative agreement with Car-Parrinello MD simulations44 on a
similar system [Cl · · · CH3 · · · Br]�.

B. Solvation free energies

Solvation free energies are not only of importance for
chemistry but also for biology and pharmacy. Relevant pro-
cesses that are influenced are protein folding, protein-ligand
binding, or the transport of drugs across membranes.46 Since
many experimental results are available for small molecules
in a wide range of solvents, the computation of solvation free
energies poses an important benchmark for any new method
or force field.47 It should be noted, however, that this is far
from being the type of application one would be interested
in the use of PMC QM/MM. Classical MM and continuum
models can, with adequate parameterization, perform quite
well in such applications.

The internal geometries of all solutes have been opti-
mized in gas phase and with COSMO with the following
dielectric constant values: ε(Toluene) = 2.379, ε(Chloroform)
= 4.806, ε(Acetonitrile) = 35.88, ε(Water) = 80.0. Solva-
tion free energies are straightforward to compute. The inter-
action between the QM subsystem and its surrounding is
stepwise decoupled by scaling the point charges or van
der Waals parameters. The electrostatic interaction has been
turned off in four equidistant steps. In cases of large differ-
ences between the forward and reverse simulation, the num-
ber of steps has been doubled. This only occurred for the

FIG. 6. Top: Definitions of distance
and angle. Bottom: Radial angular
distribution function of ClCH3 · · ·

F� in TIP3P water simulated with
PMC (B3LYP/def2-TZVP) and MM
MC (OPLS-AA).
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solvent water with the solutes water, toluene and ethane-1,2-
diol.

The decoupling of the van der Waals interaction requires a
soft-core potential48 which explicitly depends on the alchemi-
cal variable λ and thereby avoids singularities with the numer-
ical integration of FEP at the endpoints. The van der Waals
interaction is then defined as

EvdW = 4ελn


(
α (1 − λ)m +

( r
σ

)6
)−2

−

(
α (1 − λ)m +

( r
σ

)6
)−1

(5)

with m = n = 1, α = 0.5, and ε andσ defining the van der Waals
potential.

The λ schedule for the decoupling of the van der Waals
interactions has been chosen according to Sherman et al.46

in order to ensure accuracy and stability of the simulations.
PMC simulations of 10 M steps for every λ step with 4 M
intermediate steps have been carried out.

The solute geometry is kept fixed during the desolvation;
therefore, a contribution for the geometry relaxation has to
be added. This has been computed as the energy difference
between the solvent geometry in vacuum and the optimized
vacuum geometry. Corrections for the free energy contribu-
tions due to changes of the vibrations of the solute have been
estimated by computing the thermal corrections with COSMO
and in vacuum.

29 different combinations of solutes and solvents have
been selected and the results are represented in Fig. 7 in com-
parison with experimental results.49 The standard deviation as
derived by Bennett37 [see Eq. (10a), with n1〈 f 〉21 in the sec-
ond denominator, that is a typing error in the original paper] is
visualized by the error bars and given in Table I. The standard
deviation depends on the number of MC steps and the over-
lap of the configurational spaces. The more dissimilar the two
states, the more the steps required to keep a constant standard
deviation. This estimates the statistical precision of the results
and not underlying errors in the potential.

In general, a reasonable agreement is observed, meaning
that the model captures the majority of interactions at play. In
a recent study50 with the solvents water and chloroform, it has
been noted as well that QM/MM does not always improve upon
the MM results and that the accuracy may be, for this particular
application, comparable. The advantage over other approaches
is that very few parameters are required for the setup. Force

FIG. 7. Solvation free energies computed with PMC in comparison with
experimental results. The solutes and solvents are listed in Table I.

TABLE I. All combinations of solute and solvent that have been used, free
energies of solvation (Comp.), estimated error bar (Prec.) and experimental
results (Expt.).49 All energies are given in kJ/mol.

Solute Solvent Comp. Prec. Expt.

Water Water �29.8 1.3 �26.4
Ammonia Water �20.5 1.3 �18.0
Ethane Water 6.7 0.8 7.7
Ethene Water 3.5 1.1 5.3
Methanol Water �14.9 1.7 �21.4
Ethanol Water �23.3 1.5 �21.0
Ethane-1,2-diol Water �64.1 1.7 �38.9
1-Propanol Water �18.8 1.7 �19.9
2-Propanol Water �18.7 1.6 �20.2
Ethanal Water �10.9 1.6 �14.6
Toluene Water �12.1 1.3 �3.7
Phenol Water �23.8 1.9 �27.7
4-hydroxybenzaldehyde Water �46.2 2.0 �43.9

Ethanol Toluene �11.8 0.6 �13.9
Water Toluene �4.1 0.3 �7.1

Ethanol Acetonitrile �17.5 1.2 �18.5
Butanone Acetonitrile �19.2 0.8 �19.8
1,4-Dioxane Acetonitrile �17.1 0.9 �22.3
Toluene Acetonitrile �23.0 0.4 �19.6

Water Chloroform �0.6 0.3 �8.6
Ammonia Chloroform �0.4 0.3 �10.1
Methanol Chloroform �5.2 0.4 �13.9
Ethanol Chloroform �9.1 0.4 �16.5
Ethane-1,2-diol Chloroform �15.7 0.4 �25.0
1-Propanol Chloroform �11.0 0.4 �18.5
2-Propanol Chloroform �11.9 0.4 �17.9
Ethanal Chloroform �12.1 0.4 �15.3
Toluene Chloroform �21.5 0.5 �22.9
Pyridine Chloroform �21.5 0.5 �27.0

fields for the solvent description are very well established and
readily available. The required van der Waals parameters for
the solute do not influence the results significantly.

Surprisingly, some of the largest deviations are found
for the chloroform case. A systematic underestimation of the
solvation free energies of about 11 kJ/mol in average can
be observed. In order to investigate this effect, the partial
charges have been adjusted to reproduce the estimated dipole
moment in liquid phase. The latter has been computed at the
CCSD level using a cc-pVTZ basis set and including COSMO
(ε = 4.806) corrections consistent with the HF solution
(PTE scheme). Simulations with this increased dipole moment
showed (Fig. 8) that the energies depend systematically on the
dipole moment of the MM model. The average underestima-
tion is reduced by about 1.3 kJ/mol. While the free solvation
energies can be influenced strongly, the pure solvent radial dis-
tribution functions are very stable with regard to changes of
the dipole moment for a given volume and temperature (see
the supplementary material).

C. Torsional potential of hydrogen peroxide

In this section, we assess the PMC QM/MM approach in
the description of reaction paths, using the torsional potential

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-039747
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FIG. 8. Solvation free energies computed with PMC in chloroform and
chloroform with an increased dipole moment.

of hydrogen peroxide as an example. In order to obtain con-
verged results rather small FEP, steps in the torsional angle
have to be used. This is more efficient than using longer sim-
ulations for larger steps because the phase space overlap is
increasing with decreasing stepsize. However, the simulations
are much more demanding than computations of solvation free
energies. The hydrogen peroxide potential has been computed
in 2.5◦ steps for 20 M PMC steps with density updates every
1000 steps. 2 M intermediate PMC steps have been carried out
in order to reach equilibrium for the adjusted geometries. In
this case, we opted for a larger number of updates (1000 vs
20 000) to improve the stability of the numerical results. The
change did not lead to any computational bottleneck since the
QM calculations are performed overlapping with the MM and
the QM system was rather small in size (Fig. 9).

A comparison of gas phase results and in solution
(Fig. 9) shows that a large solvent effect is present. The sta-
tionary points are clearly influenced. The cisoid transition state
is strongly stabilized by about 10 kJ/mol, independent of the
method of choice. The COSMO results show inversely a desta-
bilization of the transoid transition state by about 2 kJ/mol,
while the PMC simulations predict a stabilization of this transi-
tion state by the same amount. This difference can be explained
by specific interactions—hydrogen peroxide is a hydrogen
bond donor as well as acceptor—which can be described
by COSMO only approximately at best. These findings are

FIG. 9. The torsional potential of hydrogen peroxide computed in gas phase,
with COSMO (ε = 80) and in TIP3P water with PMC.

FIG. 10. Radial distribution function g(r) of donating (O–HW) and accepting
(H–OW) hydrogen bonds of hydrogen peroxide.

in agreement with QM/MM replica exchange MD (REMD)
studies,51 which predict a slightly larger stabilization of
15 kJ/mol of the cisoid and a stabilization of about 2 kJ/mol
of the transoid transition state. The position of the minimum
on the other hand agrees very well for both methods and is
located at about 100◦. This is in qualitative agreement with
the QM/MM REMD simulations of Choi and co-workers who
predict a minimum slightly above 90◦. In gas phase, the min-
imum is at about 120◦. This makes the test system of partic-
ular interest, given that it is not only the energy differences
between the stationary points that are changing but also their
geometry.

Hydrogen peroxide is known to be a better hydrogen bond
donor than acceptor. In order to investigate, if the PMC simula-
tions reproduce this important property, not only qualitatively
but also quantitatively, the radial distribution functions at the
minimum have been analyzed. It is expected that the donating
hydrogen bond length is shorter and that the first peak is more
prominent compared to the accepting hydrogen bond. The
results are shown in Fig. 10 confirming the above mentioned
trends. The positions of the first and second solvent peaks
are also compared with other theoretical studies in Table II.
The results closely match the results of a QM/MM MD study
by Martins-Costa and Ruiz-López with a similar combina-
tion of methods.52 The hydrogen bond lengths are slightly
longer than Born-Oppenheimer MD (BOMD) simulations53

by up to 4%. This is an excellent agreement which shows
that donating and accepting bonds—which pose a very dif-
ferent requirement to QM/MM approaches—can be equally
well described. Recent classical simulations54 show a much
larger deviation but reproduce qualitatively the first two
peaks.

TABLE II. Comparison of the peak positions of the RDFs shown in Fig. 10
with results from Cabral: BOMD (B3LYP-D3), Ruiz-Lopéz: QM/MM MD
(B3LYP/6-31G*, TIP3P) and Coutinho: MM MC.

PMC Cabral53 Ruiz-Lopéz52 Coutinho54

O–HW 1st 1.89 1.91 1.85 2.08
2nd 3.28 3.24 3.26 3.42
3rd 4.03 4.18 4.02 . . .

H–OW 1st 1.67 1.74 1.64 1.81
2nd 3.65 3.65 3.61 3.81
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V. CONCLUSIONS

In this work, we present an efficient implementation of
the perturbative QM/MM Metropolis Monte Carlo scheme
of Truong and Stefanovitch for hybrid architectures, with
the extension to periodic systems. Through the concurrent
use of CPU and GPU, it is possible to perform millions
of QM/MM MC steps in a day using a single workstation,
enabling QM/MM FEP calculations with demanding DFT
electronic structure methods. We have analysed in detail the
impact of the numerical approximations involved, namely,
the QM update frequency and the DFT grid for QM/MM
electrostatic interactions. Our results show that even for
strongly polar systems, the wave function/density only needs
to be updated every 10-20 k PMC steps, and moderately
sized integration grids suffice to keep numerical stability and
accuracy.

Several applications have been presented, from solvation
energies to the solvent effect on activated processes. Overall,
we observe that the accuracy of the method is competitive with
commonly used continuum models, while offering some spe-
cific advantages. These include information about the solvent
structure, the lack of parameterization (beyond the definition
of the molecular force field for the environment), and the pos-
sibility of describing heterogeneous environments. The latter
was not a focus of this work. In the future, we intend to explore
the use of PMC in the description of solvent mixtures and
supramolecular host-guest systems.

SUPPLEMENTARY MATERIAL

See supplementary material for additional data from free
solvation energy simulations with different update frequencies
as well as the radial distribution functions of pure chloroform
with increased dipole moment.
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