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Abstract—This paper proposes a stream-driven computational
model that expands the recent stream vectorization paradigm
into a full dataflow-driven computing model. It exploits spatial
computation and time-multiplexing, while relying on streaming
engines implementing the RISC-V UVE specification to manage
data access patterns, thus streamlining memory operations and
reducing latency. By abstracting the kernel loops into stream
data-flow graphs and mapping them onto a processing element
array, the conceived accelerator architecture exploits both spatial
and temporal parallelism across a wide range of computational
tasks. Experimental results, conducted on a synthesized 7nm
implementation, demonstrate the proposed model’s potential to
develop high-efficiency accelerators in data-intensive applica-
tions, offering performance gains of up to 6× compared with
an ARM Cortex-A53 CPU with NEON and 15× compared with
a scalar Rocket RISC-V CPU, along with 3.86× energy efficiency
improvements.

Index Terms—Data streaming, Streaming engine, Dataflow, PE
Array, RISC-V, Accelerator

I. INTRODUCTION

One critical inefficiency that is commonly observed in
modern computing arises from the performance gap between
processing units and memory systems, often referred to as the
memory wall [1, 2]. While caching and prefetching [3–6] are
widely deployed across general and special-purpose proces-
sors to overcome this problem, their performance gains have
plateaued [7]. On the other hand, more radical approaches,
such as near and in-memory computing, are still struggling to
gain traction in general-purpose computing domains [8].

At the same time, the data-streaming computing paradigm
has observed a renewed interest [9–12], especially due to its
decoupled access-execute computing model that allows for
specialized hardware optimizations. As a result, new streaming
engines, which autonomously generate the memory addresses
and manage the data transfers, have been integrated into sev-
eral general-purpose processor (GPP) architectures to reduce
load-to-use latency. While some solutions have leveraged this
approach to accelerate computation through stream vectoriza-
tion (e.g., RISC-V Unlimited Vector Extension (UVE) [11]),
more advanced structures are still required to fully exploit the
benefits offered by stream-based computing.

The presented work expands the GPP stream vectorization
model to a full dataflow-driven computing model, exploiting

Work supported by national funds through Fundação para a
Ciência e a Tecnologia (FCT) under project 2022.06780.PTDC (DOI:
10.54499/2022.06780.PTDC). We also acknowledge the contributions from
project UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020).

both spatial computation and time-multiplexing, and allowing
the deployment of an adaptable stream-based co-acceleration
structure [13–18]. Although such techniques have been previ-
ously considered to cope with the increasing demand for high-
performance computing structures in domains such as signal
processing, computer vision, artificial intelligence, and cryp-
tography [19–22], they have been mostly deployed in highly
specialized Domain-Specific Accelerators (DSAs), lacking
general-purpose computing capabilities. On the contrary, this
paper demonstrates the viability of this paradigm in the design
of a common tensor-like structure, often used in AI/ML
workloads [21, 22], by introducing general-purpose Processing
Elements (PEs) alongside reconfigurable spatial and temporal
multiplexing. The proposed system integrates an adaptable
2D PE Array (PE-Array) powered by a comprehensive data-
streaming mechanism, deployed in a host RISC-V GPP within
a full System-on-Chip (SoC) infrastructure (see Fig. 1.E). In
summary, this paper presents the following contributions:

• A new Stream-driven Computational Model that ex-
pands the stream vectorization model from UVE [11]
with a specialized Data-Flow Graph (DFG) representation
(stream-DFG), allowing the parallelization and mapping
of an arbitrarily kernel loop to a 2D acceleration structure.

• A dedicated UVE-compliant [11] Streaming Engine
(SE) integrated into the host GPP to autonomously
handle: 1) the address generation (based on memory
access pattern descriptors obtained at compile-time); 2)
the subsequent data fetching; and 3) the assembling of
data into stream vectors (mappable to the accelerator);

• A new parameterizable Stream-based Accelerator Ar-
chitecture, capable of spatially and temporally dis-
tributing general computational tasks. When integrated
within a complete RISC-V SoC, supported by the UVE-
compliant [11] SE, the proposed accelerator deploys a
fully decoupled access-execute scheme, allowing mem-
ory operations to proceed in parallel with computation,
reducing memory-access-induced overheads such as load-
to-use latency and improving data throughput.

II. STREAM-DRIVEN COMPUTATIONAL MODEL

The proposed architecture deploys a decoupled stream-
based computational model, which expands from the UVE [11]
stream vectorization model to support 2D acceleration struc-
tures. It abstracts each kernel loop into two separate parts:



Fig. 1. Proposed system overview: A) Stream-driven computational abstraction model; B) Example dot-product UVE-compliant [11] stream (Sϕ) and DFG
representations; C) DFG unrolling (2×) into the stream-DFG (top) and corresponding Sϕ mapping to µ-streams (bottom); D) Example of a spatio-temporal
mapping of the stream-DFG from C) into the PE-Array in E); E) Overall hardware architecture (with PE zoom-in).

i) data streaming, encompassing the decoding of the memory
access patterns to be used by the SE to automatically handle
the data transfers; and ii) dataflow computing, including the
representation of the computation kernel with a dedicated
stream-DFG and its deployment on the PE-Array. Figs. 1.A-C
depict the proposed model expansion and its components.

A. Data Streaming Scheme

The data streaming mechanism is centered on the SE,
which manages all load/store operations for the accelerator.
It receives a set of UVE-like [11] descriptors (or streams)
(S1, · · · , SK) from the host GPP, where each stream Sϕ repre-
sents an access pattern to a distinct data structure. Each stream
is defined as a chain of 1-D memory address patterns (piϕ) (see
Fig. 1.B). Thus, each stream identifier ϕ characterizes a multi-
dimensional, regular, or indirect memory access pattern over
a unique set of addresses, with the UVE [11] specification.

At the SE, the stream descriptors are processed by an
Address Generation Unit (AGU), which generates an address
sequence and forwards it to the Load/Store Memory Man-
agement Unit (MMU) (see Fig. 1.E). The MMU handles
the corresponding requests, reordering them (as needed) to
manage potential out-of-order memory responses. Once re-
ordered, load requests are buffered in corresponding ϕ Stream
Registers, implemented as First-In, First-Out (FIFO) queues.

Store streams sent by the PE-Array are similarly queued in
the appropriate Stream Registers and issued to memory.

Configurable Stream Re-Mappers connect the stream reg-
isters to the PE-Array input/output buffers. These structures
decompose each stream Sϕ into a set of µ-streams, each
matching the input sequence for an input/output PE (see
Fig. 1.C). Hence, they effectively scatter stream data into PE
array inputs and gather PE array outputs into store streams.

With such an approach, the SE abstracts all memory ac-
cesses from the PE-Array, providing efficient data prefetching
that mitigates memory access latency and linearizes the mem-
ory access sequences. As a result, from the perspective of the
PEs, the memory access pattern appears as a simple coalesced
sequence of elements, simplifying the computational model.

B. Stream-driven Dataflow Computing

The computation is abstracted as an acyclic DFG, where
each node represents an operation and each edge denotes a
data dependency (see Figs. 1.B-C). Source nodes represent the
input (load) data streams, and sink nodes represent the output
(store) streams. Cyclic dependencies are implicitly represented
by load streams that are subsequently read by store streams.

Although finding efficient DFG mappings to 2D structures
can be a highly complex problem [23, 24], the linearization of
the memory access pattern attained by the SE, together with
the adopted dataflow computing model, greatly simplifies the
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Fig. 2. Streaming engine architecture overview.

process. Furthermore, to maximize the throughput, multiple
iterations of the loop are executed in parallel, by considering
an unrolled DFG scheme, stream-DFG (see Fig. 1.A and
Fig. 1.C-top). They are scheduled by assigning each node of
the stream-DFG to a specific PE at a specific execution cycle
while respecting data dependencies. Routing between DFG
nodes is achieved by mapping the communication of resulting
values to the wires (spatial connections) or by using registers
to implement delays (temporal connections). Mapping and
scheduling are then optimized by minimizing the number of
cycles between consecutive iterations (see Fig. 1.D).

III. SYSTEM ARCHITECTURE

The proposed accelerator architecture is integrated on a
SoC infrastructure, managed by a RISC-V host GPP, and
integrating a cache-based memory subsystem (see Figure 1.E).
It comprises three modules: i) SE and Stream Re-Mapper, ii)
PE-Array, and iii) a dedicated controller to interface with the
host GPP and manage the execution of stream-DFGs.

A. Streaming Engine and Re-Mapper
The SE comprises five modules: Stream Configurator;

Stream State; Stream Iterator; and two MMUs (Load and
Store) (see Fig. 2). The stream life cycle begins with the
decoding of the stream configuration instructions and filling
the Stream Tables, which hold the status of all active streams.

The Stream State Selector arbitrates the access to the single
AGU (saving HW resources), responsible for iterating over
the stream. At each cycle, the Stream State Selector picks the
parameters of a given stream from the Stream Tables and sends
them to the AGU. With these parameters, the AGU generates a
new address, passing it to the Load MMU. Finally, the current
stream state is recorded back in the Stream Tables, except if
the same stream is again selected for iteration.

The Load MMU manages the data loads through its sub-
modules: the Load FIFO, the Load Line Buffer, and the Load
Request Queue. When a new address is generated, it is tagged
and saved on a Requests Queue entry, coalescing with a
previous cache line request (whenever possible - to minimize

memory bandwidth) or creating a new entry (otherwise). At the
same time, load requests are recorded in the Load FIFO, along
with the request ID. This way, when a cache line is received
from memory, it is temporarily stored in a Line Buffer (acting
as a small fully associative L0 cache, to avoid duplicating
cache line requests), and its contents are processed to answer
all pending Load FIFO entries that match the request ID.

The Store MMU works similarly: generated store requests
are saved on the address queue, where they wait for the
incoming data from the PE-Array, and are also aligned with
cache lines to minimize store bandwidth to memory.

Finally, the Stream Re-Mappers act like crossbars between
the elements of the stream registers and the array I/O. How-
ever, since elements do not require multicasting, these modules
are implemented using permutation networks instead of full
crossbars, resulting in substantial area savings.

B. PE-Array Architecture
The PE-Array consists of a highly flexible and parameter-

izable systolic 2-D grid of interconnected PEs, allowing for
easy scaling of its characteristics according to the requisites
of different use cases. Each PE (see Fig. 1.E-right) is designed
for efficient data processing and can execute several operations
depending on its configuration. It has four cardinal inputs and
outputs (North, South, East, West), and contains the following
components: Configuration Memory, Data Memory, Control
Unit, and a Floating-Point Unit (FPU). The Control Unit stores
the PE configuration that defines the sequence of operations,
implements hardware loops, manages data forwarding to/from
other PEs, and oversees the FPU execution. The FPU itself was
adapted from [25] and supports 16 single-precision floating
point operations, including fused multiply-accumulate (FMA).

The inner PEs are connected bidirectionally to their neigh-
bors, allowing data transfers in all four cardinal directions.
In addition, the interconnect allows the definition of ring
structures across rows and columns (e.g., the North output
of each PE in the first row is connected to the South input
of the PE in the last row, forming a ring structure along each
column). Also, the outer PEs, located in the first column and
first row, receive inputs from the Stream Re-Mapper through
the West and North inputs, respectively, while the outer PEs
in the last column and last row handle the output of data to
the outside of the array, through their East and South outputs.

IV. EXPERIMENTAL EVALUATION

The functional validation of the proposed accelerator was
conducted by integrating it into a Chipyard’s Rocketchip
SoC [26, 27] including a Rocket Core RISC-V CPU, a
4-bank 8-way set-associative L2 cache totaling 512 KiB,
quad-channel DRAM, and a 256-bit system bus, ensuring
data bandwidth suited for high-throughput data transfer. The
accelerator’s throughput was evaluated for a 4×4 PE-array,
with a SE configuration of 32-entry Load Request Queue and
a 4-row Load Line Buffer. The 4×4 PE-array was chosen
because it strikes a good balance by providing enough pro-
cessing elements to exploit the parallelism of the workloads
while keeping the mapping time reasonable. The specific SE
parameters were chosen based on a design space exploration



as a balanced configuration that optimizes performance while
managing area and complexity.

A. Performance Evaluation
The proposed architecture was validated with RTL simula-

tions using Synopsys VCS 2022.06, by considering a cycle-
accurate DRAM model provided by DRAMSim2 [28].

A diverse set of benchmarks (GEMM, Blackscholes, Jacobi-
1D, Jacobi-2D, Heat-3D, FIR) was selected to evaluate differ-
ent accelerator properties, such as memory access pattern and
usage of the PE-array. DFG extraction, unrolling, mapping,
and bitstream generation were performed with a custom mod-
ified Morpher [29] tool.

Fig. 3 presents the obtained speedups when the proposed
accelerating structure was compared with a scalar Rocket
Core RISC-V CPU and a vector Arm Cortex-A53 NEON
CPU. The obtained results, which consider a strict clock cycle
comparison to normalize for different operating frequencies,
denote a clear advantage of the proposed structure, providing
performance gains as high as 6x (when compared with the
Arm A53 CPU with NEON) and 15x (when compared with the
scalar Rocket RISC-V CPU). Further work is being conducted
to improve the throughput of the SE, which is currently limited
by its address generation rate.

B. Hardware Resource Analysis
The accelerator setup was synthesized using Cadence Genus

21.15, targeting the 7nm ASAP7 [30] technology process. The
hardware resources of the accelerator are presented in Table I.
This table also presents the silicon area occupied by the Rocket
CPU, when implemented with the same technology process
using the available RTL description [26, 27].

As it can be observed, most of the area footprint is related
to the SE, particularly due to the buffers used to hide memory
access latency and handle the out-of-order nature of the
memory responses to the accelerator. Naturally, the second
largest element is related to the PE-array, which occupies
≈ 22% of the accelerator area. Nevertheless, the overall silicon
area (0.122 mm2) is considerably lower than the area required
by the Rocket CPU + L2 Cache (0.265 mm2).

C. Power Consumption and Energy Efficiency
When considering the power consumption of the proposed

accelerator and the Rocket RISC-V GPP implemented in the
same 7nm technology depicted in Table I, it is highlighted the
low power consumption overhead imposed by the proposed

TABLE I
HARDWARE RESOURCES BREAKDOWN.

Component Area (mm2) Power (mW )
PE-Array (4×4) 0.027 76.7
SE 0.079 115.4

Accelerator ReMapper 0.004 4.4
Controller 0.006 2.1
TOTAL 0.122 192.6

SoC Rocket Tile 0.033 22.3
L2 Cache (512 KiB) 0.232 24.2

TOTAL 0.433 259.3
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Fig. 3. Clock cycle improvement provided by the proposed accelerator.
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Fig. 4. Energy improvement provided by the proposed accelerator.

accelerator when integrated into the SoC. Both the Rocket
core and the proposed accelerator were synthesized targeting
a clock frequency of 500 MHz; this frequency was used
consistently in the energy analysis. This conclusion is further
emphasized when the two structures are compared in terms
of energy consumption (see Fig.4). As it can be observed, the
proposed acceleration structure provides energy gains as high
as 3.86× when compared with the Rocket RISC-V GPP, as
a direct result of the combination of efficient data streaming
with an adaptable acceleration structure. Note that these power
figures reflect only static power consumption. Additionally,
while Fig. 4 also includes a comparison with an ARM Cortex-
A53 (since performance was also compared with the ARM
A53), some of the energy gains observed for the ARM CPU
are attributable to technology differences, as the ARM core
(clocked at 1.2 GHz) is implemented in 28nm technology.

V. CONCLUSION

This paper presents a stream-driven computational model
that extends recent stream vectorization techniques into
a fully dataflow-driven architecture. By utilizing a UVE-
compliant [11] SE to autonomously manage data accesses,
the model minimizes memory latency and load-to-use delays,
enabling high efficiency in data-intensive applications. The
architecture’s design, which maps kernel loops as DFGs onto
a versatile 2-D PE array, effectively exploits both spatial and
temporal parallelism across general-purpose RISC-V systems.
Experimental results from a synthesized 7nm implementation
in RISC-V SoC show significant performance and energy
efficiency gains compared to conventional GPP architectures,
validating the stream-driven model capabilities and adaptabil-
ity for high-demanding application domains.
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