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Abstract—As computer vision continues to expand across
various application domains - including localisation, mapping,
object recognition, and 3D reconstruction - feature extraction
methods such as Oriented FAST and Rotated BRIEF (ORB)
gained widespread adoption due to their rotation and scale in-
variance. However, existing efforts to accelerate these techniques
through hardware implementations faced challenges related to
high resource and power consumption demands, limiting their
feasibility for low-power embedded devices. Accordingly, this
paper proposes a new scalable and efficient ORB accelerator,
designed for low-power resource-constrained environments. It
introduces a novel resource-efficient architecture that exploits
quantisation of the feature orientation angle into discrete rotation
sectors. A complete ROS node based on the proposed ORB
accelerator is also deployed, providing seamless integration with
other computer vision-enabled systems. When compared to other
state-of-the-art solutions, the proposed system, implemented on
an embedded System-on-Chip (SoC) with a low-cost FPGA, offers
between 6.7x and 16.2x energy efficiency improvements, while
requiring fewer hardware resources.

Index Terms—Hardware Accelerator, Embedded SoC, ORB
Feature Extraction, ROS Integration, Computer Vision

I. INTRODUCTION

Oriented FAST and Rotated BRIEF (ORB) [1] is a widely
adopted algorithm for feature extraction in computer vision
due to its significant invariance to rotation and scale [2–
5]. ORB extracts relevant features from images, which are
then matched to an existing database, making it useful for
object classification [6] and 3D reconstruction [2]. ORB is
also integral to Visual Odometry (VO) [7] and Simultaneous
Localisation and Mapping (SLAM) [8–11], enabling systems
like autonomous Unmanned Aerial Vehicles (UAVs) [12] or
robots to track their movement [13]. In augmented reality,
ORB helps overlay virtual elements on real-world objects [14].
Its computational efficiency and ability to work in real-time
applications make ORB particularly suited for embedded sys-
tems, mobile devices, and robotics, where high-performance
and low-power consumption are essential [1–5, 14].

However, ORB is still the main computational bottleneck
in many applications. Consequently, several efforts have been
made to accelerate corner detection and feature extraction with
dedicated hardware, often implemented in Field Programmable
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Gate Arrays (FPGAs) [4, 5, 15, 16], with the less resource-
consuming tasks usually being implemented in Central Pro-
cessing Units (CPUs). As an example, Janosch Nikolic et al.
[15] implemented the FAST [17] corner detector in hardware
to accelerate a multiple camera SLAM system in an embedded
Z-7020 SoC. By taking a step further, Weikang Fang et al.
[4] and Vibhakar Vemulapati et al. [5] both developed a
complete ORB accelerator targeting the higher-end Intel Altera
Stratix V FPGA and the Xilinx ZU3EG SoC, respectively.
While both works encourage the possibility of attaining a
real-time implementation of an ORB accelerator, they are still
above the power consumption constraints that often charac-
terise embedded systems. This is particularly critical when
light, portable, battery-powered devices are the target.

Accordingly, the work herein presented takes a step further
from previous efforts, by proposing a new ORB feature extrac-
tion accelerator targeted at low-power embedded systems that
can be easily integrated into a diverse set of application do-
mains. We highlight the following contributions and features:

• A new efficient ORB accelerator architecture for low-
power embedded SoCs, characterised by a configurable
datapath and offering accuracy and complexity trade-offs
for different applications;

• A complete feature extraction system, implemented on
an embedded FPGA SoC, comprising the proposed ORB
accelerator deployed on the FPGA fabric and a software
module running in the CPU;

• Deployment of the proposed ORB system as a complete
Robot Operating System (ROS) [18] node, capable of
obtaining image frames from an HDMI source input and
publishing the extracted features as a ROS topic.

The proposed system was deployed on a low-power Digi-
lent Zybo Z7-20 board and validated with standard image
sequences from the TUM-VI [19] dataset. In what concerns
the feature extraction, it shows a performance comparable with
the original software implementation, while offering improved
energy efficiency over previous solutions.

II. BACKGROUND

The ORB [1] feature extractor receives a grayscale image
and outputs the detected features and their descriptors. It
has two main components: the FAST [17] corner detector
identifies 7×7-pixel regions of interest (features) within an
input image, and the rotated BRIEF (rBRIEF) [1] constructs
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Fig. 1. Complete ORB accelerator system with all the major functionality blocks and interfaces between the SoC CPU and FPGA.

256-bit descriptors. These descriptors are subsequently used
to match features between different images.

The FAST algorithm detects features by comparing the
luminances of the 16 pixels on a circumference of diameter
7, with the luminance of the centre pixel. If more than 9
contiguous pixels on the circumference are either darker or
brighter than the centre (difference is lower/higher than the
negative/positive threshold), the region is considered to be a
corner/feature. To construct a BRIEF descriptor, 256 coordi-
nate pairs are used. Each of the 256 bits of the descriptor,
f(p), is the result of the comparison between the pixels of
each pair, τ(p,a,b), where a and b are the coordinates of the
two elements of the pair, and p is the 31×31 pixels smoothed
test region centred on the detected feature. The value of τ is
1 if luminance in a is lower than b, and 0 otherwise. These
coordinate pairs compose the BRIEF pattern and are generated
for the mentioned 31× 31 pixel region. Hence, each bit (i) of
the descriptor is given by:

f(p) =
∑

1≤i≤256

2i−1τ(p,ai,bi) (1)

For the constructed descriptors to be invariant to the ori-
entation at which the feature was detected, ORB introduced
the rotated BRIEF (rBRIEF) algorithm. It computes the main
orientation of a feature region (31×31 pixels), and rotates the
coordinates of the pixels to be compared accordingly, using the
latter for the construction of the descriptor. The orientation,
Θ, of the image patch is determined through its luminance
momentum on the x (m10) and y (m01) directions as:

Θ = arctan

(
m01

m10

)
, mpq =

∑
x,y

xpyqp(x, y), (2)

where x and y are the pixel horizontal and vertical coordinates
from the 31 × 31 pixel region (x, y ∈ [−15, 15]). Lastly, the
scale invariance is achieved by applying the aforementioned
steps to consecutively down-scaled images.

III. ORB ACCELERATOR ARCHITECTURE

The proposed ORB accelerator (see Figure 1) includes a
dedicated data orchestration infrastructure (not directly shown
in the figure) and an ORB feature extraction module.

A. Data Orchestration

The feature detection and descriptors construction require
the following stages: i) input image buffering; and ii) a Feature
Memory module to store the extracted features.

1) Input Image Buffering: In real-time applications, im-
ages are often transmitted one pixel per clock cycle [20], thus
requiring dedicated image buffering to hold the values of each
transmitted image line. Accordingly, several line and window
buffers (LB and WB), implemented with 8-bit shift registers,
are placed inside several modules (see also Figure 2). The
WBs are populated with the output of each LB.

2) Feature Memory: Once a feature is extracted from the
input image, its position, score, orientation and descriptor are
stored in a memory module that is made accessible to the
outside of the accelerator. To accommodate the features from
multiple scales, a dedicated Feature Arbiter is used to manage
the access to the feature memory (see Figure 1).

B. ORB feature extraction module

The ORB feature extraction module is divided in three main
modules: i) the image scalers; ii) the FAST corner detector;
and iii) the rotated BRIEF encoder.

1) Image Scaler: Input buffers are also used to construct
a sequence of successively down-scaled images. This is done
using a simple average down-sampler with a 2 : 1 scaling
within a 2 × 2 pixels region. The scaled images are then fed
to multiple scale instances (see Figure 1).

2) FAST Corner Detection: The FAST [17] module (see
Figure 2.a)) processes each 7 × 7 pixels block and computes
the luminance comparisons for the 16 tested pixels (using
the configured thresholds). These comparisons are stored in
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Fig. 2. ORB components representation. a) FAST. b) Orientation.

two 16-bit-wide vectors (for brighter and darker results) and
checked (with AND logical operations) against bitmasks of the
16 different possible locations of 9 consecutive brighter/darker
pixels. If at least one bitmask is matched, a corner is found.

To ensure that only the strongest features are chosen, a Non-
Maximum Suppression (NMS) module operates on a 3 × 3
pixels neighbourhood. The selection score is computed as the
sum of the absolute values of the circumference differences.

3) Rotated BRIEF Encoder: The construction of an
rBRIEF descriptor for each detected feature is divided into
three main stages: i) image smoothing, ii) orientation detec-
tion, and iii) descriptor construct.

- Image Smoothing: A Gaussian filter is used to smooth
the image before computing the orientation [1]. This is im-
plemented by convolving an integer Gaussian matrix (σ = 2)
with 7× 7 WBs using constant multiplicand operations [5].

- Orientation Detection: While the orientation quadrant is
easily checked with the signal of the x and y momentums
(see Equation 2), finding the θ angle of the feature involves
computing an arc tangent operation. To avoid such a resource-
consuming task, we discretise the orientations into N adjacent
sectors. Since tan(θ) = y/x, we design a priority encoder
using the x× tan(θi) > y condition for all N possible angles.
Furthermore, to avoid storing an entire 31× 31 pixels region
centred on the feature, we employ the equations suggested by
Vibhakar Vemulapati et al. [5] which only require tracking the
sums of the incoming and outgoing columns.

- rBRIEF Descriptor Encoder: The rBRIEF constructor
module operates over 31 × 31 elements, performing 256
comparisons according to the rotated BRIEF patterns. Rotating
a square 31 × 31 BRIEF pattern would imply the need for
a 37 × 37-pixel WB. To make the module more resource-
efficient, we limit the coordinates of the considered pairs to a
circle with 31 pixels in diameter (instead of a 31× 31 square
region) so that the rotated coordinates are never greater than
31. Furthermore, to avoid the need for a large multiplexing
structure, we implement this window buffer using structured
memory elements addressable in 32-bit lines. Hence, by us-
ing 4 dual-port memories with 32-bit wide words we can
write/read the 31 elements (8 bits each) of a region’s column
per clock cycle. We replicate this window 3 times to access
6 different pixels per clock cycle. As such, we read 3 pairs
of pixels per clock cycle, resulting in 86 cycles to construct
the descriptor. This is done through a rotating bitmask that
allows incremental composition of the descriptor. This strategy
increases latency but significantly reduces resource usage.

Finally, since rotating 6 coordinates would require a con-
siderable amount of hardware resources, we follow the sim-

plification proposed in [1] to pre-compute the rotated patterns.

IV. ORB ACCELERATOR DEPLOYMENT IN A ROS SYSTEM

The proposed ORB accelerator was deployed as part of an
embedded feature extraction device targeting minimal latency,
low-power consumption (<5W ), and easy integration in larger
systems. It was prototyped and deployed on a Digilent Zybo
Z7-20 board carrying an XC7Z020 (xc7z020clg400-1) SoC
(CPU+FPGA). The FPGA Programmable Logic (PL) accom-
modates the ORB accelerator and the modules required to
obtain the frame sequence from a HDMI video stream, while
the ARM CPU is used to parameterise the HDMI interface and
to launch a Robot Operating System (ROS) [18] node that can
be used to report extracted features to a ROS capable system.

A. ORB Accelerator Implementation

Given the resource limitations of the implementation plat-
form, the ORB accelerator was carefully dimensioned to fit
in the FPGA PL fabric. This is done by parameterizing both
the number of scales and orientation sectors, also allowing for
a flexible resource management adapted to each application.
Moreover, the contrast threshold of FAST can be dynamically
changed at run-time according to the processed scene. The
HDMI driver configures the HDMI physical layer parameters
through its memory-mapped registers. The communication
between the accelerator and the SoC’s CPU is ensured through
the native 32-bit AXI ports of the device (see Figure 1). This
way, the Feature Memory, the ORB module control interface,
and HDMI physical layer control registers can be accessed by
the CPU through a memory-mapped interface.

B. ROS Node Infrastructure

The integration of the proposed ORB accelerator within a
full-stack system is done over Ethernet, UART, or other avail-
able interfaces. To do so, the CPU runs a Linux image deploy-
ing a full ROS node. The node (see Figure 1) is responsible for
identifying the frame being streamed to the ORB accelerator
in the FPGA (Frame Supervisor), reading the contents of the
Feature Memory (Feature Reader), publishing the detected
features as a ROS topic (Topics Publisher), and listening to
request for a change of parameters (Topics Subscriber). This
hardware-software stack allows the ORB accelerator to be
easily tuned and integrated into larger modular systems.

V. EXPERIMENTAL EVALUATION

The proposed accelerator was evaluated on three main
perspectives: i) accuracy and scalability; ii) hardware resources
usage; and iii) energy efficiency. For this purpose, the device
was tested using several image sequences from the well-known
TUM-VI [19] dataset, with a 640× 480-pixel resolution.

A. Accuracy and Scalability

As previously stated, one of the premises of the proposed ar-
chitecture lies in the adaptability of the computation structure
used to easily balance the compromise between attained accu-
racy and hardware resources. Such scalability was achieved
by quantizing the feature orientation angle into a discrete



TABLE I
ORB ACCELERATORS PERFORMANCE COMPARISON TABLE IN TERMS OF RESOURCE USAGE, THROUGHPUT, AND ENERGY EFFICIENCY.

Resources and Accuracy Peform. and Efficiency

Work Device Resolution #Scales Orientation LUT DSP BRAM
[Mb]

Latency
[ms]

Max Freq.
[MHz]

Power
[mW]

Perf.
[fps]

Energy Eff.
[mJ/frame]

[20] XCZU7EV 3840x2160 1 RS-BRIEF∗ 62,223 668 1.62 #NP 150 5042 60 84
[5] XCZU3EG 640x480 4 64 sectors 76,424 80 4.32 2.5 150 +4600 62 74
[4] Altera Stratix V 640x480 2 256 sectors 25,648 8 1.18 14.8 203 4556 67 68

[21] XCZ7045 640x480 1 RS-BRIEF∗ 56,954 111 2.81 9.1 100 1936 55.87 35

This work XC7Z020 640x480 2
16 sectors 28,248 84 1.15 3.2 100 290 60 4.8
32 sectors 28,521 84 1.44 3.2 100 312 60 5.2
64 sectors 29,080 84 2 3.2 100 328 60 5.5

∗Uses the RS-BRIEF descriptor [21], i.e., it does not rely on the rotation of the BRIEF pattern but instead the rotation of the descriptor. +Energy
consumption is not provided for the isolated ORB accelerator, we deduce the value based on the provided comparison against [21]. # Not provided.

number of possible sectors. However, it is foreseeable that
the division of the feature orientation into sectors negatively
impacts the robustness to rotation. To evaluate this issue, we
assess the value of positive matches between the detected
features in the original and each rotated image (i.e., Inliers [1]).
Figure 3 presents this metric considering 3 different levels of
discretization: 16, 32, and 64 sectors. The chosen baseline
performance for this analysis was the ORB implementation
from the OpenCV [22] software library. As expected, a clear
accuracy improvement is obtained when increasing the number
of orientation sectors, especially from 16 to 32. Accuracy
peeks occur at 90◦, 180◦, 270◦ and 360◦ since at those orien-
tations the rotation of the BRIEF pattern is not approximated.

Despite the accuracy compromise from discretization, when
considering popular SLAM data sets [19, 23], the robustness to
rotation is enough to maintain feature tracking, since the ori-
entation of the frame does not commonly surpass an absolute
value of 90◦. Nonetheless, for applications especially sensitive
to in-plane rotation, the accelerator can either be configured
with a single scale and additional orientation sectors or simply
deployed with more sectors (and scales) on a larger FPGA.

B. Hardware resources

The proposed accelerator was implemented and deployed on
the adapted FPGA SoC with the AMD Xilinx Vivado 2020.2
toolchain. Hardware resource usage and power estimation
were also obtained with the available tools. Table I compares
our results with related works. In most previous efforts [4,
5, 20], higher-end FPGA systems had to be used, since their
architectures require substantially more hardware resources.
The most similar solution is from [21], which uses a SoC of
the same family, albeit with more available and used resources.
The proposed ORB accelerator architecture also performs well
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Fig. 3. Percentage of computed Inliers considering a complete plane rotation.

in terms of output latency, which refers to the time taken from
the start of the transmission of an image to the output of a
feature located at the lower right corner of that same image.

In Table I it is also possible to observe the resource
usage of the proposed architecture when considering several
different discretisation levels. These results clearly evidence
the provided facility to adjust the aimed balance between the
implementation cost and the resulting accuracy depending on
the application requiremnts and available resources.

C. Energy efficiency studies

Being targeted for embedded and low-power devices, energy
efficiency was considered a key design constraint of this
accelerator. Under this premise, we used the consumed energy
per processed frame as an energy efficiency indicator. The
obtained results (see Table I) clearly show the advantages
and efficiency of the proposed architecture. In particular, its
resource efficiency not only allowed it to be deployed on a
much more resource-constrained FPGA when compared to the
higher-end devices used in [4, 5, 20], but it also showed to
require 50% less resources when implemented on a similar
grade device as [21]. This is further highlighted by energy
efficiency gains between 6.7× and 16.2× over the other works.

VI. CONCLUSION

This manuscript presents a novel and efficient ORB fea-
ture extraction accelerator tailored for low-latency, low-cost,
and low-power embedded systems. By employing a scalable
architecture that quantizes feature orientation into discrete
sectors, the proposed design successfully optimizes the bal-
ance between hardware resource usage and feature detection
accuracy. Experimental evaluations of the accelerator deployed
as a ROS node on an embedded SoC with a low-cost FPGA
demonstrated the accelerator’s significant advantages over
existing state-of-the-art solutions, showing average energy
efficiency gains of between 6.7× and 16.2×. The accelerator’s
efficiency, and versatility provided by the ROS interface, show
its suitability for real-time computer vision applications in
resource-constrained environments, making it a viable and
promising solution for a wide range of practical use cases.
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