
Unlimited Vector Extension with Data Streaming
Support

Joao Mario Domingos
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa

Lisboa, Portugal
joao.mario@tecnico.ulisboa.pt

Nuno Neves
INESC-ID

Instituto de Telecomunicações
Lisboa, Portugal

nuno.neves@inesc-id.pt

Nuno Roma
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa

Lisboa, Portugal
nuno.roma@inesc-id.pt

Pedro Tomás
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa

Lisboa, Portugal
pedro.tomas@inesc-id.pt

Abstract—Unlimited vector extension (UVE) is a novel instruc-
tion set architecture extension that takes streaming and SIMD
processing together into the modern computing scenario. It aims
to overcome the shortcomings of state-of-the-art scalable vector
extensions by adding data streaming as a way to simultaneously
reduce the overheads associated with loop control and memory
access indexing, as well as with memory access latency. This is
achieved through a new set of instructions that pre-configure
the loop memory access patterns. These attain accurate and
timely data prefetching on predictable access patterns, such as in
multidimensional arrays or in indirect memory access patterns.
Each of the configured data streams is associated to a general-
purpose vector register, which is then used to interface with the
streams. In particular, iterating over a given stream is simply
achieved by reading/writing to the corresponding input/output
stream, as the data is instantly consumed/produced. To evaluate
the proposed UVE, a proof-of-concept gem5 implementation was
integrated in an out-of-order processor model, based on the
ARM Cortex-A76, thus taking into consideration the typical
speculative and out-of-order execution paradigms found in high-
performance computing processors. The evaluation was carried
out with a set of representative kernels, by assessing the number
of executed instructions, its impact on the memory bus and
its overall performance. Compared to other state-of-the-art
solutions, such as the upcoming ARM Scalable Vector Extension
(SVE), the obtained results show that the proposed extension
attains average performance speedups over 2.4× for the same
processor configuration, including vector length.

Index Terms—Scalable SIMD/Vector Processing, Data Stream-
ing, Instruction Set Extension, Processor Microarchitecture, High-
Performance Computing.

I. INTRODUCTION

Single Instruction Multiple Data (SIMD) instruction set
extensions potentiate the exploitation of Data-Level Parallelism
(DLP) to provide significant performance speedups [1]–[6].
However, most conventional SIMD extensions have been
focused on operating with fixed-size registers (e.g., Intel
MMX, SSE, AVX, etc, or ARM NEON), as it simplifies the
implementation and limits the hardware (HW) requirements.
This poses a non-trivial question regarding the vector length [2],
[7], since its optimal size often depends on the target workload.
Moreover, any modification to the register length usually
requires the adoption of newer instruction-set extensions, which
inevitably makes previously compiled code obsolete [7].

To overcome such issues, new solutions have recently
emerged. In particular, ARM SVE [7] and RISC-V Vector
extension (RVV) [8] are agnostic to the physical vector register
size from the software (SW) developer/compiler point of
view, since it is only known at runtime. Hence, different
processor implementations can adopt distinct vector sizes,
while requiring no code modifications. For example, High-
Performance Computing (HPC) processors can make use of
large vectors to attain a high throughput, while low-power
processors can adopt smaller vectors to fulfill power and
resource constraints. However, this usually forces the presence
of predicate [9] and/or vector control instructions to disable
vector elements outside loop bounds, eventually increasing the
number of loop instructions [2]. Fig. 1 illustrates this problem
in the saxpy kernel implementations on SVE [7] and RVV [8].
As it can be observed, both SVE and RVV require a large
instruction overhead (shaded instructions in Figs. 1.B and 1.C),
resulting from memory indexing, loop control and even memory
access, as neither of these directly contribute to maximize the
data processing throughput. These overhead instructions often
represent the majority of the loop code, wasting processor
resources and significantly impacting performance.

On the other hand, the performance of data-parallel appli-
cations is also often constrained by the memory hierarchy.
Hence, most high-performance processors rely on SW and/or
HW prefetchers to improve performance [10]–[24]. However,
SW prefetching solutions [16], [17] typically impose additional
instructions in the loop code, increasing overheads. HW
prefetchers have been improving their accuracy and coverage
with each new generation. However, their timeliness is depen-
dent on the used mechanisms [21]–[24] to identify memory
access patterns and predict future accesses, while prediction
inaccuracies increase energy consumption and pollute caches.

In accordance, the new Unlimited Vector Extension (UVE)
that is now proposed distinguishes from common SIMD
extensions by the following features:

F1 Decoupled memory accesses. By relying on a stream-
based paradigm, input data is directly streamed to the register
file, effectively decoupling memory accesses from computation,
and allowing data load/store to occur in parallel with data
manipulation. This implicit stream prefetching facilitates the

209

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00025

VL

for (int i=0 ; i<N ; i++) y[i] = a*x[i] + y[i];

vsetvli
vlw.v
sub
slli
add
vlw.v
vfmacc.vf
vsw.v
add
bnez

a4, a0, e32, m8
v0, (a1)
a0, a0, a4
a4, a4, 2
a1, a1, a4
v8, (a2)
v8, fa0, v0
v8, (a2)
a2, a2, a4
a0, .saxpy_

saxpy_:

Inst. type

P:Loop preamble
Configure vector lengthVL:

I: Memory indexing/loop control
C:Computation

mov
whilelt
ld1rs
ld1s
ld1s
fmla
st1s
incw
whilelt
b.�irst

x4,#0
p0.s, x4, x3
z0.s, p0/z, [x2]
z1.s, p0/z, [x8,x4,lsl #2]
z2.s, p0/z, [x9,x4,lsl #2]
z2.s, p0/m, z1.s, z0.s
z2.s, p0, [x9, x4, lsl #2]
x4
p0.s, x4, x3
.loop

saxpy_:

loop:

con�ig input stream :: u0 «« x[...]
con�ig input stream :: u1 «« y[...]
con�ig output stream :: u2 »» y[...]
; broadcast const. to vector elem.
broadcast
; compute u2=u1+u3*u0
vectormad
; loop until end of pattern x/u0
b.stream_not_end u0,.loop

u3,a

u2,u1,u3,u0

saxpy_:

loop:

C code:

a0 ⬅ n
fa0 ⬅ a

x3 ⬅ n
x2 ⬅ a

B:Branch/Loop

M

I

M

C

M

I

B

P

M

C

M

I

VL

B

C

B

P

RISC-V V
a1 ⬅ x
a2 ⬅ y

ARM SVE
x8 ⬅ x
x9 ⬅ y

Proposed (UVE)
u0 «« input stream x
u1 «« input stream y
u2 »» output stream y

Inst. type Inst. type

Instruc�on Types (legend):

MemoryM:
A

B C D

Fig. 1. Saxpy kernel implementation on ARM SVE, RISC-V V, and the proposed UVE. The RISC-V V and ARM SVE code is taken from official documentation.
The instructions highlighted in grey represent loop overhead.

acquisition of data, significantly reducing the memory access
latency and decreasing the time that memory-dependent instruc-
tions remain in the pipeline. This also reduces potential hazards
at the rename and commit stages of out-of-order processors,
improving performance.

F2 Indexing-free loops. By describing memory access
patterns (loads/stores) at the loop preamble, it minimizes
the number of instructions dedicated to memory indexing,
significantly reducing the instruction pressure on the processor
pipeline (see the UVE saxpy implementation in Fig. 1.D).
Furthermore, by relying on exact representations of memory
access patterns (descriptors), it avoids erroneous transfers of
data due to miss-predicted prefetching.

F3 Simplified vectorization. Since the loop access patterns
are exactly described by descriptor representations, supporting
complex, multi-dimensional, strided, and indirect patterns, the
Streaming Engine is able to transparently perform all scatter-
gather operations, transforming non-coalesced accesses into
linear patterns. Hence, from the execution pipeline viewpoint,
data is always sequentially aligned in memory, simplifying
vectorization. Fig. 2 illustrates this feature with the computation
of the maximum function across the rows of three input patterns:
(A) full matrix; (B) lower triangular matrix; and (C) indirect
(matrix-like) access. Since the operations are the same (the
differences concern only the read pattern), the UVE code is
exactly the same for all patterns (for each row, compute the
maximum, regardless of the row size and pattern).

F4 Implicit load/store. Since all streams are described at the
loop preamble, not only can one remove indexing instructions,
but also all explicit loads and stores, by simply associating
each active stream with a different vector register. Hence,
reading/writing from a register associated to an input/output
(load/store) stream, implicitly triggers a stream iteration,
requiring no additional stepping instruction – see Fig. 1.D.
Naturally, reading multiple times from the same element of
the stream is still possible, by either copying the value to a
different register, or by inserting a specific instruction in the
code to temporarily suspend the stream iteration process.

F5 Register-size agnostic. Just as in SVE and RVV, the
UVE code is agnostic to the register size. However, to prevent
operating over out-of-bound elements (e.g., when the number
of elements to process is not a multiple of the vector length),

SVE and RVV explicitly require a set of control instructions
to define which vector elements are active. In contrast, UVE
does not generally require such instructions (even though they
are also included in the instruction-set specification). This is
achieved because the Streaming Engine automatically disables
all vector elements that fall out of bounds, which is equivalent
to an automated padding of all streams to a multiple of the
vector length. As a consequence, the loops become simpler and
require a minimal set of control instructions, which in most
cases corresponds to a single branch instruction.

To understand the impact of the proposed UVE extension
on modern out-of-order general-purpose processors, a proof-of-
concept base implementation is also presented. When compared
to other processor architectures supporting SIMD extensions,
it includes only minor modifications in the rename and commit
stages, besides introducing a Streaming Engine to manage all
stream operations. Notwithstanding, such minor modifications
allow the exploitation of a set of architectural opportunities:

A1 Reduced load-to-use latency. At the architectural level,
the proposed solution leads to a mitigation of the load-to-use

con�ig input stream :: u0 «« A[...]
con�ig output stream :: u1 »» C[...]
; load �irst block of data
vectormove
; go to hmax if line has no more elements
b.dim0_complete
; else sweep through the whole line
vectormax
b.dim0_not_complete
; compute max across vector elements
horizontal_max
; loop until end of stream/matrix
b.not_complete

u5,u0

u0,.hmax

u5,u5,u0
u0,.loop

u1,u5

u0,.next_line

kernel:

.next_line:

.loop:

.hmax:

D. UVE implementation (all cases)

Input
Matrix A

Output
Vector C
max

max

max

max

max

max

for (i=0; i<N; i++){

 C[i]=A[i][0];

 for (j=1; j<N; j++)

 C[i] = max(C[i],A[i][j]);

}

A. Full matrix

Input
Matrix A

Output
Vector C
max

max

max

max

max

max

for (i=0; i<N; i++){

 C[i]=A[i][0];

 for (j=1; j<i+1; j++)

 C[i] = max(C[i],A[i][j]);

}

B. Lower triangular

Input
Matrix B

Output
Vector C

for (i=0; i<N; i++){

 C[i]=A[B[i][0]];

 for (j=1; j<N; j++)

 C[i] = max(C[i],A[B[i][j]]);

}

C. Indirect pattern

MAX

Input
Vector

Au0 «« input stream A
u1 »» output stream C

Fig. 2. UVE pseudo-code implementation for the computation of the maximum
across the rows on three possible matrices: (A) full matrix, (B) lower triangular
matrix, and (C) full matrix with pointers to an array.

210

latency, by directly streaming data into vector registers. This
contrasts with conventional prefetching structures, where input
data is first loaded to either a cache, or cache-level buffers.

A2 Data streaming across virtual page boundaries. As
the proposed solution relies on an accurate representation of
access patterns, it can safely cross page boundaries and continue
streaming, even if the access pattern covers multiple pages.

A3 Data re-use across miss-predictions. To benefit perfor-
mance, the proposed streaming implementation provides full
support for speculative execution. Since the stream access pat-
tern is exactly described, the processor keeps all speculatively
consumed data on load buffers until the consuming instruction
commits. Hence, in the event of a miss-speculation, data can
be immediately reused (after correction of the execution path)
without duplicated memory loads.

Finally, when compared with ARM SVE, and considering
similar processor configurations and equal vector lengths, this
cumulative set of contributions results in an average 2.4×
performance speed-up on a representative set of benchmarks.

II. DATA STREAMING

In this work, a stream is defined as a predicable n-
dimensional sequence of data that is transferred between the
memory and the processor. Hence, the adopted model for
stream representation must fulfill the following properties:

P1 Generality: It must be able to represent any loop-based
affine or indirect memory address sequence, with complex
multi-dimensional patterns supported by multi-level constructs.

P2 HW feasibility: The representation must adopt an
encoding scheme that can be easily and efficiently interpreted
by dedicated hardware and in parallel with data manipulation.

P3 Decoupled memory indexing: Memory indexing should
be performed outside the computation pipeline, without requir-
ing explicit instructions in the computational loop.

P4 Autonomy: It should allow the stream infrastructure to
be able to autonomously move data between the processor and
the memory, without the processor intervention.

A. Memory access modeling

The proposed model aims at describing the exact sequence
of addresses that comprise each access to array-based variables.
To make it compiler-friendly, it follows the typical structure of
nested for loops, converting nested loop-based indexing and
loop- or data-dependent (indirect) index dynamic ranges into
an n-dimensional affine function:

y(X) = ybase +
dimy

∑
k=0

xk×Sk

with X = {x0, . . . ,xdimy} and xk ∈
[
Ok, Ek +Ok

] (1)

Hence, each stream access y(X) is described as the sum
of the base address of an n-dimensional variable (ybase) with
dimy pairs of indexing variables (xk) and stride multiplication
factors (Sk), where each k value corresponds to a dimension
of the pattern (usually, bound to a different loop in the code).
Each indexing variable xk is represented by an integer range,
varying between Ok and Ek +Ok, where Ek is the number of

data elements in dimension k and Ok represents an indexing
offset. The indexing variable x0, corresponding to the first
dimension of the variable, has an offset (O0) equal to 0 and is
associated with the variable’s base address (ybase).

From this base model, further complexity can be achieved
by combining multiple functions. This is achieved by assigning
the base address and/or the offset value of a function to the
result of another affine function. Additionally, the data that is
obtained by the sequence of addresses generated by an affine
function can also be used to perform the same associations,
resulting in the description of indirect memory access patterns.

B. Stream descriptor representation

The stream model defined in (1) is represented by an
hierarchical descriptor-based representation that encodes the
variables of each dimension of the affine function in a hardware-
friendly scheme. It also provides mechanisms to combine
multiple functions to allow the representation of complex and/or
indirect access patterns.

1) Base stream descriptors: Each uni-dimensional access
pattern is represented by a three-parameter tuple {O, E, S},
corresponding to the offset (Ok), size (Ek), and stride (Sk)
variables of a single dimension (k), as represented in (1).

Fig. 3.B1 depicts the simplest pattern supported by this
description, based on a linear memory access pattern starting
at memory position A (offset) and ending at memory position
A+N (size N), with an element spacing (stride) of 1.

To encode the full extent of an n-dimensional access pattern,
multiple descriptors are hierarchically combined in a linearly
cascaded scheme (as in a nested loop), where the descriptor
corresponding to dimension k ∈ [0,n[, is used to calculate
a displacement that is added to the offset of the descriptor
corresponding to the dimension k−1 (see Fig. 3.A1).

Two examples of 2-D stream descriptions are illustrated
in Figs. 3.B2 and B3. Both cases represent a matrix access,
where the first dimension encodes an horizontal row scan
pattern and the second dimension iterates vertically through
rows. In the particular case of the pattern in Fig. 3.B2, the
first dimension generates a linear pattern (with stride 1) and
the second dimension iterates over each consecutive row (with
stride equal to the row size – Nc). Conversely, for the pattern
in Fig. 3.B3, the stride parameters of both dimensions are used
to skip memory elements and generate a scattered pattern.

2) Static descriptor modifiers: In some access patterns, the
loop conditions of an inner for-loop may be generated by
the iteration of an outer loop. As an example, for each outer
loop (i) iteration of the lower triangular pattern depicted in
Fig. 3.B4, the parameter size of the inner loop (j) should
be incremented. As a result, the size (E) parameter of the
descriptor corresponding to the inner loop is updated in every
iteration of the descriptor corresponding to the outer loop.

To represent this behaviour, an optional static descriptor
modifier is introduced, represented by the tuple {T, B, D, E},
where each parameter encodes the following information:

• Target (T): the tuple parameter to modify.

211

• Behavior (B): the modification operator (add - addition
or sub - subtraction).

• Displacement (D): the constant value that is applied to
the target descriptor parameter, according to B.

• Size (E): the total number of iterations that the modification
is applied.

Hence, each modifier implicitly adds/subtracts the displace-
ment value to the target parameter, each time the corresponding
descriptor is iterated.

The association of a static modifier to a descriptor corre-
sponding to dimension k is realized by pairing it with the
descriptor that corresponds to dimension k+1, as depicted in
Fig. 3.A2. As a result, all descriptors (dimensional or modifiers)
that affect dimension k are bound to dimension k+1.

3) Indirect descriptor modifiers: The proposed descriptor
specification can be further extended by allowing the contents
of one stream to modify the values of another stream, making
it possible to create indirect (see Fig. 3.B5) and indexed scatter-
gather patterns. This interaction is realized with an optional
indirect descriptor modifier, represented by the tuple {T, B,
P}. In this descriptor, the displacement parameter is replaced
by a pointer to the origin data stream (P). For each iteration, a
value (dynamic displacement) is loaded from the origin stream
and used to modify the target parameter (T). The indirection
relation between the stream and the origin stream makes the

PATTERN C CODE STREAM DESCRIPTOR

A N for(i=0; i<N; i++)
 A[i];

Dimension 0:
{&A, N, 1}

A Nc

Nr

for(i=0; i<Nr; i++)
 for(j=0; j<Nc; j++)
 A[i*Nc+j];

Dimension 0:
{&A, NC, 1}

Dimension 1:
{0, Nr, Nc}

for(i=0; i<Nc; i++)
 B[A[i]];

Stream A: {&A, Nc, 1}

NcA d
for(i=0; i<Nr; i+=2)
 for(j=0; j<d; j+=2)
 A[i*Nc+j];

D0:{&A, d/2, 2}

D1:{0, Nr/2, 2*Nc}

Nr

Nr

A Nc D0:{&A, 0, 1}

D1:{0, Nr, Nc}

Modi�ier 1:
{Size, Inc, 1, Nr}

NcA

B

B1. Linear:

B2. Rectangular:

B3. Rectangular Scattered:

B4. Lower Triangular:

B5. Indirection:

Stream B:
D0:{B, 1, 0}
Indirect 1:
{Offset, Set-Add, A}

D0

Stream A

D0

Stream A

D1

D0

Stream A

D1 M1

D0

Stream B

I1

Stream A

D0

Stream A

D1

Descriptor: {Offset,Size,Stride} <> {O,E,S}
Static Modifier: {Target,Behavior,Displacement,Size} <> {T,B,D,E}
Indirect Modifier: {Target,Behavior,Stream Pointer} <> {T,B,P}Legend

A
1

.
N

-d
im

 d
e
sc

ri
p

to
r

D0

D1

D2

Dn

{O,E,S}

{O,E,S}

{O,E,S}

{O,E,S} A
2

.
S

ta
ti

c
m

o
d

if
ie

rs D0

D1

D2

Dn

{O,E,S}

{O,E,S}

{O,E,S}

{O,E,S}

M1

M2

Mn

{T,B,D,E}

{T,B,D,E}

{T,B,D,E} A
3

.
In

d
ir

e
ct

 m
o

d
if

ie
rs

D0

D1

D2

Dn

{O,E,S}

{O,E,S}

{O,E,S}

{O,E,S}

I1

I2

In

{T,B,P}

{T,B,P}

{T,B,P} Stream Z

Stream Y

Stream X

Stream AStream A X,Y,Z ≠ A Stream A

A. MODELING MEMORY ACCESS PATTERNS WITH HIERARCHICHAL DESCRIPTORS

B. EXAMPLE MEMORY ACCESS PATTERNS

for(K=i=0; i<Nr; i++){
 for(K++, j=0; j<K; j++)
 A[i*Nc+j];
}

Fig. 3. Memory access pattern representation with hierarchical descriptors
and examples cases.

size of the first dependent on the size of the second. Hence,
the indirection modifier does not require any size parameter.
The behavior (B) parameter supports the following operators:
• set-add: adds the dynamic displacement to the target.
• set-sub: subtracts the displacement from the target.
• set-value: sets the value given by the origin stream

to the target value.
Contrasting with the static modifier behaviour operators

(see Section II-B2), the indirect modifier does not perform
any implicit addition/subtraction of the displacement to the
target parameter. Instead, in each iteration, the target parameter
is either set to the addition/subtraction of the displacement
with the original value of the parameter, or solely set to the
displacement value.

Finally, the syntax of an indirect descriptor modifier is
equivalent to that of static modifiers, as depicted in Fig. 3.A3.

III. PROPOSED UVE EXTENSION

To fully exploit the data streaming specification presented
in Section II, it is first necessary to provide a programming
interface at the Instruction Set Architecture (ISA) level. This
section introduces the Unlimited Vector Extension (UVE),
which was designed by considering the following principles:
• RISC style: it must comprehend hardware-friendly in-

structions, allowing for an efficient implementation and
avoiding complex decoding paths (e.g., each instruction
should correspond to a processor µOp);

• Scalable: its programming model should fully support
scalable and non-constrained vector lengths;

• Coherent: it should inherit and keep the structural princi-
ples of the base ISA; in particular, RISC-V was selected
because of its open source nature, and due to its simple,
clean and extensible instruction set.

A. Extension Design

The definition of the proposed UVE comprises both the
processor base architecture and the streaming infrastructure1.

1) Architectural State: Besides the natural adoption of a
vector register file, the proposed UVE provides a streaming
interface to the vector instructions and a set of predicate
registers to facilitate the execution control on each lane.
Furthermore, some instructions will make use of scalar registers
(e.g. Loads and Stores), mostly inheriting the RISC-V scalar
register bank [25].
Vector Registers. The proposed UVE makes use of 32 vector
registers (named from ”u0” to ”u31”), satisfying a compromise
between operand encoding and register file pressure. While the
vector-length is not limited to any maximum size, a minimum
value is defined, and corresponds to the width of the supported
elementary data types: byte (8-bits), half-word (16-bits), word
(32-bits), and double-word (64-bits). Naturally, the maximum
vector length must be a multiple of the minimum length, while

1Upon paper acceptance, the complete specification of UVE will be made
available at the authors’ GitHub, along with the evaluation source code.

212

the element width is independently configured for each vector
register.
Streaming interface. Each data stream is implicitly associated
with a specific vector register (”u0” to ”u31”). Hence, by read-
ing (or writing) to such register, the instruction is transparently
consuming from (or producing to) the corresponding stream.
Predicate Registers. The predicate register file is composed of
16 predicate registers (”p0” to ”p15”). However, only 8 (p0-p7)
are used in regular memory and arithmetic instructions, where
predicate register p0 is always hardwired to 1 (all valid lanes
execute), eliminating the need to pre-configure the register in
non-conditional loops. The remaining predicate (p8-p15) are
used in the configuration of the first 8, or to allow for context
saving. This balance was based on related work analysis of
compiled and hand-optimized codes, having the benefit of
mitigating the predicate register pressure [7], [26].

2) Streaming Support: The streaming model implicit to the
proposed UVE was devised upon the following principles:
Scalability. The design principle adopted by UVE is focused
on a runtime variable vector length. In particular, the con-
sumption/production of streams automatically enforces its
iteration, ensuring an automatic progression of loop iterations.
Moreover, since reading/writing outside the stream elements
is automatically disabled by the streaming infrastructure (as
in a false predicate), loop control can be performed with only
a basic set of stream-conditional branches (e.g. stream end,
stream dimension end).
Destructive behavior. The consumption from a data-stream
mapped to a register automatically iterates over the stream.
Hence, if such data element is to be used again by the program,
it should be saved in a register or memory position, as the
already streamed data is not restorable. This design option
eliminates the need for additional step-instructions in each
loop, promoting code reduction (see also Fig. 4).
Compiler optimizations. Despite the straightforward bench-
mark kernels that were adopted in the presented experimental
evaluation, the proposed extension supports the usual set of
compiler optimization techniques, such as loop unrolling and
software pipeling. Future work will consider the implemen-
tation of a compiler toolchain that will exploit convenient
compiler techniques to i) identify linear combinations of loop
induction variables (1) used to calculate the address sequence
of streamable memory accesses; ii) eliminate memory indexing
and loop control; and iii) apply vectorization techniques.
Complexity limitation. Although UVE supports complex
memory access patterns, reasonable limits are defined to
constrain the hardware resources. In particular, the presented
analysis shows that most patterns have a dimensionality no
greater than 4. Moreover, high-dimensional patterns (e.g.,
5D+) can also be designed by forcing the outer loop(s) to
reconfigure the access pattern at each new iteration, with no
significant performance differences. Nonetheless, the current
implementation supports up to 8 dimensions and 7 modifiers.

3) Streaming memory model: To potentiate the offered
performance, the proposed extension is designed to allow run-
ahead execution of input streams, resulting in an automatic

pre-loading of input data, similarly to what would otherwise be
achieved through loop unrolling or software register prefetching.
Naturally, this imposes that the source memory locations of
an input stream cannot be modified in runtime by either
conventional memory stores or by an output stream, as the
runtime aggressiveness of prefetching may generate read-after-
write hazards. However, this does not represent a hard constraint
in most practical situations, as streamed loops do not require the
explicit use of conventional load/stores, and because the codes
that would lead to such hazards are generally not vectorizable
nor amenable to scalable vector extensions (e.g., as in infinite
impulse response filters). Write-after-read and write-after-write
dependencies are normally dealt and well handled by the
proposed streaming model, as the loop code encodes the
dependencies between memory operations, ensuring the support
for in-place computations.

The adopted streaming model also assumes that the processor
is responsible for the synchronization between input streams
and pending store instructions (which precede the configuration
of the input stream, but are delayed due to execution latencies).
Similarly, when exiting a streamed loop, the processor is also
responsible for ensuring the synchronization between an output
stream and a following load instructions.

Finally, and by keeping the same premises that were
considered in the RISC-V specification, a weak memory model
is herein adopted, where synchronization between different
hardware threads is achieved only through the use of explicit
fence instructions.

B. Instruction Set

UVE currently features 26 integer, 15 floating-point and 19
memory (including streaming) major instructions, resulting in
450 instructions when including all variations.
Stream configuration. The descriptor/modifier configuration
parameters described in Section II (e.g., width, behaviour,
etc.) are encoded using stream configuration instructions
(identified by the prefix ss in Fig. 4). Simple 1-D patterns are
configured using a single ss.ld/ss.st instruction, while
more complex data patterns require multiple instructions
(one per dimension/modifier) using specific stream config-
uration instructions, namely for start (ss.{ld|st}.sta),
append (ss.app[.mod|.ind], with mod≡static modifier,
ind≡indirect modifier) and end (ss.end[.mod|.ind].
Additionally, the starting configuration of each stream must also
specify the data size (suffix {b|h|w|d} for byte, half-word,
word, and double-word) – see example in Fig. 4.
Stream control. A subset of instructions are responsible for
the control of streams (e.g. suspend (ss.suspend), resume
(ss.resume), stop (ss.stop)). Their purpose is to allow the
momentary freeing/restoring of vector registers, and to enable
context switching, allowing the concurrent execution of multiple
processes without interfering with the streams configuration.
It is also possible to manually “force” a load/store from/to a
suspended stream, providing precise stream control.
Predication. Individual lanes of an SIMD execution are
controlled with a subset of predication and masking instructions

213

Execution
Flow

0

1

2

3

4

5

6

7

u0,a1,a0,a3

u1,a2,a0,a3

u2,a2,a0,a3

u3,fa0

u4,u3,u0

u2,u4,u1

ss.ld.w

ss.ld.w

ss.st.w

so.v.dup.w

so.a.mul.fp

so.a.add.fp

u0, .loopso.b.nend

saxpy_:

loop:

Assembly
code Operation<O,E,S>

fa0u3

u0 {4, 7, 4, 1, 6}

u1 {3, 1, 5, 7, 9}

u2{-, -, -, -, -}

x

222

2 2 4 7u4 148

+8 14 3 1u2 1511

x2 2 4 1u4 28

+8 2 5 7u2 913

stream u0≡{4, 1, 6} (not at end)

x2 2 6 -u4 -12

8

9

10

11

12

+12 - 9 -u4 -21

stream u0≡{6} (not at end)

stream u0≡{-} (at end)

Fig. 4. UVE saxpy code emulation. The fused multiply-add operation cannot
be used in this example because it only accepts 3 operands and a stream
cannot simultaneously operate in both read and write modes.

that allow disabling the selected lanes. For such purpose, UVE
provides instructions to configure the predicate based on vector
register comparisons (e.g., less or equal to) and based on the
valid elements of a vector register. Predicate manipulation
instructions are also available, offering predicate moving,
predicate width configuration, and element-wise negation.
Loop control. Control is assured with three distinct conditional
branch formats: i) predicate-based - a condition (e.g., AND)
is tested on a specified predicate register; ii) end-of-stream - a
condition on the end of a stream, and iii) end-of-dimension - a
condition on a stream dimension end. The end-of-dimension
branch format allows a simple and fine control over the
iterations of streams with different size. A particular use-case
is when the accesses to the streamed variables are bound to
different loops in the original scalar code (as in Fig. 2).
Vector manipulation. UVE also provides instructions to
support vector manipulation and processing - e.g., vertical
and horizontal arithmetic, logic and shift operations. All these
instructions are optionally predicated by a predicate register.
Fig. 4 illustrates the use of three vector manipulation and data
processing instructions: i) duplication (so.v.dup), where a
scalar is replicated to all elements of vector u3; and ii) mul-
tiplication (so.a.mul.fp) and addition (so.a.add.fp),
where the processing of stream registers and vector registers is
carried out in the same instruction, with automatic load/store,
and no explicit register distinctions. Finally, it is worth noting
that UVE is not completely dependent on streaming to transfer
data to/from memory, as conventional (non-streaming) vector
load/store instructions are kept in the ISA (ss.load/store).
In particular, all these legacy instructions support post-fix
address increment, not requiring explicit memory indexing
for linear memory accesses.
Scalar processing. Although the proposed extension targets
vector processing, the streaming infrastructure can also be
exploited for scalar processing, through a specific set of
vector-to-scalar and scalar-to-vector instructions. These impose
an element-wise shift of the vector elements, forcing the

consumption/production of one element in the stream.
Advanced control. UVE includes specialized instructions to
explicitly read (ss.getvl) and configure the vector length
(ss.setvl), allowing for narrower vector-length emulation
and vector-length aligned processing. In particular, UVE
supports any dimension of a stream description to be configured
as vector-aligned, by automatic padding the vector registers
when the dimension is not a multiple of the vector-length.
To cope with different stream memory access footprints
and temporal/spatial locality profiles of the streamed data,
UVE supports cache-level access selection during stream
configuration. As an example, the so.cfg.memx instruction
directs the corresponding stream to operate over the Lx cache.
Concurrent streams. The UVE programming model assumes
that concurrent streams operate independently, as the patterns
do not directly encode dependencies across streams. However,
this does not compromise general-purpose high-performance
computing codes (particularly in-place computations), as the
dependencies are described in the loop code. Such an example
is the saxpy kernel illustrated in Fig. 1. Since the result
stream u2 depends on a read from stream u1, an ordering to
the streaming process is imposed, avoiding potential hazards.

IV. MICROARCHITECTURE SUPPORT

Most streaming operations supported by UVE are performed
within a Streaming Engine, embedded in the main architecture
pipeline (see Section IV-B). Besides this new block, the CPU
processing pipeline only needs to be extended with some minor
streaming structures. Fig. 5 highlights such modifications, when
applied on a traditional out-of-order processing pipeline. This
same pipeline will be used in the experimental evaluation
presented in Section VI.

Such modifications can be summarized as:
– Decode, register file & execution units: convenient

support for the decoding of the proposed UVE instruction-
set extension, vector registers, and corresponding logic,

Integer Load
Unit

Store
UnitL

S
U ALU

FADD
FMUL
FDIV
IMAC

ALU
FADD
FMUL
FDIV
IMAC

Op Op Op Op

Op Op Op Op Op Op

Branch Predictor
(BPU)

Return StackInst Inst Inst Inst

Inst Inst Inst Inst

Op Op Op Op

Front
End

L1 Instruction
Cache

Rename / Allocate / Commit
ReOrder Buffer

Dispatch

Decode Queue

Instruction Fetch

Decoder Decoder Decoder Decoder

General-Purpose
Register File

System
Registers

SIMD & FP
Register File

Issue

Speculation
State

Stream
Load

S
tream

C
on
fig
u
re

S
tream

W
riteb

ack

Execution
Units

Memory
Access

L1 Data Cache

Legend

Generic SIMD
Modifications

Slightly Modified

New Modules

Stream

Streaming Engine

FIFOs

CPU Core

Fig. 5. Microarchitecture diagram, highlighting the introduced modifications.
To alleviate the representation complexity, some load and store ports and
coherency mechanisms are not represented.

214

arithmetic and branch functional units - a requirement
similar to RVV [8] and SVE [7].

– Rename: Besides the support for vector register renaming
(common in most vector extensions), it should also support
the renaming of streams. This allows for the speculative
configuration of new streams while others (with the same
logical naming) are still executing.

– Commit: Support for the commit and squash of streams,
by signaling the Streaming Engine all miss-speculation
and commit events related to the processing of streams
(namely, configuration, iteration, suspension/resuming and
termination).

A. Stream Operation

To understand the architectural changes required to support
the proposed streaming mechanisms, the following paragraphs
describe the operation of streams, while the architecture of the
Streaming Engine is described in Section IV-B.
Stream Configuration. Complex data patterns requires mul-
tiple instructions that, depending on the resolution order of
data dependencies, may result in an out-of-order execution
of the configuration instructions. Although the commit buffer
could be used for reordering, it would prevent the speculative
configuration of streams, impacting performance.

Hence, an alternative solution is herein adopted. Whenever
a new stream configuration instruction reaches rename, it
is registered on a stream configuration reordering structure
(Stream Configuration Reorder Buffer (SCROB), in Fig. 7),
which is part of the Streaming Engine. This engine, similar to
a re-order buffer, processes the configuration instructions in
order, and as soon as the corresponding operands are available.
Upon completion of the configuration, the streaming engine
immediately starts processing the stream, either by pre-loading
data (for input streams), or by calculating store addresses (on
output streams), and waiting for the commit of store data.

To support speculative execution, the configuration of a
stream generates two stream states (speculative and commit),
which are dynamically iterated when an instruction that
manipulates a stream reaches rename and commit stages,
respectively.
Stream Renaming. The renaming mechanism is essential to
allow the speculative configuration of streams. In particular,
when configuring a stream, the corresponding identification
register may still be associated with another running stream,
due to miss-speculation and/or to pipeline latency. To avoid
blocking the pipeline, a Stream Alias Table (SAT) (identical to
a Register Alias Table (RAT)) was introduced, which performs
the mapping between logical stream register and the physical
Streaming Engine identifier. The SAT is also used to keep track
of the registers currently associated with an active (i.e., not
suspended) stream, allowing to verify whether an instruction
operand corresponds to a read/write from a stream, or to a
normal register operation.
Stream Iteration. A stream iteration process is logically
performed by reading/writing from/to an input/output stream.
Architecturally, this is achieved at rename, by signaling the

Streaming Engine to iterate the speculative stream state. For
an output stream, this also implies reserving space in the
Streaming Engine Store FIFO (First-In First-Out) buffers (see
Fig. 7 and Section IV-B) and then waiting for both data and
commit signals to arrive, to complete the operation. On input
streams, the devised solution attempts to minimize the load-
to-use latency, by allocating the head of input streams on
physical registers. As a consequence, when a stream consuming
instruction reaches rename, the operand is immediately read
and a new data element is pre-loaded to a different physical
register. This is achieved by performing register renaming and
requesting the Streaming Engine to load the corresponding data
to the target physical register.
Stream Termination. The termination of a Stream is achieved
at commit, either through an explicit termination instruction,
or by committing an instruction that signals the completion
of the streaming pattern. When such an event occurs, all the
structures in the Streaming Engine are released, allowing the
resources to be allocated to a new stream configuration.
Miss-Speculation. A possible miss-speculation may result in
an erroneous stream configuration or iteration. On a miss-
speculated configuration all associated structures are released,
allowing the Streaming Engine to accept a new configuration. In
contrast, on a miss-speculated iteration, when the corresponding
instruction is squashed, two actions are performed: (i) the
pipeline reverts the physical register state to the previously
committed value; and (ii) the Streaming Engine is signalled to
revert the speculated pointers on the load/store circular buffers
to the current commit point. Hence, there is no direct impact
on the buffered data (on loads) and addresses (on stores), as the
streaming data access pattern is deterministic (it was simply
consumed in the wrong way). Accordingly, all elements that
were miss-speculatively read from an input stream remain valid
and can immediately be re-used without requiring a new load
from the cache hierarchy, saving time and energy. Naturally,
committed stream reads and writes signal the streaming engine
to advance the corresponding (commit) iterators, releasing the
load and store buffers. Finally, stream termination (i.e., the
release of all stream structures) is only performed at commit,
hence not being affected by miss-speculation.
Cache Access. To minimize the impact on caches and avoid
the inclusion of additional L1 access ports, input/output stream
requests are merged with conventional memory loads and stores,
before accessing the L1 (see Fig. 6). Although this may impose
an additional pressure on the same channels and an eventual
delay on concurrent read/writes from the scalar pipeline, the real
impact of this option is usually very small, since streaming
loops do not usually require scalar memory operations. As
a consequence, stream and conventional load/store memory
operations typically end up being performed in a mutually
exclusive fashion (as it occurs in all benchmarks presented in
Section V), mitigating the impact of such merge.

On the other hand, and as it was previously referred and
illustrated in Fig. 6, UVE also supports direct data loading
from any Lx cache level or from the main memory. This
is particularly important, as caching data with low temporal

215

locality wastes cache capacity, imposes higher energy con-
sumption, and hurts the performance. At the hardware level,
and to avoid significant changes in the memory hierarchy
infrastructure, this can be simply achieved by issuing the
corresponding read requests as non-cacheable loads on all
lower levels Ly, with y < x. For example, when streaming
from the L2 cache (the considered default case), non-cacheable
requests are first sent by the CPU to the L1. As they likely
result in an L1 cache miss, they are forward to the L2, where
they are treated as a normal (cacheable) L2 load. On the other
hand, a stream configured for direct memory access will issue
the corresponding input requests as non-cacheable at all levels
(avoiding cache pollution), likely resulting in a direct memory
load (as the requests will probably result in a miss at all cache
levels).

In what concerns the output streams, the considered imple-
mentation forces stores to be issued to the L1 cache. However,
a solution similar to the one that was adopted for the stream
loads could also be considered, by simply forcing a write-no-
allocate write-through policy on lower-level caches, attaining
direct stream stores to any cache level or even to the main
memory.
Memory Coherence. Coherence is ensured through two
distinct mechanisms:

• On the core, stream and non-stream operations are kept
coherent by matching the stream load/store state with the
core load/store queues and by solving possible stream
load/store dependencies through typical request delay,
replay, or squash mechanisms . Hence, data written by the
conventional pipeline can be immediately read by a newly
configured input stream, and data written by an output
stream can be loaded using a conventional load instruction.
This ensures a reliable transition between sequential code
and stream loops.

• On the caches, coherence is ensured through a con-
ventional MOESI cache snooping protocol. Naturally,
directory-based approaches could equally be used.

CPU Core

Main Memory

Execution Pipeline

L2 Cache

L1 Cache

Load
Store
Units

Streaming Engine

FIFOs

Configurable
streaming request
cache bypassing

Stream and
conventional
request merging
before cache access

Streaming Model
transparently
embbeded in the
core pipeline

Fig. 6. System overview, depicting the Streaming Engine embedded in an
out-of-order core and its connections to the memory hierarchy.

Finally, it should be noted that the proposed mechanism does
not require any coherence mechanism at the level of the
stream FIFOs, as it is assumed that preloaded data is already
consumed by the core, similar to what would occur with
loop unrolling and register pre-fetching (this will be further
detailed in Section IV-B – Load/Store FIFOs). Naturally, a
different solution could also be adopted by extending the
coherence protocol to the (internal) stream buffers. However,
this alternative solution was left to future work, since data-
parallel kernels that are amenable to scalable vector extensions
usually do not impose read-after-write dependencies on the
same memory location. An exception to this case are some
iterative algorithms (e.g., k-Means). However, such cases
require stream reconfiguration at each algorithm iteration,
imposing synchronization.
Exception Handling. The main source of UVE-specific excep-
tions is page-faults. They are handled at the commit stage by
considering the first active faulting element whose access was
attempted (just as in ARM SVE [7]). Nevertheless, page-faults
have no consequence on the execution if they are a result of
a miss-speculation, if the stream terminates earlier, or if the
faulting element is otherwise inactive (i.e., predicated false).
Context Switching. The context of running threads can be
saved by suspending all active streams and then storing the
commit stream iteration state. As a stream iteration describes
a scalar access, resuming the execution (due to context switch
or upon recovering from an exception) is simply performed
by loading the saved iteration state and resuming from the last
commit point (naturally all pre-fetched data in internal buffers
is lost and must be re-loaded). The size of the saved stream
state depends on the considered data pattern and varies between
32-Bytes (for 1-D patterns) and 400-Bytes (for a maximum of
8-D patterns and 7 modifiers).

B. Streaming Engine

The Streaming Engine is responsible for managing all input
and output streams. As depicted in Fig. 7.A, its architecture
consists of: (i) a Stream Configuration module, which is
responsible for re-ordering the stream configuration requests;
(ii) a Stream Table, which holds the information regarding
the configuration of each stream on its multiple dimensions,
as well as the information regarding current speculative and
committed iteration states; (iii) a Stream Scheduler, responsible
for the selection of a set of n (load/store) descriptors to be
iterated by the Stream Load/Store Processing Modules (see
Fig. 7.B); and a set of queues (Memory Request, and Load and
Store FIFOs), which are used for buffering purposes. These
modules operate as follows:
Stream Configuration. Whenever a new stream configuration
reaches the rename stage of the processor pipeline, it is
registered (in order) on the SCROB, where it awaits until
all data dependencies are satisfied. Instructions are retrieved
in order (one per clock cycle), validated, and used to write the
data pattern configuration into the Stream Table.
Stream Processing. The stream processing is managed by the
Stream Scheduler (see Fig. 7.A). At each cycle, it selects a set

216

D
e
sc

ri
p

to
r

It
e
ra

to
r

Address
Generator

Streaming Engine

Sorting Queue

Validation
new

stream

Stream Configuration

Memory Request
Queue

A
rb

it
e
r

[Store FIFO & Load FIFO]
Occupancy

S
tr

e
a
m

S
ch

e
d

u
le

r Store FIFO

to Register
File

from
Writeback

Load FIFO
Data from
Memory

Data to
Memory

Memory
Access

Requests

Address Generator

Stream Scheduler

Stream
Descriptor

Stream Processing Module

A. Streaming Engine

B. Stream Processing Module

Configuration
Port

descriptor state iter flags

Stream Table

#streams

Stream Load/Store
 Processing Modules

Stream Table

Base Address

Offset Size Stride
Descriptor(dim. k)

Accumulation
Offsetsk+1..N

Accum. Offsetsk..N

Accum. Offsets0..N

Iteration
of dim. k

Memory Address

Configured Streams FIFO Occupancies

Sort OccupanciesFilter Active Only

Select Descriptor
Selection Process

Descriptor Iterator

Dim. 0

Dim. N Mod. N

Dim. 1 Mod. 1

Head

End of
Descriptor

End of
Descriptor

1 Iter. 1 Iter.

1 Iter. 1 Iter.

Full Iteration

Iteration Process

Fig. 7. Streaming Engine and Stream Processing Module logical block diagrams.

of n load/store streams from the Stream Table, which are then
iterated by the Address Generators on the Stream Processing
Modules (depicted in Fig. 7.B). Upon each iteration, the new
stream state is registered on the Stream Table (unless the same
stream is selected for processing), allowing to time-multiplex
the iteration process of the several streams. Stream prioritization
is achieved in the selection process, where streams with lower
FIFO occupancy take precedence over the others, ensuring that
the most consumed FIFO has the highest priority. To lower
the hardware complexity (and size), each stream processing
module only processes a dimension j (plus respective modifier)
at a time, as detailed in Section II-B. When the j domain
(dimension + modifier) reaches its end, it is restarted after a
single iteration of descriptor j+1 (updating the accumulated
offset from descriptors (j+1)...N). The Address Generator
architecture is based on 2× 16-bit incrementers, 2× 64-bit
adders, and some multiplexing logic, allowing to process one
descriptor iteration and one modifier per cycle. This allows
generating up to one cache line request per clock cycle, with
one additional clock cycle being required to switch between
descriptor dimensions. When succeeding descriptor iterations
(from the same stream) hit the same cache line, a single memory
request is issued, with the cache line data from the first request
being reused on the following ones.

Iterating load streams generates new load requests, which
are registered on the Load FIFO and Memory Request Queues.
Then, the Arbiter picks such requests, performs the virtual-to-
physical page translation (through a TLB access) and issues
them to the memory, with the subsequent responses being
placed on the corresponding Load FIFO queue slots. In the
event of a page fault, the corresponding vector element is
immediately flagged with an exception, which is subsequently

handled at the commit stage. This avoids requests to invalid
memory positions (even if speculatively) and allows the
prefetching of stream data even across page boundaries.

Iterating store streams simply generates store addresses,
which are directly written to the Store FIFO, until data is
written back by the processor, and subsequently committed.
Load/Store FIFOs. As described in Section IV-A – Memory
Coherence, since the Streaming Engine is integrated in the
internal structure of the core, the Load/Store FIFOs work as an
additional dimension of the vector registers. Consequently, the
stream data buffered in these structures is regarded (from the
memory hierarchy point-of-view) as already consumed data
(by the core) and data coherence with the memory hierarchy
is no longer enforced nor necessary. Accordingly, each stream
is associated with an independent fixed-length FIFO queue,
whose size (depth) was set to 8 in order to constraint the
required hardware resources. Naturally, a better management
could be attained by designing a single queue and sharing it
across all streams. However, this would impose an additional
hardware complexity and is therefore left for future work.
Stream Scheduler Policy. To select the set of n streams to be
iterated, the Stream Scheduler relies on a simple policy, which
prioritizes streams whose FIFO queues are less occupied.

C. Architectural impact overview

Besides the addition of the Streaming Engine, the proposed
UVE imposes a minimal impact to the core’s microarchitec-
ture. Most of the necessary modifications are achieved by
establishing direct connections to the Streaming Engine from
the vector register file, execution, rename, and commit stages
(registers can be added in-between to minimize impact on
operating frequency). The decode stage is also extended to

217

TABLE I
CPU MODEL CONFIGURATION PARAMETERS BASED ON PUBLIC

INFORMATION ABOUT THE ARM CORTEX A76 AND [7]. THE PARAMETERS
REGARDING THE STREAMING ENGINE ARE SPECIFIC FOR UVE, WITH THE

REMAINING BEING COMMON TO UVE AND THE BASELINE (ARM).

CPU 4-wide instruction fetch, 4-wide µOp commit
(@1.5GHz) 8-wide µOp issue/dispatch/writeback

80 IQ, 32 LQ, 48 SQ, 128 ROB entries
128 Int RF, 192 FP RF, 48×512-bit Vector RF

Functional 2×Int ALUs with a 24-entry scheduler
Units 2×Int vector/FP FUs with a 24-entry scheduler

2×Load + 1×Store ports with a 24-entry scheduler
Streaming 2×Stream Load/store Processing Modules
Engine 8-entry Load/Store FIFOs per stream (default)

1×Load + 1×Store ports with a 24-entry scheduler
L1-I / L1-D 64KB 4-Way LRU

Stride Prefetcher with depth 16
L2 256 KB 8-Way LRU

AMPM Prefetcher [20], QueueSize 32
Snoop-based cache coherence protocol

DRAM Dual-Channel DDR3-1600 8x8 11-11-11

include support for the new UVE instructions (much like any
other SIMD extension). This results in an architectural impact
in the core not much different from other SIMD extensions.

Conversely, aside the stream processing logic (described
in Section IV-B), the Streaming Engine is mostly composed
of storage and buffering structures, which are particularly
dimensioned to minimize area impact while attaining significant
performance gains (further detailed in Section VI). As it was
referred before, stream and conventional load/store ports are
typically used in mutually exclusive fashion and can be merged
together - this was verified in the set of considered benchmarks
in Section V.

V. EXPERIMENTAL METHODOLOGY

Simulation environment. The proposed microarchitecture was
simulated on a modified version of Gem5 [27] using the
parameters described in Table I. Although featuring RISC-
V as the base instruction set [28], the adopted configuration is
based on public information regarding the ARM Cortex-A76
and on [7]. Furthermore, since the main goal is to evaluate the
per-core performance, it features no L3 cache memory, which
is typically used for cross-core data sharing on multi-core
processors. Additionally, to provide support for the proposed
set of streaming extensions, it features a Streaming Engine
with only two Stream Load/Store Processing Modules (see
Fig. 7) and an 8-entry FIFO queue for each stream. Coherence
between cache levels is ensured through snooping using a
MOESI protocol.
Baseline architecture. For performance evaluation, the pro-
posed solution is compared with an ARM core with full SVE
support and featuring 512-bit vectors (as in the proposed
solution). Apart from the Streaming Engine, which is non-
existent in the ARM cores, all other processor parameters have
the same configuration. In particular, to validate the proposed

solution on equal grounds, the baseline architecture features two
different prefetchers: a stride prefetcher associated to the L1-D
and the AMPM prefetcher associated to the unified L2 [20].
Evaluation benchmarks. A representative set of benchmarks
from several suites [29]–[33] (considering both workload and
memory access patterns) was adopted for the evaluation of
the proposed UVE instruction set and its corresponding imple-
mentation, as presented in Fig. 8 (left table). The list includes
representative benchmarks relevant from several application
domains, such as memory, linear algebra/BLAS, stencil, data
mining, dynamic programming, and n-body (physics) systems.
Compilation toolchain. As it was referred, the development
of a full compilation toolchain for UVE is a work-in-progress
and is left for future work. As a consequence, the benchmarks’
computational loops were hand-coded, although adopting
straightforward implementations and avoiding the use of loop
unrolling or software pipelining techniques (see example in
Fig. 4). Hence, the GNU Compiler was extended to support
all UVE instructions (when written in assembly mode), with
the remaining code being compiled with the usual -O2 flag.

For ARM SVE, the ARM compilation toolchain was used
with flags -O3, -march=armv8-a+sve and -fsimdmath.
However, the compilation toolchain failed to vectorize four
benchmarks (identified in Fig. 8 with *), namely Seidel-2D,
MAMR (all variants), Covariance and Floyd-Warshall.
All other benchmarks were inspected to guarantee that vec-
torization was correctly performed. It was observed that the
compiler cost-benefit model decided not to use loop unrolling
on top of vectorization, which is consistent with the UVE
implementations.

VI. RESULTS

A. Performance evaluation

Fig. 8 presents the UVE performance evaluation in com-
parison with two ARM cores: the first featuring only NEON
extension, the second expanded to also support the upcoming
SVE. Both SVE and UVE extensions are configured to operate
over vectors of 512 bits, with all UVE streams being configured
(by default) to operate over the L2 cache. The presented
evaluation considered the following aspects: (A) code reduction,
(B) performance speed-up, (C) average number of blocks (stalls)
per cycle at the rename stage, and (D) DRAM memory bus
utilization, which is herein limited by the benchmark memory
access pattern, and by the ratio between memory and core
operating frequencies.

By analyzing the results in Fig. 8.B, it can be observed
that the proposed extension provides a significant (average)
performance advantage of 2.4× over ARM SVE (considering
only vectorized benchmarks). The significant speed-ups are
attained without relying on specific code optimizations, such as
loop unrolling, as these would provide even greater performance
improvements (see also Fig. 8.E).

The observed performance speed-ups come as a direct
consequence of two main contributions: i) a significant code
reduction (see Fig. 8.A), with an average 60.9% (93.2%) less
committed instructions than ARM SVE (NEON); and ii) the

218

2 4 8
Unroll factor

0
0.5
1.0
1.5

0%

50%
(ReadBW+WriteBW)/PeakBW

B C D E F G H I J K L MA

Speed-up
(vs. ARM NEON)

B1.

0

Speed-up
(UVE vs. ARM SVE)

B2.

100%

B C D E F G H I J K L M N O P RA S

Reduction of Committed Instructions
(vs. ARM NEON)

A1.

50%

0%

Reduction of Commit Inst.
(UVE vs. ARM SVE)

A2.

B C D E F G H I J K MA

2

4

6

8

1
8
.3

1
5
.0

1
0
.7

1
5
.7

1
0
.0

2
8
.4

N O P R S

L

B C D E F G H I J MKA L
0

2

4

6

8

Not vectorized by the
ARM SVE Compiler

-26%

0%

-50%

-100%

40%

Not vectorized by the
ARM SVE Compiler

100%

50%

0%
ARM SVE UVE

ARM SVE UVE

UVE

UVE

Rename Blocks/Cycle
(vs. ARM NEON)

C1.

H
ig

h
e
r

(W
or

se
)

L
o

w
e
r

(B
et

te
r)

0%

40%

Rename Blocks/Cycle
(UVE vs. ARM SVE)

C2.

-50%

-100%

Q

Q

B C D E F G H I J K L MA N O P R S B C D E F G H I J MKA LQ

43.9%Not vectorized by the
ARM SVE Compiler

ARM SVE UVE UVE

Memory Bus UtilizationD.

InstUVE

InstARM SVE
1-()InstX

InstARM NEON
1-()

ARM NEON ARM SVE UVE

B C D E F G H I J K L MA

Not vectorized by the
ARM SVE Compiler

E.

1 1 1 1D

D. GEMM
(BLAS)

N. Covariance
(DATA MINING)

S. Floyd-Warshall
(DYNAMIC PROGR.)

E. 3MM
(ALGEBRA)

J. Jacobi-2D
(STENCIL)

F. MVT
(ALGEBRA)

G. GEMVER
(ALGEBRA)

R. Seidel-2D
(STENCIL)

I. Jacobi-1D
(STENCIL)

B. STREAM
(MEMORY)

O. MAMR
(DATA MINING)

P. MAMR-Diag
(DATA MINING)

Q. MAMR-Ind
(DATA MINING)

A. Memcpy
(MEMORY)

C. SAXPY
(BLAS)

L. HACCmk
(N-BODY)

K. IRSmk
(STENCIL)

10 4 2 2D

3 1 1 1D

4 3 1 4D

3 3 3 4D

8 2 2 2D

17 4 2 2D

8 2 1 1D

12 2 2 2D

57 1 3 3D

10 1 2 2D

8 3 3
4D

2 1 2 2D

2 1 2
2D

3 1 2
2D

3 1 1 1D

4 1 3 4D

+Static
Modifier

+Static
Modifier

+Indirect
Modifier

H. Trisolv
(ALGEBRA)

5 1 2
2D

+Static
Modifier

M. KNN
(DATA MINING)

3 1 2
2D

+Indirect
Modifier

* The number of kernels corresponds to
the number of disjunt loop statements
(i.e., excluding nested lops)

#
S

tr
e
a
m

s

#
K

e
rn

e
ls

*

M
a
x
.

L
o

o
p

N

e
st

in
g

M
e
m

o
ry

A
cc

e
ss

P
a
tt

e
rn

N O P Q R S

ARM NEON UVE

BENCHMARKS

No unrolling
(DEFAULT)

Speed-up of Loop
unrolling on GEMM
(UVE with unrolling vs.
UVE without unrolling)

Fig. 8. Evaluation of the proposed vector extension (UVE). By default streaming is performed from/to the L2 cache. None of the UVE benchmark
implementations feature loop unrolling on top of vectorization, with the exception on the results in E.

streaming infrastructure, which is able to significantly reduce
the load-to-use latency and increase the effective memory
hierarchy utilization.

In particular, it was observed a considerable improvement of
the memory bus utilization, resulting on an average increase as
high as 41× (see Fig. 8.D). This is especially observed for the
STREAM, SAXPY, GEMVER, IRSmk and MAMR benchmarks.
GEMM, 3MM, Jacobi-1/2D, Seidel-2D, Covariance,
and Floyd-Warshall did not affect this utilization because
these benchmarks are L2-bound, leading to insignificant
changes in this rate.

These two advantages also contribute to a reduction of the
introduced stalls in the pipeline, particularly at the rename stage.
In fact, by decreasing the number of instructions in the code, it
is possible to significantly alleviate the pressure at the reorder-
buffer and issue queue. On the other hand, the reduction of the
load-to-use latency allows the incoming instructions to leave
the pipeline earlier, decreasing the pressure on the physical
register file. As a consequence, it is observed a significant
decrease (33.4%) of rename blocks per cycle, when compared
with the SVE-enabled core (considering only the benchmarks
vectorized by the ARM compiler), as it is shown in Fig. 8.C.

48 64 96 48 64 96
Number of Vector
Physical Registers

SVEUVE

0

1.0

0.2
0.4
0.6
0.8

1.2
1.4

S
p

e
e
d

-u
p

(R
E
F=

4
8
 P

R
s)

S
p

e
e
d

-u
p

(R
E
F=

4
8
 P

R
s)

G
E

M
M

Ja
co

b
i-

2
D

S
T
R

E
A

M
M

A
M

R

G
E

M
M

Ja
co

b
i-

2
D

S
T
R

E
A

M
M

A
M

R

G
E

M
M

Ja
co

b
i-

2
D

S
T
R

E
A

M
M

A
M

R

G
E

M
M

Ja
co

b
i-

2
D

S
T
R

E
A

M
M

A
M

R

G
E

M
M

Ja
co

b
i-

2
D

S
T
R

E
A

M
M

A
M

R

G
E

M
M

Ja
co

b
i-

2
D

S
T
R

E
A

M
M

A
M

R

Number of Vector
Physical Registers

0

1.0

0.2
0.4
0.6
0.8

1.2
1.4

Fig. 9. Performance sensitivity to the number of physical vector registers.

B. Sensitivity to parameter variation

Number of Vector Registers. To complement the analysis
about the register file pressure, a sensitivity evaluation regarding
the number of physical vector registers (PVRs) was performed
using a subset of the previously referred benchmarks. As it is
observed in Fig. 9, increasing the number of PVRs provides
no significant performance improvement for the UVE case, as
the decreased load-to-use latency also results in a decreased
pressure on the register file. This contrasts with the ARM SVE
case, where an increase in the number of PVRs provides an
increase in performance, showing a higher sensitivity to the
number of PVRs.
Load/Store FIFO depth. The evaluation also considered the
impact of the Streaming Engine FIFO buffers depth on the

219

3MM GEMM Jacobi-2D MAMR STREAM0

1.0

0.2
0.4
0.6
0.8

1.2

Benchmark

S
p

e
e
d

-u
p

(R
E
F=
8
)

2 4 8 1
2

2 4 8 1
2

2 4 8 1
2

2 4 8 1
2

2 4 8 1
2

Increased depth

Fig. 10. Performance sensitivity to the depth of the FIFO buffers. Results
normalized to the default value of 8 vector entries per buffer.

GEMM Jacobi-2D MAMR STREAM
Benchmark

S
p
e
e
d
-u
p

(R
E
F=
L2
)

L
1

L
2

D
R
A
M

L
1

L
2

D
R
A
M

L
1

L
2

D
R
A
M

L
1

L
2

D
R
A
M

0

1.0

0.2
0.4
0.6
0.8

1.2

Fig. 11. UVE Performance sensitivity when streaming from/to different
cache/memory levels.

overall performance, by considering four different values: 2,
4, 8 (default), and 12. Fig. 10 presents the obtained results in
a subset of benchmarks. A minimum value of 4 is required
to attain an adequate performance, with the setup using 8
slots (used by default in the previous experiments) showing to
slightly improve the performance. The performance saturates
for higher values, except for applications more sensitive to
data access latency (as in MAMR), where a higher sensitivity
to FIFO depth is observed.
Streaming cache level. The evaluation also measured the
impact of streaming from different cache/memory levels. As
it can be observed in Fig. 11, streaming from/to L2 generally
provides the best performance benefits. However, there are
specific benefits from fetching from different levels. An
example use-case of L1 streaming regards small data structures
that are reused across the program.
Stream Processing modules. Finally, the overall impact of
the number of Stream Processing Modules in the Streaming
Engine was also evaluated, by varying it between 2 and 8.
Although the conducted simulation of such block considered
that only one stream dimension (or modifier) can be processed
per clock cycle, there is no significant difference in the overall
performance, with the results varying by less than 0.1%.

C. Hardware overheads

According to the configuration in Table I, the Streaming
Engine (depicted in Fig. 7) is composed of two Stream
Processing modules, each featuring 2× 16-bit incrementers,
2×64-bit adders and multiplexing logic, to process individual
streams. The remaining modules are mostly composed of
storage elements. The implemented Stream Table and SCROB
accommodate up to 32 concurrent streams, each with a
maximum of 8 descriptor dimensions and 7 modifiers, resulting
in a total of 14 KB of storage. The Memory Request Queue
maintains up to 16 outstanding requests, each packed within
a 10-byte entry. Finally, the Load/Store FIFO buffers are
composed of a 256×66-byte structure (for 32 streams, each
with 8 entries), resulting in approximately 17 KB of storage.

Hence, although a physical implementation of the Streaming
Engine would be necessary to obtain accurate chip area and
power values, it is still possible to conclude that the resulting
structure would result in a footprint close to 1/2-th of an L1
cache. However, the impact can be mitigated by (i) reducing
the number of streams from 32 to 8 and maximum number
of dimensions to 4, still supporting the gains in Fig. 8) while
reducing the memory footprint to only 6KB (≈ 10% of an L1
cache); and (ii) sharing the memory resources across streams
(future work).

VII. RELATED WORK

The idea behind the proposed UVE takes a significant
step forward over a number of related processor architecture
research areas, including i) scalable vectorization; ii) data
streaming; iii) memory access decoupling; and iv) run-ahead
execution/prefetching.
Scalable vectorization. For over two decades, SIMD exten-
sions have been established as the go-to option to exploit
DLP in HPC workloads [1], [2]. However, the rapid evolution
of vector architecture solutions [3]–[6] has brought forth
some code portability issues across different platforms. To
overcome such issues, a new approach – vector-length agnostic
vectorization [2], [7], [8] – has been recently proposed. In
particular, SVE [7] and RVV [8] offer instruction sets whose
vector length is not fixed and can be determined at execution
time, allowing the same code to run on architectures with
different vector lengths, without re-coding or re-compiling.
SVE [7] relies on loop predication [9] to enable vector length
scalability and predicated instructions to eliminate loop tails
and to enable partially executed loop iterations. On the other
hand, RVV [8], allows the configuration of a specific vector
length and handles scalar loop tails by explicitly reducing
the vector length. In contrast, the proposed UVE allows the
Streaming Engine to automatically disable all vector elements
that fall out of bounds, making loop control simpler by only
requiring a minimal set of control instructions, which in most
cases corresponds to a single branch instruction.
Data streaming and representation. Data streaming is tradi-
tionally associated to dedicated accelerator architectures [34]–
[42] and it is often based on accurate representations of data
access patterns to substantially accelerate data acquisition.
Several approaches that have been proposed rely on dedicated
ISAs [37], [43] and descriptor-based mechanisms [44], [45]
to represent complex patterns. The underlying stream speci-
fication introduced by the proposed UVE unifies these two
approaches by adopting a descriptor-based representation and
by providing a stream configuration ISA interface. Moreover,
it further extends these features by including stream control
and predication capabilities, providing support for control- and
data-dependent streams.

On the general-purpose domain, there has been a continued
effort to bring stream specialization constructs [46], [47]. As
an example, Wang et al. [46] introduced stream-based memory
access specializations in out-of-order processors, to provide
an execution-driven prefetching of repeated access patterns.

220

Schuiki et al. [47] also proposed a register file extension for
single-issue in-order processors that introduces stream seman-
tics on a subset of the processor’s registers. However, these
solutions present some limitations when compared to UVE.
First, they are only capable of streaming the most common
low-dimensionality patterns when they are directly exposed by
the loop induction variables [47], albeit with indirection [46].
Second, although the stream-specialized applications from [46]
can be susceptible to vectorization, none of the mentioned
approaches explores stream vectorization at the ISA level.
Memory access decoupling. One of the main benefits of
the streaming concept adopted by UVE is the decoupling
of memory accesses from computation. This is achieved by
configuring streams at the loop preamble and by allowing data
acquisition to occur in parallel with data manipulation. A large
body of work [48]–[53] has also explored this feature, by
using decoupled access-execute architectures. As an example,
Outrider [54] uses multiple in-order threads to decouple
memory accesses from execution and to reduce the data
access latency. It shows a high tolerance to memory access
latency while using a low complexity in-order microarchitecture.
Another example is DeSC [55], which explores this approach
at the hardware-level by combining an out-of-order core for
memory access with an accelerator for computation, thus fully
decoupling the processing from the program control.
Run-ahead execution/prefetching. HW/SW prefetching meth-
ods have been specifically tailored to deal with memory access
latency that results either from reduced data-locality [10]–[12],
[24], complex [13]–[15] and indirect [16]–[18] memory access
patterns, or large datasets that do not fit in cache [19], [56].
Currently, modern prefetchers achieve accuracy levels as high
as 99% in data access prediction, and are mostly designed to
deal with the timeliness and effectiveness of the procedure
itself [20]–[24], as a way to mitigate over-prefetching and cache
pollution. Contrasting to prefetching approaches, the stream-
based paradigm of the proposed UVE allows the Streaming
Engine to assure that only the exact data that is required is, in
fact, obtained from memory, eliminating cache pollution issues.
Nevertheless, UVE should not be viewed as an alternative to
prefetching, but instead, a complementary structure that acts
at the level of the processor to speed-up data acquisition.

VIII. CONCLUSION

In this paper a new Unlimited Vector Extension (UVE) is
proposed to overcome performance degradations often observed
in state-of-the-art vector-length agnostic SIMD extensions when
executing costly scatter-gather and loop control operations. This
new extension relies on a data streaming paradigm to explicitly
decouple memory accesses from computation, removing loop-
based control and memory indexing instructions from the
code, while linearizing memory accesses to attain a simpler
vectorization. The streaming is carried out by a dedicated
streaming engine, co-located with the processor pipeline, and
is supported by a descriptor-based memory access pattern
specification, capable of encoding and streaming complex,
multi-dimensional and indirect access patterns. A vectorized

stream register file was also introduced in the processor
pipeline to directly stream input/output data into/from the
vector registers, mitigating the load-to-use latency. According
to the evaluation that was conducted with the Gem5 simulator
of a proof-of-concept implementation based on an out-of-order
processor architecture, the combination of all these features
introduced by UVE provides a performance increase of 2.4×
when compared to ARM SVE.

ACKNOWLEDGEMENTS

This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) under projects
UIDB/50021/2020 and PTDC/EEI-HAC/30485/2017, and by
funds from the European Union Horizon 2020 Research and
Innovation programme under grant agreement No. 826647.

REFERENCES

[1] S. Hammond, C. Vaughan, and C. Hughes, “Evaluating the Intel Skylake
Xeon processor for HPC workloads,” in International Conference on
High Performance Computing & Simulation (HPCS), pp. 342–349, 2018.

[2] A. Pohl, M. Greese, B. Cosenza, and B. Juurlink, “A performance analysis
of vector length agnostic code,” in International Conference on High
Performance Computing & Simulation (HPCS), pp. 159–164, 2019.

[3] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng, “VPQC:
A Domain-Specific Vector Processor for Post-Quantum Cryptography
Based on RISC-V Architecture,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 67, no. 8, pp. 2672–2684, 2020.

[4] B. Akin, Z. A. Chishti, and A. R. Alameldeen, “ZCOMP: Reducing DNN
Cross-Layer Memory Footprint Using Vector Extensions,” in 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-52),
pp. 126–138, ACM, 2019.

[5] Z. Gong, H. Ji, C. W. Fletcher, C. J. Hughes, S. Baghsorkhi, and
J. Torrellas, “SAVE: Sparsity-Aware Vector Engine for Accelerating
DNN Training and Inference on CPUs,” in 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-53), pp. 796–
810, IEEE, 2020.

[6] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini,
“Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector Processor
With Multiprecision Floating-Point Support in 22-nm FD-SOI,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28,
no. 2, pp. 530–543, 2019.

[7] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker, “The ARM Scalable Vector Extension,” IEEE Micro,
vol. 37, pp. 26–39, 3 2017.

[8] A. Waterman and K. Asanovic, “RISC-V ”V” Vector Extension,” 2019.
[9] A. Barredo, J. M. Cebrian, M. Moretó, M. Casas, and M. Valero,

“Improving Predication Efficiency through Compaction/Restoration of
SIMD Instructions,” in 26th IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 717–728, IEEE, 2020.

[10] Y. Guo, P. Narayanan, M. A. Bennaser, S. Chheda, and C. A. Moritz,
“Energy-Efficient Hardware Data Prefetching,” IEEE Transactions on
Very Large Scale Integration Systems, vol. 19, no. 2, pp. 250–263, 2011.

[11] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “An Efficient
Temporal Data Prefetcher for L1 Caches,” IEEE Computer Architecture
Letters, vol. 16, no. 2, pp. 99–102, 2017.

[12] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Practical off-chip meta-data for temporal memory streaming,” in 15th
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pp. 79–90, IEEE, 2009.

[13] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address patterns,”
in 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-48), pp. 141–152, ACM, 2015.

[14] K. J. Nesbit and J. E. Smith, “Data Cache Prefetching Using a
Global History Buffer,” in 10th IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 96–96, 2004.

221

[15] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic Locality and
Context-based Prefetching Using Reinforcement Learning,” in 42nd
Annual International Symposium on Computer Architecture (ISCA),
pp. 285–297, ACM, 2015.

[16] I. Hadade, T. M. Jones, F. Wang, and L. d. Mare, “Software Prefetching
for Unstructured Mesh Applications,” ACM Transactions on Parallel
Computing, vol. 7, no. 1, 2020.

[17] S. Ainsworth and T. M. Jones, “Software prefetching for indirect
memory accesses,” in 2017 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pp. 305–317, IEEE, 2017.

[18] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect memory
prefetcher,” in 48th International Symposium on Microarchitecture
(MICRO-48), pp. 178–190, ACM, 2015.

[19] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” in 33rd International Symposium on
Computer Architecture (ISCA), pp. 252–263, 2006.

[20] Y. Ishii, M. Inaba, and K. Hiraki, “Access Map Pattern Matching for
Data Cache Prefetch,” in International Conference on Supercomputing
(ICS’09), pp. 495–496, ACM, 2009.

[21] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pp. 469–480, IEEE, 2016.

[22] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott,
A. Jaleel, S.-L. Lu, K. Chow, and R. Balasubramonian, “Sandbox
prefetching: Safe run-time evaluation of aggressive prefetchers,” in
20th IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 626–637, IEEE, 2014.

[23] S. Kondguli and M. Huang, “Division of Labor: A More Effective
Approach to Prefetching,” in ACM/IEEE 42th Annual International
Symposium on Computer Architecture (ISCA), pp. 83–95, 2018.

[24] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“Bingo Spatial Data Prefetcher,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 399–411,
IEEE, 2019.

[25] A. Waterman and K. Asanovic, “The RISC-V Instruction Set Manual,
Volume I: Base User-Level ISA Document Version 20190608-Base-
Ratified,” 2019.

[26] S. S. Baghsorkhi, N. Vasudevan, and Y. Wu, “FlexVec: Auto-Vectorization
for Irregular Loops,” 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2016), pp. 697–710, 2016.

[27] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, D. A. Wood, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, and T. Krishna, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, p. 1, 8 2011.

[28] A. Roelke and M. R. Stan, “RISC5: Implementing the RISC-V ISA in
gem5,” First Workshop on Computer Architecture Research with RISC-V
(CARRV), vol. 7, no. 17, 2017.

[29] J. D. McCalpin, “Memory bandwidth and machine balance in current high
performance computers,” IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec. 1995.

[30] “ASC Sequoia Benchmark Codes.” https://github.com/llvm/ llvm-test-
suite/tree/main/MultiSource/Benchmarks/ASC Sequoia/.

[31] “CORAL Benchmark Codes.” https://asc.llnl.gov/coral-benchmarks.
[32] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,

“Auto-tuning a high-level language targeted to GPU codes,” in Innovative
Parallel Computing (InPar), 2012, pp. 1–10, IEEE, 2012.

[33] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Machsuite:
Benchmarks for accelerator design and customized architectures,” in 2014
IEEE International Symposium on Workload Characterization (IISWC),
pp. 110–119, IEEE, 2014.

[34] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D.
Owens, B. Towles, A. Chang, and S. Rixner, “Imagine: Media Processing
with Streams,” IEEE Micro, vol. 21, no. 2, pp. 35–46, 2001.

[35] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette,
and A. Saidi, “The reconfigurable streaming vector processor (RSVP/spl
trade/),” in 36th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-36), pp. 141–150, IEEE, 2003.

[36] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100:
The Architecture and Design of a Database Processing Unit,” in 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), p. 255–268, ACM, 2014.

[37] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-
dataflow acceleration,” in ACM/IEEE 44th Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 416–429, 2017.

[38] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks,” in ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
pp. 367–379, 2016.

[39] G. Weisz and J. C. Hoe, “CoRAM++: Supporting data-structure-
specific memory interfaces for FPGA computing,” in 25th International
Conference on Field Programmable Logic and Applications (FPL), 2015.

[40] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An Instruction Set Architecture for Neural Networks,”
in ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pp. 393–405, IEEE, 2016.

[41] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general pur-
pose acceleration by exploiting common data-dependence forms,” in
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-52), pp. 924–939, 2019.

[42] Y. Wang, X. Zhou, L. Wang, J. Yan, W. Luk, C. Peng, and J. Tong,
“SPREAD: A Streaming-Based Partially Reconfigurable Architecture and
Programming Model,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 21, pp. 2179–2192, Dec 2013.

[43] S. Paiágua, F. Pratas, P. Tomás, N. Roma, and R. Chaves, “HotStream:
Efficient Data Streaming of Complex Patterns to Multiple Accelerating
Kernels,” in 25th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD’2013), pp. 17–24, 2013.

[44] T. Hussain, M. Shafiq, M. Pericàs, N. Navarro, and E. Ayguadé, “PPMC:
A programmable pattern based memory controller,” in Reconfigurable
Computing: Architectures, Tools and Applications, vol. 7199 LNCS,
pp. 89–101, Springer, Berlin, Heidelberg, 2012.

[45] N. Neves, P. Tomas, and N. Roma, “Compiler-Assisted Data Streaming
for Regular Code Structures,” IEEE Transactions on Computers, vol. 70,
no. 3, pp. 483–494, 2020.

[46] Z. Wang and T. Nowatzki, “Stream-based Memory Access Specialization
for General Purpose Processors,” in ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pp. 736–749, 2019.

[47] F. Schuiki, F. Zaruba, T. Hoefler, and L. Benini, “Stream Semantic
Registers: A Lightweight RISC-V ISA Extension Achieving Full Compute
Utilization in Single-Issue Cores,” IEEE Transactions on Computers,
vol. 70, no. 2, pp. 212–227, 2021.

[48] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
Specific Processing on a General-Purpose Core via Transparent In-
struction Set Customization,” in 37th International Symposium on
Microarchitecture (MICRO-37), pp. 30–40, IEEE, 2004.

[49] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “DySER: Unifying Functionality and
Parallelism Specialization for Energy-Efficient Computing,” IEEE Micro,
vol. 32, no. 5, pp. 38–51, 2012.

[50] S. Kumar, N. Sumner, V. Srinivasan, S. Margerm, and A. Shriraman,
“Needle: Leveraging program analysis to analyze and extract accelerators
from whole programs,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 565–576, IEEE, 2017.

[51] A. Sharifian, S. Kumar, A. Guha, and A. Shriraman, “Chainsaw: Von-
neumann accelerators to leverage fused instruction chains,” in 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-49),
pp. 1–14, IEEE, 2016.

[52] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation Cores: Reducing
the Energy of Mature Computations,” in 15th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), p. 205–218, ACM, 2010.

[53] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan,
S. W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,” in
24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 137–151, 2019.

[54] N. C. Crago and S. J. Patel, “OUTRIDER: Efficient memory latency tol-
erance with decoupled strands,” in 38th Annual International Symposium
on Computer Architecture (ISCA), pp. 117–128, 2011.

[55] T. J. Ham, J. L. Aragón, and M. Martonosi, “DeSC: Decoupled Supply-
Compute Communication Management for Heterogeneous Architectures,”
in 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-48), 2015.

[56] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching
systems,” in 15th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 7–17, IEEE, 2009.

222

