
Int J Parallel Prog (2017) 45:1515–1535
DOI 10.1007/s10766-017-0488-z

GPU Parallelization of HEVC In-Loop Filters

Biao Wang1 · Diego F. de Souza2 · Mauricio Alvarez-Mesa1 ·
Chi Ching Chi1 · Ben Juurlink1 · Aleksandar Ilic2 ·
Nuno Roma2 · Leonel Sousa2

Received: 11 May 2016 / Accepted: 3 January 2017 / Published online: 12 January 2017
© Springer Science+Business Media New York 2017

Abstract In the High Efficiency Video Coding (HEVC) standard, multiple decoding
modules have been designed to take advantage of parallel processing. In particu-
lar, the HEVC in-loop filters (i.e., the deblocking filter and sample adaptive offset)
were conceived to be exploited by parallel architectures. However, the type of the
offered parallelism mostly suits the capabilities of multi-core CPUs, thus making a
real challenge to efficiently exploit massively parallel architectures such as Graphic
Processing Units (GPUs), mainly due to the existing data dependencies between the
HEVC decoding procedures. In accordance, this paper presents a novel strategy to

B Diego F. de Souza
diego.souza@inesc-id.pt

Biao Wang
biaowang@win.tu-berlin.de

Mauricio Alvarez-Mesa
mauricio.alvarezmesa@tu-berlin.de

Chi Ching Chi
chi.c.chi@tu-berlin.de

Ben Juurlink
b.juurlink@tu-berlin.de

Aleksandar Ilic
aleksandar.ilic@inesc-id.pt

Nuno Roma
nuno.roma@inesc-id.pt

Leonel Sousa
leonel.sousa@inesc-id.pt

1 AES, Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany

2 INESC-ID, IST, Universidade de Lisboa, Rua Alves Redol 9, 1000-029 Lisbon, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0488-z&domain=pdf


1516 Int J Parallel Prog (2017) 45:1515–1535

increase the amount of parallelism and the resulting performance of the HEVC in-
loop filters on GPU devices. For this purpose, the proposed algorithm performs the
HEVC filtering at frame-level and employs intrinsic GPU vector instructions. When
compared to the state-of-the-art HEVC in-loop filter implementations, the proposed
approach also reduces the amount of required memory transfers, thus further boost-
ing the performance. Experimental results show that the proposed GPU in-loop filters
deliver a significant improvement in decoding performance. For example, average
frame rates of 76 frames per second (FPS) and 125 FPS for Ultra HD 4K are achieved
on an embedded NVIDIA GPU for All Intra and Random Access configurations,
respectively.

Keywords High Efficiency Video Coding (HEVC) ·Graphics Processor Unit (GPU) ·
In-loop filters · Parallelization · Decoder

1 Introduction

TheHigh EfficiencyVideoCoding (HEVC) standard is the state of the art in video cod-
ing technology.When compared to H.264/MPEG-4AVC, it reduces the bit rate by half
without compromising the subjective visual quality [15]. This high coding efficiency,
however, comes at the cost of a substantial increase in the computational load [2]. For
high resolution videos, the increased workload usually makes real-time decoding very
challenging, not only for embedded systems but also for desktop environments.

Fortunately, the HEVC standard has been designed with parallelism in mind, to
take the advantage of parallel architectures. Most of its decoding procedures can be
parallelized in order to approach to real-timedecoding. For example, theHEVC in-loop
filters, the last stage of the decoding pipeline, have been designed to support parallel
execution. According to a profiling of the decoder conducted on an ARM Cortex-A9
processor [2], these filters account for 19–21% of the entire decoding time, which
justifies the efforts for an effective parallelization. In this paper, Graphics Processing
Units (GPUs) are employed to significantly improve the decoding performance of the
HEVC in-loop filters, due to their wide-spread availability in mobile systems, as well
as in desktop PCs.

However, although GPUs can provide high computational power, they are mostly
suitable for applications with massive parallelism. This makes mapping of video
decoding applications onto GPUs very challenging, since compliance with the stan-
dard is required andGPUkernelsmust be carefully tuned. To deliver high performance,
this usually involves appropriate thread mapping, efficient memory access patterns,
sufficient GPU occupancy, etc. One of the rare attempts to parallelize the in-loop fil-
ters for GPUs devices is proposed in [16], which aims at leveraging the parallelism
degree to improve performance. However, the herein proposed algorithms include a
set of important improvements such as increased thread utilization, reduction of global
memory access, and data flow optimizations. Hence, speedups of 2.0× and 1.6× are
obtained when compared to over the state of the art [16] on the NVIDIA TITAN X
and the NVIDIA Tegra TK1, respectively. Even for the embedded Tegra TK1 GPU
with limited resources, average frame rates of 76 frames per second (FPS) and 125

123



Int J Parallel Prog (2017) 45:1515–1535 1517

B
it

st
re

am
 in

p
u

t

En
tr

op
y 

De
co

de
r

Deblocking Filter
(DBF)

In
te

r P
re

di
ct

io
n IN-LOOP FILTERING

Video 
output

De-quantization & 
Inverse Transform 

Sample Adaptive 
Offset (SAO)

In
tr

a 
Pr

ed
ic

tio
n

Fig. 1 A simplified HEVC decoder block diagram

FPS for Ultra HD 4K are achieved for All Intra and Random Access configurations,
respectively.

Furthermore, the proposed GPU algorithm is not only compared to the state-of-the-
art GPU implementation [16], but also to the state-of-the-art CPU implementation [3],
in order to show the difference in the achievable performance on CPU and GPU archi-
tectures. However, it is not fair to make a direct comparison since the data granularity
of the CPU and GPU algorithms is not the same. In detail, the in-loop filters are per-
formed at the block-level on CPU in [3], while they are performed at the frame-level
in the GPU-based approach. Therefore, a frame-based CPU implementation of the in-
loop filters is developed to allow a fairer comparison between both devices. This paper
is organized as follows. Section 2 provides a brief overview of the basic functional
principles of the HEVC in-loop filters. The proposed algorithms and consequent par-
allel implementations are presented in Sect. 3. The obtained experimental results are
discussed in Sect. 4. Section 5 revises the state-of-the-art approaches for the HEVC
filtering modules and the derived conclusions are presented in Sect. 6.

2 HEVC In-Loop Filters

A generic block diagram of the HEVC decoder is depicted in Fig. 1. First, the input
bitstream is decoded by the entropy decoder, in order to produce the coefficient data, as
well as all other information needed to decompress the video sequence. The coefficient
data is then de-quantized and inverse transformed, in order to obtain the residual data.
Each block of the reconstructed frame is then computed, by adding the residual data
with the predicted block from either inter or intra prediction.

The reconstructed frame is processed by the in-loop filters in order to improve the
overall visual quality of the frame. In particular, to attenuate the blocking artifacts
introduced by the block-based prediction and transform coding, the Deblocking Filter
(DBF) is then applied at the boundaries of the reconstructed blocks. After the DBF, the
mean sample distortion is further reduced with the application of the Sample Adaptive
Offset (SAO) module. Finally, the output frame is produced.

In the HEVC encoding procedure, each picture is partitioned into a grid of L × L
sample blocks, denoted as Coding TreeUnits (CTUs), where L is dynamically selected
by the encoder procedure (L∈{16, 32, 64}). The CTUs are processed in raster scan
order at the decoder side. Each CTU is independently split in smaller blocks, denoted
as Coding Units (CUs), according to a quadtree structure, from a maximum size of

123



1518 Int J Parallel Prog (2017) 45:1515–1535

64 × 64 samples to aminimum size of 8 × 8 samples. Additionally, each CU is further
divided in Prediction Units (PUs) and Transform Units (TUs), corresponding to the
prediction and to the residual blocks, respectively [18]. Inside each CTU, the CUs are
decoded by following a z-scan order, as well as the PUs and the TUs within each CU.

The same frame partitioning (CTU, CU, PU and TU) is applied for each video
component (i.e., luma and chroma). In particular, when the usual 4:2:0 chroma sub-
sampling is adopted, the chroma blocks are four times smaller than the corresponding
luma blocks, until the minimum size of 4 × 4 samples.

2.1 Deblocking Filter

According to the HEVC standard, the DBF is only applied to the PU and TU bound-
aries, which rely on a 8 × 8 sample grid for both luma and chroma. For each boundary,
a Boundary filtering Strength (BS) is evaluated, according to several conditions from
the neighboring blocks. The resulting BS value varies between 0 and 2, where 0 means
that no deblocking filter will be applied. Whenever one of the neighboring blocks is
intra-predicted, the BS value is always set to 2. Moreover, only when the BS value is
two, the chroma samples are filtered [12].

On the other hand, additional conditions are verified to determine whether the DBF
should be applied in luma boundaries. Each condition is verified for each set of 8 × 4
or 4 × 8 samples, corresponding to the vertical and horizontal edges, respectively (see
Boundary Types in Fig. 2). Accordingly, a set of samples in the first and the last row
(or column) are used to decide which filter is going to be applied, i.e., none, normal or
strong (see black-filled samples in Fig. 2). In each side of the boundary, only up to four
neighboring samples have to be considered and up to three may be modified. Taking
the luma component as an example, the strong filtering is applied on three samples
in each side of the boundary, while at most two samples may be filtered on each side
of the boundary in the normal filtering (see Strong Filtering and Normal Filtering in
Fig. 2). In contrast, the normal filtering is only applied on a single sample in each side
of the boundary for chroma samples. Finally, the HEVC standard specifies that all

Vertical

Horizontal
filtering

filtering

Vertical Boundary

4
sa

m
pl

es

Horizontal
Boundary

8
sa

m
pl

es

Boundary Types Normal Filtering

potentially
filtered samples

Strong Filtering

filtered samples

Fig. 2 HEVC deblocking filter boundary types. Filtering decisions are made based on the sample lines or
columns dark-filled

123



Int J Parallel Prog (2017) 45:1515–1535 1519

vertical edges from the frame are processed by the DBF before the filtering procedure
of the horizontal edges [10].

2.2 Sample Adaptive Offset

The reconstructed samples are processed by the SAOmodule after being filtered by the
DBF module, as depicted in Fig. 1. In SAO filtering, the deblocked samples are subse-
quently modified by adding an offset value whose magnitude depends on a set of SAO
parameters: i) Type; ii) fourOffset Values; and iii) Band Position or Edge Class. These
SAO parameters are encoded in the bitstream for each CTU and may have different
values for the luma and the two chroma components of each CTU [7]. In particular, the
SAO Type parameter signals the decoder which SAO filtering should be applied (none,
band offset or edge offset). Nevertheless, the SAO filter can be disabled/enabled at
frame-level, where the chosen frames are selected on the encoder side.

When the SAO Type parameter is equal to the band offset mode, the full amplitude
of the sample range is divided by 32, in order to define a set of bands. The filtering
procedure for this mode consist of adding an offset value to all samples whose val-
ues belong to the same band. For example, in Fig. 3a, the deblocked samples from

index: k+2
offset: -1

index: k+1
offset: -3

index: k
offset: +2

BA
ND

S

S
am

p
le

 v
al

ue
s

- original - deblocked
BAND K

BAND K+1

BAND K+2

BAND K+3

(a) (b)

Ca
te

go
ry

 1

Ca
te

go
ry

 3
Ca

te
go

ry
 2

Ca
te

go
ry

 4

Gradient directions

(c)
Fig. 3 SAOBand Offset and Edge Offset modes a SAO Band Offset filtering, b SAO Band Offset example
and c Gradient directions and categories for the SAO Edge Offset

123



1520 Int J Parallel Prog (2017) 45:1515–1535

bands with indexes k, k + 1 and k + 2 are added to offset values of +2,−3 and −1,
respectively, in order to push the final sample values towards the original ones. To
reduce the complexity, in the HEVC standard, only four consecutive bands are con-
sidered for SAO band offset filtering. In this way, only the lowest band index needs
to be stored in the bitstream, namely the SAO Band Position (k in Fig. 3a). For each
processed band, a single offset value is provided in the respective SAO Offset Value
parameter. In Fig. 3b, an example of corrupted deblocked samples by quantization
errors are presented in gray-filled dots, where the horizontal and vertical axis denote
sample spatial position and value, respectively. In this case, the final filtered samples
(dark-filled dots, in Fig. 3b) from bands k to k + 3 are corrected with the SAO band
offset filtering by moving towards to the original samples (white-filled dots).

Regarding the edge offset SAOmode, the decoded CTU samples are classified into
four categories according to the corresponding gradient direction, as specified in the
SAO Edge Class parameter. Figure3c depicts all four possible gradient directions and
allowed SAO categories. Similarly to the band offset mode, the offset value assigned
to each category is stored in the SAO Offset Value parameter. The SAO Offset Value is
positive for categories 1 and2 andnegative for categories 3 and4 (see arrows inFig. 3c).
Hence, whenever a sample is classified in one of these categories, its deblocked sample
is added to the corresponding SAO Offset Value.

3 Proposed Parallel In-Loop Filters

In this section, the proposed parallelization is described. First, the frame-level decou-
pling of the CPU implementation is presented. Then, the GPU algorithms of the DBF
and SAO are elaborated. The proposed approaches are designed to efficiently exploit
the computational potential of GPU architectures. They leverage the fine-grain paral-
lelism of each sub-modules and provide fully compliance to HEVC decoding.

3.1 CPU Frame-Decoupled (CFD) In-Loop Filters

The state-of-the-art HEVC decoder proposed in [3] exploits Single Instruction, Mul-
tiple Data (SIMD) instructions and data locality to effectively improve the overall
performance. The data locality is increased by executing all HEVC modules at CTU
level. In this way, all HEVC decoding procedures are performed sequentially inside a
CTU, e.g., all possible 8×8 borders in a CTU are filtered as soon as the reconstructed
CTU is obtained, where the intermediate data from the previous procedure is directly
reused by the next decoding phase. The key advantage of this approach is that this
intermediate data for one CTU is rather small, which can be easily accommodated
in the CPU cache memory space and the memory bandwidth required to the off-chip
memory is reduced.

Such block-based CTU-level implementation, however, is not appropriate for GPU
parallelization due to the insufficient parallelism. To exploit the throughput-oriented
design of GPUs, the GPU kernels are applied at frame level. However, the difference in
data granularity between CPU and GPU makes a direct comparison unfair. Therefore,
a new in-loop filters approach for CPU, which applies the processing at frame level,

123



Int J Parallel Prog (2017) 45:1515–1535 1521

is proposed herein as CPU Frame-Decoupled (CFD). In practice, the kernels of DBF
and SAO are decoupled from the original decoding loop and their kernel inputs are
collected into corresponding input buffers. Afterwards, when the frame reconstruction
is complete, theDBF is applied for the entire framewith the collected input. Finally, the
SAO filter is performed in the deblocked frame to produce the final result. Naturally,
such algorithm compromises data locality, because the granularity increases fromCTU
level to frame level. Nevertheless, frame-level parallelization approaches have already
demonstrated the viability of this strategy [4].

3.2 GPU Frame-Decoupled (GFD) In-Loop Filter

The GPU execution is organized in groups of 32 parallel threads (or Warps, in
NVIDIA’s terminology). They are in turn grouped in several Thread Blocks (ThBs).
To maximize the attained performance of the in-loop filters for GPU devices, the
proposed algorithms carefully maximize the number of active warps, while ensuring
that all threads in a warp perform the same operation from the GPU code (kernel).
Moreover, the data accesses were carefully designed, in order to efficiently map the
HEVC in-loop filters to the GPU memory hierarchy (i.e., global, cache, shared and
constant memory). Finally, Compute Unified Device Architecture (CUDA) program-
ming model [14] is used to implement the in-loop filters on GPUs.

3.2.1 Proposed GPU-Based Deblocking Filter

The DBF module consists of two filters, i.e., the horizontal filter and the vertical filter,
as shown in Fig. 2. According to the HEVC standard [10], their execution has to be
in order. All vertical edges in a frame have to be applied by the horizontal filter first,
followedby the vertical filter for all horizontal edges. If these twofilterswere separately
implemented in different kernels, then two kernel launches would be required, leading
to kernel launch overheads and redundant data accesses to the intermediate result in
global memory.

To circumvent these limitations, both [16] and the proposed implementation con-
sider the fusion of these two stages into one single kernel. Thus, only one kernel launch
is needed and redundant accesses to global memory can be avoided. This is possible
because these two consecutive filters can be independently applied at 8× 8 block sam-
ples, as shown in Fig. 4. The independence is guaranteed since both filters need (at
most) four input samples and the filtering output affects up to three samples in each
side of the edge. Hence, these 8× 8 sample blocks, herein referred to as Boundary
Blocks (BBs), allow performing both horizontal and vertical filtering on a small subset
as long as their execution order (first horizontal filter then vertical filter) is preserved.

As it is shown in Fig. 5, shared memory is used in [16] with the purpose of reducing
the required data transfers from and to theGPUglobalmemory between horizontal and
vertical filtering. However, since the horizontal and the vertical filters are not always
jointly enabled, another approach has been addressed in the proposed work. Figure6
shows the adopted designwithout sharedmemory, which performs theDBF onlywhen
needed. When both the horizontal and the vertical filters are disabled, the kernel does

123



1522 Int J Parallel Prog (2017) 45:1515–1535

8
sa

m
pl

es

8 samples

Vertical Edges

Ho
riz

on
ta

lE
dg

es

8
sa

m
pl

es

Boundary Block

Fig. 4 Edge-level parallelism exploited by the proposed GPU deblocking filtering algorithm and [16]

(Global → Shared Memory)

(Shared → Global Memory)

Horizontal Filtering

Vertical Filtering

Data Prefetching

Data Storing

64

8

8

64

BS
 C

on
di

tio
ns

4-
by

te
 W

or
d

Fig. 5 Warp-level processing for the GPU implementation in [16]

nothing. Otherwise, if either horizontal or vertical filter is enabled, the data is directly
loaded from the global memory to the register file, applied with corresponding filter,
and stored back to global memory. When both of them are enabled, the intermediate
results (after horizontal filter) are stored and loaded again from global memory. In
either case, the proposed design achieves a higher performance. Naturally, if both
filters are enabled, temporal locality can be exploited with GPU cache, since they are
performed consecutively.

Moreover, the proposed approach also adopts a different threadmapping, in order to
increase the number of BBs to be processed by a warp. In [16], each warp was mapped
to an area of 64× 8 samples, in which each thread is mapped to an edge area of 8×4 or
4× 8 samples, as shown in Fig. 7. Under this circumstance, however, only 16 edges can
be filtered in parallel. On the other hand, the new thread mapping that is now proposed
has been improved to process more edges in parallel. Compared to Fig. 7, the size of
the thread block behalves with two warps only, but maps to the same size of 256×8
samples, as shown in Fig. 8. These two warps collaboratively perform the deblocking
kernel. When processing the horizontal filter, each warp maps to 256×4 samples,
where each thread maps to one horizontal edge of 8×4 samples. When processing
the vertical filter, each warp maps to 128×8 samples, where each thread maps to one
vertical edge of 4×8 samples. Because of the different thread mapping between these
two filter stages, a synchronization step is required in between, as a compromise to
exploiting the fine grain parallelism for each filtering stage.

123



Int J Parallel Prog (2017) 45:1515–1535 1523

Fig. 6 Data flow without shared memory for the four possible cases

Fig. 7 Thread block
assignments for one frame,
consisting of four warps per ThB
and eight BBs per warp
(Wi) [16]

ThB i8 ThB i+1 ThB j-1

256

ThB j8 ThB j+1 ThB N

Frame

Thread Block

8

64 samples 64 samples

W1 W2 W3 W4

Horizontal Edge

256

8

Boundary Blocks

· · ·
· · ·

Fig. 8 Thread mapping switch
between horizontal and vertical
filters with a synchronization
barrier in between

123



1524 Int J Parallel Prog (2017) 45:1515–1535

0 1

. . . . .

31
thread.x

0

1

thread.y

.

.

.

.

.

.

.

.

.

.

ThreadBlock→ CTB(64×64) Thread→ 2×32 samples

32 samples
height

Fig. 9 SAO thread mapping, where each thread block is mapped to one CTB with 64×64 samples and
each thread operates on 2×32 samples

Despite the distinct processing scheme, the proposed DBF approach supports the
case when the (QP) varies within a picture, as specified in the HEVC standard [10],
since the activation of deblocking filter also depends on QP [13]. The QP value is
directly obtained from the bitstream and may vary on a basis of the coding units,
whose minimal size is 8×8 samples. Therefore, another buffer is allocated, in which
each QP value is stored in one byte and corresponds to a block of 8×8 samples.Within
this byte, only 6 bits are used, since the QP value ranges from 0 to 56.

3.2.2 Proposed GPU-Based Sample Adaptive Offset

The proposed parallel implementation of the SAO algorithm adopts a thread mapping
as shown in Fig. 9, where each thread block is mapped to one CTU. Within each
thread block, two warps are configured, which correspond to the top and bottom half
of one CTU, respectively. Within each warp, each thread is mapped to an area of 2×32
samples.

The proposed approach reduces the GPU global memory accesses for the luma
plane by half, since each thread maps to two samples apart (see Fig. 9). In this way,
the entire row of CTUs can be loaded with one single memory access, instead of
two. Furthermore, the proposed SAO algorithm implementation exploits GPU vector
instructions [14] to increase the parallelism. With a vector length of two, each thread
can simultaneously process two samples. Hence, to process its mapped areas, each
thread iterates the vector operations for 32 times. This approach also facilitates the
thread mapping when processing the chroma planes with 4:2:0 chroma subsampling
format. At the horizontal direction, the thread index of luma plane is divided by 2,
which can be implemented by a simple right shift. In the vertical direction, the times of
iteration (32 in luma) also behalves, which can also be derived with a shift operation.

For CTUs with edge offset mode, another optimization is applied to save computa-
tions. To determine the corresponding offset, each sample needs to calculate its offset
index. The index, in turn, depends on the difference to its neighboring samples, as
shown in Eqs. (1), (2), and (3). Because each thread processes more than one sample,
the procedure to compute the index can be shared. The case for index calculation
sharing in the horizontal direction is presented in Fig. 10.

123



Int J Parallel Prog (2017) 45:1515–1535 1525

Fig. 10 Index calculation
sharing between neighboring
samples

00 10

of f set (index) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

of f set0, index = −2
of f set1, index = −1

0, index = 0
of f set2, index = 1
of f set3, index = 2

(1)

index(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

s(Px,y − Px−1,y) + s(Px,y − Px+1,y), eo0
s(Px,y − Px,y−1) + s(Px,y − Px,y+1), eo1

s(Px,y − Px−1,y−1) + s(Px,y − Px+1,y+1), eo2
s(Px,y − Px+1,y−1) + s(Px,y − Px−1,y+1), eo3

(2)

s(n) = sign(n) =
⎧
⎨

⎩

−1, n < 0
0, n = 0
1, n > 0

(3)

This way, the two samples in green (00 and 10) represent the thread’s mapped
samples in the same line. Their index calculation is indicated by arrows, where each
arrow stands for a sign operation, as shown in Eq. (3). It can be seen that the right sign
of 00 can be shared with the left sign of 10, but with a negated value. Similarly, the
index calculation can also be shared in the vertical direction. In fact, this sharing is
more relevant in the vertical direction, since there are 32 samples per thread in this
direction.

Another optimization involved in the developed SAO filter is concerned with the
fact that the kernel is invoked only when needed. Hence, the final output buffer is
either written by the deblocking filter or by the SAO filter, depending on the activation
of SAO for specific frames.

4 Experimental Evaluation

In this section, the performance of the proposed parallel implementations of theHEVC
in-loop filters is experimentally evaluated according to the recommended JCT-VC test
conditions [1], namely:

– HEVC Profile: Main (8-bit depth with 4:2:0 chroma subsampling);
– Video Class: A (2560×1600), B (1920×1080) and E (1280×720);
– All Intra and Random Access configurations;
– QPs: 22, 27, 32, 37.

For such purpose, a set of encoded bitstreams, corresponding to the highest and most
common frame resolutions (classes A, B and E) were considered, since they are the
most computationally demanding. An additional set of Ultra HD 4K (3840×2160)
video sequences [8], referred as class S, was also evaluated. Moreover, the maximum
nominal sequence frame rate per class is 50 FPS for class S and 60 FPS for classes A,
B and E. The selected video sequences were encoded with the HM 15.0 reference

123



1526 Int J Parallel Prog (2017) 45:1515–1535

Table 1 Evaluation system setups

Desktop Embedded

CPU GPU CPU GPU

Intel i7-6700K NVIDIA TITAN X ARM Cortex-A15 NVIDIA GK20a

Haswell Maxwell ARMv7-A Kepler

4.00GHz 1.08 GHz 2.32 GHz 0.85 GHz

AVX2 – NEON –

– CUDA 7.5 – CUDA 6.5

software [11] according to [1]. In order to simulate the worst case scenario, neither
coding option of Tiles nor Wavefront Parallel Processing (WPP) is considered.

In what concerns the used configurations, the Random Access mode was chosen
because it is the most common one, for which the frames are organized in a pyramidal
structure with I and B frames. In particular, while I frames are encoded with only intra
prediction capabilities, the PUs of B frames can be intra or inter predicted. Moreover,
the All Intra configuration, where all frames are I frames, is used herein to simulate
the worst configuration case. In this case, since the intra prediction may result in an
increased amount of residual data, the probability of blocking artifacts and sample
distortions also increases, which, on the other hand, increases the computational load
of the in-loop filters.

The experimental results were obtained on two different platforms, i.e., a state-of-
the-art desktop machine and an embedded development board, as presented in Table1.
The desktop system includes an Intel Haswell CPU and an NVIDIA Maxwell GPU
with the latest CUDA version 7.5. The embedded platform is the NVIDIA Jetson TK1
System on Chip (SoC) with a Kepler GPU. In this case, CUDA version 6.5 was used
due to limitations of the official firmware. All CPU versions were optimized with
SIMD vector instructions, where AVX2 was applied for the desktop and NEON for
the embedded system.

Since the CPU and the GPU share the same memory space in the embedded devel-
opment board, the input data required to perform the GPU HEVC in-loop filters is
directly obtained from the SoCmainmemory through theCUDAzero copy instruction.
Due to the limited compute capability of the embedded GPU, the GPU kernel config-
urations (i.e. the number of warps per ThB, the usage of shared memory and registers,
etc.) must be carefully chosen, in order to maximize the number of active warps in the
NVIDIA Kepler Streaming Multiprocessor (SM). Furthermore, only one CPU core
(no multithreading) was used for the sake of this evaluation and relative assessment.

In order to better showcase the capabilities of the proposed approach, an extensive
experimental evaluationwas conducted, which tackles different execution approaches.
First, a deep profiling analysis of the proposed in-loop filter algorithms CFD (CPU)
and GFD (GPU) is presented for both system environments. Afterwards, the overall
performance of the proposed approach is presented (in FPS). For a specific set of
video sequences (e.g., with the same QP, video class, etc.), the average frame rate
is derived as the total number of frames in a set divided by the aggregated decoding

123



Int J Parallel Prog (2017) 45:1515–1535 1527

Table 2 Average processing time (in milliseconds) and obtained speedup per HEVC in-loop filters in the
desktop machine

Class COpt [3] CFD GOpt [16] GFD

SAO DBF SAO DBF SAO DBF SAO DBF

All Intra configuration

S (3840×2160) 1.48 4.87 2.75 6.71 0.38 0.41 0.23 0.29

A (2560×1600) 0.72 2.42 1.22 2.62 0.21 0.23 0.15 0.16

B (1920×1080) 0.39 1.47 0.61 1.55 0.19 0.14 0.09 0.10

E (1280×720) 0.18 0.61 0.26 0.66 0.15 0.07 0.07 0.05

Average speedup 1× 1× 0.6× 0.8× 3.0× 11.0× 5.1× 15.6×
Random Access configuration

S (3840×2160) 1.27 2.80 1.74 3.39 0.30 0.51 0.14 0.16

A (2560×1600) 0.57 1.33 0.79 1.40 0.16 0.28 0.08 0.09

B (1920×1080) 0.26 0.60 0.33 0.62 0.13 0.15 0.04 0.05

E (1280×720) 0.10 0.16 0.07 0.14 0.10 0.07 0.01 0.02

Average speedup 1× 1× 0.8× 0.9× 3.2× 4.8× 8.1× 15.3×

time. Furthermore, the proposed design is compared with the state-of-the-art GPU-
based [16] (GOpt) and CPU-based [3] (COpt) HEVC in-loop filters implementations.

4.1 Profiling

Tables2 and 3 present the performance result of the four versions of HEVC in-loop
filter for the desktop and the embedded setups, respectively. For video sequenceswithin
a single class, the performance is reported as the average processing time per frame
considering all QPs (i.e., from 22 to 37). Moreover, the results are separated by the two
used configurations, i.e.,All Intra and Random Access. As it was expected, the average
processing time per frame obtained with all considered CPU and GPU HEVC parallel
modules varies across different classes. Naturally, the highest per-module time was
observed for the highest resolution frames due to the increased amount of data to be
processed. Furthermore, for all tested video sequences andQP values, the DBF usually
represents themost time consuming in-loop filter, due to its higher computational load.
In contrast, the SAOmodule exploits a higher amount of data parallelism, thus leading
to a lower processing time, when compared to the DBF.

When compared with COpt [3], the proposed CFD version does not attain the same
performance due to the lost of locality in all configurations, except for sequences of
class E with Random Access configuration in both execution environments. For this
particular case, as presented in Table2, the COpt achieves 0.10 and 0.16 ms, while the
CFD can filter a frame at 0.07 and 0.14 ms, for the SAO and DBF, respectively. In this
case, the penalties resulting from the loss of locality are reduced, since class E videos
have the smallest frame resolution among all tested video sequences. Moreover, the
SAO filtering is not performed in most of the frames with Random Access configura-

123



1528 Int J Parallel Prog (2017) 45:1515–1535

Table 3 Average processing time (in milliseconds) and obtained speedup per HEVC in-loop filter in the
NVIDIA Jetson TK1 development board

Class COpt [3] CFD GOpt [16] GFD

SAO DBF SAO DBF SAO DBF SAO DBF

All Intra configuration

S (3840×2160) 12.75 25.81 24.53 44.23 5.18 10.29 6.20 6.94

A (2560×1600) 7.63 13.20 13.16 17.76 2.87 5.52 3.22 3.59

B (1920×1080) 4.26 7.72 6.78 9.01 1.59 3.07 1.72 2.10

E (1280×720) 1.91 3.25 2.43 3.58 0.69 1.46 0.83 0.96

Average speedup 1× 1× 0.6× 0.7× 2.6× 2.5× 2.2× 3.7×
Random Access configuration

S (3840×2160) 10.51 14.76 15.28 20.98 4.40 13.09 3.81 4.14

A (2560×1600) 5.20 6.96 7.31 8.28 2.20 6.77 1.79 2.21

B (1920×1080) 2.30 2.99 2.92 3.14 1.15 3.30 0.79 1.00

E (1280×720) 0.77 0.73 0.57 0.66 0.45 1.39 0.20 0.25

Average speedup 1× 1× 0.7× 0.8× 2.3× 1.0× 2.8× 3.3×

tion. This fact provides the performance improvements of the CFD implementation,
since those frames can be skipped due to the frame-level processing approach. On
the other side, the average filtering time in COpt has taken into account the required
memory transfers from aCTU-based buffer to the final decoded picture buffer, because
of its CTU-level processing design and the fact that the SAO filter is the last stage
in the decoding procedures. Regarding the DBF module with CTU-based filtering of
COpt, memory copies also have to be considered, in order to maintain both filtered
and unfiltered data at the boundary, since the intra prediction procedure uses unfiltered
samples. In contrast, due to the frame-level processing in both CFD and GFD algo-
rithms, the intra prediction procedure for the entire frame has to be executed before
the in-loop filtering, where filtered and unfiltered data maintenance for the boundaries
is not required anymore.

Among all tested in-loop filter approaches, the proposed GFD achieves the best
performance for all classes and configurations in the desktop environment (seeTable2).
In particular, when compared to COpt, the average speedup of 8.1× and 15.6× was
achieved for the SAO and DBF, respectively. GFD also achieves a higher performance
than the GOpt implementation, mainly due to the reduced memory transactions for
DBF procedures, and the usage of vector instructions in the SAO filtering, which
increase the number of samples processed in parallel. However, in the NVIDIA Jetson
TK1 (see Table3), the performance of the GFD SAO filter is penalized due to its
reduced occupancy onKepler architecture. For bothKepler andMaxwell architectures,
the maximum allowed number of warps per SM is 64, while their maximum allowed
number of thread blocks differs, with 16 on Kepler versus 32 on Maxwell. In other
words, the Maxwell architecture is more occupancy friendly to kernels with smaller
thread block size, where only 2 warps per thread block are sufficient to reach full
occupancy, instead of 4 warps on Kepler. Therefore, the occupancy of SAO kernel in

123



Int J Parallel Prog (2017) 45:1515–1535 1529

GFD (with a block size of 2 warps) behalves on Kepler while in GOpt it remains the
same, where a thread block size with 4 warps is configured. The smaller block size of
SAO in GFD can be considered as an indirect result because of the vector instruction
optimization (with a vector of 2), thus doubling the thread block size would probably
help for Kepler but result in a lower performance for Maxwell. Since Kepler is an
older architecture and Maxwell is used in the Jetson TX1, the successor of Jetson
TK1, further effort has not been put to address this performance portability issue.
Because of its reduction in occupancy, GFD achieves an average speedup of 2.2× for
All Intra configuration, while a speedup of 2.6× is observed for GOpt when compared
with COpt. Nevertheless, the proposed GFD algorithm achieves higher performance
than GOpt for the Random Access configuration, where the SAO filter is not used
for the majority of the frames. In this case, the proposed GFD algorithm bypassed
the deblocked frame as the final output by updating a memory pointer and without
transferring the data.

4.2 Overall Performance

In order to further evaluate the performance of the proposed HEVC in-loop filters,
Figs. 11 (desktop machine) and 12 (development board) present the experimentally
obtained average frame rate for each considered configuration and resolution. Herein,
the average frame rates (in FPS) are obtained for different QP values and for all con-
sidered in-loop filter implementations, namely, CFD, GFD, COpt [3] and GOpt [16].

As expected, in both considered environments (desktop and embedded setups) and
configurations (All Intra and Random Access), the performance decreases with the
increase of the video resolution. Nevertheless, in all setups and configurations, both
GPU versions are able to achieve frame rates above the nominal values by considering
only the HEVC in-loop filters (see Figs. 11 and 12). Moreover, the GFD approach
outperforms all other HEVC in-loop filters implementations, for all configurations
and environments.

When comparing the obtained performance of All Intra and Random Access
configurations, better results are achieved for the latter one for all in-loop filter imple-
mentations, except the GOpt. In this case, since the SAO filtering is not used in most
of the frames, the GOpt approach is limited by the GPU memory transfers, in order
to copy the frame. In this sense, a better overview of the real contributions of the
proposed work can be seen in the All Intra configuration, where all frames have at
least one CTU filtered by the SAO procedure.

For All Intra configuration within a single class (e.g., Fig. 11a or 12a), the obtained
frame rate corresponding to the herein proposed GFD algorithm only slightly varies
with the QP, which contrasts with the Random Access configuration. Such interesting
phenomena happens in All Intra configuration because the SAO filtering is more
computationally demanding for lower QP values (or high bitrates), while the DBF has
higher computational load for higher QP values (or low bitrates). When operating in
lower bitrates, a typical HEVC encoder tends to favor bitrate over distortion, in order to
achieve higher bitrate savings. This leads to an increased presence of blocking artifacts,
which are more visible for larger QPs, thus increasing the computation demand for

123



1530 Int J Parallel Prog (2017) 45:1515–1535

.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 0

 1000

 2000

 3000

 4000

 5000

 6000

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

QP 

COpt
CFD

GOpt
GFD

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

22 27 32 37
QP 

22 27 32 37

QP 
22 27 32 37

QP 
22 27 32 37

QP 
22 27 32 37

QP 
22 27 32 37

QP 
22 27 32 37

QP 
22 27 32 37

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11 Average frame rate obtainedwith the testedGPUHEVCin-loopdecodingmodules (DBF+SAO)on
the desktop machine. a Class S—All Intra configuration. b Class S—Random Access configuration. c Class
A—All Intra configuration. d Class A—Random Access configuration. e Class B—All Intra configuration.
f Class B—Random Access configuration. g Class E—All Intra configuration. h Class E—Random Access
configuration

the HEVC DBF module on the decoder side. On the other hand, the SAO module is
more computational demanding for lower QPs, due to the increased details for higher
spatial sample frequencies, i.e., more visual details obtained with higher bitrates.

In Random Access configuration, the GFD exhibits a significant performance gain
over the other approaches for all consideredQPs, classes and environments. For a fixed
class and environment, the best performance is obtained for the highest QP mainly

123



Int J Parallel Prog (2017) 45:1515–1535 1531

 10
 20
 30
 40
 50
 60
 70
 80
 90

22 27 32 37Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

QP 

COpt
CFD

GOpt
GFD

 0

 50

 100

 150

 200

 250

22 27 32 37Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

QP 

22 27 32 37
QP 

22 27 32 37
QP 

22 27 32 37
QP 

22 27 32 37
QP 

22 27 32 37
QP 

22 27 32 37
QP 

COpt
CFD

GOpt
GFD

 20
 40
 60
 80

 100
 120
 140
 160

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 0
 50

 100
 150
 200
 250
 300
 350
 400

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 50

 100

 150

 200

 250

 300

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

 500

 1000

 1500

 2000

 2500

 3000

 3500

Fr
am

es
 p

er
 s

ec
on

d 
[F

PS
]

COpt
CFD

GOpt
GFD

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12 Average frame rate obtained with the tested GPU HEVC in-loop decoding modules (DBF + SAO)
on the NVIDIA Jetson TK1. a Class S—All Intra configuration. b Class S—Random Access configuration.
c Class A—All Intra configuration. d Class A—Random Access configuration. e Class B—All Intra config-
uration. f Class B—Random Access configuration. g Class E—All Intra configuration. h Class E—Random
Access configuration

because of two reasons. First, SAO is disabled for a majority of frames with higher
QP values, where the GFD, CFD and COpt can take advantage of this by memory
pointer manipulations. Second, the computational load of DBF is reduced for higher
QP values at Random Access, in contrast to All Intra configuration. In this case, the
encoder prioritizes larger PUandTUsizesmore frequently to provide bitrate reduction.
This fact results in less borders to filter since the DBF is applied in 8×8 grid which
relies in PU and TU borders. The GFD approach has been designed to take advantage

123



1532 Int J Parallel Prog (2017) 45:1515–1535

of those particularities by avoiding unnecessary computations and memory transfers.
In contrast, GOpt does not explicitly consider these two particularities, thus yielding a
near-constant performance across different QP values due to itsmemory-bound nature.
Hence, although both the COpt and the CFD can take advantage of these two Random
Access peculiarities, their performance cannot surpass the one obtained in GFD due
to a lower degree of parallelism. Furthermore, the COpt and CFD do not outperform
the GOpt implementation except in particular cases when the parallelism degree is not
too high (e.g., class E in Fig. 12h) or if the memory bandwidth provided by the GPU
is too low (e.g., Fig. 12b, f).

When comparing the achieved performance of the proposed GFD algorithm and
COpt in different classes (e.g., Fig. 11a, c, e, g), higher speedups are obtained for
higher frame-resolution sequences, due to the increased amount of computational
load and parallelism exploited. Finally, it can also be observed that the proposed GFD
implementation can handle frame processing time for all video sequences, which could
allow real-time performance, i.e., a frame rate of at least 60 FPS is always achieved
in both environment setups, configurations and all tested bitrates. In particular, the
proposed GFD algorithm allows achieving, in the NVIDIA Jetson TK1 and All Intra
configuration, an average frame-rate of 76.1 FPS for class S, 146.8 FPS for class A,
261.8 FPS for class B and 558.7 FPS for class E. Thus, it demonstrates the feasibility of
effectively accelerating the in-loop decoding modules by using either state-of-the-art
GPUs or embedded GPU devices. In this scenario, an optimized CPU implementation
of the HEVC decoder could handle the other video decoder modules, while offloading
the execution of HEVC in-loop filters to the GPU.

5 Related Work

Along the past years, several video encoding and decoding procedures have been
accelerated in not only high performance CPU and GPU devices, but also in low
power devices [e.g., Field-Programmable Gate Arrays (FPGAs) and Digital Sig-
nal Processors (DSPs)]. In particular, the herein proposed CPU approach is based
on a state-of-the-art HEVC decoder from [3], which exploits SIMD parallelism
(e.g., AVX2 and NEON) to implement HEVC decoder modules by specifically
focusing on modern multi-core CPU architectures, including ARM processors. At
the end, an average frame rate of 543, 35.5 and 77.8 FPS for Full HD video
sequenceswas reportedwith aHaswell, anARMCortex-A9 and anARMCortex-A15,
respectively.

Inwhat concernsGPUdevices, the authors in [19] have presented an optimizedGPU
implementation of the inverse transform and of the motion compensation procedures
in [20] for theH.264/MPEG-4AVC standard. Regarding theHEVC in-loop filters (i.e.,
DBF and SAO), frame-level optimizations for embedded GPUs have been proposed
in [16], where an Ultra HD 4K intra frame is filtered in less than 20ms for the NVIDIA
Jetson TK1 development board. In particular, the GPU algorithms presented herein
further improve the implementation from [16] by optimizing the memory accesses
and by including vector instructions, specially for desktop GPUs.

123



Int J Parallel Prog (2017) 45:1515–1535 1533

When considering individual filters, a GPU-based DBF has been proposed in [6],
where an average performance of 200 FPS and 333 FPS was achieved for All Intra and
Low Delay configurations, respectively, in the NVIDIA GeForce 710M GPU. In [17],
the authors decreased the frame-level parallelism for the SAO procedure by including
it in the CTU decoding procedure, in order to better exploit memory-bandwidth and
cache performance. A similar design is proposed in [3] (for CPUs) and in [9], which
presents a very low-power programmable coprocessor architecture targeting especially
embedded devices.

When looking at different approaches for portable devices, specific hardware for
HEVC in-loop filters has been proposed in [5] and [21]. However, such imple-
mentations usually represent different compromises in terms of programmability,
resources utilization and energy efficiency, thus preventing a fair comparison with
high-performance computing devices, like GPUs.

6 Conclusions

In this paper, an efficient implementation of the HEVC in-loop filteringmodules (DBF
and SAO) has been proposed to reduce their decoding time on GPU devices (referred
to as GFD). When compared to previous work, the proposed implementation and
optimizations result in higher performance due to the increased amount of parallelism
and reduced memory transfers. In addition, a CPU-based frame-level in-loop filter
(referred to as CFD) was also developed, in order to provide a more fair comparison
across CPU and GPU architectures.

When compared with previous GPU-based approaches, the implemented DBF has
been redesigned without shared memory, to avoid unnecessary data transfers when the
borders are not filtered. Moreover, the GPU thread assignment of the DBF kernel in
the GFD implementation has been improved to enable more parallelism, to efficiently
exploit the GPU resources, and to increase the number of active warps. In the SAO
filter, both CFD and GFD approaches exploit the frame-level processing and the fact
that not all frames in the sequence are filtered. Furthermore, the SAO in the GFD
implementation has been designed to exploit the intrinsic GPU vector instructions,
thus further boosting the performance of this module.

The proposed approach has been experimentally evaluated on a state-of-the-art
desktop and on an embedded system. The obtained results show that theGFD approach
outperforms the current state-of-the-art CPU and GPU HEVC in-loop filters for
all tested configurations, recommended bitrates and platforms. For example, on the
NVIDIAGTXTITANX, it achieves a speedup of 1.6× for All Intra configuration and
2.9× for Random Access configuration, when compared to GOpt. On the NVIDIA
Jetson TK1 development board with limited computational resources, the proposed
GFD approach delivers an average processing rate higher than the nominal frame
rate of Ultra HD 4K sequences (50 FPS), which is also the most computationally
demanding video class. In particular, the proposed approach provides an average
frame rate of 76 FPS for All Intra configuration and 125 FPS for Random Access
configuration.

123



1534 Int J Parallel Prog (2017) 45:1515–1535

Acknowledgements This work was supported by national funds through FCT, under projects PTDC/EEI-
ELC/3152/2012 and UID/CEC/50021/2013. Diego F. de Souza also acknowledges FCT for the Ph.D.
scholarship SFRH/BD/76285/2011.

References

1. Bossen, F.: Common test conditions and software reference configurations. Doc. JCTVC-L1100 of
JCT-VC (2013)

2. Bossen, F., Bross, B., Suhring, K., Flynn, D.: HEVC complexity and implementation analysis. IEEE
Trans. Circuits Syst. Video Technol. 22(12), 1685–1696 (2012). doi:10.1109/TCSVT.2012.2221255

3. Chi, C.C., Alvarez-Mesa, M., Bross, B., Juurlink, B., Schierl, T.: SIMD acceleration for HEVC decod-
ing. IEEE Trans. Circuits Syst. Video Technol. 25(5), 841–855 (2015). doi:10.1109/TCSVT.2014.
2364413

4. Chi, C.C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F., Pateux, S., Schierl, T.: Parallel scala-
bility and efficiency of HEVC parallelization approaches. IEEE Trans. Circuits Syst. Video Technol.
22(12), 1827–1838 (2012). doi:10.1109/TCSVT.2012.2223056

5. Cho, S., Kim, H., Kim, H.Y., Kim, M.: Efficient in-loop filtering across tile boundaries for multi-
core HEVC hardware decoders with 4 K/8 K-UHD video applications. IEEE Trans. Multimed. 17(6),
778–791 (2015). doi:10.1109/TMM.2015.2418995

6. Eldeken, A.F., Dansereau, R.M., Fouad, M.M., Salama, G.I.: High throughput parallel scheme for
HEVC deblocking filter. In: 2015 IEEE International Conference on Image Processing (ICIP), pp.
1538–1542 (2015). doi:10.1109/ICIP.2015.7351058

7. Fu, C.M., Alshina, E., Alshin, A., Huang, Y.W., Chen, C.Y., Tsai, C.Y., Hsu, C.W., Lei, S.M., Park, J.H.,
Han, W.J.: Sample adaptive offset in the HEVC standard. IEEE Trans. Circuits Syst. Video Technol.
22(12), 1755–1764 (2012). doi:10.1109/TCSVT.2012.2221529

8. Haglund, L.: The SVT high definition multi format test set. Tech. rep., Sveriges Television AB (SVT),
Sweden (2006). ftp://vqeg.its.bldrdoc.gov/HDTV/SVT_MultiFormat/SVT_MultiFormat_v10.pdf

9. Hautala, I., Boutellier, J., Hannuksela, J., Silvén, O.: Programmable low-power multicore coprocessor
architecture for HEVC/H.265 in-loop filtering. IEEE Trans. Circuits Syst. Video Technol. 25(7), 1217–
1230 (2015). doi:10.1109/TCSVT.2014.2369744

10. JCT-VC:HighEfficientVideoCoding (HEVC). ITU-TRecommendationH.265 and ISO/IEC23008-2,
ITU-T and ISO/IEC JTC 1 (2013)

11. JCT-VC: Subversion repository for the HEVC test model version HM 15.0 (2014). https://hevc.hhi.
fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-15.0/

12. Norkin, A., Bjøntegaard, G., Fuldseth, A., Narroschke, M., Ikeda, M., Andersson, K., Zhou, M., Van
derAuwera, G.: HEVCdeblocking filter. IEEETrans. Circuits Syst. Video Technol. 22(12), 1746–1754
(2012). doi:10.1109/TCSVT.2012.2223053

13. Norkin, A., Bjontegaard, G., Fuldseth, A., Narroschke, M., Ikeda, M., Andersson, K., Zhou, M., Van
derAuwera, G.: HEVCdeblocking filter. IEEETrans. Circuits Syst. Video Technol. 22(12), 1746–1754
(2012)

14. NVIDIA Corporation: NVIDIA®CUDATM Compute Unified Device Architecture Programming
Guide (version 1.0: Jun. 2007 (and subsequent editions))

15. Ohm, J., Sullivan, G., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of
video coding standards-including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst.
Video Technol. 22(12), 1669–1684 (2012)

16. de Souza, D.F., Ilic, A., Roma, N., Sousa, L.: HEVC in-loop filters GPU parallelization in embedded
systems. In: 2015 InternationalConference onEmbeddedComputer Systems:Architectures,Modeling,
and Simulation (SAMOS), pp. 123–130 (2015). doi:10.1109/SAMOS.2015.7363667

17. Subramanya, P.N., Adireddy, R., Anand, D.: SAO in CTU decoding loop for HEVC video decoder. In:
2013 International Conference on Signal Processing and Communication (ICSC), pp. 507–511 (2013).
doi:10.1109/ICSPCom.2013.6719845

18. Sullivan, G.J., Ohm, J., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC)
standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012). doi:10.1109/TCSVT.
2012.2221191

19. Wang, B., Alvarez-Mesa, M., Chi, C.C., Juurlink, B.: An optimized parallel IDCT on graphics pro-
cessing units. In: Proceedings of the 18th International Conference on Parallel Processing Workshops,

123

http://dx.doi.org/10.1109/TCSVT.2012.2221255
http://dx.doi.org/10.1109/TCSVT.2014.2364413
http://dx.doi.org/10.1109/TCSVT.2014.2364413
http://dx.doi.org/10.1109/TCSVT.2012.2223056
http://dx.doi.org/10.1109/TMM.2015.2418995
http://dx.doi.org/10.1109/ICIP.2015.7351058
http://dx.doi.org/10.1109/TCSVT.2012.2221529
ftp://vqeg.its.bldrdoc.gov/HDTV/SVT_MultiFormat/SVT_MultiFormat_v10.pdf
http://dx.doi.org/10.1109/TCSVT.2014.2369744
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-15.0/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-15.0/
http://dx.doi.org/10.1109/TCSVT.2012.2223053
http://dx.doi.org/10.1109/SAMOS.2015.7363667
http://dx.doi.org/10.1109/ICSPCom.2013.6719845
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/TCSVT.2012.2221191


Int J Parallel Prog (2017) 45:1515–1535 1535

Euro-Par’12, pp. 155–164. Springer, Berlin, Heidelberg (2013). doi:10.1007/978-3-642-36949-0_18.
http://dx.doi.org/10.1007/978-3-642-36949-0_18

20. Wang, B., Alvarez-Mesa, M., Chi, C.C., Juurlink, B.: Parallel H.264/AVC motion compensation for
gpus using opencl. IEEE Trans. Circuits Syst. Video Technol. 25(3), 525–531 (2015). doi:10.1109/
TCSVT.2014.2344512

21. Zhou,W., Zhang, J., Zhou, X., Liu, Z., Liu, X.: A high-throughput andmulti-parallel VLSI architecture
for HEVC deblocking filter. IEEE Trans. Multimed. PP(99), 1–1 (2016). doi:10.1109/TMM.2016.
2537217

123

http://dx.doi.org/10.1007/978-3-642-36949-0_18
http://dx.doi.org/10.1007/978-3-642-36949-0_18
http://dx.doi.org/10.1109/TCSVT.2014.2344512
http://dx.doi.org/10.1109/TCSVT.2014.2344512
http://dx.doi.org/10.1109/TMM.2016.2537217
http://dx.doi.org/10.1109/TMM.2016.2537217

	GPU Parallelization of HEVC In-Loop Filters
	Abstract
	1 Introduction
	2 HEVC In-Loop Filters
	2.1 Deblocking Filter
	2.2 Sample Adaptive Offset

	3 Proposed Parallel In-Loop Filters
	3.1 CPU Frame-Decoupled (CFD) In-Loop Filters
	3.2 GPU Frame-Decoupled (GFD) In-Loop Filter
	3.2.1 Proposed GPU-Based Deblocking Filter
	3.2.2 Proposed GPU-Based Sample Adaptive Offset


	4 Experimental Evaluation
	4.1 Profiling
	4.2 Overall Performance

	5 Related Work
	6 Conclusions
	Acknowledgements
	References




