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Abstract: Given the increased demand for high performance and energy-aware computational platforms, an adaptive
heterogeneous computing platform composed of 100+ cores is herein proposed. The platform is based on an aggregate of
multiple processing clusters, each containing multiple processing cores, whose architectures are adapted, in execution time, to
the instantaneous energy and performance constraints of the software application under execution. This adaptation is ensured
by a sophisticated hypervisor engine, implemented as a software layer in the host computer, which keeps a permanent record
of a broad set of performance counters, gathered from the execution of each core in the field-programmable gate array
(FPGA), in order to dynamically determine the optimal heterogeneous mix of processor architectures that satisfy the
considered constraints. By issuing convenient reconfiguration commands to the reconfiguration engine, implemented in a
static portion of the FPGA, partial dynamical reconfiguration mechanisms ensure a runtime adaptation of the cores that
integrate each cluster. When compared with static instantiations of the considered many-core processor architectures, the
obtained experimental results show that significant gains can be obtained with the proposed adaptive computing platform,
with performance speedups up to 9.5× , while offering reductions in terms of the consumed energy as high as 10×.
1 Introduction

The increasing demand for computational processing power
observed along the past decade has driven the development
of heterogeneous systems composed of one or more
processing devices. Such systems typically include a host
general purpose processor and one or more accelerating
devices, such as a graphics processing unit or a field-
programmable gate array (FPGA), each integrating multiple
processing elements (PEs). Although these systems allow
for a significant application acceleration, it is of
fundamental importance to improve processing performance
while minimising the energy consumption. As a
consequence, new and highly efficient processing
frameworks must be developed.
To tackle the development of energy-efficient platforms,

many techniques have been proposed. This includes
turning-off parts of the processor [1], dynamic selective
de-vectorisation [2] or using dynamic voltage and frequency
scaling [3, 4] to decrease energy consumption whenever the
computational requirements decrease. Recently, researchers
have also turned to multi-core heterogeneous systems
composed of high-performance ‘big’ cores and low-power
‘small’ cores (e.g. the ARM big. LITTLE) to decrease the
power consumption of the whole system, while providing
similar processing performances [4, 5]. These systems
typically exploit a common instruction set architecture
(ISA) among all the cores, in order to facilitate task
migration from the ‘big’ to the ‘small’ cores (and vice
versa), which allows for a fast and efficient switching
between high performance and low-power scenarios,
depending on the application requirements and constraints.
Nevertheless, to adequately explore the existing resources
on heterogeneous multi-core systems according to a given
execution profile, an adequate scheduling needs to be
performed.
To efficiently manage multiple running tasks on such

systems, several scheduling algorithms have been
developed. Koufaty et al. [6] identified key metrics that
characterise the application under execution, including the
core type that best suits its resource needs. Cong and Yuan
[7] propose the combination of static analysis and runtime
scheduling to achieve an energy-efficient scheduling on
Intel’s QuickIA heterogeneous platform [8]. Van Craeynest
et al. [9] proposed the usage of a performance impact
estimation as a mechanism to predict which
workload-to-core mapping is likely to provide the best
performance.
Nonetheless, further processing power and energy

efficiency can still be exploited by adapting the computing
system to the characteristics of the running multi-threaded
applications. Some possible approaches are the application
of network reconfiguration or adaptive core interconnection
topologies [10–12], by changing the cache configuration
[13] or by performing core morphing [14, 15]. Such
advances have been significantly aided by the recent
technological improvements in FPGA devices, which allow
for a fast partial dynamic reconfiguration. This provides the
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possibility to dynamically reconfigure a selected region,
whereas the remaining logic continues to operate in an
uninterrupted way [16].
In this specific domain, several high performance and

adaptable many-core heterogeneous systems have been
proposed to exploit these reconfigurable capabilities.
ReMap [17] enables custom computation to be integrated
with the reconfigurable communication scheme. In [18],
reconfigurable multiprocessor systems that allow multiple
configurations to coexist by using reconfigurable
co-processors with multiple cores are presented. On a
stream computing approach, Caspi et al. [19] proposes a
design that incorporates a single central processing unit and
multiple reconfigurable computing blocks, with data streams
being transferred between the blocks over a dedicated
interconnect. Different levels of parallelism can also be
exploited in reconfigurable heterogeneous systems [20] by
including reconfigurable ISA support in multi-core
processors, providing an adaptive fine-grained parallelism to
an already coarse-grained parallelised architecture. Lorenz
et al. [21] demonstrated that dynamic reconfiguration can
be efficiently used to optimise a system and save energy,
and compared the energy that is required in the
reconfiguration process with the potential saving that is
introduced by a dynamic and adaptive change of the
computing units of the processing system. However, the
existing state-of-the-art lacks adequate responsiveness and
adaptability to the tasks being executed.
In this paper, an adaptable and scalable architecture is

proposed that not only supports more than 100
heterogeneous cores, but can also adapt its characteristics
according to application requirements, by taking advantage
of the partial dynamic reconfiguration capabilities of
modern FPGA devices. The main feature and contribution
of the proposed approach is the ability to monitor the
performance of the PEs as they execute different kernels, in
order to autonomously and immediately determine the most
suitable architecture according to the current execution
scenario. Given this, the proposed framework is able to
change in real-time the architecture of each of the PEs, in
order to achieve the best possible performance/energy
efficiency.
This paper is organised as follows. Section 2 presents an

overview of the proposed dynamic many-core
heterogeneous architecture, detailing its key components.
Section 3 details the implementation choices to obtain an
evaluation prototype for the proposed framework. Section 4
evaluates the performance of the obtained system and the
trade-off between adaptability and reconfiguration cost.
Concluding remarks are presented in Section 5.
2 Dynamic many-core heterogeneous
architecture

The proposed reconfigurable processing platform targets the
acceleration of the parallel sections of one or more
applications running on a host computer. Thus, a parallel
programme (e.g. written in Open MP) could be partially or
fully migrated to the PEs instantiated on the FPGA device,
depending on performance, power and energy requirements.
Furthermore, typical applications can be divided into phases
[9], where each phase has different requirements, such as
memory bandwidth, instruction-level parallelism, data-level
parallelism and even functional unit requirements. Under
these circumstances, it is very important to allow the
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accelerating platform to adapt to the application(s)
requirements in real-time. The proposed platform aims at
solving this issue by monitoring the performance counters
of each PE, when executing the application threads, and to
reconfigure each PE according to the defined system goal.
By taking into account the performance counters, the
system is able to autonomously identify the most suitable
PE configuration in order to maximise performance, to
minimise energy and/or power consumption.
Since the proposed platform targets the acceleration of

highly parallel applications, a high number of PEs need to
be supported. Naturally, depending on their complexity, a
different number of PEs may co-exist on the reconfigurable
fabric at different time intervals. For example, while the
reconfigurable fabric may have space to hold over 100
‘smaller’ PEs, a much smaller set of ‘bigger’ PEs may be
supported. Under such constraints, multiple ‘small’ PEs
need to be swapped out when reconfiguring the system to
include a ‘bigger’ PE. However, when ‘smaller’ PEs are
better suited to perform the required computation (e.g.
because the application current phase requires no
floating-point operations or does not allow exploring data
and/or instruction-level parallelism), trading a single ‘big’
PE with a ‘small’ PE may leave reconfigurable logic
unused. As a result, if one considers a fine-grained
reconfiguration granularity, a likely fragmentation of the
reconfigurable logic will occur. To avoid such a situation, it
is herein considered that the reconfigurable fabric is equally
distributed into fixed-sized clusters, where reconfiguration
always occurs at the level of a full cluster.
The architecture of the proposed platform is presented in

Fig. 1a. It comprehends a scalable multi-core accelerator,
implemented on an FPGA device, tightly coupled with a
host computer through a high-speed interconnection bus (in
the considered case, the PCIe bus). The accelerator is
composed of a dense and heterogeneous many-core
processing structure, organised in several computing
clusters each composed of multiple processing cores. The
type and number of cores is controlled by a Hypervisor
module, implemented in the host computer, which is
responsible for permanently monitoring the accelerator
execution and for issuing appropriate reconfiguration
commands that adapt the internal architecture of each
individual cluster to the instantaneous characteristics of the
application being executed. To keep a permanent
evaluation of the performance that is being offered by each
instantiated cluster, the Hypervisor keeps a record of a
comprehensive set of performance metrics relative to each
core.
The following sections present a detailed description of the

main components that incorporate the proposed
reconfiguration framework, namely: (i) the Hypervisor
module, which schedules the execution of kernels on the
available processing cores and manages the framework
reconfiguration by issuing commands to the reconfiguration
engine; (ii) the reconfiguration engine performing the actual
partial reconfiguration; (iii) the processing clusters, where
the application kernels are executed; and (iv) the
shared-memory and inherent synchronisation mechanisms.

2.1 Hypervisor

The adaptive nature of the proposed heterogeneous structure
is ensured by a Hypervisor module, which is implemented
in the host computer (see Fig. 1a). This software module
provides a bridge between the reconfigurable hardware
IET Comput. Digit. Tech., pp. 1–14
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Fig. 1 Proposed reconfigurable multi-core heterogeneous architecture

a Block diagram of the whole processing system
b Internal block diagram of a processing cluster
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resources that are offered by the accelerator architecture and
the application executing in the host. Accordingly, the
Hypervisor is responsible for three important tasks: (i)
assigning application kernels to the several allocated cores
in the instantiated clusters; (ii) keeping a permanent record
of the processing performance that is being offered by each
allocated core in the accelerator; and (iii) issuing of
appropriate reconfiguration commands to the reconfiguration
engine, located in the FPGA accelerator. To provide full
compatibility with the existing application, the Hypervisor
provides a complete abstraction of the underlying selection,
adaptation and reconfiguration process.
To adequately exploit the processing capabilities of the

proposed reconfiguration framework, the Hypervisor
software module determines the processing topology that is
most adequate to each application kernel that is being
accelerated. For such purpose, it receives and maintains a
permanent record of performance counters measured at each
core in the instantiated processing clusters. With such
information, it first measures the actual operational and
computational intensity of each kernel, and further estimates
the total execution time, power and energy consumption
on the currently available processing cores. After obtaining
these values, it re-estimates the same metrics by considering
the reconfiguration of a processing cluster.
IET Comput. Digit. Tech., pp. 1–14
doi: 10.1049/iet-cdt.2014.0078
To decide on the best possible action, namely whether to
execute the processing kernel on a currently available core
or to reconfigure a cluster and then perform the
computation, a set of policies are available, namely: (i)
overall minimisation of the execution time; (ii)
maximisation of the processing performance while
establishing a ceiling for the total power consumption; and
(iii) minimisation of the energy consumption, while
guaranteeing a minimum quality of service (QoS), that is,
performance level.
To improve the energy and power consumption, the

hypervisor may decide to entirely disable a given
processing cluster, by reconfiguring it as a blank (inactive)
box. This will result in powering off the corresponding
region on the FPGA device. Many reasons may lead to
such a decision, namely: (a) when there are no further
processing kernels to be executed on the accelerator (e.g.
the application has insufficient parallelism), allowing to
minimise the overall power consumption; (b) when the
power budget will be exceeded by the active processing
clusters, thus requiring parts of the reconfigurable area to be
disabled; or (c) when the required performance level has
been reached.
Finally, if the Hypervisor decision is the reconfiguration of

a processing cluster, it then issues appropriate commands to
3
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the reconfiguration engine (at the FPGA fabric) to adapt the
processing structure.

2.2 Reconfiguration engine

To provide a convenient abstraction layer between the
Hypervisor and the actual FPGA reconfiguration process, a
reconfiguration engine was implemented and allocated on a
static region of the FPGA device, that is, a region that will
not be subjected to changes. This reconfiguration engine
receives the reconfiguration commands from the
Hypervisor, such as the cluster ID and a particular cluster
configuration, and orchestrates the entire reconfiguration
process, namely download of the partial configuration
bitstream from the external memory and upload to the
reconfiguration port. Once completed, it signals the
Hypervisor about the completion of the reconfiguration.
To accomplish this task, the reconfiguration engine

comprises a minimalistic microcontroller that handles the
following tasks: (i) acknowledging the reconfiguration
commands issued by the Hypervisor; (ii) initiating the
reconfiguration interface and reading the required
reconfiguration bitstreams from the bitstream storage
memory; and (iii) ensuring the complete and ordered
transfer of the particular bitstream to the reconfiguration
port; and finally signalling the Hypervisor that the
reconfiguration process has completed.
To make sure that the remaining system continues to

operate normally, while still allowing the scheduling of
tasks to any other processing cluster (apart from the cluster
being reconfigured), dynamic partial reconfiguration is used.
This reconfiguration technique allows for a particular region
of the FPGA device to be reconfigured while the remaining
regions remain unchanged and working.
Thanks to this permanent adaptation of the reconfigurable

fabric to the application under execution, it is possible to
dynamically deploy a more dedicated and better suited
computational structure to the computation being
performed, thus obtaining a more energy-efficient
computational structures with better performances.
Moreover, since each computing cluster is well defined, it
can also be configured as an inactive blank box. By doing
so, the logic corresponding to that particular region can be
deactivated, resulting in a substantial reduction of the static
energy consumption. Hence, in power critical systems, the
amount of active logic regions can be finely controlled, in
order to limit the peak power consumption. When more
power is available, more logic regions and consequently
more computational cores can be activated.

2.3 Processing clusters

As stated above, several core architectures, with different
processing capabilities, can be devised and used in the
proposed reconfigurable framework. The particular set of
adopted core topologies can be fitted to different kinds of
kernels that naturally depend on the computational
complexity of the accelerated application. In particular,
either programmable or fully dedicated processing cores can
be considered in each instantiated cluster, as long as
adequate interface structures are provided in each core
input/output (I/O) interface.
With the reconfiguration process in view, the processing

cores are grouped together in homogeneous clusters (see
Fig. 1b). Since each computing cluster is well
circumscribed within equal sized regions of the FPGA
4
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fabric, the number of identical cores that can be instantiated
in each individual cluster depends not only on the amount
of hardware resources that are available for each cluster
region, but also on specific restrictions of the adopted
internal interconnection bus, as described in Section 3.2.
Hence, given the different requirements in terms of
hardware resources of each core topology, clusters of more
complex cores contain fewer processing cores than clusters
of simpler cores. Furthermore, in different prototyping
FPGA technologies, the area reserved for a cluster region
can take different sizes depending on the distribution and
amount of resources in the FPGA. Hence, this design
approach provides a higher degree of granularity for the
dynamic reconfiguration procedure, alleviating the resulting
reconfiguration overhead. Accordingly, instead of
individually reconfiguring each core, all the cores in a given
cluster are reconfigured at once.
The communication and interface mechanisms between the

cores and the host computer are managed through a dedicated
controller, associated to each core. This controller was
specially designed to: (i) start and monitor the execution of
the core, (ii) receive the kernel parameterisation and (iii)
transmit performance metrics to the Hypervisor module (at
the host), for subsequent analysis.
Besides the previously described reconfiguration engine,

the static portion of the FPGA fabric also includes a
memory controller that provides a convenient
shared-memory interface to the dynamically instantiated
processing cores. Such shared-memory can either be
implemented by using the internal memory resources within
the FPGA, or even by using an external memory connected
to the FPGA device.
In addition to this shared-memory space, a restricted set of

dedicated memory positions, managed by an atomic access
scheme, are also provided to the implemented cores, in
order to support the implementation of convenient
synchronisation mechanisms in the parallel processing
structure.
3 Architecture design and implementation

Following the above general description of the reconfigurable
heterogeneous computational platform herein proposed, this
section details several key aspects in terms of its design and
implementation on an FPGA device. This description
initiates with the presentation of the control infrastructure
that is tightly connected with each processing core. The
communication infrastructure of the framework is also
explained, including several aspects related with the
intra-cluster communication bus, shared by all cores in each
cluster, but also with the main system bus, connecting all
clusters with the host computer. A detailed description of
the reconfiguration engine is then presented, covering
several aspects concerned with its internal architecture and
implementation. This section concludes with a description
of the considered replacement and reconfiguration policies
that are implemented by the Hypervisor software layer, in
order to optimise the achievable performance in terms of
computational throughput and energy consumption.
3.1 Processing cores

To maximise the flexibility and versatility of the proposed
reconfigurable structure, the heterogeneous accelerator
architecture was designed by following a fully modular
IET Comput. Digit. Tech., pp. 1–14
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approach. In particular, each processing core was designed in
order to be as independent as possible of the underlying PE
architecture. In fact, the only imposed restriction to the
architecture of the PEs is concerned with the provision of
straightforward monitoring and communication interfaces to
the attached core controller.
Fig. 1b depicts the main components that comprise this

core infrastructure. Each core controller is implemented by
a finite-state machine, ensuring the coordinated execution of
the following four sequential states in the core: (i) wait for
a configuration word from the host computer, while
maintaining the PE in a reset (idle) state; (ii) release of the
PE from idle state (on reception of a host message) and
wait until the PE has finished reading the configuration
word; (iii) monitoring of the PE execution, while keeping
record of a set of performance counters; and (iv)
transmitting the measured performance counters to the host
and reverting of the PE to a reset state, on assertion by the
PE that the kernel execution has completed.
To accomplish this coordination, two separate

communication interfaces are featured in each core
controller: a host communication interface and a PE
communication interface. The ‘host interface’ is composed
of two unidirectional channels, compatible with the
AXI-Stream protocol [22]. This interface is used by the
core to receive configuration words from the host and to
send packets to the host, containing the measured
performance counters (as described above). The ‘PE
interface’ is dependent on the adopted PE architecture and
is used by the controller to gather relevant information
about the execution and performance of the PE. It is usually
implemented by a simple interface, which can be either
memory mapped to the PE or connected through a custom
I/O interface.
By default, the controller monitors the number of clock

cycles that is required to execute a specific kernel.
However, depending on the considered application, it is
also possible to monitor other parameters, which are
specifically customised based on the underlying architecture
of the PE. Examples of additional counters currently
implemented include the number of specific operations
(e.g. integer divisions or floating-point additions or
multiplications), counting branch mispredictions,
identification of specific function calls (e.g. to detect
operations that are performed through software libraries,
instead of hardwired instructions). Hence, by providing this
monitoring flexibility, it is possible to offer the Hypervisor
with the necessary means to optimise any application in
terms of the performance-energy balance, by easily tuning
the reconfiguration policies to the specific characteristics of
the available PEs and to the requirements of the application
kernels to be accelerated.
Finally, depending on the accelerated application and on

the adopted PE architecture, optional ‘programme’ and
‘data’ local memories can also be accommodated inside
each core. Such memory devices may either comprise an
attached cache controller or may be characterised by a
non-coherent access mechanisms, comprised by a
straightforward scratch-pad memory. Independent of the
considered approach, such memories will represent the first
level of the accelerator memory hierarchy.

3.2 Communication and interfacing networks

A fully compliant bus based on the AXI-Stream protocol [22]
was adopted for both the ‘core interconnection’ and the ‘cluster
IET Comput. Digit. Tech., pp. 1–14
doi: 10.1049/iet-cdt.2014.0078
interconnection’ networks (see Fig. 1). In fact, despite the
several available Xilinx IP cores that implement an
AXI-Stream interconnect fabric, it was decided to implement
a lighter, but still fully compliant and custom
interconnection, since not all the protocol signals are required
and it is only necessary to create communication channels
between the host and the cores. Moreover, this decision was
taken with hardware resource overhead reduction in mind,
since the complexity of the custom module is much lower
than the original intellectual property (IP) core.
The implemented interconnection provides single-cycle

communication mechanism between up to 16 peripherals
which, in accordance to the protocol, corresponds to 16
AXI-Stream Master and 16 AXI-Stream Slave ports.
Consequently, this interconnection features two independent
unidirectional channels: a one-to-many channel and a
many-to-one channel. The first channel routes data signals
to the corresponding port (core) by using a decoder driven
by the 4 bit destination TDEST signal. The second channel
is managed by a round-robin arbiter, with a priority
function based on the equations presented in [23], being the
TVALID and TLAST signals used as the request and the
end-of-burst acknowledge signals, respectively.
As such, and depending on the area restrictions described

in Section 2.3, each cluster can accommodate up to 15
processing cores, being one of the interconnection ports
reserved for outer-cluster communication. Hence, by
daisy-chaining together a number of instantiations of the
interconnection module through a specially designed bridge,
it is possible to create a communication network with any
number of levels.
To support the interconnection between the clusters and the

host computer, a specific connection to the AXI4 bus was
implemented using the Xilinx IP AXI direct memory access
(DMA) [24] core. This IP core provides a bridge between
an AXI-Stream interface and an AXI4 interface, allowing
the translation of a stream-based communication to a
memory-mapped communication. The AXI4 bus used in the
prototyping device connects to the PCIe external interface
and, from there, to the host computer.
Despite the adopted simplifications in the communication

protocol, it still ensures the required set of functionalities,
as well as the flexibility to implement additional features.
To initiate each core execution, the host sends one 32 bit
word to the target core controller, containing the necessary
information for the core execution. At the end of the
execution, the core controller sends a packet to the host
with a 32 bit word reserved for a return message, followed
by a configurable amount of 32 bit words containing the
measured performance counter values. The most-significant
8 bits of each packet word are reserved for the tuple
(‘cluster_id, core_id’), containing the cluster and core
identifications.
Finally, to allow a flexible access of each core to the shared

local memory in the cluster and to the external memory,
a different interconnection module was derived from
the previous one and provided as a second layer of the
interconnection network. Hence, while maintaining the
same base structure, it is possible to obtain a single-cycle,
arbitrated and shared-bus interconnection. This is achieved
by exchanging the TDEST signal with an address signal,
named TADDR, and by including memory and core
interfaces, that see the unidirectional channels as a single
bidirectional channel. Moreover, by including extra signals
and providing the appropriate controllers, coherent
cache-based memory hierarchies can also be implemented.
5
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Fig. 2 Reconfiguration procedure: the Hypervisor is responsible
for dispatching the workload and for issuing reconfiguration
commands to the on-chip reconfiguration engine
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3.3 Reconfiguration

To provide the reconfiguration capabilities required to
implement the proposed architecture, the Xilinx Virtex-7
FPGA was selected as target technology. It provides three
different configuration ports to perform the reconfiguration,
namely: joint test action group (JTAG), SelectMap and
internal configuration access port (ICAP). The main
differentiating factors between them are the accessibility
and the entity that is responsible for the reconfiguration
process. Each configuration port also provides different data
width and working frequency interfaces, resulting in
different reconfiguration throughputs.
The JTAG interface is a configuration port external to the

FPGA, commonly used to load the initial configuration into
the device, by directly interfacing it with the external flash
memory, which stores the initial configuration file. This port
provides a 16 bit configuration data-port, with a maximum
frequency of 40 MHz. The SelectMap interface is also
external, but with a higher reconfiguration throughout.
Finally, the ICAP, which is essentially an internal version
of the SelectMap, has a 32 bit data-port supporting a
writing bandwidth of up to 100 MHz. Being internal to the
FPGA, it allows for the reconfiguration process to be
controlled by an entity instantiated within the device itself.
Since in the proposed framework the core reconfiguration
procedure is to be controlled by the reconfiguration engine,
inside the FPGA, with the host computer serving as the
Hypervisor, the ICAP port presents itself as the most
suitable interface.
Besides these reconfiguration means, the targeted FPGA

technology also supports Multiboot reconfiguration. This
reconfiguration capability offers the possibility to load
different full-configuration images in few cycles, allowing
for different configuration layers to switch dynamically.
However, this reconfiguration process only allows for
‘full-device’ reconfiguration, not providing the needed
reconfiguration granularity. In contrast, partial dynamic
reconfiguration allows the reconfiguration of specific
processing groups (clusters) to be performed one by one,
adjusting the system to the desired configuration.
To allow for a modular approach to the reconfiguration

procedure that defines the several instantiated clusters, it is
necessary to constraint each module to a specific and
well-defined region of the reconfigurable fabric of the
FPGA. Accordingly, in order to ensure that the
reconfiguration of each assigned cluster only changes a
predefined region in the device, appropriate region
delimitation has to be applied to each processing cluster.
Hence, by evaluating the area resources required by each
resulting computational cluster, it is possible to define the
required reconfiguration region of each cluster, as well as
the maximum amount of supported clusters in the device.
Another limiting factor in mapping the clusters to the
configurable logic is the location of both the PCIe module
and the ICAP interfaces. In fact, these locations are
somewhat more conditioned, since they cannot be included
in a region with an assigned reconfigurable module. These
two modules are implemented by hard-cores, being
allocated in specific regions of the device. Each of these
regions is delimited using the floor-planner tool in order to
reserve areas for each specific architecture module. This
ensures that the reconfiguration engine can load the partial
bitstream with no risk of the process affecting the on-going
activity of the remaining cores or their communication with
the Hypervisor.
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In this particular implementation, the developed
reconfiguration engine (illustrated in Fig. 2) is composed by
a Xilinx ICAP controller (AXI HWICAP), an external
memory controller connected to the on-board linear flash, a
MicroBlaze microprocessor, an AXI memory controller
connected to a 4 kB FIFO and an AXI PCIe bridge, all
interconnected by an AXI4 bus.
Since the reconfiguration of the clusters is triggered by the

Hypervisor, in the host, a set of flags is used to communicate
with the reconfiguration engine. These flags are implemented
on a shared block RAM (BRAM), accessible to both the
host computer and the microcontroller in the internal
reconfiguration control logic, via the PCIe bridge. This shared
memory is used to trigger the reconfiguration command, to
inform the host computer of the reconfiguration conclusion,
and as an indicator of which configuration is to be loaded.
With this approach, the host computer does not need to
actively wait for the conclusion of the reconfiguration process,
being allowed to continue processing the information
obtained from other clusters that might be still running.
In this particular implementation, the configuration

bitstreams are stored on the on-board linear flash. This flash is
used both for loading the initial full-configuration when the
system boots (since it is a non-volatile memory) and to store
the partial bitstream configurations. The option for using this
flash memory to accommodate the repository of the partial
bitstreams (instead of using the external RAM memory) is to
avoid any impact in the computation throughput when both
the reconfiguration engine and the processing cores would be
simultaneously accessing the external RAM memory. With
this solution, it is possible to have a reconfiguration being
performed while the computational cores access the main
memory to access the data.
On receiving the command with the identification of the

required configuration, the microcontroller of the
reconfiguration engine issues read commands to the linear
flash controller, in order to obtain the bitstream header. This
header contains the information regarding the configuration
bitstream size, thus obtaining the amount of bytes that need
to be sent through the ICAP. After this initial phase, two
approaches can be taken to carry out the actual
reconfiguration. In the first option, the microcontroller
controls each word that is transferred to the ICAP. This is
performed by reading the 16 bit words from flash memory
and by packing them into 32 bit words, before sending
them to the ICAP port. This option has the disadvantage of
reading the flash word-by-word, and of requiring the
intervention of the microcontroller for each word transfer.
In the second option, the data are directly transferred from
IET Comput. Digit. Tech., pp. 1–14
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the flash memory to the ICAP port. The microcontroller only
has to set up a DMA descriptor and order the DMA transfer to
start. Although this last option requires the presence of the
DMA engine, it allows the usage of the flash burst mode, as
well as a faster merge of the 16 bit words into 32 bit words,
required by the ICAP. This results in much higher transfer
rates and consequently faster reconfigurations. Once the
transfer is completed, the reconfiguration engine controller
signals the host computer, informing it that the requested
reconfiguration is completed. With this approach, only one
reconfiguration command can be issued at a time, since the
previous reconfiguration must be concluded before a new
reconfiguration command can be issued. Besides
simplifying the reconfiguration procedure (avoiding the
presence of reconfiguration command queues), it is worth
noting that it does not significantly affect the resulting
performance, since the contention to access the flash
memory would prevent greater reconfiguration throughputs.

3.4 Hypervisor replacement policies

As mentioned in Section 2.1, the Hypervisor software layer at
the host computer implements a set of optimisation policies
Fig. 3 Considered Hypervisor replacement policies

a Execution-time optimisation
b Power-ceiling algorithm
c Minimum assured performance algorithm

IET Comput. Digit. Tech., pp. 1–14
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targeting different application requirements and constraints.
In the considered implementation, such policies provide
three cumulative levels of optimisations: (i) execution-time/
energy optimisation; (ii) power-ceiling dynamic constraints;
and (iii) power saving with a minimum predefined and
assured performance level.
The algorithm presented in Fig. 3a implements a runtime

performance prediction routine. To decide when it is
advantageous to reconfigure a given cluster, before
executing the required kernel, the algorithm performs two
distinct steps. Initially, it searches for a configuration
allowing for higher gains in terms of performance energy or
power consumption. This decision also takes into account
the reconfiguration overhead. If such configuration is found
and if the required time to complete all other scheduled
reconfigurations is lower than executing the kernel with the
current configuration, the targeted cluster is put in a waiting
list for reconfiguration at the host side. It is worth noting
that this algorithm can also be used for energy and power
optimisations, by changing all time-base variables to energy
variables.
The algorithm presented in Fig. 3b adds an extra level of

optimisation to the previous algorithm, by introducing a
7
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dynamic power-ceiling constraint. This power constraint can
change at runtime, depending on the dynamic requisites of
the application. On the basis of the total power budget of
the system at a given time, the algorithm tries to turn off
clusters that are inactive until the power constraint is met.
Each cluster is turned off by reconfiguring it to a blank
(inactive) box, which turns off the FPGA logic in the
considered cluster area. As soon as the power budget
increases, an idle or turned-off cluster is searched, to be
analysed with the algorithm presented in Fig. 3a for the
current kernel chunk. Under this assumption, each cluster is
only reconfigured if the power overhead for the
reconfiguration procedure and for the new configured
architecture does not violate the power-ceiling constraint.
The algorithm presented in Fig. 3c further adds a new level

of optimisation, with a minimum assured performance policy.
This algorithm tries to minimise the power consumption
while maintaining a given minimum performance level.
Initially, the algorithm presented in Fig. 3a is executed to
check for the performance requirements of the new kernel
chunk. If a reconfiguration is required for an idle cluster,
the reconfiguration overhead and the future performance of
the new cluster architecture are checked and it only
reconfigures such cluster provided that the minimum
assured performance is met. Finally, the algorithm tries to
turn off idle clusters to lower the total power consumption,
as long as the minimum performance is met for the current
kernel.

4 Evaluation

To evaluate the performance of the proposed many-core
reconfiguration framework, the complete system was
prototyped in a Xilinx Virtex-7 FPGA (XC7VX485T),
connected through an 8× PCIe Gen 2 link to a personal
computer equipped with an Intel Core i7 3770 K, running at
3.5 GHz. The synthesis and place and route procedures were
performed using Xilinx ISE 14.5. On the Intel Core i7, cycle
accurate measurements were obtained by using the
performance application programming interface (PAPI) library.

4.1 Evaluation benchmark

To demonstrate the performance and energy-aware
capabilities of the proposed adaptive framework, a 100+
computational cores architecture was prototyped and
evaluated. The considered benchmark is an application
composed of four phases, each one corresponding to a
linear algebra data-parallel computation kernel with
distinctive processing requirements, namely: (i) Kernel 1
performs the sum of two integer vectors (1); (ii) Kernel 2
computes the inner product of two integer vectors (2); (iii)
Kernel 3 performs the sum of two single-precision
floating-point (FP) vectors (3); and (iv) Kernel 4 computes
the inner product of two single-precision FP vectors (4)

Kernel1 : vIi = aIi + bIi| i=1, ...,N (1)

Kernel2 :aI =
∑

i=[1,N ]
aIi × bIi (2)

Kernel3 : vFi = aFi + bFi |i=1, ...,N (3)

Kernel4 :aF =
∑

i=[1,N ]
aFi × bFi (4)

Each input dataset (aIi , b
I
i , a

F
i and bFi ) is an independent and
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randomly generated array with about 300 million integer/FP
cells. These datasets are then partitioned and dynamically
assigned to the processing clusters by the Hypervisor
engine during runtime. Since the main focus of the
proposed work is to evaluate the system reconfiguration
capabilities (and not the memory access contention), this
experimental evaluation assumes that the data are locally
stored in the processing cluster. As such, all cores are
implemented with an integrated scratch-pad memory, to
alleviate the contention in the memory hierarchy.
Since each kernel requires operations with different levels of

complexity, three different PE architectures were considered
providing different trade-offs in terms of hardware
complexity, energy consumption, and area occupancy. As the
base architecture, the 32 bit reduced instruction set computer
(RISC) MB-LITE [25] soft-core was used for each of these
PE, because of its portable processing structure, with an
implementation compliant with the well-known MicroBlaze
ISA [26]. Furthermore, it allows taking advantage of the GNU
compiler collection [27] support. Moreover, the MB-LITE
design requires few hardware resources and is highly
configurable, being relatively easy to include custom modules.
The simplest deployed PE architecture (‘Type A’)

corresponds to the basic configuration of the MB-LITE
core, that is, with both the barrel shifter and multiplier
deactivated, as the presence of these structures would
impose significant hardware overheads and a lower
operating frequency [25]. The second architecture (‘Type
B’) includes the referred structures, corresponding to the
full MB-LITE architecture. For the third considered
architecture (‘Type C’), a full MB-LITE architecture
supporting a single-precision FP unit (FPU) was
considered. In this particular case, the considered four-stage
pipelined FPU is composed of three Xilinx IP FP operator
[28] cores. Since the MB-LITE core is compatible with the
MicroBlaze ISA, the corresponding FP instruction opcodes
[26] for the addition, subtraction, multiplication and
compare were adopted.
To provide the Hypervisor with relevant profiling

information about each architecture, five performance
metrics were monitored during execution, corresponding to
the counts of clock cycles (CLK), integer multiplications
(MUL), FP operations (FP) and calls to software-emulated
integer multiplications (SW_MUL) and FP operations
(SW_FP).

4.2 Hardware resources

Having defined the PE architectures, a hardware resource
analysis was performed in order to define the number of
processing cores to be instantiated in each cluster topology.
Table 1 presents the required hardware resources for each
type of processing core. As expected, the resource overhead
increases with the complexity of each architecture. Hence,
the number of processing cores in each cluster topology
was dimensioned in order to ensure that the total occupied
area by each cluster is approximately the same. This way,
each ‘Type A’ cluster contains 15 cores, each ‘Type B’
cluster contains 12 cores and each ‘Type C’ cluster contains
eight cores (see Table 2).
By analysing the power consumption of each cluster

topology, by considering an operating frequency of 100
MHz, it was observed a rather similar value for the three
topologies (bottom of Table 2). This is explained by the
fact that the three cluster topologies were properly defined
in order to occupy the same amount of hardware resources.
IET Comput. Digit. Tech., pp. 1–14
doi: 10.1049/iet-cdt.2014.0078



Table 1 Experimental evaluation of each type of core, in terms
of hardware resources, maximum operating frequency and
power consumption

Available
resources

Processing cores

Type A Type B Type C

registers 607 200 530 (<1%) 536 (<1%) 841 (<1%)
LUTs 303 600 1132 (<1%)1406 (<1%)1932 (<1%)
RAMB36E1 1030 4 (<1%) 4 (<1%) 4 (<1%)
RAMB18E1 2060 3 (<1%) 3 (<1%) 3 (<1%)
DSP48E1 2800 0 (0%) 3 (<1%) 7 (<1%)
max frequency, MHz – 211.1 114.7 113.4

www.ietdl.org
The static part of the platform was also analysed in terms of
the required hardware resources and power consumption.
Hence, all the components responsible for the
reconfiguration process, such as the MicroBlaze and
the ICAP controller, as well as the communication part with
the host, such as the AXI DMA and PCIe bridge, were
taken into account for the total power consumption of the
system. Table 3 presents the hardware resources required
for the static part. It can be observed that despite the
complexity of the static components, a low occupancy of
about 15% was achieved in this FPGA device. Furthermore,
the static design only consumes a total of 367.9 mW.
According to the obtained results, it was possible to

implement a seven-cluster accelerator in the considered
FPGA. In the whole, this represents a number of processing
cores ranging from 56 to 105, in the implemented system.
4.3 Reconfiguration overhead

In what concerns the evaluation of the real-time adaptation of
the system, it was observed the expected dependency of the
reconfiguration time with the size of the partial bitstream
Table 2 Experimental evaluation of each cluster type, in terms of
consumption

Available resources
per cluster region

number of cores –
registers 48 864
LUTs 24 432
RAMB36E1 60
RAMB18E1 45
DSP48E1 174
max frequency, MHz –
static power, mW –
total power at 100 MHz, mW –

Table 3 Experimental evaluation of the static fraction of the recon
operating frequency and power consumption

Registers LUTs

MicroBlaze 2346 (<1%) 2126 (<
AXI4 bus 21 041 (3%) 17325 (6
AXI4-Lite Bus 248 (<1%) 483 (<
PCIe bridge 12 595 (2%) 17 954 (6
ICAP controller 742 (<1%) 546 (<
DMA 2891 (<1%) 2930 (<
BRAMS 864 (<1%) 1242 (<
total power consumption, mW 367.9

IET Comput. Digit. Tech., pp. 1–14
doi: 10.1049/iet-cdt.2014.0078
that is loaded into the ICAP. Since the bitstreams for the
three considered cluster topologies are ∼2 MBytes, a
reconfiguration time of ∼10 ms is observed. A special case
is worth noting in what concerns the bitstream
corresponding to the blank-box configuration. Since this file
is only 460 kBytes long, a smaller reconfiguration time of
∼2 ms was observed for each reconfiguration.
To obtain the dynamic power that is spent in the

reconfiguration procedure of each cluster, the power that is
consumed by the reconfiguration engine, when it is in its
idle state, was subtracted to the power consumed by the
same engine while performing a reconfiguration procedure.
The obtained difference between these two measures results
in an estimated reconfiguration power of about 44 mW.
Despite consuming significantly less power than what it is
required by the actual processing clusters, this result is also
considered by the Hypervisor, when making decisions
regarding reconfiguration commands and energy savings.

4.4 Performance evaluation

To further evaluate the proposed system, the following
sections present its characterisation in terms of the offered
adaptability. This is performed by first considering two
situations without any previous knowledge of the
application being executed, resulting in the definition of an
optimised execution model. This model is then used to
demonstrate the optimisation policies proposed in Section
3.4. The presented results are shown in terms of the
attained performance and energy savings.

4.4.1 Runtime architecture adaptation and model
definition: To demonstrate the adaptive capabilities offered
by the implemented Hypervisor and to provide the best fitted
architecture for a given kernel, two different execution
scenarios were considered. Both these scenarios assume a
blind execution model, where no a priori knowledge of the
hardware resources, maximum operating frequency and power

Processing clusters

Type A Type B Type C

15 12 8
7655 (16%) 6146 (13%) 6569 (13%)
16 706 (68%) 16 614 (68%) 15 334 (63%)
60 (100%) 48 (80%) 32 (53%)
45 (100%) 36 (80%) 24 (53%)
0 (0%) 36 (21%) 56 (32%)
206.2 114.7 113.2
210.9 210.7 209.9
615.2 636.6 600.7

figurable platform, in terms of hardware resources, maximum

RAMB36E1 RAMB18E1 DSP48E1

1%) 22 (2%) 0 (0%) 3 (<1%)
%) 4 (<1%) 1 (<1%) 0 (0%)
1%) 1 (<1%) 0 (0%) 0 (0%)
%) 0 (0%) 0 (0%) 0 (0%)
1%) 1 (<1%) 1 (<1%) 0 (0%)
1%) 1 (<1%) 0 (0%) 0 (0%)
1%) 3 (<1%) 0 (0%) 0 (0%)
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kernels is assumed to determine the first configuration of the
architecture. In particular, these two scenarios only differ in
the order the computing kernels are executed.
In Figs. 4 and 5, it is possible to see the Hypervisor

allowing each cluster to execute its assigned chunk of a
kernel with its currently assigned configuration. Then, on
completion of such kernel chunk, the Hypervisor sends a
reconfiguration command to that same cluster, in order to
adapt its architecture to the currently executing kernel,
according to the set of received values of the performance
counters. The longer execution time observed in Fig. 5 is
due to the fact that the first chunks of kernels 3 and 4 are
initially executed in clusters of ‘Type A’ and ‘Type B’, and
only then does the Hypervisor know that FP operations are
needed. This means that the FP operations present in those
kernels are initially executed with software libraries,
resulting in an increased latency.
Fig. 4 Real-time adaptation of the processing architecture, without any a

Fig. 5 Real-time adaptation of the processing architecture, without any a
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4.4.2 Adaptive model-based policies: After the first
execution of the application in the previously described
‘untrained’ mode, the obtained model of the application can
be used to demonstrate the other developed optimisation
policies. In these scenarios, since there is a previously
obtained execution model, when a kernel is to be executed,
the Hypervisor can immediately trigger the reconfiguration
process to adapt the assigned cluster to the best fitted
architecture for that kernel.
The execution time policy described in Fig. 3a allows the

system to dynamically select the set of clusters that provide
the best performance for each kernel under execution. The
experimental results for this policy are presented in Fig. 6
which conclude that the system was able to adapt to the
best possible configuration, while also achieving a
well-balanced data chunk distribution to the several
processing clusters.
priori knowledge of the computing kernels (Kernel order: 1, 2, 3, 4)

priori knowledge of the computing kernels (Kernel order: 1, 3, 2, 4)

IET Comput. Digit. Tech., pp. 1–14
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Fig. 6 System real-time adaptation, according to the minimum execution-time optimisation policy

Fig. 7 System real-time adaptation, according to the established power-ceiling constraint policy

www.ietdl.org
The second considered optimisation policy considers the
maximisation of the system performance, while establishing
a given power-ceiling (see Fig. 3b). To ensure a more
IET Comput. Digit. Tech., pp. 1–14
doi: 10.1049/iet-cdt.2014.0078
realistic test, this power-ceiling was also varied in runtime.
In Fig. 7, it is possible to observe idle clusters being
replaced by empty blank-boxes when the power-ceiling
11
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Fig. 8 System real-time adaptation, according to the minimum assured performance policy
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decreases, in order to meet this constraint. On the other hand,
as soon as the allowed power consumption level increases, the
system reactivates these turned-off clusters, in order to
maximise the accelerator throughput.
The last proposed optimisation policy, previously

described in Fig. 3c, considers the minimisation of the
power consumption while assuring a minimum performance
level. To show the adaptivity of the proposed system, it is
further assumed that the application under execution
establishes a different minimum throughput for each kernel,
as shown in Fig. 8. As it can be observed, the system is
able to adapt the clusters in real-time, not only to ensure the
required performance level, but also to minimise the power
consumption, by disabling inactive clusters.

4.4.3 Speedup and energy reduction: To evaluate the
performance gains and energy savings resulting from the
proposed adaptive system, the dynamic execution policy
presented in Fig. 6 was compared with four different static
configurations (i.e. without reconfiguration), each one
composed by seven independent clusters of PE: (i) a system
Table 4 Execution-time and energy results

Execution time, s Energy consumption

dynamic system 5.819 23.28
static 7 × Type A clusters 55.715 239.93
static 7 × Type B clusters 29.784 132.72
static 7 × Type C clusters 11.997 50.44
static heterogeneous mix 18.378 79.13
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with seven ‘Type A’ clusters; (ii) a system with seven
‘Type B’ clusters; (iii) a system with seven ‘Type C’
clusters; and (iv) a heterogeneous mix composed of two
‘Type A’ clusters, two ‘Type B’ clusters and three ‘Type C’
clusters.
Table 4 presents the obtained results in terms of

execution-time and energy consumption for the considered
setups. Despite containing 105 cores, it can be observed
that the system with only ‘Type A’ clusters represents the
worst case, both in terms of performance and energy. This
is explained by the fact that ‘Type A’ PE must perform the
multiplication operations of Kernel 2 through a combination
of logic shifts and additions, and the floating-point
operations of Kernels 3 and 4 through calls to software
libraries. Naturally, this represents a large energy overhead,
which results in a total consumption of 240 J. The best
homogeneous static configuration is obtained by using only
‘Type C’ clusters. Even though only 56 cores can be
implemented in this case, it performs about 4× faster than
the worst-case configuration. The best static configuration
was achieved by using the considered heterogeneous
, J Dynamic system speedup Dynamic system energy gain

– –
9.575 10.31
5.118 5.70
2.062 2.17
3.158 3.40

IET Comput. Digit. Tech., pp. 1–14
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configuration (2× ‘Type A’ + 2× ‘Type B’ + 3× ‘Type C’),
which provides a trade-off between complexity and
execution-time/energy consumption.
Finally, it can be observed that the offered adaptive

capabilities allow the dynamic system to combine all the
advantages of the above described configurations. By
adapting, at runtime, to the requirements of the different
kernels, it is assured that the system always provides the
best optimised configuration for each application phase, by
trading core complexity with the total number of cores.
Thus, it is possible to achieve execution speedups ranging
from 2.1× , when compared with the best static case, to
9.5× , when compared with the worst static case, while
consuming from 2.2× to 10.3× less energy.
5 Conclusions

A new morphable heterogeneous computing platform,
integrating hundreds of processing cores and offering
runtime adaptation capabilities to meet the performance and
energy constraints imposed by the application under
execution is proposed in this paper. The adaptive nature of
this platform is achieved by monitoring, in real-time, the
performance of the computational cores while they execute
the application kernels, and by determining the processing
architectures and topologies that maximise the performance
and/or energy efficiency. To perform this decision, a
Hypervisor software module is also proposed, which is not
only responsible for scheduling the computing kernels to
the available processing cores, but it is also able to trigger
the reconfiguration of the currently instantiated cores, by
issuing appropriate commands to an on-chip reconfiguration
engine. This latter module performs the actual adaptation,
by exploiting the existing partial dynamical reconfiguration
mechanisms of modern FPGA devices.
To perform the adaptation of this hundred-core

heterogeneous platform, different algorithms (policies) were
considered, corresponding to typical optimisation goals,
namely: minimisation of the execution time; maximisation
of the processing performance for a given power-ceiling;
and minimisation of the power consumption, while
guaranteeing a minimum QoS (performance level). To
evaluate the proposed system and the corresponding
policies, a set of computation kernels from the algebraic
domain were used. The obtained experimental results allow
concluding that the proposed policies provide a significant
reduction of both the execution-time and energy
consumption when compared with static homogeneous or
non-homogeneous implementations with a fixed number of
cores. The proposed reconfigurable system achieves
performance gains between 2× and 9.5× , whereas the
energy consumption was reduced between 2× and 10× .
Accordingly, the proposed morphable heterogeneous

structure has shown to be a highly viable and efficient
approach to provide an adaptable architecture, being able to
morph the computing cores according to the instantaneous
system restrictions, resulting not only in improved
performances but, more importantly, in an energy-aware
computing platform.
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