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Abstract—Lead by high performance computing potential
of modern heterogeneous desktop systems and predominance
of video content in general applications, we propose herein
an autonomous unified video encoding framework for hybrid
multi-core CPU and multi-GPU platforms. To fully exploit the
capabilities of these platforms, the proposed framework integrates
simultaneous execution control, automatic data access manage-
ment, and adaptive scheduling and load balancing strategies to
deal with the overall complexity of the video encoding procedure.
These strategies consider the collaborative inter-loop encoding
as an unified optimization problem to efficiently exploit several
levels of concurrency between computation and communication.
To support a wide range of CPU and GPU architectures, a specific
encoding library is developed with highly optimized algorithms
for all inter-loop modules. The obtained experimental results
show that the proposed framework allows achieving a real-time
encoding of full high-definition sequences in the state-of-the-art
CPU+GPU systems, by outperforming individual GPU and quad-
core CPU executions for more than 2 and 5 times, respectively.

I. INTRODUCTION

Driven by the advances in the manufacturing technology
and introduced architectural improvements, a remarkable in-
crease in the processing capabilities of commodity computing
systems can be evidenced in the past decade. This is especially
notable for off-the-shelf desktop and servers systems, which
currently do not only rely on multi-core Central Processing
Units (CPUs) to perform general-purpose computations, but
also employ different types of accelerators and co-processors
to further enhance the overall computing power. Recently,
Graphics Processing Units (GPUs) emerged as one of the
most widely employed co-processors to the CPU, due to their
intrinsic availability and possibility to extend their use beyond
the traditional graphics purposes. In fact, even current and
future trends in computer architecture move toward merging
the functionally of these devices into a single chip, such as
Intel Haswell or AMD Accelerated Processing Units (APUs).

Although heterogenous CPU+GPU systems are capable of
delivering high computational throughput, exploiting their full
potential is not a trivial task since it is required to explicitly
deal with the complexity of both the overall system/devices
and target applications. Firstly, the efficient employment of
architecturally different devices requires the development of
independent parallel algorithms optimized for each architec-
ture by relying on several vendor-specific programming mod-
els, tools and libraries. Secondly, to simultaneously perform
computations of a single application, these implementations
need to be integrated in an unified execution environment.

Although recent programming frameworks, such as OpenCL,
aim at lessening these challenges by offering unified models
applicable to a range of different architectures, this general-
ization usually comes at the cost of introducing additional
execution overheads and inability to fully exploit architecture-
specific features. In fact, these frameworks mainly tackle
the platform programmability issues, which is only a part
of the problem. In CPU+GPU systems, it is of the utmost
importance to provide autonomous and adaptive mechanisms
to guarantee the efficient use of all employed heterogeneous
devices, inter-device communication links and other system
resources. Therefore, the unified execution framework also
needs to incorporate efficient scheduling and load balancing, as
well as to provide a simplified interface and fulfill the overall
application functionally, while hiding the system complexity
from the end-user.

On the other hand, attaining the maximum system perfor-
mance is also limited by specific characteristics and complexity
of the target application. For example, highly data-parallel
applications are usually better suited for GPU architecture
with thousands of simple cores, while coarser-grained paral-
lelism is often better exploited on multi-core CPUs. However,
real-world applications usually consist of several different
execution modules with diverse characteristics. During the
execution, a complex interaction between these modules is
often imposed due to the inherent data-dependencies, e.g.,
where the output of one module represents the input for
another and/or simultaneous access to a single data buffer by
several modules. As a result, the unified execution environment
needs to consider both application- and architecture-specific
characteristics, in order to achieve an as efficient as possible
collaborative execution in heterogeneous environments. Due to
the fact that it is generally impossible to consider an exhaustive
set of characteristics, a full range of inter-module interactions
and execution scenarios for general applications, a highly
practical approach is herein proposed by focusing on a video
encoding procedure to describe the application complexity.

Considering a clear dominance of video contents in the
overall Internet traffic [1] and growing market demands for
higher video resolutions, efficient video compression is abso-
lutely essential to reduce the increased network bandwidth and
data storage requirements. The newest video coding standards,
such as H.264/AVC [2] and HEVC/H.265 [3], have established
advanced coding methods to achieve higher compression rates,
while retaining the video quality. However, such compression
efficiency is payed by a dramatic increase in computing com-



plexity, specially on the encoder side, which makes it hard to
be processed in real-time on any individual device available in
current desktops. In the encoding procedure, a set of processing
modules with diverse characteristics is iteratively applied on
each video frame to reduce the spatial, temporal and statistical
redundancy in video information. The resulting overall com-
plexity involves several levels of data dependencies, namely: i)
within a single module (spatial dependences within a frame);
ii) across several modules (single-frame encoding); and iii)
between different frames (temporal dependences between en-
coding iterations). Hence, all these dependencies make task
and data parallelism hard to be exploited with straight-forward
parallelization approaches.

In order to cope with such complexity and dependencies,
we propose herein a robust FEVES framework for inter-loop
video encoding that employs adaptive scheduling and load
balancing techniques to challenge real-time encoding of High
Definition (HD) sequences on multi-core CPU and multi-GPU
platforms. To fully exploit the computing power of such het-
erogeneous platform, different parallelization strategies were
specifically applied to each inter-loop video encoding module
and for each device architecture, by relying on vendor-specific
models and tools. These parallelized modules are integrated in
the proposed unified framework that allows simultaneous exe-
cution control, automatic data access management, and cross-
device workload distribution for different inter-loop video
encoding modules. To the best of our knowledge, this is one of
the first papers that throughly investigates efficient scheduling
and load balancing methods for inter-loop video encoding
on multi-core CPU and multi-GPU systems as an unified
optimization problem, taking into account several concurrency
levels between computation and communication.

The contributions of this paper are summarized as follows:

• unified video encoding framework with an automatic
data access management for efficient orchestration of
the inter-loop procedure in heterogeneous systems;

• scheduling and load balancing based on linear pro-
gramming and realistic performance parametriza-
tion; these techniques explicitly consider: the com-
plexity of the video encoding modules and the
overall inter-loop procedure, performance disparity
of heterogeneous devices, asymmetric bandwidth of
communication links, supported amount of compu-
tation/communication concurrency, minimization of
communication volume, and on-the-fly adaptation to
the current state of the platform;

• highly optimized parallel video encoding modules for
different generations of multi-core CPUs and GPUs;

• real-time H.264/AVC inter-loop video encoding of
full HD sequences (>25fps) with Full-Search Block-
Matching (FSBM) motion estimation and 4 Reference
Frames (RFs); the implemented encoder is scalable
over both the number of computing devices and the
encoding parameters, e.g., RF and search area (SA).

II. BACKGROUND AND RELATED WORK

According to the H.264/AVC standard [2], the Current
Frame (CF) is divided in multiple square-shaped 16×16 (pix-
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Fig. 1. Block diagram of the H.264/AVC encoder: inter-loop.

els) Macroblocks (MBs), which are encoded using either an
intra- or an inter-prediction mode, as presented in Fig. 1. The
most computationally demanding and frequently applied inter-
prediction mode starts with the Motion Estimation (ME)
module, which finds the best matching candidate for the cur-
rently processed MB within the predefined SAs in previously
encoded RFs. In order to better suite to different shapes of
moving objects, this standard allows further MB subdivisions
according to 7 different partitioning modes, namely of 16×16,
16×8, 8×16, 8×8, 8×4, 4×8 and 4×4 pixels. The best
matching candidate for each MB-partition is selected as the
one with the minimum distortion value, which is computed
according to the Sum of Absolute Difference (SAD) between
all pixels from the current MB-partition and the examined
candidates in the SA. The output of the ME are the offsets to
the best matching candidates, i.e., motion vectors (MVs). In
order to refine the ME, the RFs are additionally interpolated,
by applying 6-tap and linear filters in the Interpolation (INT)
module. The output of the INT module is stored in a Sub-pixel
interpolated Frame (SF) structure, whose size is as large as 16
RFs. By relying on the preliminary MVs from the ME and
on the interpolated SFs from the INT, the Sub-Pixel Motion
Estimation (SME) is applied to further refine the MVs and
provide a better prediction for each MB-partition. In total, the
computations of these three modules takes about 90% of the
overall video encoding time, both on CPU and GPU [4].

According to the adopted distortion metric and the refined
MVs from the SME module, the best MB-partitioning mode
is selected for each MB in the Motion Compensation (MC)
module. For the selected mode, the prediction of each MB
is computed, by subtracting the best matching SF candidates
from the original MB in order to obtain the prediction residual.
Transform and Quantization (TQ) are then applied to the
residual, which is entropy coded and finally sent to the
decoder. Inverse Transform and Dequantization (TQ−1) are
then applied to the quantized coefficients, to reconstruct the
residual and reference MBs in the RFs, which are further used
in subsequent ME procedures. Finally, to remove the blocking
artifacts in the RF, the Deblocking Filtering (DBL) is applied
on the MBs and MB-partitioning edges. Due to their lower
share in the overall inter-loop video encoding [4], MC, TQ,
TQ−1 and DBL are herein referred as R* modules.

Focusing on state-of-the-art approaches, only rare attempts
were made to efficiently parallelize the complete encoder
(or its main functional parts) for CPU+GPU systems. The



adopted approaches usually i) simply offload one of the inter-
loop modules in its entirety (mainly ME) to the GPU, while
performing the rest of the encoder on the CPU [5]–[8], or ii)
explore simultaneous CPU+GPU processing at the level of a
single inter-loop module [9]. However, these approaches offer a
limited scalability since only one GPU device can be efficiently
employed. Furthermore, by offloading a single module the
capabilities of a multi-core CPU are underused, by favoring
execution on the GPU [5], [6], [8]. Moreover, for a single-
module simultaneous CPU+GPU processing, the considered
methods for cross-device load distribution usually perform
an exhaustive search over the set of possible distributions
and/or rely on simplified models for both module/platform
performance. In detail, the optimal partitioning for “sub-frame”
pipelining is decided through a large set of experiments in [7];
while a single-GPU and constant compute-only performance
parametrization is used in [4]; whereas the load distribution
in [9] is found by intersecting the fitted full performance curves
for each device (experimentally obtained before module exe-
cution). Moreover, several works also consider the video en-
coding in homogeneous multi-GPU environments [10], where
CPUs are not used for computing and an equidistant data
partitioning of CF/RFs is applied, which do not allow an
efficient load balancing in heterogenous environments.

In contrast, our recent contributions in the area of col-
laborative inter-loop video encoding consider the possibility
of applying synchronous load balancing mechanisms at the
level of individual modules, while focusing on the Rate-
Distortion (RD) performance and efficient parallelization of
inter-loop modules for CPU and GPU architectures [11]. The
work presented herein greatly advances these contributions, by
proposing an autonomous unified video encoding framework
that integrates: i) improved implementations of the paral-
lel inter-loop modules for modern device architectures (i.e.,
Intel Haswell CPU and NVIDIA Kepler GPU); ii) multi-
level scheduling and load balancing methods that consider
the complexity of the entire inter-loop when distributing the
workloads among heterogeneous devices; iii) approaches for
minimization of the communication volume and automatic
data management in CPU+GPU platforms; and iv) adaptive
execution methods that explicitly take into account the char-
acteristics of heterogenous platform, such as performance
disparity and amount of supported concurrency between the
computation and data transfers. By relying on a row-based
frame partitioning, the work proposed herein also tackles
the issues related to efficient multi-application divisible load
(DLT) scheduling, which is not yet completely covered in the
literature [12]. Moreover, there are only a limited number of
studies targeting the DLT scheduling in CPU+GPU systems
even for general problems [13].

III. FEVES: FRAMEWORK FOR INTER-LOOP VIDEO
ENCODING ON HYBRID CPU+GPU SYSTEMS

In order to allow an efficient collaborative inter-loop video
encoding on heterogeneous multi-core CPU and multi-GPU
platforms, and to fully exploit the computational power of
all heterogeneous devices, an unified execution framework
is proposed herein, which integrates several blocks respon-
sible for different framework functionalities (see Fig. 2).
In particular, the key framework functionality is supported
on the Framework control block, which interacts with all
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Fig. 2. Unified collaborative video encoding framework.

other main functional blocks, i.e., Video Coding Manager,
Load Balancing and Performance Characterization. The Video
Coding Manager is responsible for orchestrating the cross-
device collaborative execution, by invoking the respective
implementations of Parallel Modules on the available devices
and for automatic Data Access Management between the
system main memory (DRAM) and local device memories.
The collaborative execution is conducted by relying on the
workload distributions provided by the Load Balancing mod-
ule, which is tightly coupled with an on-the-fly system and
device Performance Characterization.

A. Framework Control

As presented in Algorithm 1, the main functionality of the
Framework Control considers two distinct phases, namely: i)
the initialization phase, invoked for encoding the first inter-
frame (lines 1-6); and ii) the iterative phase, applied during
the processing of each subsequent inter-frame (lines 7-11).

In the initialization phase, the Framework Control firstly

Algorithm 1 Framework Control (main functionality)
1: detect the number, type and characteristics of available devices
2: instantiate appropriate Parallel Modules implementations and

configure Video Coding Manager and Data Access Management
3: call Load Balancing to determine initial equidistant partitioning

for ME, INT and SME modules across all pi devices
4: invoke parallel execution and automatic transfers via Video Cod-

ing Manager and Data Access Management
5: record the execution and input/output data transfer times for each

assigned load on pi device, as well as for remaining R* modules
6: perform intial Performance Characterization, by calculating per-

device/module speeds and the asymmetric bandwidth of the
interconnections for each non-CPU device

7: for frame nr=2 to nr of inter frames do
8: call Load Balancing to determine the load distribution(s) based

on Performance Characterization
9: invoke Video Coding Manager, Data Access Management and

Parallel Modules to simultaneously process the assigned MB
rows for computationally intensive modules on each pi device,
as well as to process R* modules on the best processing device

10: record the corresponding times for computations and in-
put/output transfers and update Performance Characterization

11: end for



instructs the detection of all available heterogeneous devices in
the execution platform (line 1), which also includes the evalua-
tion of architecture-specific capabilities of the available devices
(e.g., support for different types of Single Instruction Multiple
Data (SIMD) vector instructions), as well as the amount of
supported concurrency between the kernel invocations and data
transfers at the level of each accelerator (i.e., GPU). According
to this information, the Framework Control instantiates the
respective architecture-specific implementations of Parallel
Modules for each available device, which are used during the
collaborative encoding via the Video Coding Manager (line 2).

However, modern commodity CPU+GPU heterogeneous
platforms incorporate a set of nc CPU cores and nw
GPU accelerators, i.e., pi processing devices, where
i={1, . . ., nc+nw}, as presented in Fig. 3. The depicted
system resembles the fact that, in current desktop/server
platforms, the accelerators are usually not stand-alone
processing devices. Instead, they perform the computations
on data fetched from the DRAM, where the CPU is
responsible for initiating both on-device executions and
data-transfers across the interconnection buses. Depending
on the number of available communication engines, different
GPU architectures support different amounts of concurrency
between computation and communication, namely: for devices
with a single copy engine, it is possible to overlap kernel
executions with data transfers in a single direction (from
CPU host to GPU device or vice versa); while for devices
with dual copy engine it is additionally possible to overlap
the transfers in opposite directions. Due to the fact that the
approach proposed herein considers communication-aware
scheduling and load balancing at the level of the complete
inter-loop, identification of these accelerator properties is
crucial to configure the Video Coding Manager and the Data
Access Management blocks.

After configuring these functional blocks, the Framework
Control invokes the Load Balancing routine (line 3 in Al-
gorithm 1) to determine the workload distribution for each
device-module execution pair, based on a realistic Perfor-
mance Characterization of all important system resources.
In particular, for each currently processed frame with N
MB rows, several distribution vectors are determined for
the most computationally intensive modules, i.e, m={mi}
for ME, l={li} for INT and s={si} for SME, with the
amount of MB rows to be processed on each heterogeneous pi
device, such that

∑nw+nc
i=1 mi=

∑nw+nc
i=1 li=

∑nw+nc
i=1 si=N .

Since the proposed approach does not rely on any assumption
regarding the performance of the devices, the interconnection
links or other system resources, there are no Performance
Characterization parameters that can be used when invoking
the Load Balancing procedure for the first time. In order
to build such initial performance estimations, the overall
workload is equidistantly partitioned among all devices when
processing the first frame. Hence, upon receiving the workload
distributions, the Framework Control initiates the on-device
executions and automatic data transfers via the Video Coding
Manager (line 4). After processing the assigned equidistant
distributions and remaining R* modules on each device, the
respective execution and transfer times are recorded (line 5)
and forwarded to the Performance Characterization (line 6).

In the iterative phase, when encoding each subsequent
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Fig. 3. Heterogeneous multi-core CPU and multi-GPU/accelerator system.

inter-frame, the Framework Control firstly invokes the Load
Balancing routine, to determine the workload distributions for
the most computationally intensive modules by taking into
account the complete inter-loop procedure and the gathered
Performance Characterization (line 8). By relying on the Video
Coding Manager and Data Access Management configura-
tions, all the Parallel Modules are collaboratively executed
on each device (line 9), and the respective execution and
transfer times are recoded and used to improve the accuracy
of Performance Characterization (line 10).

B. Video Coding Manager

As previously referred, depending on the architecture-
specific characteristics of the employed devices, the Video
Coding Manager is responsible for orchestrating the collab-
orative video encoding in heterogeneous CPU+GPU systems,
by invoking the execution of Parallel Modules and of the
automatic Data Access Management. Hence, its functionality
is defined during the initialization phase, according to the strict
requirements that are imposed by the overall complexity of the
video encoding procedure and platform characteristics.

In particular, the H.264/AVC standard (see Section II),
the parallel execution at the entire inter-loop level brings
to practice several hard-to-solve challenges. These challenges
must be explicitly taken into account to ensure the correctness
of the overall encoding procedure from the perspective of the
sources of concurrency and the inherent data dependencies.
In detail, an efficient parallelization requires the observance
of data dependencies at several levels: i) between consecutive
frames, ii) within a single video frame, and iii) between the
encoding modules. In the H.264/AVC inter-prediction loop,
the encoding of the CF can not start before the previous
frames have been encoded and the required RFs have been
reconstructed, which prevents the encoding of several frames
in parallel. Moreover, the inherent data dependencies between
the neighboring MBs in certain inter-loop modules (such as
DBL) also limit the possibility to concurrently perform the
entire encoding procedure on different parts of a frame. Hence,
efficient pipelined schemes with several modules can hardly
be adopted, either for parts of the frame or for the entire
frame. Furthermore, the output data of one module is often
the input data for another (e.g., the MVs from ME define the
initial search point for the SME), which imposes additional
data dependencies between the inter-loop modules. Hence, all
the data-dependent inter-loop modules have to be sequentially
processed (within a single frame). The only exceptions are ME
and INT, which can be simultaneously processed, since both
of them use the CF and/or the RFs.

According to the performance of the respective CPU and
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GPU parallel algorithms and inherent data dependencies [4],
the inter-loop modules are divided in two groups, namely: i)
ME, SME and INT modules; and ii) R* modules (i.e., MC, TQ,
TQ−1 and DBL). Due to the low computational complexity
of MC, TQ and TQ−1 modules (less than 3%) [4] and the
limited possibility to collaboratively perform the DBL, the
entire workload of the R* modules is assigned to a single
(fastest) device, by applying the Dijkstra algorithm [11]. In
fact, increased scheduling and communication overheads when
performing cross-device load distribution for modules with
such a low computational complexity would hardly com-
pensate the expected performance gains, if any. In order to
simplify the explanation of the overall functional principle
behind the derived collaborative video encoding procedure,
the single-device mapping of the entire R* encoding block
will be considered. For example, if a single GPU device is
assigned to perform all the R* modules, the derived procedure
is designated as GPU-centric and the GPU device is marked as
“selected accelerator”, i.e., GPU1. In contrast, a CPU-centric
approach assumes that all the R* modules are performed on
all CPU cores, in parallel.

As it was previously referred, the overall functionality of
the Video Coding Manager also depends on the accelerator
capabilities to sustain different amounts of concurrency be-
tween the computation and communication. Hence, the con-
figuration of the Video Coding Manager differs on a per system
basis, according to the identified accelerator capabilities in the
initialization phase of the Framework Control. For example,
Fig. 4 depicts the most common GPU-centric configuration of
the Video Coding Manager for heterogenous systems equipped
with accelerators containing single-copy engines, as well the
corresponding orchestration of the Parallel Modules with the
inevitable data transfers. As it can be observed, the Video Cod-
ing Manager is responsible for invoking the modules and data
transfers in a particular order, such that the correctness of the
overall encoding procedure is guaranteed. Hence, depending
on the considered configuration, this module instantiates the
parallel algorithms and maps them to several heterogenous
devices, while specific input parameters (i.e., reference frames
indexes) and parts of the frame required for the processing
are supplied by the Data Access Management. Finally, the
Video Coding Manager also provides the facilities to measure
the execution and the transfer times, allowing Performance
Characterization of the system resources.

According to the inherent data-dependencies that are im-
posed by the overall inter-loop video encoding procedure,
several cross-device synchronization points are defined (τ1, τ2
and τtot points in Fig. 4). In brief, τ1 synchronization point
reflects the dependency of the SME module on the outputs of
ME and INT, while τ2 marks the completion of SME module

and beginning of R* processing. It is worth emphasizing that
the main objective of this framework is to minimize the total
inter-loop video encoding time, i.e., τtot. In detail, the main
functionality of the Video Coding Manager is as follows:

• τ1 denotes the time when the assigned portions of
the ME and INT modules are processed on each
device (according to the determined mi and li dis-
tributions from the Load Balancing block). This time
also refers to the period when host to device transfers
of the CF portions for ME (CF→ME) and for SME
(CF→SME) are performed, as well as device to host
transfers of the corresponding part of the interpolated
SF (SF(RF)→SME) to ensure correctness of collabo-
ratively processed SME. For accelerators not involved
in the computation of the remaining R* modules
(GPUi), it is also required to fetch from the host
the previously reconstructed RF before performing the
ME and INT (RF), as well as to receive the remaining
portion of the previously interpolated SF, SF(RF-
1)→SME, to complete the SF at each accelerator. As
expected, depending on the supported concurrency at
the accelerator, these input and output data transfers
are sequentially performed for devices with single-
copy engine (see Fig. 4). In contrast, SF(RF)→SME
device to host transfers can occur in parallel with the
host to device CF→SME transfers for accelerators
with dual-copy engine. Moreover,the device to host
transfers of the computed MVs occur during this
period (MV→SME), upon finishing the ME at each
accelerator. It is worth noting that this approach also
exploits the parallelism across independent modules
(multiple divisible applications), i.e., ME and INT;

• τ2 represents the time when all heterogeneous de-
vices should finish the collaborative processing of
the SME module (according to the determined si
distributions). To sustain the SME parallel processing
on the several accelerators, it starts by performing
host to device transfers of the needed parts of the
SF (SF(RF)→SME), as well as the missing MVs
from ME (MV→SME), i.e., the needed MVs and SFs
that were previously computed in the other devices.
Moreover, the SME on all CPU cores can be started
in this period, since all MVs are already present after
the previous device to host transfers (performed in τ1).
When a specific accelerator is selected to compute
the remaining R* modules (GPU1 in Fig. 4), the
host to device transfers of the remaining parts of SF
(SF→MC) and CF (CF→MC) are also performed to
allow the correct execution of the MC module, in
parallel with SME on the selected accelerator. For the
other accelerators (GPUi), it must be ensured that not
only the computation of the SME portion is finished,
but also that the computed MVs are transferred back
to the host (MV→MC);

• τtot represents the overall inter-loop encoding time for
a single inter-frame. In the period between τ2 and τtot
the computation of the remaining R* modules needs
to be finished, as well as the additional transfers of the
remaining part of SF on the accelerators not selected
to perform the R* modules (SF→SME+1). In the
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case when an accelerator is selected to compute the
remaining R* modules (GPU1 in Fig. 4), prior to their
computation, it is required to perform host to device
transfers of the missing MVs from SME, which were
computed on other devices (MV→MC). Furthermore,
after R* are processed on GPU1, the reconstructed
RF (RF+1) needs to be transferred back to the host,
in order to allow its transfer at the beginning of the
next inter-frame encoding on the other accelerators.

The following two subsections present further details re-
garding the implementation of Parallel Modules, as well as
Data Access Management block.

1) Parallel Modules: During the orchestration of the video
encoding procedure, the Video Coding Manager performs a
mapping of the instantiated Parallel Modules to different
devices available in the heterogeneous platform. In order to
provide a wide support for different device architectures, an
extensive library of highly optimized video encoding modules
was specifically developed and made available, based on
the different vendor-specific programming models and tools
(i.e., OpenMP and SIMD intrinsics for multi-core CPUs, and
CUDA/PTX for GPU devices). Parallel algorithms for CPUs
do not only exploit the parallelism at the coarse-grained level
(between the cores), but also the fine-grained data parallelism
with SIMD instructions applied on successive memory loca-
tions within frame samples. In detail, different generations of
multi-core CPUs, such as Intel Nehalem, Sandy/Ivy Bridge
and Haswell micro-architectures, are supported by providing
several different implementations of each module based on
Streaming SIMD Extensions (SSE) 4.2, Advanced Vector
Extensions (AVX) and AVX2 vector intrinsics. In addition,
different per-module parallelizations are also developed for
different generations of GPU architectures (i.e., NVIDIA Tesla,
Fermi and Kepler) by exploiting fine-grained data parallelism
with hundreds of GPU cores, as well by efficiently using the
complex memory hierarchy. Hence, the adopted parallelization
approaches highly vary not only for different device archi-
tectures, but also due to different computational loads of the
encoding modules, inherent data dependencies, locality and
regularity of data access patterns. Considering the limited
space in this paper, and the complexity of the proposed

framework, the description of the developed parallel algorithms
is not provided herein and further details can be found in [14].

2) Data Access Management: As previously referred, the
proposed framework also incapsulates specific mechanisms
for device memory management and automatic data transfers
in heterogeneous CPU+GPU systems via the Data Access
Management. The functionality of this block is tightly coupled
with the decisions taken by the Load Balancing routine. In
order to better depict its major functional principles, Fig. 5
presents the state of the input and output buffers (i.e., CF,
SF, RF, MVs from ME and SME), for different accelerator
roles, different parts of the encoding procedure and each
synchronization point from Fig. 4.

For the accelerators that are not responsible for computing
of R* modules (GPUi), the entire previously reconstructed RF
is received in the first part of the τ1 time interval, followed
by fetching of CF portion according to the given mi amount
of loads to process. As it can be observed, the amount of
transferred data is equal to mi×MB height×CF width and
it must refer to the adequate CF position (offset) that is
calculated with respect to the load distributions assigned to all
other previously enumerated devices, which is symbolically
referred to as mi−1 in Fig. 5(a). At the same time, the SF
part of size li×MB height×SF width is interpolated and
stored at the location calculated according to INT distributions
assigned to other processing devices. The interpolated SF
portion is then transferred to the host and the ME is performed
on the previously received part of the CF to produce the
mi×MB height×MV width fraction of correctly displaced
MVs. At this stage, the remaining part of the previously
interpolated SF (during the encoding of previous inter-frame)
is transferred to the accelerator (σr

i ). To ease the explanation of
this procedure, it is presented in Fig. 5(a) as the SF remainder
that is fetched in the next iteration (see dashed circled SF
buffer, where the remaining portions are emphasized with
dark solid colors). Moreover, during the τ1 time interval,
additional CF portions are transferred to the host for SME.
As it can be seen, depending on the computed CF offsets
(in respect to the si distributions for previously enumerated
devices) the amount of data to be transferred varies. Hence,
in the particular case depicted in Fig. 5(a), it is required to



perform two additional host to device transfers, to fetch the
upper part of CF (region between si−1 and mi−1) and its
bottom part (region between mi and si). In order to reduce
the overall communication volume, the proposed framework
integrates a specific procedure that maximizes the reuse of
already available data on devices. It takes into account the
relative distance between distributions from different modules
for the same device, as well as the offsets from the previously
enumerated devices, in order to determine the amount of
additional data to be transferred when the load distributions
for different modules refer to the data located in the same
buffer [15]. This procedure is explicitly considered in the
Load Balancing block via MS BOUNDS and LS BOUNDS
routines to determine the amount of additional transfers ∆m

i
and ∆l

i, respectively. Finally, at the end of τ1, the computed
MVs from ME are transferred to the host.

At the beginning of the τ2 interval, the additional part of the
SF for SME (∆l

i) is received (represented as two data transfers
between li−1 and si−1 and between si and li in Fig. 5(a). Sim-
ilarly, additional MVs from ME (computed on other devices)
are received (∆m

i ), which are represented in Fig. 5(a) as two
separate data transfers (between mi−1 and si−1 and between
si and mi). Furthermore, si×MB height×MV width MVs,
computed by the SME, are stored at the appropriate positions
and subsequently sent to the host. For the accelerator that is
selected to perform the R* modules (GPU1), the overall state
of the input and output buffers does not significantly differ
from the previously explained states for the other accelerators.
However, as it is depicted in Fig. 5(b) at the end of the τ2
period for GPU1, while the produced MVs in SME are stored,
all remaining parts of SF and CF buffers are fetched from the
host in order to allow the computation of MC (R*).

Finally, in the period between τ2 and τtot, the remaining
part of the SME MVs are also transferred from the host to the
selected (GPU1) accelerator, as presented in Fig. 5(b). This
procedure is followed by the computation of R* modules,
where the complete RF is produced and transferred back to
the host, in order to allow a collaborative processing of the
next inter-frame. During the same period, between τ2 and τtot,
the other accelerators (GPUi) receive the remaining part of
interpolated SF (σi), whose size is determined in order not
to surpass τtot−τ2 time limit (see Fig. 5(a)). This means that
depending on the determined distributions and the amount of
τtot−τ2 time, the assigned time slot for additional SF transfers
might not be sufficient to transfer all the needed data, i.e.,
the complete upper SF region (until si−1) and the complete
bottom SF region (from si to N ), as depicted in Fig. 5(a).
Therefore, the remaining (not transferred) part of SF must be
received in the τ1 period, while encoding the next inter-frame
(i.e., SF(RF−1)→SME).

C. Load Balancing and Performance Characterization

In order to efficiently exploit the computation power of the
heterogeneous devices, asymmetric bandwidth of communi-
cation links and the computation/communication overlapping,
while dealing with the overall complexity of the video en-
coding procedure and inherent data dependencies, a specific
Load Balancing routine is herein proposed. In general, the
proposed procedure differs according to the type of device
that is selected to perform the remaining R* modules and

Algorithm 2 Load Balancing for CPU+GPU video encoding
Input: N,nw, nc, T

R∗
1 ,Km

i ,K
l
i ,K

s
i

Input: Krfdh
1 ,Kcfhd

i ,Krfhd
i ,Ksfhd

i ,Ksfdh
i ,Kmvhd

i ,Kmvdh
i , σr−1

i
Output: m={mi}, l={li}, s={si}, σ={σi}, σr={σr

i }
Objective: minimize τtot
nw+nc∑
i=1
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i=1

si=N (1)
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σi=MIN(N−li−∆
l
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σ
r
i =N−li−∆
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i−σi (15)

∀i∈{1, . . ., nw} :

∆
m
i =MS BOUNDS(m, s) (16)

∆
l
i=LS BOUNDS(l, s) (17)

to the capabilities of the employed accelerators to support
different amounts of concurrency between data transfers and
kernel execution. Accordingly, Algorithm 2 describes the most
commonly used GPU-centric variant of the Load Balancing
routine for heterogeneous systems, with accelerators equipped
with single-copy engine. The presented algorithm corresponds
to the previously described configuration of the Video Coding
Manager from Fig. 4, and to the functionality of the Data
Access Management, depicted in Fig. 5.

The proposed Load Balancing procedure is based on linear
programming and it allows the distribution of the loads of the
most computationally demanding modules (i.e., ME, INT and
SME) and mapping of the R* modules by relying on real-
istic Performance Characterization of the system resources.
In brief, the proposed load balancing approach aimed at
determining the distribution vectors for each computationally
intensive module, i.e., m={mi} for ME, l={li} for INT and
s={si} for SME modules, with the amount of MB rows to
be processed on each heterogeneous pi device and with the
objective to minimize the total inter-loop video encoding time
(τtot). According to (1) from Algorithm 2, the sum of cross-
device distributions for each module must be equal to the total
number of MB rows (N ) within the frame.

Moreover, two additional distribution vectors are also de-
termined for each accelerator, i.e., σ={σi} and σr={σr

i },
i={1, . . . , nw}, to reflect the amount of additionally required
data transfers (in MB rows) to complete the currently interpo-
lated SF at each accelerator. Hence, the σ={σi} distribution
vector reflects the amount of SF transfers that can be performed
to each pi accelerator during the processing of the current inter-



frame, i.e., without causing any additional overheads to the
total time for collaborative video encoding. Correspondingly,
σr={σr

i } represents the remaining data transfers (in MB rows)
to be performed at each pi accelerator to fully complete the
SF, which occur during the processing of the next inter-frame.
Hence, the computed σr={σr

i } remainders for the current
frame serve as inputs when processing the next inter-frame,
which are designated as σr−1={σr−1

i } vectors in Algorithm 2.

The performance of each pi device for the most computa-
tionally intensive modules is characterized with Km

i , Kl
i , K

s
i

parameters for ME, INT and SME modules. These parameters
are expressed in processing time per MB row, obtained for the
currently assigned loads in m, l and s distribution vectors.
Hence, the parameters obtained during the encoding with
the already determined distributions serve as inputs to the
Load Balancing procedure to determine the next distributions,
according to the iterative phase from Algorithm 1. Corre-
spondingly, Kcfhd

i , Krfhd
i , Krfdh

i , Ksfhd
i , Ksfdh

i , Kmvhd
i

and Kmvdh
i represent the obtained time per transferred MB

row in different directions, i.e., from host to device (hd) or
from device to host (dh), for CF, RF, SF and MVs. Depending
on the device that is selected to perform the computations of
the remaining R* modules, TR∗

1 refers to the time required
to perform the complete MC+TQ+TQ−1+DBL sequence on
the selected device (GPU1). It is worth emphasizing that
updating the Performance Characterization in runtime (after
each processed frame) is particularly important for video
coding on highly unreliable and non-dedicated systems, where
the performance and available bandwidth can vary depending
on the current state of the platform (e.g., load fluctuations,
multi-user time sharing, operating system actions).

According to the previously presented analyses, the min-
imization of the total inter-loop video encoding time τtot is
attained by satisfying different conditions from Algorithm 2,
for different synchronization points and heterogeneous devices
depicted in Fig. 4 and 5. Due to the limited space in this
manuscript, the overall Load Balancing functionality can be
briefly summarized as follows:

• (2) and (3) express the necessary conditions for multi-
core CPU execution in respect to τ1 and τ2 synchro-
nization points;

• (4)–(9) present the required conditions for the acceler-
ator selected to perform the R* computations (GPU1),
which guarantee that all input and output transfers, as
well as kernel executions, are accomplished according
to the defined synchronization points in Fig. 4 and 5;

• (10)–(15) state the necessary conditions for the other
employed accelerators (GPUi) according to the exe-
cution scenarios presented in Fig. 4 and 5;

• (16) and (17) correspond to the previously referred
procedures to determine the amount of additional
transfers when two different modules share the access
to a single data buffer, i.e., for ME and SME accessing
the CF and MV buffers, as well as for INT and SME
accessing the SF, respectively.

IV. EXPERIMENTAL RESULTS

In order to evaluate the efficiency of the proposed frame-
work and to challenge the real-time encoding for 1080p (full)
HD video sequences on commodity desktop systems, the
experimental evaluation was conducted on several different
CPU and GPU device architectures, as well as on different
configurations of CPU+GPU systems. The presented results
were obtained by relying on a subset of optimized Parallel
Modules for CPU and GPU architectures [11], [14] based
on H.264/AVC JM 18.4 reference encoder. The tests were
performed on OpenSUSE 13.1 operating system with CUDA
5.5, Intel Parallel Studio 12.1 and OpenMP 3.0.

Two different generations of quad-core CPU micro-
architectures were considered: Intel Nehalem i7 950 (CPU N)
and the newest Intel Haswell i7 4770K (CPU H) processors;
while the GPU Parallel Modules were tested on two different
NVIDIA architectures, namely: Fermi GTX 580 (GPU F)
and Kepler GTX 780 Ti (GPU K). In terms of collaborative
CPU+GPU processing environments, three different heteroge-
neous configurations were considered: i) SysNF, combining
CPU N and a single GPU F; ii) SysNFF, with CPU N and
two GPU F devices; and iii) SysHK, with CPU H and a
single GPU K device. The proposed Load Balancing method
was applied to encode different 1080p HD sequences (“Toys
and Calendar” and “Rolling Tomatoes”) by strictly following
the VCEG recommendations [16] for IPPP sequences, Base-
line Profile, and Quantization Parameter (QP) of {27,28} for
{ISlice, PSlice}. The obtained video encoding performance
was expressed in terms of the resulting encoding speed (i.e.,
time per frame or frames per second (fps)) and it does not
significantly vary neither for different video sequences (due
to adopted FSBM ME) nor for different QPs (due to low
computational complexity of the R* modules).

In order to show the efficiency of the proposed framework
when applying different video encoding parameters for differ-
ent systems and device architectures, Fig. 6 presents the ob-
tained experimental results when processing 1080p HD video
sequences for four different SA sizes and different number of
RFs. In all the presented charts, the shaded area represents
the performance region where it is possible to achieve a real-
time encoding. As it can be seen in Fig. 6(a), the overall
performance of the inter-loop encoding significantly decreases
between two successive SA sizes, due to the quadruplication
of the ME computational load. It can also be observed that it is
generally possible to obtain higher encoding performance by
efficiently exploiting the improvements offered by the newest
device architectures with optimized Parallel Modules (e.g.,
encoding on multi-core CPU H is about 1.7 times faster than
on CPU N, while GPU K outperforms GPU F for almost 2
times in terms of the encoding speed). In fact, the efficiency of
the implemented Parallel Modules can also be evidenced by
the possibility of achieving real-time encoding (≥25fps) for
the smallest 32×32 SA size and 1 RF on both tested GPUs.
On the other hand, for collaborative CPU+GPU systems,
the proposed framework succeeded to efficiently exploit the
synergetic performance of the heterogeneous devices for all
the considered SA sizes by relying on the proposed Load
Balancing strategy, thus significantly outperforming the cor-
responding single device executions. As a result, a real-time
inter-loop encoding of 1080p sequences was achieved on all
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Fig. 6. Performance obtained with the proposed framework for different CPU and GPU device architectures and CPU+GPU systems for 1080p sequences.
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Fig. 7. Performance obtained with the proposed adaptive Load Balancing routine when encoding the first 100 frames of “Rolling Tomatoes” sequence.

tested CPU+GPU systems for the SA size of 32×32 and 1
RF. In particular, a real-time encoding was achieved even for
a higher and more challenging 64×64 SA on SysHK, which
was not attainable with the state-of-the-art approaches [11].

To further challenge the real-time inter-loop encoding on
the off-the-shelf desktop systems, Fig. 6(b) presents the perfor-
mance obtained with the proposed framework when encoding
1080p HD sequences for different number of RFs and SA size
of 32×32. As it can be observed, the proposed Load Balancing
strategy allowed achieving a real-time encoding on all tested
CPU+GPU systems for multiple RFs. In particular, a real-time
encoding was achieved for up to 4 RFs on SysHK platform,
outperforming the execution on both SysNFF and SysNF
platforms. Furthermore, by relying on the proposed strategy
for all the considered number of RFs, an average speedup of
about 1.3 was obtained in the SysHK platform when compared
to the single GPU K, and about 3 when compared to the multi-
core CPU H execution. On the SysNFF platform, speedups up
to 2.2 and 5 were obtained when compared to the GPU F and
quad-core CPU N execution, respectively.

In order to provide a better insight on the capabilities
of the proposed framework to dynamically adapt the load
balancing decisions according to the current state of the
execution platform, Fig. 7 depicts the obtained encoding time
when processing the fist 100 inter-frames of a 1080p video

sequence in SysHK platform for different number of RFs
and SA sizes, namely: SA of 64×64 in Fig. 7(a) and SA of
32×32 in Fig. 7(b). In both cases, the time obtained when
encoding the first inter-frame corresponds to an equidistant
workload partitioning applied in the initialization phase of the
Framework Control (see Algorithm 1), in order to obtain the
initial Performance Characterization parameters for relevant
system resources, such as the performance of heterogeneous
devices and asymmetric bandwidth of the communication
links. After the initial characterization is performed (in the
iterative phase of the Framework Control), the proposed Load
Balancing routine (see Algorithm 2) is invoked in order to
distribute the loads corresponding to the Parallel Modules
among all heterogeneous devices. As it can be observed, by
relying on the proposed strategy, a significant reduction in the
encoding time can be observed when subsequent inter-frames
are processed, starting already with frame 2. In particular, a
real-time encoding was attained in both cases for different
number of RFs, i.e., 1 RF for 64×64 SA and 4 RFs for 32×32
SA, which was not achievable with an equidistant partitioning.

Due to the higher computational complexity when encod-
ing the inter-frames with larger SA size (64×64), the proposed
strategy ensures a near-constant encoding time for all the
processed inter-frames and considered RFs in Fig. 7(a). In
the case of 32×32 SA size, the observed raising slopes in



Fig. 7(b), when the encoding is performed with the number
of RFs higher than one (e.g., for 5 RFs), the encoding time
is increasing with the number of encoded inter-frames at the
beginning (frames 2-5), while it becomes near-constant after
the fifth inter-frame. The rationale behind this behavior lies in
the fact that a single RF is produced during the encoding of
a single inter-frame (see Fig. 5). Hence, for encoding with
a higher number of RFs, it is required to firstly process
several inter-frames, in an amount that must be greater or
equal to the specified number of RFs. During the processing
of these initial inter-frames, the number of considered RFs
increments with each processed inter-frame, until reaching the
specified number of RFs. Therefore, Fig. 7(b) demonstrates the
ability of the proposed Load Balancing strategy to efficiently
distribute the loads and achieve a high encoding performance,
while simultaneously dealing with this “on-the-fly” increasing
problem complexity.

An interesting phenomenon was observed during the en-
coding with 1 RF (frames 76 and 81) and 2 RFs (frames 31,
71 and 92), where a sudden change in the system performance
has occurred (e.g. other processes started running). Still, the
dynamic Performance Characterization of the proposed frame-
work allowed capturing this unexpected performance change,
resulting in a successful load redistribution according to the
new state of the platform. This is emphasized by a very
fast recovery of the performance curves, which required a
single inter-frame to converge to the regions with stable load
balancing decisions. This ability of the proposed framework
to provide stable distributions, despite sudden system perfor-
mance changes, highlights the self-adaptability characteristics
of the presented approach.

Finally, it is also worth emphasizing that the scheduling
overheads introduced by the proposed framework take, on
average, less than 2ms per inter-frame encoding, which is
significantly less than the time required to individually execute
any inter-loop module.

V. CONCLUSIONS

In this paper, an autonomous video encoding FEVES
framework for multi-core CPU and multi-GPU platforms is
proposed. To challenge a real-time H.264/AVC inter-loop
video encoding on these systems, adaptive scheduling and
load balancing methods were integrated that explicitly take
into account the overall complexity of the video encoding
procedure, while efficiently exploiting several levels of concur-
rency between computation and communication. The support
for a wide range of different CPU and GPU architectures
is provided via specifically developed encoding library with
highly optimized algorithms for all inter-loop modules. The
proposed unified framework also incorporates simultaneous
execution control across different heterogeneous devices and
automatic data access management to minimize the overall
communication volume. By relying on dynamic performance
characterization for heterogeneous devices and communication
links, the presented framework was capable of iteratively
improving the load balancing decisions and adapting to the
performance changes in non-dedicated systems. The efficiency
of the proposed framework was experimentally evaluated in
different CPU+GPU platforms, where a real-time video en-
coding of 1080p HD sequences was obtained even for more

challenging video encoding parameters, such as 64×64 SA
and/or multiple RFs. Finally, the FEVES framework was
capable of outperforming a single-device execution for several
times, while introducing negligible scheduling overheads.
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