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ABSTRACT

In this paper we propose an efficient method for collabora-
tive H.264/AVC inter-prediction in heterogeneous CPU+GPU
systems. In order to minimize the overall encoding time, the
proposed method provides stable and balanced load distribu-
tion of the most computationally demanding video encoding
modules, by relying on accurate and dynamically built func-
tional performance models. In an extensive RD analysis, an
efficient temporary dependent prediction of the search area
center is proposed, which allows dependency-aware workload
partitioning and efficient GPU parallelization, while preserv-
ing high compression efficiency. The proposed method also
introduces efficient communication-aware techniques, which
maximize data reusing, and decrease the overhead of expen-
sive data transfers in collaborative video encoding. The ex-
perimental results show that the proposed method is able of
achieving real-time video encoding for very demanding video
coding parameters, i.e. full HD video format, 64×64 pixels
search area and the exhaustive motion estimation.

Index Terms— video coding, divisible load theory, load-
balancing, CPU+GPU computing

1. INTRODUCTION

The latest generation of video coding standards, such as
H.264/AVC [1] and HEVC/H.265 [2], achieve high com-
pression efficiencies, by relying on advantageous encoding
techniques (e.g. multiple partitioning modes, large search
ranges, quarter-pixel precision). However, all these tech-
niques dramatically increase the computational requirements,
and make real-time encoding of high video resolutions hard
to be achieved on any individual device available on modern
desktops, such as multi-core Central Processing Units (CPUs)
and Graphics Processing Units (GPUs).

In order to simultaneously employ the several hetero-
geneous devices that are available on modern desktops
for real-time video encoding of High Definition (HD) se-
quences, an efficient method for collaborative inter prediction
on CPU+GPU systems is proposed herein. This method
does not only employ highly efficient parallel algorithms for
both the CPUs and GPUs and different inter-prediction mod-
ules, i.e. Motion Estimation (ME), Sub-Pixel ME (SME)

and Interpolation (INT), but also provides scheduling and
load balancing routines to efficiently distribute the workload
over all the processing devices. In order to ensure efficient
cross-device execution, an unified execution environment
was designed, which integrates scheduling, load balancing
and data access management routines, as well as the par-
allel algorithms developed in device specific programming
environments (e.g. CUDA, OpenMP, etc.). The proposed
load balancing, based on Divisible Load Theory (DLT) [3],
relies on realistic and dynamically built Functional Perfor-
mance Models (FPMs) [4, 5], which provide a realistic mod-
eling of communication and computation performance of
system resources. This method also introduces specific,
communication-aware techniques to maximize data reuse,
and to decrease the data transfers overhead in collaborative
video encoding. Because of a similar algorithmic structure of
the inter-prediction, many solutions provided in this method
can be also applied to HEVC/H.265 encoders.

To allow an efficient workload partitioning, while pre-
serving the compression efficiency of the H.264/AVC refer-
ence JM encoder [6], a new temporal search area (SA) center
prediction is proposed. In an extensive Rate-Distortion (RD)
analysis, it was shown that the proposed predictor does not
only allow an efficient GPU parallelization and collaborative
CPU+GPU encoding, but it also keeps a high RD efficiency.

The obtained experimental results show that the pro-
posed method achieves real-time inter-prediction of full-HD
(1080p) video sequences, when applying exhaustive ME and
64×64 pixels SA on a platform equipped with a multi-core
CPU and two GPUs. To the best of the authors’ knowledge,
this is one of the first methods that applies the FPMs to com-
plex multi-module problems, such as video encoding, and
that achieves the real time inter-prediction on desktops, when
applying such demanding coding parameters.

2. RELATED WORK

Parallel video encoding approaches usually consider CPU
and/or GPU parallelization of the most computationally de-
manding modules, mainly the ME. Due to the absence of
branches and the regularity of memory accesses, the Full-
Search Block-Matching (FSBM) algorithm is usually chosen
for efficient GPU implementation [7–14], since the adaptive
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Fig. 1. H.264/AVC encoder.

algorithms do not significantly outperform respective CPU
implementations [15, 16]. At this respect, to simultaneously
employ hundreds of GPU cores, these parallel algorithms still
have to relax the spatial data-dependencies, imposed when
relying on adjacent motion vectors (MVs) to define the SA
center. This relaxation is usually achieved by applying either
the zero [7, 9] or temporary dependent predictors [10–12].

In heterogenous CPU+GPU systems, the state-of-the-art
approaches usually i) simply offload a single inter-prediction
module in its entirety (mainly the ME) to the GPU, while per-
forming the rest of the encoder on the CPU [7, 10, 16], or
ii) exploit simultaneous CPU+GPU processing at the level of
a single inter-prediction module [8, 17]. However, these ap-
proaches have a limited scalability (only one GPU can be em-
ployed) and cannot fully exploit the capabilities of CPU+GPU
systems (since the CPU is idle, while the GPU processes the
entire offloaded module) [7,10]. Furthermore, in [8] and [16]
the load distribution and pipelining granularity are decided
through a large set of experiments, which limits the scalabil-
ity, and introduces huge preprocessing overheads.

There is only a few studies targeting the DLT scheduling
in CPU+GPU systems either for general [4] or application-
specific [18] problems. In [19], the authors apply DLT
scheduling for a single-module load distribution in CPU-only
cluster environments for a custom video encoder. In [12],
we proposed an adaptive load-balancing method that relies
on constant performance models and linear programming
load-distribution techniques. In contrast, the method that is
proposed herein relies on more realistic FPM, thus providing
more accurate and stable load balancing decisions.

3. COLLABORATIVE INTER PREDICTION

In order to allow an efficient parallelization and collabora-
tive CPU+GPU execution, the inherent data dependences and
the computational requirements of H264/AVC encoder, must
be considered, with a special emphasis on inter-prediction
(see Fig. 1). At this respect, the inter-prediction modules
(ME+INT+SME) participate with more than 80% in overall
encoding time, which makes their efficient implementation
crucial to achieve real-time performance. The inter-prediction
starts with the ME module, where the obtained MVs for the

left, top and top-right neighbors of the currently processed
Macroblock (MB) are used to define the SA center. This im-
pose a spatial data dependency between these MBs, thus pre-
venting their parallel processing. Additionally, in the case of
adaptive algorithms, the MVs of neighboring MBs are also
used to select the search patterns, as well as to define distor-
tion thresholds for early termination of the ME procedure. At
the frame level, the processing of the current frame (CF) can
not start until all the previous frames are encoded and the full
list of Reference Frames (RFs) is generated, since it repre-
sents the input for the ME and INT modules. Moreover, the
SME can not be processed until both the ME and the INT are
completed, since their outputs are the inputs for the SME.

In what concerns the ME, efficient CPU and GPU paral-
lelizations often adopt the FSBM, since the execution pattern
of adaptive algorithms highly depends on the video content,
which makes the achievable performance hard to be pre-
dicted and prevents efficient load balancing. Moreover, the
dependency on the video content causes branch divergence
for matching candidates examined on different GPU cores,
resulting in attaining very poor GPU performance. In fact, the
state-of-the-art parallelization of the adaptive algorithm [15]
(namely UMHexagonS [20]) on the GPUs are unable of
achieving better performance than CPU implementations.

Furthermore, to exploit the fine-grained data-level par-
allelism required for efficient GPU parallelization and col-
laborative video encoding in CPU+GPU platforms, it is also
required to provide a sufficient amount of data-independent
computations that can be simultaneously processed on hun-
dreds of GPU cores. Accordingly, in order to relax spatial
data dependences imposed by the definition of SA center, a
set of temporary dependent predictors was analyzed herein.
The MVs are than recalculated at the end of ME to provide
the correct offsets to the median predictors. Besides ensur-
ing a full compliance with H.264/AVC, these predictors were
evaluated in an extensive RD analysis (see Section 4) consid-
ering their impact in the resulting compression efficiency.

This set comprises the following temporal predictors:
• ZERO motion vector predictor, i.e., MVcf=(0, 0);
• 16×16: The best MV for collocated MB in the previ-

ous frame cf−1, considering the 16×16 partitioning
mode, i.e., MV u×v

cf =MV 16×16
cf−1 , where u×v={4×4,

4×8, 8×4, 8×8, 8×16, 16×8, 16×16};
• REL RF: The best MV for collocated MB in cf−1,

considering only the RF with the same index rf , and
16×16 partitioning mode, i.e., MV u×v

cf,rf=MV 16×16
cf−1,rf ;

• DEEP SEARCH: Equal to 16×16 predictor for the
first RF. For the other RFs it is displaced by the best
MV found in rf−1, for 16×16 partitioning mode, i.e.,

MV u×v
cf,rf=

{
MV 16×16

cf−1 , rf=0

MV 16×16
cf−1 +MV 16×16

cf−1,rf−1, rf>0
.

A detailed explanation of the parallel algorithms for CPU and
GPU architectures used herein is provided in [21].
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The collaborative inter-prediction strategy proposed
herein considers that each of the k CPU cores and w GPU ac-
celerators (i.e. pi processing devices, where i={1, .., k+w})
performs the same algorithm on different parts of the input
buffers. As it is depicted in Fig. 2, the CF is partitioned
among all CPU and GPU devices. These devices collabora-
tively perform the ME on the assigned portions of the CF and
produce the respective parts of MVm buffer. This buffer is
further partitioned among devices, to collaboratively perform
the SME module. The MVs simultaneously produced by
SME on different devices, are finally collected in the MVs
buffer in the CPU main memory. It is worth emphasizing that
while CPU cores can directly access their buffers portions
from the main memory, for the GPUs explicit data transfers
need to be performed (over PCIExpress), as shown in Fig. 3.

In order to eliminate the cost of the expensive data-
transfer corresponding to the interpolated Sub-pixel Frame
(SF) (16 times larger than CF and RF), the execution of INT
module is replicated on all devices. In fact, considering that
the INT procedure is much faster than the corresponding data
transfers, this approach allows maximizing the efficiency. In
such a way, the list of complete SFs is kept updated on each
processing device. Accordingly, the distribution of the SME
workload, considers only the input and output transfers of
the full-pixel and quarter-pixel MVs, respectively. In order
to minimize the memory requirements, both lists of SFs and
RFs are updated in the form of FIFO circular buffers, where
the newest SF/RF replaces the oldest one.

In the proposed method, the load distribution is imple-
mented at the level of individual MB rows. The major ra-
tionale to adopt this granularity lies in the fact that it pro-
vides low scheduling overheads, while efficiently exploiting
bandwidth of communication lines and device performance.
In contrast, at finer-grained level of MBs, the latency might
dominate the execution, and an inevitable repacking of the
original frame format from a matrix/array of pixels (in raster
scan order) to an array of structures (MBs) would be required.

The proposed method is a two step multi module load bal-
ancing procedure that considers two synchronization points.
In particular, the τb1 at the end of the simultaneous process-
ing of the ME and INT modules (including the transfers of
CF/RF to the GPUs and the transfer of full pixel MVs to the
CPU); and the τb2 at the end of the SME (including the fi-
nal transfers of quarter-pixel MVs to the CPU) as depicted
in Fig. 3. In each iteration (video frame), the distribution
vectors m={mi} and s={si} are determined, where the mi

and si represent the number of MB-rows assigned to the ME
and SME, respectively, for each processing device pi. The m
and s distribution vectors are determined by the application
of the MSLBA algorithm [4] and by relying on dynamically
built FPMs for each device-module pair with minimum set of
points, considering the performance from previous iterations,
and the asymmetric bandwidth of communication lines.

CF RF

ME INT

MVm SF

SME

MVs
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si

si
mi

si

Fig. 2. Data access management for collaborative inter pre-
diction.
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4. EXPERIMENTAL RESULTS

To evaluate the proposed method, a set of experimental re-
sults considering both the RD and the processing performance
is presented, by relying on JM 18.6 reference coder [6]. For
such purpose, a vast set of video sequences with CIF, 720p,
and1080p resolutions is considered. The encoder was exe-
cuted on a desktop platform with a quad-core Intel 4770K
(Haswell, 3.5GHz) CPU, and two NVIDIA Tesla K40c (Ke-
pler, 876MHz) GPUs. The RD analysis was performed by
strictly following the VCEG recommendations [22] for IPPP
sequences, Baseline Profile, and the following quantizer val-
ues {ISlice, PSlice}: {22,23}, {27,28}, {32,33} and {37,38}.

The analysis presented in Table 1 shows the objective
differences between the RD-curves of the tested predic-
tors/algorithms and the original JM encoder with FSBM algo-
rithm, computed using the Bjøntegaard method (with the tool
recommended by VCEG). The tested predictors/algorithms
comprise the proposed set of temporary dependent predictors
(16×16, DEEP SEARCH and REL RF), ZERO predictor,
and the JM implementation of the UMHexagonS (UMHS)
algorithm. As it can be observed, there is no single predictor
that can ensure optimal performance for all tested sequences
and coding parameters. However, for the smaller 64×64 SA,
the temporary dependent predictors (particularly the 16×16)
succeed to approach to the performance of the original JM
encoder for all tested sequences. Contrary, for the Jets
sequence, with the ZERO predictor the large MVs remain
outside of the smaller 64×64 pixels SA, which results in sig-
nificant degradation of the RD performance. However, when
larger SA is used, this predictor provides the RD performance
very close to the reference JM implementation for all tested
sequences. Finally, it can be also observed that for the most
tested sequences and both SA sizes, the proposed predictors
significantly outperform the UMHS. According to this analy-
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Table 1. Overall RD Analysis for different predictors/algorithms using Bjøntegaard metric (∆PSNR [dB] and ∆bitrate [%])
SA 64×64 SA 128×128

Format Sequence Frame Encoded ZERO 16x16 DEEP S REL RF UMHS ZERO 16x16 DEEP S REL RF UMHS
rate frames dB % dB % dB % dB % dB % dB % dB % dB % dB % dB %

Paris 30 300 -0.03 0.59 -0.23 4.50 -0.20 3.85 -0.17 3.19 -0.12 2.19 -0.04 0.80 -0.13 2.49 -0.12 2.41 -0.10 1.92 -0.15 2.92
Paris1 30 300 -0.03 0.46 -0.41 7.69 -0.41 7.62 -0.33 6.13 -0.13 2.35 -0.02 0.39 -0.35 6.57 -0.36 6.83 -0.27 4.91 -0.12 2.28

CIF Foreman 30 300 -0.10 2.39 -0.29 6.86 -0.31 7.38 -0.25 5.78 -0.31 7.26 -0.11 2.55 -0.19 4.40 -0.26 5.95 -0.22 5.09 -0.32 7.47
Mobile 30 300 -0.02 0.40 -0.05 0.97 -0.11 2.19 -0.05 1.03 -0.06 1.25 -0.02 0.45 -0.03 0.50 -0.08 1.53 -0.04 0.75 -0.07 1.39

Tempete 30 260 -0.03 0.60 -0.05 0.98 -0.18 3.48 0.03 -0.45 -0.21 4.03 -0.03 0.61 -0.04 0.77 -0.14 2.64 0.07 -1.27 -0.22 4.20
Stefan 30 260 -0.10 1.84 -0.36 6.71 -0.41 7.58 -0.35 6.43 -0.60 11.68 -0.08 1.44 -0.30 5.69 -0.36 6.78 -0.24 4.41 -0.47 9.08
Table 30 260 -0.06 1.30 -0.21 4.98 -0.29 6.74 -0.19 4.38 -0.24 5.72 -0.06 1.38 -0.15 3.54 -0.17 3.79 -0.14 3.30 -0.23 5.41

BigShips 60 150 -0.02 0.54 -0.03 0.88 -0.05 1.59 -0.03 1.07 -0.09 3.18 -0.01 0.51 -0.03 0.88 -0.05 1.56 -0.03 1.09 -0.09 3.18
Crew 60 150 -0.04 1.43 -0.19 6.61 -0.42 15.28 -0.23 8.07 -0.14 4.93 -0.05 1.63 -0.19 6.58 -0.44 16.16 -0.24 8.53 -0.14 4.93
Jets2 60 150 -1.06 24.43 -0.16 3.04 -0.36 7.14 -0.34 6.81 -1.37 33.21 -0.21 4.33 -0.40 8.29 -0.55 11.37 -0.50 10.40 -0.88 20.40
Night 60 150 -0.05 1.35 -0.27 7.48 -0.21 5.67 -0.21 5.71 -0.24 6.56 -0.04 1.10 -0.21 5.65 -0.19 5.23 -0.16 4.43 -0.21 5.86
Raven 60 150 -0.10 2.53 -0.20 5.11 -0.23 5.69 -0.21 5.31 -0.47 12.53 -0.11 2.64 -0.21 5.21 -0.25 6.19 -0.22 5.38 -0.43 11.69

720p City corr 60 150 -0.05 1.38 -0.05 1.37 -0.07 2.03 -0.05 1.36 -0.19 5.88 -0.05 1.36 -0.04 1.36 -0.05 1.56 -0.05 1.33 -0.19 6.06
ParkJoy 50 150 -0.04 0.71 -0.65 12.98 -0.47 9.23 -0.71 14.44 -0.12 2.34 -0.04 0.69 -0.52 10.38 -0.37 7.36 -0.38 7.51 -0.12 2.33

CrowdRun 50 150 -0.05 1.04 -0.07 1.37 -0.05 1.01 -0.06 1.14 -0.18 3.40 -0.06 1.13 -0.09 1.76 -0.06 1.22 -0.06 1.13 -0.17 3.34
Toys&cal. 25 125 -0.14 5.39 -0.17 6.19 -0.22 8.06 -0.17 6.25 -0.75 32.72 -0.15 5.69 -0.15 5.54 -0.20 7.57 -0.15 5.75 -0.76 32.92

1080p Sunflower 25 125 -0.12 3.27 -0.08 2.27 -0.10 2.76 -0.10 2.80 -0.45 13.71 -0.11 3.27 -0.08 2.20 -0.11 3.15 -0.11 3.04 -0.44 13.32
R. Tomatoes 24 60 -0.03 1.53 -0.11 5.97 -0.12 7.17 -0.11 6.26 -0.16 9.60 -0.03 2.02 -0.11 6.22 -0.13 7.24 -0.12 6.56 -0.17 10.13
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sis, it can be concluded that the strategy of choosing the pre-
dictors according to the SA size (e.g. 16×16 for smaller and
ZERO for larger SAs) provides the performance very close
to the original JM encoder with FSBM. However, in contrast
to the original implementation this strategy allows efficient
GPU parallelization and collaborative CPU+GPU execution,
which result in a very high processing performance.

Figures 4 and 5 present the average performance in frames
per second (fps) that is obtained for the proposed method,
when considering different SA sizes and different number of
RFs, respectively, for full HD (1080p) video sequences. The
proposed method was tested on two hybrid configurations, i.e.
SysHK, equipped with a multi-core CPU and a single GPU,

and SysHKK with multi-core CPU and two GPUs. As it can
be observed, the proposed method achieves more than 35 fps,
with 64×64 pixels SA, on SysHKK configuration. Even for
the configuration with a single GPU (SysHK), this method
achieves a performance very close to the real-time (more than
22 fps) with the same coding parameters.

To evaluate the efficiency of the proposed method, the per-
formance that is obtained on these hybrid systems is also com-
pared with the CPU and GPU single-device implementations.
In detail, the execution on SysHK provides speedups of up
to 1.4× and 2.5× in comparison to the GPU and CPU imple-
mentations, respectively. Moreover, on the SysHKK, the
corresponding speedups are 2.3× and 4×. Finally, Figures 4
and 5 also demonstrate the scalability of the proposed method
with the SA size and the number of RFs, respectively.

5. CONCLUSIONS

In this paper, an efficient method for collaborative H.264/AVC
inter-prediction in heterogeneous CPU+GPU systems was
proposed. By relying on realistic, dynamically built func-
tional performance models, the proposed method provides a
stable and balanced distribution of the most computationally
demanding video encoding modules. An efficient collabora-
tive CPU+GPU encoding with preserved RD efficiency was
allowed by temporal SA center prediction, which resulted
from an extensive RD analysis, and several tested predictors.
The experimental results shown that the proposed method
is able of achieving real-time video encoding for full HD
resolution, with a 64×64 pixels SA and exhaustive ME.
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