
Low-Power Vectorial VLIW Architecture for Maximum
Parallelism Exploitation of Dynamic Programming Algorithms

Miguel Cruz, Pedro Tomás, Nuno Roma
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

e-mail: miguel.tairum@tecnico.ulisboa.pt, pedro.tomas@inesc-id.pt, Nuno.Roma@inesc-id.pt

Abstract—Dynamic Programming algorithms are widely used
in many areas, to divide a complex problem into several sim-
pler sub-problems, with many dependencies. Typical approaches
explore data level parallelism by relying on spacialized vector
instructions. However, the fully-parallelizable scheme is often
not compliant with the memory organization of general purpose
processors, leading to a less optimal parallelism, with worse
performance. The proposed architecture exploits both data and
instruction level parallelism, by statically scheduling a bundle
of instructions to several different vector execution units. This
achieves better performance than vector-only architectures, and
has lower hardware requirements and thus lower power con-
sumption. Performance and energy efficiency metrics were used
to benchmark the proposed architecture against a dual issue,
out-of-order ARM Cortex-A9 and a dedicated ASIP architecture.
In a fair comparison where all processors compute 16 dynamic
programming cells in parallel, results show that the proposed
architecture can achieve a 3.24x and 2.35x better performance-
energy efficiency than the ARM Cortex-A9 and the dedicated
ASIP, respectively, and a performance improvement of 2.54x and
5.01x regarding the ARM and the dedicated ASIP, respectively.

Keywords—Multiple Instruction Multiple Data Architecture,
Dynamic Programming, VLIW, low-power, Instruction Level Par-
allelism, Data Level Parallelism

I. INTRODUCTION

Dynamic Programming (DP) is a common methodology for
solving complex problems, by dividing them into smaller sub-
problems that are simpler to solve. This results in a sequence
of sub-problems or states that depend on each other, with the
latter states depending on the previous ones.

DP has been extensively applied in a vast set of different
application domains. As an example, in the bioinformatics do-
main, DP is frequently used by sequence alignment algorithms
like, the Needleman-Wunsch [1] and the Smith-Waterman [2],
to align large sequences of DNA or protein elements by filling
up a score matrix, where the computation of each cell depends
on the upper, left and upper-left cells. Each cell can then be
seen as a sub-problem that has only three previous cells as
its dependencies, instead of all the previous computed cells.
This property enables the use of DP methods to improve the
performance of the algorithms. Another common application
of DP is found in Hidden Markov Models, where the Viterbi
algorithm [3] is frequently implemented by using DP methods.

This work was partially supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT), under projects: HELIX (PTDC/EEA-
ELC/113999/2009), Threads (PTDC/EEAELC/117329/2010) and project
PEst-OE/EEI/LA0021/2013.

Starting with a sequence of observations for a given state space
and the corresponding transition and occurrence probabilities,
this algorithm finds the most probable state sequence that
originated such observations. Each state thus only depends
on the previous state and on the probabilities that lead to it,
corresponding each state to a sub-problem of the algorithm.
Therefore, DP methods are used to concurrently compute
different states in the same iteration, increasing the perfor-
mance of the algorithm. It is also important to notice that
DP applications tend to be very computation-heavy due to
their large datasets, and often require high performance in a
low power environment, leading to the need of finding better
solutions with lower energy budgets.
Typical processing solutions to solve this problem include Gen-
eral Purpose Processors (GPPs) [4], [5] and dedicated hardware
[6], by using Single Instruction Multiple Data (SIMD) exten-
sions. These extensions exploit Data Level Parallelism (DLP)
by computing in parallel a vector composed of multiple cells,
where each cell is often independent of all the others. Since DP
algorithms work with large data banks, this type of parallelism
is essential to obtain a good processing performance. Also,
the amount of memory that is required to accommodate the
dependencies between states on DP algorithms is often very
large, requiring the implementation of techniques to cache and
reuse results of previous state computations, in order to quickly
retrieve them without redundant computations.

However, the DLP that is exploited in the existing solutions
comes at a cost of high hardware requirements. Since each cell
in the vector is computing the same instruction, the number
of required functional units (FUs) will be proportional to the
vector length, while the usage of those units will be low, given
that only a small number of FUs related to the instruction being
computed will be active at any given time. Also, for the GPP
solutions, the memory organization is not particularly suited
for some types of parallelism. Taking the Smith-Waterman
algorithm as an example, each cell has three dependencies
(as previously mentioned, the upper, left and upper-left cells).
Hence, the only way to maximize the exploited parallelism is
to process cells along the anti-diagonal of the matrix. However,
this is not feasible in conventional GPP implementations,
because of the resulting memory access pattern. To circumvent
this issue, state-of-art implementations [4], [7] operate either
horizontally or vertically, which improves the overall algorithm
performance by taking advantage of a traditional GPP memory
organization, but with the cost of additional lazy loops to solve
the existing dependencies.

To overcome the previous issues, this paper proposes an
innovative architecture that extends the conventional paradigms

978-1-4799-5313-4/14/$31.00 ©2014 IEEE 88

that are conventionally exploited by dedicated architectures
of these particular domains, by considering a combination
of two widely studied parallelization approaches: DLP tightly
combined with Instruction Level Parallelism (ILP). While the
former enables the computation of multiple data elements
in parallel and it is commonly used in vector architectures,
the latter implies the existence of multiple functional units
concurrently computing different instructions, and it is fre-
quently used in superscalar and in Very Long Instruction Word
(VLIW) architectures. In particular, the ILP methods that are
exploited in the proposed architecture are similar to those
used in VLIW architectures, consisting in a single instruction
issue with static scheduling. This permits a better usage of the
functional units by concurrently assigning different instructions
to different units, thus reducing the number and size of those
units. The memory accesses delay is also highly mitigated
by the inclusion of a Data Stream Unit that will enable a
parallel memory access during the processing of the target
algorithm, allowing an optimum exploitation of efficient DLP
schemes for each algorithm. Hence, by taking advantage of
both types of parallelism, the proposed architecture results in
an innovative Vector/VLIW hybrid architecture, that is able of
simultaneously computing a bundle of different instructions,
each processing a different vector of data elements, while
reducing and making a better usage of the available hardware,
thus achieving a better energetic efficiency.

The proposed programmable hybrid Vector/VLIW archi-
tecture was prototyped on a Xilinx Zynq 7020 System on
Chip (SoC). To evaluate the architecture, the experimental
procedure was focused on sequence alignment algorithms, with
a particular emphasis to the Smith-Waterman algorithm. The
considered studies cover both performance and energy metrics
for the proposed architecture and compare them to a dedicated
ASIP specialized for this type of algorithm: the BioBlaze [6];
and an embedded processor frequently applied in those low-
power application domains: the ARM Cortex-A9. According
to the presented evaluation, the proposed architecture achieves
a better performance-energy efficiency in comparison to the
ARM processor and the BioBlaze, while operating at a much
lower frequency.

II. EXPLOITING THE PARALLELISM OF DP ALGORITHMS

When solving a problem using a DP-based approach, it
is first necessary to decompose it into a set of smaller sub-
problems. This translates into computing the value of each
cell in a n-dimensional matrix by relying on the value of pre-
computed adjacent cells. In a 2D matrix, this typically results
in horizontal, vertical and diagonal data dependencies from the
top, left and top-left cells, respectively (see figure 1(a)). To
maximize the processing efficiency and to minimize the num-
ber of dependencies, cell computations should be performed
in parallel along the anti-diagonal (see Fig. 1(b)).

Exploiting this DLP along the anti-diagonal brings two
problems as previously mentioned: harder memory organi-
zation/access and larger hardware requirements. While the
former can be solved by implementing specialized memory-
access units to gather cell values in non-adjacent memory
positions, the latter requires a different type of parallelism.
In fact, vector-only solutions will always result in low FU
usage. For example, consider that vector processing is used

(a) DP left, top and top-left depen-
dencies.

(b) DP cell parallelism.

Fig. 1. Dynamic Programming dependencies.

to compute the value of N cells in parallel, which requires
a total of M vector instructions. Assuming the inexistence
of any dependency and that only one of these operations is
a square root, an utilization of 1/M is expected for all N
parallel square root FUs. Naturally, it is possible to reduce
the number of FUs (hardware requirements) by serializing
the operation on the different vector elements. However this
solution trades performance for hardware requirements, hence
it is not ideal. The alternative is to also explore ILP. Since the
operation over the vector elements along the anti-diagonal is
independent, different cells can compute different instructions
simultaneously. This not only increases the potential for addi-
tional parallelism, but also reduces the hardware requirements.
The use of ILP is also supported by the common steps in a
DP algorithm. Usually these steps consist in dependency loads
followed by cell computations and finalized with the results
storing. Assigning these different steps of the algorithms to
different cells in the matrix (along the anti-diagonal) validates
the ILP (different instructions operating over different cells)
while also maintaining data coherence, given the independence
between the cells.

There are several ways to explore ILP alongside DLP.
In the proposed architecture, static ILP is explored since it
requires less hardware control, thus achieving better energy
efficiency. This is achieved by issuing an instruction bun-
dle that is composed of several different instructions, each
operating over a vector of independent elements (DLP) in
different execution units. This way, instead of using a single
large vector computing the same instruction (as is typical in
vector architectures), we have several smaller vectors, each
effectively computing a different instruction. In a DP algorithm
this translates into processing cells in different steps of the
algorithm without any data races between them. In fact, the
data races will not occur as long as two conditions are met: all
cells currently being processed are independent (which is true
along the anti-diagonal); and the cells that are being processed
in advance will never be dependencies of the results of cells in
previous processing steps. In order for this second condition to
be met, the cells being processed at the most down-left section
of the anti-diagonal, should be in advance regarding the cells
at the top-right section of the anti-diagonal (see Fig. 2).

To efficiently support DP algorithms and to explore DLP
and ILP, the proposed architecture has the following requisites:

• Independent execution units to compute each instruc-
tion of the instruction bundle.

• A Data Stream unit to access the memory concurrently
to the execution units.

Each execution units operates a different vector of cells
and, given the independence between the cells, has its own

89

1

2 2

3 3 3

4 4 4 4It
e

r
a

t
io

n
 i

It
e

r
a

t
io

n
 i

+
1

Fig. 2. Example of two iterations of a DP algorithm with 4 instructions
per iteration and 4 elements being processed, with the processing along the
anti-diagonal. Each number corresponds to one of the four instructions of an
iteration, and each color corresponds to a different clock cycle.

register bank. This locally stores the results that are generated
each iteration of a DP algorithm, thus reducing memory access
operations and improving the processing performance. How-
ever, since the bundle units that are in advance regarding the
computation steps of the algorithms will generate dependencies
that are required by other delayed units, a sniffing mechanism
for a small subset of the register banks is necessary, in order to
maintain the independence of the register banks while keeping
data coherence and avoiding unnecessary memory accesses.

Although the register banks are used to store dependencies,
it is still often required for DP algorithms to store some of their
dependencies in memory, especially when they are required in
a much later iteration of the algorithm. Therefore, the Data
Stream unit is required to perform the necessary memory loads
and stores in parallel to the execution units, minimizing the im-
pact of these memory accesses on the processing performance.
The performance peak is reached when the algorithm does not
have any other unit accessing the memory at the same time as
the data stream unit. Contrary to common VLIW architectures,
here, all the existing units (executing units and the data stream
unit) can access the memory, which requires a priority access
list to avoid conflicts. Since the data stream unit main function
is memory access operations, it has the top priority over all
other units.

To further ease the memory access delay problem, a local
fast (scratchpad) memory is also included, which is used to
store constant values which required in several DP algorithms.
These constant values are pre-fetched at the beginning of the
computation and can only be accessed by the execution units
(with a similar access priority list between them). Since it is
a different memory, it can be accessed in parallel to the main
memory, enabling both the Data Stream Unit and one of the
execution units to perform a load or store instruction.

With the requirements listed above, the hybrid architecture
can also be easily scalable in two distinct ways: by increasing
the length of each execution unit and thus increasing the vector
length (DLP); and by increasing the number of execution units,
and thus increasing the number of parallel instructions (ILP).
The first solution would mainly require an increase of the size
of the functional units, while the second solution would require
an increase in the number of functional units.

Data

Stream
Unit 0Unit 1...Unit n

Memory

registers

Register

Banks

Scratchpad

Memory
Dual Port Memory

Instruction

Memory

Jump

Control
PC

Memory

registers

Memory

registers

Memory

registers

Functional Units

Fig. 3. Proposed hybrid architecture.

III. VLIW ARCHITECTURE

Following the previous specifications, the proposed archi-
tecture (Fig. 3) is composed by a bundle of n execution units,
each with an independent register bank, and a Data Stream
Unit that communicates with the memory concurrently with
the other units. It presents 4 typical pipeline stages: a FETCH
stage where the next instruction is loaded from the instructions
memory; a DECODE stage, where the fetched instructions are
decoded; an EXECUTE stage where the FUs and memory
operate the instructions; and a WRITE-BACK stage, where
the results are written to the register banks. The pipeline also
includes data forwarding mechanisms to minimize the number
of stalls on the processor.
The architecture is also composed by scalar and vector func-
tional units, by a Random Access Memory (RAM) and by a
local fast memory. All these blocks can be accessed by any
one of the n execution units, admitting that they are free to be
accessed, i.e., no other unit is using them. The Data Stream
Unit can only communicate with the RAM.

A. Instruction Set Architecture

Each execution unit instruction has a total width of 32 bits
and the Data Stream Unit instruction has a width of 35 bits.
The instruction bundle is divided into several different units
as seen in Fig. 4(a). As previously mentioned, more execution
units can be easily added to the architecture by widening the
instruction bundle and adding register banks to the new units.
Furthermore, these execution units can also be expanded to
accommodate more words, by increasing their vector width.
This would also require some modifications in the FUs and in
the memory accesses in order to maintain compatibility. The
former scalability solution is better suited to algorithms that
require many instructions per iteration while the latter has a
better use for algorithms that require less instructions and work
with high volumes of data.

The execution units (Fig. 4(b)) are composed by the
common register address fields (Ra, Rb and Rd), by a WE
field that indicates when a register write is required, and by
the instruction fields, namely the opcode field that selects
between the different types of instructions (arithmetic/logical,
control/branch and memory access) and the Opcontrol field,
that identifies a certain modifier to the instructions (use of
immediate or unsigned values in arithmetic/logical operations

90

162 - 131 130 - 99 98 - 64 63 - 67 66 - 35 34 - 0

Unit n Unit n-1 … Unit 1 Unit 0 Data Stream

(32) (32) (32) (32) (32) (35)

(a) Instruction Bundle.

WE Td Rd Ta Ra Tb Rb Opcode OpControl

31 30 29 - 25 24 23 - 19 18 17 - 13 12 - 6 5 - 0

(1) (1) (5) (1) (5) (1) (5) (7) (6)

(b) Execution unit instruction.

ShiftEN Left/Right shiftAddr MWE Unit Madd Radd AddrEN regWE Unit Madd Radd

34 33 32 - 31 30 29 - 28 27 - 18 17 - 16 15 14 13 - 12 11 - 2 1 - 0

(1) (1) (2) (1) (2) (10) (2) (1) (1) (2) (10) (2)

Memory Load BitsMemory Write BitsShift Bits

(c) Data Stream unit instruction.

Fig. 4. Instruction words for the bundle and the composing units.

and the use of inequality comparisons for control operations).
The Opcontrol field can also be used to distinguish more
specialized instructions. Three more special control fields
are also present: Td, Ta and Tb. The Td field enables a
broadcast write (enabling a 3-way register write, relevant for
DP algorithms that have up to 3 dependencies), while bits Ta
and Tb are used to specify which part of the data is to be
loaded or written to registers, for memory instructions that
operate with dividable parts of data. A summarized version of
the instruction set can be seen in Table I (the immediate and
carry instructions are not depicted).

TABLE I. IMPLEMENTED REDUCED INSTRUCTION SET
ARCHITECTURE. FURTHER INSTRUCTIONS CAN BE EASILY ADDED.

INSTRUCTION MNEMONIC

Arithmetic and Logic Instructions

Add, Subtraction SUM, SUB
Maximum, Maximum and Move MAX, MAXMOV
Multiplication MUL
Comparison CMP
Arithmetic and Logic Right and Left Shift SRA, SRL, SLA, SLL
Logic OR, AND, XOR OR, AND, XOR
Control Instructions

Load Byte, Half-word, Data LB, LH, LD
Index Memory address INDEX MADDR
Index local memory address INDEX SADDR
Local Memory Load SPAD LD
Store Byte, Half-word, Data SB, SH, SD
Control Instructions

Delayed Branch BRD
Delayed Branch Equal, Not Equal BEQD, BNED
Delayed Branch Less Than, Greater Than BLTD, BGTD

The Data Stream Unit has a different instruction format
than the execution units and is depicted in Fig. 4(c). This
instruction itself also explores ILP, since it computes 3 distinct
and parallel operations: a memory load/register write (bits 15
- 0); a memory write (bits 30 - 16); and a register shift (bits
34 - 31). The memory access operations have priority over
the memory access instructions in the execution bundles, as
previously stated.

The load operation of the Data Stream Unit has an AddrEN
bit to indicate if the Data Stream is accessing the memory
address for a load operation. This prevents the Data Stream

Unit to take over a load instruction when it is only operating
the memory index. Both the load and write operations have an
Unit field that allows selecting the execution unit’s register
banks.

The register shift operation is responsible for creating a
register window mechanism on a smaller subset of registers in
every execution unit data bank. This mechanism is depicted
in Fig. 5 and can reduce the impact of memory accesses,
by pre-loading a data value required in future iterations of
the computation or by pre-storing a value to be later used in
future iterations. The registers to be shifted are chosen by the
ShiftAddr bits, from one of the periphery execution units
(unit 0 or unit n) to the opposite unit, with the direction being
chosen by the Left/Right field.

Memory

Register file
of Unit 0

Register file
of Unit 1

Register file
of Unit n-1

Register file
of Unit n

Fig. 5. Register Window.

B. Register Banks

Each of the previously mentioned execution units has its
own private register bank of 28 registers and a separate small
set of 4 memory registers, achieving a total of 32 registers.

The array of 4 memory registers can be read by all
execution units, however, writing is only allowed for the
shared register owner. These registers are also used by the
Data Stream Unit to communicate with the memory (hence
the memory name tag). Furthermore, sharing these registers
between different execution units can also reduce the number
of memory accesses, in situations where a dependency value
loaded by one execution unit is required by other units. In
these situations, the dependency values will only be loaded
once, thus reducing the number of memory accesses. The Data
stream unit has write priority over the execution units for these
memory registers. This is done in order to prioritize the parallel
memory access, reserving the remaining registers to store the
intermediary results of the computations.

C. Functional Units

All register banks in all execution units share the FUs of
the architecture. Since the number of available FUs is limited,
in order to maximize processing performance, the execution
units should not issue more operations of a given FU type
than those available on the architecture. However, in case such
instruction bundle is generated by the compiler, a structural
conflict appears, resulting in the original instruction bundle
being executed in multiple cycles (the conflicted operations
are held and delayed until they can be executed).

The FUs are also prepared to operate with different num-
bers of vector elements. If the vector is composed by only one
large element, the FUs behave like scalar units, each operating
over single data elements. If the vector is composed by
several smaller elements, the FUs will then behave like vector
units, each operating over multiple data elements. The FUs
implemented in the architecture consist of: Sum, Maximum,
Shift, Logic and Comparison units.

91

D. Memory

In addition to the instructions memory, there are two dis-
tinct memories in the architecture: a dual port RAM memory
with a write-only and load-only ports, and a local fast memory.
The former can be accessed by the data stream and the
execution units to store and read values, while the latter is a
load-only memory that can only be accessed by the execution
units. In fact, the Data Stream Unit is the only element of
the architecture that can write into this local memory, storing
constant values required by DP algorithms. These stores are
done by memory mapping a section of the main RAM memory.
The existence of two memories minimizes the delay introduced
by concurrent memory accesses and also promotes a better
data organization, by separating the constant data values of the
algorithms from the constant changing intermediary results.

The memories have an access latency of 2 clock cycles:
one cycle to index the correct address, and another cycle to
load the value in the previous indexed address. In fact, there
are two instructions to compute both steps of a memory load,
enabling a parallel usage of a memory load instruction between
two units: one indexing an address, and the other effectively
loading a data word. This allows achieving a throughput of 1
clock cycle with a latency of 2 clock cycles, when loading a
value from memory.

IV. CASE STUDY: SMITH-WATERMAN

In order to evaluate the architecture performance, the
Smith-Waterman algorithm was considered as a good can-
didate, since it is widely used in bioinformatics for local
sequence alignment of DNA, RNA or protein chains. In
particular, we address the case study of embedded systems
for DNA sequence alignment, such as for the development of
biomarker detection SoCs. The SW algorithm is one of the
most sensitive sequence alignment algorithms, but is also one
of the slowest, operating in sequence banks that grow larger
at a very fast rate [8]. The algorithm computes the optimal
local alignment (zone of most similarity) between two DNA
or protein sequences, with the help of a substitution score
matrix and, originally, a general gap penalty function [2].
Gotoh [9] later improved the algorithm by using an affine gap
penalty model, allowing multiple sized gap penalties. These
improvements were used in the implemented algorithm.

Given a query sequence (Q) and a reference sequence (D)
of size m and n respectively, a substitution score matrix (Sm)
and a gap initialization and extension penalties of α and β
respectively, the score matrix (H) can be computed by the
following recursive relations:

Hi,j = max

0
Ei,j

Fi,j

Hi−1,j−1 + Sm(qi, dj)

(1)

H(i, 0) = H(0, j) = 0

Ei,j = max

{
Ei,j−1 + β
Hi,j−1 + α

(2)

E(i, 0) = E(0, j) = 0

Fi,j = max

{
Fi−1,j + β
Hi−1,j + α

(3)

F (i, 0) = F (0, j) = 0

where the terms Ei,j and Fi,j correspond to the scores
ending with a gap in the reference sequence and to the scores
ending with a gap in the query sequence, respectively. These
terms correspond to the vertical (Ei,j) and to the horizontal
(Fi,j) dependencies of the DP algorithms, that were previously
mentioned in the second section. Hi,j (1) represents the local
alignment score involving the first i symbols of Q and the first
j symbols of D. After the score matrix is filled, a traceback
runs over the matrix returning the local alignment. This score
takes into account both the vertical and horizontal dependen-
cies and also the diagonal dependency, given by the equation
Hi−1,j−1 + Sm(qi, dj) in (1). These three dependencies lead
to a parallelism along the anti-diagonal previously mentioned.

A. Implementation

Following the previous Smith-Waterman equations, the
proposed architecture can simulate one iteration of the algo-
rithm by computing the sequence of operations in table II.

TABLE II. SMITH-WATERMAN ALGORITHM OPERATIONS

Instruction Description
Comparison Compares the query and reference symbols and returns the

substitution score matrix index

Score Load Loads the substitution score

Recursion Sums 3 sums/subtractions that compose the main recursion of the
algorithm

Maximum 1 Maximum operation between two of the previous results

Maximum 2 Final maximum operation between the previous result and
the remaining recursion operation result

To perform the computation, each execution unit gets
assigned with a fixed number of cells during each iteration of
the algorithm. The number of cells depends on the width of the
sequence symbols and scores used, i.e., the vector element’s
size. Although the processor is configurable to admit other
setups, the described implementation uses 32-bit vectors, each
composed of 4 8-bit words.

The alignment procedure is performed along anti-diagonal
(see Fig. 6(a)). To explore ILP, the execution units that are
more advanced in the query sequence are computing advanced
instructions of the algorithm iteration. This requires new query
symbols to be loaded every iteration for the execution unit in
advance, and a query sequence shift for the remaining units to
allow the remaining execution units to reuse the symbols that
are pre-loaded by the unit in advance. The Data Stream Unit
is used to pre-load the next symbols and to shift the symbols
along the units, in parallel to the algorithm computations. This
register window mechanism is the same as the one in Fig. 5.

The reference sequence, also stored in memory due to its
size, will require to be loaded accordingly to the necessity of an
execution unit. Given the processing along the query sequence,
this will only occur when one unit reaches the end of the
query sequence, requiring new reference symbols to continue
its computations. Since the Data Stream unit will be occupied
with a different load operation, instead of a register window

92

1,2,3,4,5

1,2,3,4,5 6,7,8,9,10

0,1,2,3,4 6,7,8,9,10 11,12,13,14,15

0,1,2,3,4 5,6,7,8,9 11,12,13,14,15

5,6,7,8,9 10,11,12,13,14

10,11,12,13,14

Unit 0 Unit 1

Reference Sequence

Q
u

e
ry

 S
e

q
u

e
n

ce

(a) Instruction Delay between execution
units.

5,6,7,8,9 10,11,12,13,14

10,11,12,13,14

1,2,3,4,5

1,2,3,4,5 6,7,8,9,10

0,1,2,3,4 6,7,8,9,10 11,12,13,14,15

0,1,2,3,4 5,6,7,8,9 11,12,13,14,15

Unit 0 Unit 1 Unit 0 Unit 1

Reference Sequence

Sub-sequence 0 Sub-sequence 1

Q
u

e
ry

 S
eq

u
en

ce

(b) Critical section between two sub-sequences of the reference sequence.

Fig. 6. Instruction Delay and Critical Section for an example case where
each unit computes 2 cells (i.e., uses a vector of two elements). Both tables
represent the computation of the DP matrix shown in Fig. 1(a), where each cell
was annotated with the clock cycles to execute the instructions that compute
the cell value.

scheme, an additional load instruction on the execution unit
that reached the end of the sequence is done. This will
introduce additional cycles to the overall processing. However,
the performance impact caused by these load instructions is
very small, considering the large size of both sequences.

Mapping the operations in table II and the considerations
taken above to the instruction set architecture, results, during
the stationary phase, in an average of 5 instructions for an
execution unit to complete an iteration of the algorithm. The
pseudo-code can be seen in Fig. 7 for the linear model of
the algorithm (the affine model has additional gap control
computations running in parallel to the same instructions of
the linear model), where both the instructions for the Data
Stream unit and the executing units can be seen.

Pseudo#Code
Execution|Units

Sm1=1LoadxQ&Rn

sumA1=1rD1f1Sm INDEX|SADDR R|9&Rht

sumB1=1rH1#1gap SPAD|LD R7&SpadxIMRn

sumC1=1rV1#1gap SUM Rxt&8&7|n&Rx7&9&7hn&Rx|&7t&7cn

sumA1=1MAXxsumA&1sumBn MAXMOV Rt&Rt&R8&1movxR|&1R7tn

rD1=1rD| MAX Rx7t&7c&1n&Rt&R7|

max1=1MAXxsumA&1sumCn

rD|1=1sniff1X1max

if|end|of|query|sequence if|end|of|query|sequence

R1=1LoadxRf7n INDEX|MADDR VRa&VRb

LD Rht&MxIMRn

Data|Stream|Unit

rHD|_t1=1Load1xrH_hn

Q1=1LoadxQf7n INDEX|MADDR index&1xVH_Dn

Store1xmax_hn LD|||INDEX|MADDR R7&1Mxindexn1|1index&1xVQn

Store1xgap_hn LD R|8&1Mxindexn

gap_t1=1Load1xgap_hn ST|||INDEX|MADDR MxH_Dhn&1uh_R7c1|1index&1xVgapn

Shift1xQn ST|||LD|||SHIFT Mxgaphn&1uh_Rgap1|1Rgap&1Mxindexn1|1shift_rx|9n

Data|Stream|Unit

Execution|Units

Proposed1Architecture

St
at

io
n

ar
y1

p
h

as
e

Fig. 7. Pseudo-code definition for the Data Stream and execution units for
the linear model of the algorithm.

It is also important to notice that, to solve cell depen-
dencies, some special mechanisms are included. The vertical
dependency of the cells is computed in the same execution unit,
hence will not require any additional mechanisms. However,
both diagonal and horizontal dependencies of the cells on the
left boundary of each execution unit (n), require the value
of the cells previously computed by unit n − 1. To reduce
memory bandwidth requirements, a sniffed mechanism was
implemented that allows an execution unit to sniff the values

written to the register file by an adjacent execution unit. These
dependencies, when occurring inside the same execution unit,
will not require any additional mechanisms , since the unit
has access to all cell values required for the computations.
There is however a special case for the execution unit 0. It
requires the horizontal and diagonal dependencies to be loaded
from memory, since these dependencies were computed in a
previous distante iteration (see Fig. 6(b)). Therefore, the Data
Stream unit will always write the right boundary cell value of
the last execution unit n to memory, and load the respective
cell value to unit 0 when required. The diagonal dependency,
unlike the other two dependencies, will require two registers
(instead of one) to be stored. The first register stores the
diagonal dependency to be used during the current iteration
while the second stores the diagonal dependency to be used in
the iteration after it. This is due to the fact that the computed
cell value is only used as a diagonal dependency two iterations
after it has been computed.

The affine gap model will also require a mechanism similar
to the horizontal and vertical dependencies. Since this model
takes into account two distinct gap values, an initialization
value and an extension value, all execution units will have two
registers in their register bank with both gap values constantly
stored. During the maximum operations, an auxiliary register
will store the information regarding which dependency origi-
nated the max result. If it is a vertical or horizontal dependency,
the auxiliary register will compare its previously stored value,
and check if the new result is a gap extend or initialization,
updating its value accordingly. This way, during the recursion
operations in the following iteration, the correct gap value to be
used is already stored in the register bank. For execution unit
0, since the auxiliary register that indicates the type of gap for
the horizontal dependencies lies in the register bank from unit
n, they need to be stored in memory after their computation,
and loaded when required by unit 0. These stores and loads are
done by the Data Stream unit during the algorithm iterations.
The remaining bundle units will sniff the auxiliary registers
for the horizontal dependencies gap types, in the same way
they do for the horizontal dependencies.

B. Experimental Results

To evaluate the proposed architecture a performance analy-
sis as well as a power analysis, are presented in this subsection.
As previously referred, our case study targets low-power em-
bedded systems for biomark detection SoC. Thus, we evaluate
the implementation of the proposed architecture on a Zynq
SoC 7020 composed by a dual-core ARM Cortex-A9 running
at 533 MHz and programmable logic. Therefore, to evaluate
the proposed architecture, we compare its performance and
energy-efficiency with that of the embedded ARM Cortex-A9
processor. To make the comparison fair, we use the state-of-art
implementation of the Smith-Waterman algorithm [4], which
uses SIMD ISA extensions to exploit the parallelism of the
SW algorithm. The ARM Cortex-A9 cores support out-of-
order execution, with dual instruction issue and 128-bit SIMD
extensions. This allows issuing up to 2 instructions per clock
cycle, each processing up to 16 cells in parallel. The proposed
architecture is also compared to the BioBlaze [6], a dedicated
ASIP architecture running at 158 MHz, which uses a 128-
bit SIMD modified extension, with each instruction processing
16 cells in parallel. The BioBlaze [6] was also prototyped in a

93

Zynq SoC in order to maintain a fair comparison. We compare
one core of both these two architectures with one core of the
proposed processor, issuing one bundle of instructions to 4
execution units, each using vectorial instructions to process 4
cells in parallel. This allows to compute 16 cells in parallel.
The proposed architecture and the BioBlaze [6] were both
synthesized and mapped to the programmable logic by using
the Xilinx ISE 14.5.

The proposed architecture consists of one Data Stream unit
and 4 execution units with a vector width of 32 bits, where
each vector is composed by 4 8-bit elements. This achieves 16
cells computations in parallel, 4 in each execution unit. The
symbol, score and gap values were all set to 8 bits as well and,
since both memories have data widths of 32 bits (the same
width as the vectors), four values can be written or loaded
from memory with a single write or load instruction. This
also applies to the registers in the register banks, where each
registers stores 32 bits of data, or up to 4 different 8-bit values.
As previously mentioned, if a higher resolution was required,
the vector elements size (and the symbol, score and gap values)
could be easily increased to 16 or 32 bits, reducing the number
of computed cells per bundle unit to 2 and 1 respectively.

As can be observed in table III, the proposed architecture
uses 6% of the Slice Registers, 50% of the Slice LUTs, and
5% of the BRAMs, achieving a maximum operating frequency
of 98.5 MHz.

TABLE III. HARDWARE RESOURCES, OPERATION FREQUENCY AND
POWER ESTIMATION OF THE PROPOSED ARCHITECTURE

Hardware Resources Used Total Utilization

Slice Registers 7135 106400 6%

Slice LUTs 26725 53200 50%

36-bit Block RAMs 7 140 5%

Frequency 98.5 MHz

Power 0.584 W

Using the Xilinx Power Estimation tool, we further esti-
mate the power consumption of the proposed processor (see
table III). Assuming worst-case conditions for flip-flop and
memory updates, it results in a power consumption of 0.584 W.

A scalability test was also performed, by changing the
size of the vector width from 32 to 40 bits or by including
an additional execution unit. Both cases increase the raw
throughput by 25%, while the hardware resources scales almost
linearly. The increase of the vector width results in a 21.4%
and 24.6% increase of slice registers and LUTs, respectively,
while the addition of one execution unit results in an increase
of 23.3% and 29.9% in slice registers and LUTs. The number
of Block RAMs is only affected by the changes to the vector
width, increasing by one unit for every 16 bits added to
the length of the vector. The operating frequency drops to
66.4MHz (32.6%) when the vector width increases to 40 bits,
and to 74.0MHz (26%) with the addition of an execution unit.

To further evaluate the architecture we compare its per-
formance against the ARM Cortex-A9 and the BioBlaze [6].
For this, a DNA dataset composed of several sequences,
ranging from 128 to 16384 elements, and a set of query
sequences of length ranging from 20 to 2276 elements was
used. The reference sequences correspond to twenty indexed

regions of the Homo sapiens breast cancer susceptibility gene 1
(BRCA1gene) (NC_000017.11). The query sequences were
obtained from a set of 22 biomarkers for diagnosing breast
cancer (DI183511.1 to DI183532.1) and a fragment, with
68 base pairs, of the BRCA1 gene with a mutation related to the
presence of a Serous Papillary Adenocarcinoma (S78558.1).

1) Performance Evaluation: For the proposed architecture,
the local fast memory values were pre-loaded before the
initialization of the algorithm, and only the algorithm steps
were accounted for the performance analysis.

Accurate clock cycle measurements of the required time
to execute each biological sequences analysis in the proposed
platform were achieved by using the Xilinx ISim. On the
Bioblaze [6], the clock cycle measurements were achieved
by using Modelsim SE 10.0b. For the ARM Cortex-A9, the
system timing functions were used to determine the total
execution time of the DNA sequence alignment. To improve
the measurement accuracy, several repetitions of the same
alignment were done. The obtained values were subsequently
divided by the number of repetitions and the processor clock
frequency.

To compare the proposed architecture with the ARM
Cortex-A9 and the BioBlaze [6], several metrics are used,
namely: the processor performance measured in both number
of Clock Cycles per Cell Update (CCPCU) and number of Cell
Updates Per Second (CUPS); the energy efficiency measured
in Cell Updates per Joule (CUPJ); and the equivalent Energy-
Delay Product (EDP) metric, measured in Cell Updates per
Joule-Second (CUPJS).

The average execution time (in number of clock cycles) to
execute the DNA sequence alignment is presented in table IV
for both the proposed architecture, the ARM Cortex-A9 and
the BioBlaze [6]. The resulted speedups can be observed in the
respective columns, which accounts for the affine model of the
algorithm. A better efficiency comparison metric is presented
in table V, where the clock cycles per cell update can be
seen. These values were obtained by dividing the total number
of clock cycles (c) by the length of the reference and query
sequence (m and n respectively) - c/(m× n). It can be seen
that the proposed architecture achieves a speedup of 13.7x
against the ARM Cortex-A9, even though the latter processor
can issue two instructions per clock cycle and operate on 128-
bit words, i.e., 16 cells per vector. Against the Bioblaze [6],
a speedup of 5.44x is achieved. This shows the advantages
of the proposed architecture, regarding the case where only
data-level parallelism is explored.

2) Performance and Energy Efficiency Evaluation: In ad-
dition the the presented evaluation comparisons, several ef-
ficiency metrics are also used to study the computational
and energy efficiency of the proposed architecture: i) the
attained raw throughput, ii) the energy efficiency, and iii) the
performance-energy efficiency.

To compare the attained raw throughput, the Cell Updates
Per Second (CUPS) metric is presented. This metric accounts
the total number of cells (given by the length of the query
sequence (m) times the length of the reference sequence (n))
that are updated in a corresponding runtime (t), in seconds.
Therefore, the CUPS metric is obtained as (m×n)/t and can
be seen in table V. This metric accounts for the maximum

94

TABLE IV. EXECUTION TIME (IN CLOCK CYCLES) FOR DIFFERENT
DNA QUERY SEQUENCES MATCHED AGAINST A 4092 ELEMENT

REFERENCE SEQUENCE, FOR THE CONSIDERED EXECUTION PLATFORMS

Clock Cycles [×106]

Query ARM CortexA9 Speedup BioBlaze Speedup Proposed
Size (NEON) [6] Architecture

20 1.154 32.971 0.307 8.771 0.035

68 1.373 15.256 0.555 6.167 0.090

74 1.339 13.804 0.543 5.598 0.097

85 1.470 13.243 0.631 5.685 0.111

94 1.373 11.254 0.627 5.139 0.122

685 6.303 7.195 3.375 3.853 0.876

1861 16.262 6.833 8.848 3.718 2.380

2276 19.491 6.696 10.744 3.691 2.911

TABLE V. PERFORMANCE AND ENERGY EVALUATION RESULTS

ARM Bio Proposed
Evaluation metrics Cortex-A9 Blaze [6] architecture
Clock Cycles per Cell Update (CCPCU) 4.29 1.70 0.31
Mega Cell Updates per Second (MCUPS) 124.24 62.94 315.18
Total Power Consumption [W] (TPC) 1.00 0.30 0.58
Mega Cell Updates per Joule (MCUPJ) 130.78 331.93 539.69
Peta Cell Updates per Joule.Second (PCUPJS) 127.47 175.64 412.43

operating frequency of each implementation platform, namely
533 MHz for the ARM Cortex-A9, 158 MHz for the BioBlaze
[6] and 98.5 MHz for the proposed architecture.

The energy efficiency study was performed by using the
Xilinx Power Estimator tool to obtain the power values for the
Zynq SoC. The energy efficiency metric adopted, Cell Updates
per Joule (CUPJ) is given by the total number of processed
cells, divided by the total consumed energy (TPC metric in
table V), and can be seen in table V. The adopted performance-
energy efficiency metric is given in Cell Updates per Joule-
Second (CUPJS) and can be regarded as an inversion and
normalization of the commonly used Energy-Delay Product
(EDP) metric. In fact, while the EDP is generally given by the
product of the total energy consumption and the corresponding
runtime, the adopted CUPJS is obtained by inverting the EDP
and by multiplying it with the total number of processed cells.
The results obtained for this metric can also be seen in table
V.

Analyzing the MCUPS metric in table V, it can be seen
that the proposed architecture achieves a throughput superior
to that of both the ARM Cortex-A9 and the Bioblaze [6], even
with a lower frequency than both architectures. The total power
consumption of the proposed architecture is also lower than
the power consumption of both the ARM Cortex-A9 and the
BioBlaze [6], leading to an energy efficiency of 4.13x and
1.63x greater than the ARM and the BioBlaze [6], respectively,
and a performance-energy of 3.24x and 2.35x greater than the
ARM and the BioBlaze [6], respectively, as can be seen in
the correspondent rows (MCUPJ and PCUPJS respectively) in
table V.

From the presented results, it is possible to conclude that
the proposed architecture complies with all the requisites
to be embedded in low-power autonomous platforms, while
providing high performance and support to a wide range of
DP algorithms, which capabilities are often only offered by
state-of-art GPPs.

V. CONCLUSION

The complexity of DP algorithms often lead to long ex-
ecution times, which results in large energy consumptions.
Exploring DLP in state-of-art architectures has proven critical
to maximize the performance, which is achieved by computing
several data elements in parallel. Given the number of de-
pendencies found in DP based algorithms, vector processing
should be made by processing the cells along anti-diagonal.
However, this requires non-coalesced memory accesses, which
drastically decreases the performance in GPPs implementa-
tions, leading to non-optimal and not fully parallel solutions.
By exploiting DLP and ILP, the proposed architecture proves
that it is possible to reduce the hardware resources require-
ments, while improving the performance and reducing the
energy consumption.

To quantitatively evaluate the proposed architecture, we
have compared it against a general purpose ARM Cortex-A9
and a dedicated ASIP (BioBlaze [6]). The evaluation tests
performed in all architectures show a clearly advantage of
the proposed architecture in both performance and energy
efficiency. In fact, a speedup of 2.54 and 5.01 was obtained
against the ARM and the BioBlaze [6], respectively, using
a raw throughput metric, and the performance-energy was
3.24x and 2.35x better than the ARM and the BioBlaze [6],
respectively.

The results obtained show that the proposed architecture
has all the traits to be embedded in low-power autonomous
platforms while providing high performance, which is often
only seen in state-of-art GPPs. Furthermore, the architecture is
easily scalable, by adding new execution units, or by widening
the existent ones, enabling an increase in performance with a
relatively lower impact on the additional hardware resources
and thus the energy efficiency.

REFERENCES

[1] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[2] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[3] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” Information Theory, IEEE Transactions
on, vol. 13, no. 2, pp. 260–269, 1967.

[4] M. Farrar, “Striped smith–waterman speeds database searches six times
over other simd implementations,” Bioinformatics, vol. 23, no. 2, pp.
156–161, 2007.

[5] S. R. Eddy, “Profile hidden markov models.” Bioinformatics, vol. 14,
no. 9, pp. 755–763, 1998.

[6] N. Neves, N. Sebastiao, A. Patricio, D. Matos, P. Tomás, P. Flores, and
N. Roma, “Bioblaze: Multi-core simd asip for dna sequence alignment,”
in Application-Specific Systems, Architectures and Processors (ASAP),
2013 IEEE 24th International Conference on. IEEE, 2013, pp. 241–
244.

[7] T. Rognes and E. Seeberg, “Six-fold speed-up of smith–waterman
sequence database searches using parallel processing on common mi-
croprocessors,” Bioinformatics, vol. 16, no. 8, pp. 699–706, 2000.

[8] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp,
and D. L. Wheeler, “Genbank,” Nucleic acids research, vol. 28, no. 1,
pp. 15–18, 2000.

[9] O. Gotoh, “An improved algorithm for matching biological sequences,”
Journal of molecular biology, vol. 162, no. 3, pp. 705–708, 1982.

95

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

