
Burrows-Wheeler Transform based indexed exact
search on a multi-GPU OpenCL platform

David Nogueira, Pedro Tomás, Nuno Roma
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

e-mail: david.jacome.nogueira@tecnico.ulisboa.pt, pedro.tomas@inesc-id.pt, Nuno.Roma@inesc-id.pt

Abstract—A multi-GPU parallelization of exact string match-
ing algorithms based on the backward-search procedure by using
indexing techniques, such as the Burrows-Wheeler Transform
and the FM-Index, is proposed in this paper. To attain an
efficient execution on highly heterogeneous parallel platforms,
the proposed parallelization adopted an unified OpenCL imple-
mentation that allows its execution either in CPUs and in multiple
and possibly different GPU devices (e.g., NVIDIA and AMD
GPUs) that integrate the targeted platform. Furthermore, the
proposed implementation incorporates convenient load-balancing
techniques, in order to ensure not only a convenient balance of
the involved workload to minimize the resulting processing time,
but also the possibility to scale the offered throughput with the
number of exploited GPUs. The obtained experimental results
showed that the proposed multi-GPU parallelization platform is
able to offer significant speedups (greater than 10x, when using
one single GPU) when compared to conventional mainstream
multi-threaded CPU implementations (Bowtie - 8 threads), and
between 5x and 30x when compared to other popular BWT-based
aligners, namely BWA and SOAP2, using their multi-threading
options. When compared with state of the art GPU implemen-
tations (e.g., SOAP3, HPG-BWT, Barracuda and CUSHAW2-
GPU), the proposed implementation showed to be able to provide
speedups between 2.5x and 5x. The execution of the proposed
alignment platform when considering multiple and completely
distinct GPU devices demonstrated the ability to efficiently scale
the resulting throughput, by offering a convenient load-balancing
of the involved processing in the several distinct devices.

Keywords—Parallel Computing, OpenCL, Graphics Processing
Unit (GPU), Burrow-Wheeler Transform, FM-index, exact string
matching

I. INTRODUCTION

The gradual decrease of the new sequencing technologies
costs has led to a consequent increase of the amount of avail-
able biology data, raising important challenges to accelerate its
processing. One of the most common and challenging prob-
lems is concerned with the mapping or alignment of sequence
reads to a given reference DNA genome or chromosome, as
most of the information is obtained by homology [1].

When no errors are allowed, this sequence alignment
operation actually corresponds to an exact string matching
problem. Nevertheless, exact string matching goes far beyond
bioinformatics and it actually influences many other areas in
the computer science domain, such as pattern recognition, doc-
ument matching and text mining, intrusion detection systems
and image and signal processing.

Exact string matching can be regarded as a sub-string
matching problem, whose desired output is the list of all

occurrences of a short sequence of characters (called pattern or
query of length n) in a reference string of length m, such that
n� m [2]. The matching procedure is usually conducted with
one of two approaches: sequentially searching for the query
string directly on the reference text, usually implemented with
dynamic programming schemes, without any additional data
structure to support it; or through an indexed approach, which
usually takes as input an auxiliary and previously computed
data structure, called index.

Due to the significant computation time that is involved,
the first approach is only adopted for very small strings, when
its context is subject to changes or when it is not known a
priori. On the contrary, the latter approach usually leads to a
considerable reduction in the search time, as indexes reduce the
search space to the positions where the string can occur. As a
consequence, indexed based approaches are widely established
whenever the reference text is large and constant, as changes
on it would require the re-computation of the index. It should
be noted, however, that the time for building the index is not
usually an issue in what concerns the searching time, as it
is supposed to be computed only once and before the actual
search procedure.

Some of the most prominent index data structures are
based on the Burrows-Wheeler Transform (BWT) [3] and
FM-index [4], mostly due to the offered compression, when
compared with other less efficient structures, such as suffix
trees [5], suffix arrays [6], [7] and hash-tables [8]. By using
these index data structures, several search and alignment
algorithms are able to find a given query with a complexity
proportional to O(n) (dependent only on the size of the pattern
to be searched), as opposed to a O(m) execution time, if
no index is used [9], [10] or O(mn) if a naive dynamic
programming approach is considered [11].

Nevertheless, considering that current High Throughput
Short Read (HTSR) sequencing technologies can produce,
in a single run, hundreds of millions of short reads (DNA
short sequences), each with 30 to 200 base pairs, the task of
efficiently and accurately aligning these reads against a large
reference sequence is still a computationally limiting factor,
not only in the bioinformatics domain but also in several
other research areas. As a consequence, the usage of high-
performance computing resources becomes mandatory. Among
the current offer, a cost-effective and commonly accessible op-
tion is the usage of GPUs, as they allow to significantly reduce
the execution time by exploiting the available parallelism in
the programs.

However, contrary to what happens with conventional dy-
namic programming alignment procedures, indexed sequence

978-1-4799-5313-4/14/$31.00 ©2014 IEEE 31

search is characterized by a highly irregular processing flow,
which poses difficult challenges in order to be efficiently im-
plemented in a GPU device. Nevertheless, the added alignment
efficiency that is offered by these indexed approaches, allied
with the vast parallel processing capabilities of GPUs, have
deserved a considerable attention of the research community
in the past few years [12], [13]. However, an important step
forward still needs to be fulfilled, not only to extend such
parallelization in order to efficiently exploit all the (possible
distinct) devices (e.g. Intel and AMD CPUs, NVIDIA and
AMD/ATI GPUs, etc.) that are currently available in the latest
generation of heterogeneous platforms, but also to scale with
the number of available devices, maximizing their utilization.

To achieve this objective, the presented paper proposes a
parallel implementation of a generic indexed search procedure
based on the BWT, that efficiently exploits the computational
resources available in state of the art heterogeneous platforms,
composed by several GPUs. However, contrasting to other
parallelizations that have been recently presented of the back-
ward search procedure with the BWT [12], [13], the proposed
approach was programmed by using a unified implementation
based on the OpenCL API [14], making it the first that
is able to be concurrently executed in several and possibly
different GPUs coexisting in the considered heterogeneous
platforms. The obtained experimental results showed that the
proposed implementation is able to offer significant gains when
compared with the current GPU-based state of the art tools,
like SOAP3 [12] and HPG-BWT [13], providing speedups
around 2.5x with a single GPU device and around 5x when
using 2 GPUs. When compared with the mainstream CPU-
based alignment tools, like Bowtie [15], BWA [16] and SOAP2
[17], the proposed GPU implementation was able to achieve
speedup values between 5x and 15x (single GPU) and between
10x and 30x (two GPUs).

II. BWT BASED INDEXED SEARCH

Due to its reversible nature, the BWT has been widely
adopted to compress data [3] (as an example, it is used in the
well known file compression tool bzip2). In the particular do-
main of biological sequences processing, many of the indexes
that have been adopted by several alignment and mapping tools
are also based on the BWT, namely Bowtie, BWA and SOAP3.

The application of the BWT in these mapping and align-
ment tools is usually divided in two phases: i) the computation
of the index; and ii) the actual search of a given sub-string or
pattern. The following subsections present a brief description
of these two phases.

A. Burrows-Wheeler Transform and FM-Index

The computation of the BWT index for a given reference
string or text T starts by appending at the end of the text,
a lexicographical smaller character that cannot be found in
the original text. The $ character is normally used for this
purpose when using biological data. Hence, assuming T with
m characters (characters with indexes from 0 to m − 1), the
new appended text T$ will have m+ 1 characters.

The first step of the algorithm is to create a (m+1)×(m+
1) conceptual matrix with all the possible rotations of T$, by
accommodating, in the rows, the several obtained cyclic shifts

mississippi$

ississippi$m

ssissippi$mi

sissippi$mis

issippi$miss

ssippi$missi

sippi$missis

ippi$mississ

ppi$mississi

pi$mississip

i$mississipp

$mississippi

1

2

3

4

5

6

7

8

9

10

11

12

$mississipp

i$mississip

ippi$missis

issippi$mis

ississippi$

mississippi

pi$mississi

ppi$mississ

sippi$missi

sissippi$mi

ssippi$miss

ssissippi$m

12

11

8

5

2

1

10

9

7

4

6

3
a) Original rotation matrix. b) BWT matrix, after the sorting step.

i

p

s

s

m

$

p

i

s

s

i

i

BWT(T)

Fig. 1. Computation of the BWT index.

(see Fig. 1.a). Then, after this step, the rows of this matrix are
lexicographically sorted (see Fig. 1.b). In practice, the obtained
result is exactly the same that would be obtained with the
sorted suffixes of a suffix array [6]. In fact, suffix arrays and
the BWT matrix are very similar, with the relationship being
formulated as BWT[i] = T[SuffixArray[i]− 1].

The resulting BWT index is obtained by taking the last
column of this matrix. For example, the resulting BWT for
the ”mississippi” string is ”ipssm$pissii”. The corresponding
suffix array (12 11 8 5 2 1 10 9 7 4 6 3) can be obtained
with the indexes of all suffixes occurrences in the original
text, corresponding to the sorted permutations of the rows of
the aforementioned matrix.

As it can be seen, the transformed text has the same size
as the original text. Furthermore, there is no need to explicitly
allocate the conceptual matrix, since the reordering of the rows
can be efficiently done by simply changing the corresponding
memory pointers, which can be also used to implement the
comparisons.

Meanwhile, Paulo Ferragina and Giovanni Manzini pro-
posed the FM-index as an alternative compressed full-text
index, with significant advantages for search procedures, by
noting the similarities between the BWT index and the suffix
arrays [4]. Two additional data structures are used by their pro-
posed backward search algorithm: the C vector and the OCC
matrix (see Fig. 2). The C vector comprehends all the distinct
characters that are presented in the text. For each character, it
keeps the count of occurrences of all lexicographically smaller
characters in the text. Hence, this vector can be seen as the
first column of the BWT matrix, when it is represented in a
compressed way. The OCC matrix counts the occurrences of
each unique character c, for every prefix of the original text of
the form T [: k], with k from 0 to m. Therefore, the OCC(c,i)
entry represents the number of occurrences of character c in
the prefix T [: i].

B. BWT-based Indexed Search

To search for any arbitrary sub-string in the reference text,
the usually adopted backward search procedure is based on
the ’last-to-first mapping’ property, as described in [4] (see
Algorithm 1). As an example, Fig. 2.c presents the application
of this procedure to find the occurrences of the ”ssi” sub-string
in the ”mississippi” reference text. In each represented step,
the FIRST and LAST coordinates in the BWT matrix that were
obtained after the application of each iteration of the backward

32

OCC i p s s m $ p i s s i i
char 1 2 3 4 5 6 7 8 9 10 11 12

$ 0 0 0 0 0 1 1 1 1 1 1 1
i 1 1 1 1 1 1 1 2 2 2 3 4
m 0 0 0 0 1 1 1 1 1 1 1 1
p 0 1 1 1 1 1 2 2 2 2 2 2
s 0 0 1 2 2 2 2 2 3 4 4 4

(a) OCC matrix.

char C

$ 0
i 1
m 5
p 6
s 8

total 12

(b) Cvector.

 $mississippi

 i$mississipp

 ippi$mississ

 issippi$miss

 ississippi$m

 mississippi$

 pi$mississip

 ppi$mississi

 sippi$missis

 sissippi$mis

 ssippi$missi

 ssissippi$mi

 $mississippi

 i$mississipp

 ippi$mississ

 issippi$miss

 ississippi$m

 mississippi$

 pi$mississip

 ppi$mississi

 sippi$missis

 sissippi$mis

 ssippi$missi

 ssissippi$mi

 $mississippi

 i$mississipp

 ippi$mississ

 issippi$miss

 ississippi$m

 mississippi$

 pi$mississip

 ppi$mississi

 sippi$missis

 sissippi$mis

 ssippi$missi

 ssissippi$mi

 $mississippi

 i$mississipp

 ippi$mississ

 issippi$miss

 ississippi$m

 mississippi$

 pi$mississip

 ppi$mississi

 sippi$missis

 sissippi$mis

 ssippi$missi

 ssissippi$mi

F
F

F

F

L

L

L

L

(c) Backward search procedure for query string ”ssi”.

Fig. 2. OCC matrix and C vector corresponding to ”mississippi” reference
text to implement the Backward Search procedure.

search algorithm were represented by the F and L arrows,
respectively. The procedure evolves backwardly, by selecting
the previous character of the sub-string and by appending it to
the searched suffix.

The resulting output of this procedure is an interval of
text coordinates [FIRST, LAST], corresponding to all the
occurrences of each sub-string. However, these coordinates
are referred to the BWT matrix comprehending all the rotated
versions of the reference text (see Fig. 1.b), instead of the
original text. Hence, by combining the suffix array with the
BWT+FM index (which can be easily created along with the
BWT index) the desired indexes can be retrieved with O(1)
time. In fact, the returned coordinates can be directly used to
index the suffix array, and the values in those positions actually
correspond to the desired output solution. An exception is
raised whenever the LAST value happens to be lower than
the FIRST value, meaning that the sub-string is not present
in the text. As the 11th and 12th positions of the suffix array
have the entries 6 and 3, these are the starting indexes of ”ssi”
in ”mississippi”.

However, although this algorithm only performs some
simple arithmetic operations, it is characterized by an unpre-
dictable pattern of memory accesses, which poses important
challenges to search procedures implementations based on
GPUs. This is particularly relevant when considering that the
majority of the time that is spent on this procedure, (O(n)
time), is mainly used to access the OCC matrix.

III. PROPOSED PARALLELIZATION

Usually, the BWT index and the corresponding suffix array,
OCC matrix and C vector are computed only once for each
reference sequence in a preliminary pre-processing phase.
Given the index files and an input file comprehending the read
sequences to align, the exact string matching program searches
for each query in the original reference sequence, by using the
generated index data structures. The output of the backward

Algorithm 1 Backward search pseudo code.
procedure BACKWARD SEARCH

for every query j do
i := size of query j
c := last character of query j
pos := position of character c in matrix
FIRST := C vector[pos]+1
LAST := C vector[pos+1]
while (FIRST ≤ LAST) AND (i ≥ 2) do

c := get previous last character of query j
pos := position of character c in matrix
FIRST := Cvector[pos] + OCCmatrix[pos][FIRST-1] + 1
LAST := Cvector[pos] + OCCmatrix[pos][LAST]
i := i -1

end while
if LAST < FIRST then

return not found
else

return values of indexes between FIRST and LAST
end if

end for
end procedure

search procedure is then converted to the positions in the
original text, by using the suffix array. Finally, the alignment
solutions are written to one or more output files.

GPU kernel implementation and mapping

Although highly irregular in terms of memory accesses, the
exact string matching procedure using an indexed-based back-
ward search (see Algorithm 1) is still parallelizable, since each
sub-string can be independently processed. In fact, although
the internal loop corresponding to the search of a possible
match for each query is inherently sequential (while cycle),
the outer loop is completely parallelizable (for cycle), as each
query is independent and the same instructions can be executed
over different data. Algorithm 2 presents the pseudo code of
the corresponding kernel. As it can be observed, there is still a
close similarity between the code of the single-threaded CPU
implementation and the OpenCL GPU parallel kernel.

However, there are two major differences worth noting.
One is concerned with the mapping of the queries and the
other with the usage of certain types of GPU memories to
store the data structures. Contrary to Algorithm 1, where the
executing thread loops around every query, each thread in the
GPU search procedure (see Algorithm 2) processes a different
query, based on its thread identifier (global thread ID). Since
no data sharing is required between the working processing
elements, there is no need for any complex synchronization
scheme. Hence, the choice of which threads should be grouped
together, as well as the size of the work-groups that map
into the compute units of the device, do not compromise the
correctness of the alignment, neither significantly affect the
resulting performance.

There is, however, a specific synchronization point that is
required to ensure the maximum efficiency of the kernel and
the optimal usage of the local memory. In fact, not all types
of memory have the same latency. Naturally, accesses to the
local memory have a much lower penalty than accessing the
global memory of the device. Therefore, whenever possible the
data structures should be copied to and accessed from the local
memory, provided that the number of accesses to their entries
justifies the inherent penalty of copying them from the global
memory to the local memory in the beginning of the kernel

33

Algorithm 2 Backward search kernel pseudo code imple-
mented in the GPU.

INPUT: numqueries, OCCmatrix, Cvector, queries, queries sizes, charac-
ter Map, Data Type range
OUTPUT: queriesFIRST, queriesLAST
procedure BACKWARD SEARCH KERNEL

global index := get global id
local index := get local id
group size := get local size
copy Cvector and character Map from global memory to local memory
wait at the OpenCL barrier //synchronize all threads in same work-group
if global index <numqueries then

i := size of query[global index]
c := last character of query[global index]
pos := position of character c in matrix
FIRST := localCvector[pos]+1
LAST := localCvector[pos +1]
while (FIRST ≤ LAST) AND (i ≥ 2) do

c := get previous last character of query[global index]
pos := position of character c in matrix
FIRST=localCvector[pos] + OCCmatrix[pos][FIRST-1] + 1
LAST =localCvector[pos] + OCCmatrix[pos][LAST]
i := i-1

end while
queriesFIRST[global index] := FIRST
queriesLAST[global index] := LAST

end if
end procedure

execution. As an example, the OCC matrix is very expensive
in terms of memory resources, making an eventual copy to
the local memory rather impracticable (largely exceeds the
available local memory size). In contrast, the C vector is a
very good candidate, since its size is lower than 1KB in worst
case conditions. In practice, it only accommodates a number
of integers equal to the number of distinct characters in the
indexed text T (the input data type can be DNA, proteins
or text). On each access to the OCC matrix, the thread only
needs to index the row corresponding to a certain character.
To rapidly identify the row where the data corresponding to
a specific character is stored, another data structure is used,
herein denoted as character Map. This data structure has 256
entries (corresponding to all the possible 8-bit chars). Hence,
whenever a character exists in the text, it stores the number
of its assigned row in the OCC matrix. Since this structure is
directly indexed with the character that is being searched for,
it allows to obtain the row with a complexity of O(1). The
character Map data structure, as well as the C vector are both
copied from the global memory to the local memory before
the exact search begins. Before the search procedure begins, all
threads in the same work-group wait for the others, to ensure
the consistency of the local memory corresponding to these
local data structures.

At this point, it is important to recall that the maximum
resulting performance can only be attained if each target device
is configured with an optimum setup in terms of the work-
group size, which is intrinsically related to its own architecture.
Accordingly, a preliminary performance modelling should be
executed, in order to determine the most efficient configuration.
Fig. 3 illustrates this profiling procedure, where the work-
group size was varied for a given GPU device and benchmark.
For this illustrated setup can be observed that 8 represents the
best configuration for the work-group size, since smaller and
larger work-groups will result in slower program executions.
On the other hand, to achieve the best performance, the number
of queries to be dispatched on each kernel launch should be
large enough, as there is an inherent cost to every data transfer,

and only with large chunks can that cost be mitigated.

Dynamic load balancing

To balance and distribute the workload across multiple
coexisting devices, OpenCL offers the capability to query the
processing resources of the available platforms, as well as their
devices and their specifications. This allows for a preliminary
and approximate configuration of the program, in order to
adjust its implementation to the target platform.

However, considering that the GPU devices that are present
in a heterogeneous platform are not necessarily equivalent, the
implemented load balancing scheme also has to take this level
of heterogeneity into account. Besides the differences between
the offered processing performances, the devices may also be
subject to different loads from other programs that indirectly
affect their execution times (device contention), since the
program can be competing for the resources with other running
programs. As a consequence, a dynamic scheduling is highly
desired, as the performance of each device is only known
during its execution, and it may even suffer from changes
along the time. At this respect, the usage of simpler and
static load balancing schemes could easily lead the system
to a load imbalance, which is not desired. Therefore, the
division of the workload in the considered multi-GPU platform
is done by dynamically assigning independent fractions of
the queries dataset to each device, meaning that the work
distribution among the devices is conveniently adjusted during
the execution.

This dynamic load distribution was implemented by using
a Producer-Consumer scheme (see Fig. 4), where a single
producer fetches chunks of queries from the input file and
puts them in a task queue (circular producer-consumer buffer).
Then, as soon as each device finishes the processing of a
given block, it accesses this circular buffer to get a new block
of queries. This way, since the tasks are being dynamically
assigned whenever the devices finish their current job, the
faster devices will process more data to compensate for the
slower ones. At the end, the difference of the devices execution
time is, in the worst case, equal to the time the slower device
takes to process the last block of queries. To circumvent this
penalty, a guided scheduling technique can also be applied on
top of this load balancing, so that larger blocks of queries
are fetched in the beginning of the program, reducing the
imbalance penalty by fetching smaller blocks at the end of
the program, trying to reduce the gap between each device
execution time.

8

9

10

11

12

13

14

15

1 2 4 8 16 32 64 128 256

A
ve

ra
ge

 p
ro

gr
am

 e
xe

cu
ti

o
n

ti

m
e

 (
se

co
n

d
s)

OpenCL kernel work-group size

1000

10000

100000

Size of the block
(number of queries)
per GPU kernel

Size of the block
(number of queries)
per GPU kernel

Fig. 3. Optimum work-group size estimation for a given kernel search (search
of 10M queries of 75 nucleotides each).

34

QUERIES
INPUT

FILE
GPU #1

Read-only buffer

QUERIES

Read-only buffer

QUERIES

SOLUTIONS
OUTPUT
FILE #1

SOLUTIONS
OUTPUT
FILE #2

THREAD
#0

CONVERT
SOLUTIONS with

SUFFIX ARRAY

SOLUTIONS
OUTPUT
FILE #3

SOLUTIONS
OUTPUT
FILE #4

GPU #2

FIRST <= LAST
and not all characters yet

 analysed

Get index in OCC matrix of the
current character

Compute FIRST and LAST

Get last character
of query string

Store FIRST and LAST
in output buffer

Get previous
character of
query string

YES

Read-only buffer

QUERIES

Read-only buffer

QUERIES

Write-only buffer

Solutions
FIRST
LAST

Write-only buffer

Solutions
FIRST
LASTNO

THREAD
#3

THREAD
#4

CONVERT
SOLUTIONS with

SUFFIX ARRAY

CONVERT
SOLUTIONS with

SUFFIX ARRAY

CONVERT
SOLUTIONS with

SUFFIX ARRAY

THREAD
#1

THREAD
#2

FIRST <= LAST
and not all characters yet

 analysed

Get index in OCC matrix of the
current character

Compute FIRST and LAST

Get last character
of query string

Store FIRST and LAST
in output buffer

Get previous
character of
query string

YES

Write-only buffer

Solutions
FIRST
LAST

Write-only buffer

Solutions
FIRST
LASTNO

Fig. 4. Architecture of the proposed parallel implementation of the exact string matching procedure using multiple and possible different GPUs.

GPU # 1
Thread

1

Thread
2

Thread
0

CPU: Retrieval of a new chunk of queries from the input file

CPU: Load chunk of queries to the GPU buffers

GPU: Execution of the GPU kernel

CPU: Copy of kernel output to the host memory

CPU: SA conversion of kernel output and write
solutions to output file

a) Single CPU thread to assist the GPU device(s).

b) Multiple CPU threads to assist the GPU device(s).

Thread
0

GPU # 2

Fig. 5. Temporal diagram of the multiple GPU string matching procedure by considering: a) one single CPU helper thread; b) Multiple CPU helper threads.

Asynchronous multi-threaded execution

In a hypothetical GPU implementation supported and as-
sisted by a single CPU thread (illustrated in Fig. 5.a), the CPU
would have no major operation besides sending the queries
to the target devices and receiving their computed output,
being kept idle most of the time. Moreover, whenever the
targeted GPU device does not support OpenCL non-blocking
I/O operations, the CPU would be blocked, waiting for the
completion of the write and read of data. In fact, the usage of
blocking operations with a single thread would not even allow
the exploitation of multiple GPUs, as the host thread would be
blocked in each OpenCL operation (load of chunks of queries
to GPU, waiting for the kernel execution and copy of results
from GPU to host main memory). In fact, in such scenario
it would be useless to use more than one GPU, since the
previously used GPU would have already finished and would
be already available to be used again by the time the other
GPU was enqueued. As a consequence, the usage of multiple
CPU threads (at least one per GPU) is required, in order to
ensure a constant flow and processing of the sequences data.

To circumvent this problem, the proposed program archi-
tecture is comprised of several CPU threads to coordinate and
orchestrate each GPU, as well as to perform the I/O operations,
as it is illustrated in Fig. 4. One CPU thread (thread #0) is
assigned with the task of reading the queries from the input
file and of writing them into the host circular buffer. Although
there are multiple consumers (one per buffer per GPU device,
as explained in the following subsection), only one producer
is created, as its operation is much less time expensive than
the consumers operation. Each CPU thread that assists a GPU
(threads #1 to #4 in Fig. 4) is responsible for: i) fetching a
chunk of queries from the task queue buffer; ii) enqueueing
the writing of those queries to its GPU memory; iii) waiting
for the execution of the kernel; iv) writing the kernel output to
the host memory; v) performing the conversion of the output
to the desired solution space by using the suffix array, and
finally, for vi) outputting them to a file. Hence, although each
thread waits for each kernel and data transfers to complete,
the threads assigned to the GPUs are executing in parallel,
allowing the program to scale with the number of GPUs with a

35

minor overhead (as can be seen in Fig. 5 and Fig. 7). Moreover,
not only are the several alignments occurring in parallel in the
various GPU devices, but the reading of the queries and the
writing of the result to the output file are also simultaneously
happening, which allows a combination of the CPU and GPU
capabilities in an efficient way. In particular, the writing of the
resulting solutions to an output file is done in parallel by using
an individual file per thread, in order to prevent a competition
for a unique resource, which would arise if only one file had
been used. This approach does not introduce any disadvantage,
as the queries are independent and the output files can be easily
merged, if necessary.

Communication and computation overlap

Besides the impossibility to fully exploit the concurrency
between the CPU and the GPUs, the usage of only one thread
per device would also not allow to overlap the communication
(between the CPU and the corresponding GPU device) with
the kernel computation on that same device. The reason mainly
lies in the fact that the execution is faced with a structural
dependency, since the same buffers would be used in all
iterations (e.g., the CPU thread that assists the GPU could not
start sending the queries of the next iteration to the GPU, as
the kernel might still be running and the buffer with the input
queries might be being used). To circumvent this problem, a
double buffering technique was considered and more threads
were created.

To implement such double buffering scheme, the memory
allocation on the target device is divided in two sub-banks, to
allow the usage of two distinct input buffers for the queries
and two output buffers for the results (as depicted in Fig. 4).
These two sets of buffers on each device are used concurrently,
being each set managed by a single CPU thread. Hence,
instead of having a single thread per device, the program
assigns a number of threads equal to the number of sets of
buffers for each device. As an example, in a platform with 2
GPUs and 2 buffers per GPU (such as the one in Fig. 4),
it will assign 4 threads for the GPU management. Hence,
while the GPU device is processing one chunk of queries (the
kernel is executing) over one set of buffers, the other CPU
thread can be copying new queries to the other input buffer or
retrieving the solutions of the previous kernel execution. With
this approach, the cost of data transfers can be completely
hidden, overlapping the communication and computation for
each target device.

The OpenCL API allows the execution of the kernels on a
wide range of devices, ranging from GPUs to CPUs. In this
sense, it would be possible to dynamically distribute some of
the workload to the CPU cores (schedule of kernel executions
to both the GPUs and the CPU). However, this would lead to an
increase in the execution time of CPU threads that assisted the
GPU devices. Experimental results not presented in the paper
showed that a better performance was achieved using the CPU
cores to only orchestrate the execution on the GPUs and to
control the buffer assistant threads (as depicted in Fig. 4).

Kernel Output conversion

Due to its large space footprint (4 times the size of the
original text) the suffix array is kept on the host memory,

where the memory is not as constrained as it is in the GPUs.
As a result, it is the host-side threads that convert each kernel
output (corresponding to each query) to the actual positions
in the original text. Besides the referred memory concern, it
is worth noting that this conversion is a procedure that is not
well balanced and therefore not suited for a GPU execution,
as the range of solutions for each query may significantly
vary (different number of occurrences for each query). Such
situation would cause some GPU threads to idle whenever
their work was finished before the work of the other threads.
Since this is not desired on a GPU parallel execution, the
conversion of the solution space was implemented on the CPU,
during the periods when the host would be idle, waiting for
the completion of the GPU kernels.

IV. EXPERIMENTAL EVALUATION

To assess and quantitatively evaluate the performance of
the proposed implementation, it was compared against several
mainstream mapping tools, like Bowtie [15], BWA [16] and
SOAP2 [17] (CPU-based tools), and SOAP3 [12], HPG-
BWT [13], Barracuda [18] and CUSHAW2-GPU [19] (CUDA-
based GPU tools). The presented results were obtained on
a platform equipped with a dual quad-core Intel Xeon E5-
2609 CPU (eight cores) at 2.40GHz, 32GB of RAM and two
NVIDIA GeForce GTX 680 GPUs with 4GB of memory. The
used reference for the alignment experiments was the E.coli
genome. The queries were obtained from real data.

A. Profiling

The different steps of the algorithm were initially individu-
ally profiled by considering a straightforward implementation
with just one CPU thread to assist the GPU (see Fig. 5.a).
In this case, overlap between steps does not occur, and the
duration of each step can be easily obtained. With large
datasets of reads to align, it was then observed that the I/O
operations (which consists of reading of queries from the input
file to the host main memory and writing of the attained
solutions to the output file) were the most costly operations.
The usage of a producer-consumer scheme allowed to overlap
this steps with the core execution of the program, therefore
preventing these operations from being a bottleneck.

Using the described implementation of the paper, and by
examining only the OpenCL functions steps (namely, sending
the queries to the GPU memory, executing the kernel on the
GPU and retrieving the solutions from the GPU memory), it
was observed that from these function steps the execution of
the kernel is the most time consuming function (around 75%),
while the transfer of queries to the GPU takes around 25%,
and the retrieval of the solutions from the GPU memory is
almost negligible. This shows that is possible to mitigate and
even hide the OpenCL communications (sending the queries
to the GPU and retrieving the solutions) under the period of
time it takes for the GPU to complete the execution of the
kernel, by making usage of a double buffering scheme.

B. Performance comparison

When compared with publicly available tools, the proposed
implementation proved to offer a significantly better search
performance in terms of execution time, as it can be seen in

36

0

1

2

3

4

5

6

7

8

9

10

1M 2.5M 5M 7.5M 10M 25M 50M 75M 100M

Sp
e

e
d

u
p

 (
w

it
h

 B
o

w
ti

e
 8

 t
h

re
ad

s
as

 r
e

fe
re

n
ce

)

Number of queries in alignment procedure

1 GPU proposed implementation

Bowtie (CPU - 8 threads)

BWA (CPU - 8 threads)

SOAP2 (CPU - 8 threads)

SOAP3 (GPU)

HPG-BWT (GPU)

BARRACUDA (GPU)

CUSHAW2-GPU (GPU)

Fig. 6. Comparison of the execution times obtained with the proposed implementation using a single GPU and double buffering, and with all the considered
alternative CPU and GPU implementations, for alignments with orders of magnitude between 1 million and 100 million queries. The speedups are presented
having the Bowtie (8 CPU threads) performance as reference. All the tools were configured to perform the same operations and give the same output.

Fig. 6. The comparison was made by taking into account the
overall execution time of each one of the different programs
over a wide range of datasets. For such purpose convenient
adaptations were introduced in these tools in order to ensure
that the comparison was as fair as possible, and that the cost
of outputting the solutions in different file formats did not
benefit some tools in detriment of others. Moreover, all the
tools were configured to perform ’exact search’, whenever
this parametrization was possible. The CUSHAW2-GPU and
BARRACUDA did not allow such option, and therefore the
measured execution times were considerably greater than the
ones obtained with the other tools.

When compared with the three most popular CPU-BWT-
based aligners, namely Bowtie, BWA and SOAP2, the pro-
posed implementation presents speedups between 5x and 15x
when using one single GPU and between 10x and 30x when
using two GPUs. Regarding these particular CPU tools, Bowtie
proved to be the fastest one, although it is 9x slower than
the proposed implementation with a single GPU, even when
using 8 threads, being therefore selected as the reference CPU
implementation for all the performances that are compared
in this chart. From the GPU-based versions, HPG-BWT and
SOAP3 turn out to be similar in terms of execution time. Both
tools proved to be around 2.5 times slower in comparison with
the proposed tool when using a single GPU, and 5 times slower
when using a dual-GPU system.

C. Scalability and load balancing

Fig. 7 presents the variation of the obtained performance
with the number of buffers assigned to each GPU (which
affects the total number of consumer threads that assist the
GPUs). As it can be observed, increasing the number of buffers
provides the necessary conditions to allow the execution of
multiple operations in the same device. The scalability of the
program is almost perfect when using two GPUs, comparing
to the usage of just one device, with the speedup doubling
its value. Both graphs show that using two buffers (double
buffering) allows to double the speedup, which proves that
the communication was perfectly hidden and even allowed to
run both kernels at the same time, as the device was not yet
at full utilization. Naturally, this gain is limited by an upper
bound that is intrinsically related to the device and to the
interconnection between the CPU and the GPU. As soon as the

full utilization is reached, increasing the number of buffers per
device it is not justified because the increase in performance
is not significant.

Fig. 8 illustrates the performance that is offered by the tool
when using two GPUs. Fig. 8.a presents the load balancing
in a situation where the heterogeneous platform is composed
by two GPUs from different manufacturers. Therefore, as
their computation capabilities are not exactly the same, the
dynamically assigned load during run-time is not equally
distributed between the devices. Fig. 8.b depicts a particular
situation where one of the devices (GPU 1) is also being used
by another running instance of this tool. In the presence of
this GPU contention, the task partitioning does not produce
the same balancing as it would do when no competition for
resources (shared device) exist. As a result, the second GPU
was dynamically assigned with more chunks of queries to
process than the other, as it processes each chunk faster than
the first GPU. In the end, the observed difference in the
execution time is lower than the time it takes for the slower
device (GPU 1 on both situations) to process a single chunk
of queries, which in the cases of Fig. 8 is between 200 and
400 ms (as represented by the green arrow in Fig. 5.b). This
time was even reduced, since the last chunk of queries that
was processed was intentionally partitioned in smaller chunks,
so that the devices can fetch and process them with a finer
granularity, completing their tasks with similar finishing times.
This enhancement can be observed by the fact that the threads
of each GPU (either in Fig. 8.a and Fig. 8.b) finish only with
a difference of around 20 ms.

V. CONCLUSIONS

This paper described the design and implementation of a
tool to perform exact string matching based on the Burrows-
Wheeler Transform and the FM-Index, by exploiting hetero-
geneous platforms composed by multiple GPUs using the
OpenCL API.

When compared with other tools based on BWT indexed
search, the proposed tool provides speedups ranging from
2.5x-5x (when comparing with other GPU-based tools) to
5x-30x (when comparing with CPU-based tools using multi-
threading). Such performance was achieved by using an highly
optimized kernel and a producer-consumer scheme with multi-
ple threads dedicated to each GPU device and to the involved

37

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 Buffer
1 Thread

2 Buffers
2 Threads

3 Buffers
3 Threads

4 Buffers
4 Threads

P
e

rf
o

rm
an

ce
 in

cr
e

as
e

(w

it
h

 1
G

P
U

-1
B

u
ff

e
r

as
 r

e
fe

re
n

ce
)

Number of buffers per GPU and Total number of consumer threads

Speedup - single GPU evaluation

Overall
program
performance

Theoretical
speedup

(a) Single GPU performance evaluation.

performance

0

1

2

3

4

5

6

7

8

9

1 Buffer
2 Threads

2 Buffers
4 Threads

3 Buffers
6 Threads

4 Buffers
8 Threads

P
e

rf
o

rm
an

ce
 in

cr
e

as
e

(w

it
h

 1
G

P
U

-1
B

u
ff

e
r

as
 r

e
fe

re
n

ce
)

Number of buffers per GPU and Total number of consumer threads

Speedup - dual GPU evaluation

Overall
program
performance

Theoretical
speedup

(b) Dual GPU performance evaluation.

Fig. 7. Performance evaluation with a different number of threads per GPU
(being each one responsible for a set of buffers), on a single and dual GPU
implementation, for alignments of 100M queries of 75 nucleotides.

I/O operations, together with the implementation of multiple
buffering technique. This approach, not only allowed to over-
lap the I/O operations from disk to main memory with the
sequence alignment procedure, but also to overlap the OpenCL
data transfers between the host device and the target devices
with the kernel execution on those same devices.

ACKNOWLEDGMENT

This work was partially supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT),
under projects: HELIX (PTDC/EEA-ELC/113999/2009),
TAGS (PTDC/EIA-EIA/112283/2009), Threads (PTDC/EEA-
ELC/117329/2010), P2HCS (PTDC/EEI-ELC/3152/2012) and
project PEst-OE/EEI/LA0021/2013.

REFERENCES

[1] L. Wang and T. Jiang, “On the complexity of multiple sequence
alignment,” Journal of computational biology, vol. 1, no. 4, pp. 337–
348, 1994.

[2] M. J. Fischer and M. S. Paterson, “String-matching and other products.”
DTIC Document, Tech. Rep., 1974.

[3] M. Burrows and D. J. Wheeler, “A Block-sorting Lossless Data Com-
pression Algorithm,” Digital Equipment Corporation, Tech. Rep. 124,
May 1994.

[4] P. Ferragina and G. Manzini, “Opportunistic data structures with appli-
cations,” in Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, 2000, pp. 390 –398.

[5] P. Weiner, “Linear pattern matching algorithms,” in Proceedings of
the 14th Annual Symposium on Switching and Automata Theory (swat
1973), ser. SWAT ’73. Washington, DC, USA: IEEE Computer Society,
1973, pp. 1–11.

[6] U. Manber and G. Myers, “Suffix arrays: a new method for on-
line string searches,” in Proceedings of the first annual ACM-SIAM
symposium on Discrete algorithms, ser. SODA ’90. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1990, pp. 319–
327.

Consumer thread execution time (ms) Number of queries

Load balancing on heterogeneous platform

GPU 1 (NVIDIA GeForce GTX 560 Ti)

GPU 2 (AMD Radeon R9 290X) 2099.35

4600000

5400000

2113.69

(a) Load balancing evaluation on a heterogeneous system with two different
GPUs.

Consumer thread execution time (ms) Number of queries

GPU 1 - overloaded shared GPU
(NVIDIA GeForce GTX 680)

GPU 2 - GPU with no load
(NVIDIA GeForce GTX 680)

4100000

5900000

4194.09 4173.74

Load balancing under GPU contention

(b) Load balancing evaluation on a system with two equal GPUs, but where
one of them (GPU 1) is under considerable contention.

Fig. 8. Load balancing evaluation in systems composed by two GPU cards,
for an alignment of 10M queries of 75 nucleotides.

[7] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of suffix
array construction algorithms,” ACM Comput. Surv., vol. 39, no. 2, July
2007.

[8] H. Li, J. Ruan, and R. Durbin, “Mapping short dna sequencing reads
and calling variants using mapping quality scores,” Genome research,
vol. 18, no. 11, pp. 1851–1858, 2008.

[9] L. Colussi, Z. Galil, and R. Giancarlo, “On the exact complexity of
string matching,” in Foundations of Computer Science, 1990. Proceed-
ings., 31st Annual Symposium on. IEEE, 1990, pp. 135–144.

[10] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM journal on computing, vol. 6, no. 2, pp. 323–350, 1977.

[11] R. N. Horspool, “Practical fast searching in strings,” Software: Practice
and Experience, vol. 10, no. 6, pp. 501–506, 1980.

[12] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu,
X. Chu, K. Zhao et al., “Soap3: ultra-fast gpu-based parallel alignment
tool for short reads,” Bioinformatics, vol. 28, no. 6, pp. 878–879, 2012.

[13] J. Salavert Torres, I. Blanquer Espert, A. Tomas Dominguez, V. Hernen-
dez, I. Medina, J. Terraga, and J. Dopazo, “Using gpus for the exact
alignment of short-read genetic sequences by means of the burrows-
wheeler transform,” IEEE/ACM Trans. Comput. Biol. Bioinformatics,
vol. 9, no. 4, pp. 1245–1256, July 2012.

[14] Khronos, “Khronos opencl home page,” http://www.khronos.org/opencl/
(Dec. 2013).

[15] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome,” Genome Biology, vol. 10, no. 3, p. R25, 2009.

[16] H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows–wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–
1760, 2009.

[17] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and
J. Wang, “Soap2: an improved ultrafast tool for short read alignment,”
Bioinformatics, vol. 25, no. 15, pp. 1966–1967, 2009.

[18] P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan, I. McFarlane,
G. S. Yeo, and B. Y. Lam, “Barracuda-a fast short read sequence aligner
using graphics processing units,” BMC research notes, vol. 5, no. 1,
p. 27, 2012.

[19] Y. Liu and B. Schmidt, “Cushaw2-gpu: empowering faster gapped short-
read alignment using gpu computing,” 2013.

38

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

