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Abstract—The effective acceleration of computationally de-
manding applications in heterogeneous systems often requires
significant optimization efforts. Although such task typically
starts with a thorough profiling stage, a special attention must be
given to the migration procedure of each application kernel: apart
from the actual computation time, the cost of the data transfers
between the main processor memory and the accelerator plays a
significant role, which often limits the actual resulting speedup.
In some cases, no performance gain is actually achieved, given
the excessively high communication to computation ratio. To ease
the system designer effort, this paper proposes a framework that
transparently collects extensive profile information, including, but
not limited to, the values of the processor performance counters,
as well as an estimation of the amounts of data to be transferred
to and from the accelerator. The framework focuses on transpar-
ent acceleration of kernels implemented as library functions and
is based on the shared library interposing technique. By further
processing of the obtained execution profiles, together with the
proper communication and computation models, the attainable
global speedup of the accelerated application is predicted. The
presented methods were validated experimentally for a set of
existing applications. The measured global speedup estimation
error typically ranged between 1 and 4%.

Keywords—heterogeneous systems, performance prediction,
software instrumentation

I. INTRODUCTION

The combined processing power of multi-core CPUs and
Graphics Processing Units (GPUs) is now available in most
off-the-shelf personal computers. Such type of heteroge-
neous architectures has found a significant interest for High-
Performance Computing (HPC) applications, where computa-
tionally demanding algorithms are developed with massively
parallel processing units and vector instructions in mind, in
order to fully exploit the available computational resources.
Specialized accelerator chips and reconfigurable technologies,
such as FPGAs, are also often used on HPC or embedded
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systems to meet more restricted requirements of performance,
real-time constraint, or energy consumption.

Meanwhile, the rapid growth of the market share of hetero-
geneous machines has been followed by an increasing interest
of system developers in simplifying and automatizing the
programming and use of these architectures. Standards such
as OpenCL [1] aim at unifying the programming model for
different heterogeneous architectures.

Many HPC applications rely on library implementations of
computationally intensive kernels. Some popular examples in-
clude: BLAS [2] and LAPACK [3] for linear algebra, GSL [4]
for solving numerical problems, FFTW [5] for computing the
Discrete Fourier Transforms, OpenCV [6] for image and video
processing and feature extraction, and the Insight Toolkit [7]
for medical image analysis. Most often, the code of these
libraries is not included in the application binary. Instead, it
is dynamically loaded at run time from shared libraries that
were previously and separately installed in the system.

Apart from other advantages, this decoupling provides the
opportunity to selectively replace the original kernel im-
plementations with alternative ones, without modifying the
application code or the default libraries. This technique is
known as shared library interposing and its basic principle
is depicted in Figure 1. In Unix-like operating systems, the
user can configure the dynamic linker to load additional
shared libraries before, or instead of, the default ones. The
original shared library functions may either be completely
replaced with different implementations, or a wrapper library
may be introduced between the application and the original
library, in order to redirect the library function calls to one
of possible existing alternatives based on various static or
dynamic policies. In both cases, the wrapper library must have
the same Application Binary Interface (ABI) as the original
one.

The shared library interposing technique has already shown
to be a promising approach for transparent application accel-
eration [8]. The ability to accelerate applications without the
need to modify either the application or the libraries makes
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Figure 1. Illustration of the shared library interposing technique. A wrapper
library is inserted in place of the library originally used by the application,
in order to provide alternative implementations of the library functions.

this technique especially useful for closed-source applications,
but also enables the users and higher-level programmers with
little or no knowledge on the actual heterogeneous architecture
to utilize the capabilities it offers.

However, development of efficient accelerated libraries re-
quires the detailed knowledge of how the libraries are used
by real applications, including the patterns of communication
between the software and the accelerated library. In fact,
offloading the computation from the CPU to an external
resource often requires transferring large amounts of data.
Depending on the interconnection interface, the communica-
tion scheme and the amount of data that is manipulated by
the application, the data transfers in the considered system
may become a serious bottleneck, considerably decreasing the
overall performance. Thus, an accurate estimate of the attain-
able performance gains must take the actual communication
patterns into account.

The framework that is herein presented aims at accurately
predicting the performance gains of newly designed accelera-
tors, by integrating the detailed execution traces of the target
applications with the communication and computation models
of the underlying accelerator architectures. Specifically, the
following original contributions are presented in this paper:
i) a method for automatic estimation of the amount of data
exchanged between the application and the called library
functions, together with its evaluation on several different
case studies; ii) a flexible wrapper library generator for
obtaining detailed performance data, which also implements
the proposed method; iii) a post-processing tool for accurate
prediction of the global speedup on different accelerator ar-
chitectures.

The remaining of this paper is organized as follows. In
the next section, the related work is presented and discussed.
Section III describes the performance prediction approach
adopted in the proposed framework. Section IV gives a more
detailed insight into the framework architecture. Section V
discusses the obtained experimental results, including the
accuracy of the obtained estimates, and the overheads imposed
by the instrumentation. Section VI concludes this paper with
some final remarks and future work directions.

II. RELATED WORK

Although performance prediction and estimation in hetero-
geneous systems has been investigated with increasing depth,
with a few exceptions the existing approaches often only
consider the performance of certain applications on a single
architecture. In [9] it is proposed a new heuristic for imple-
mentation planning in heterogeneous systems, in order to help
the selection of the right implementation for a specific work
size. Although the presented results are promising, the relation
between the work size and the function arguments must be
specified by the user, in the form of a class that implements
the expected interface. Sato et al. [10] presented a runtime
performance prediction model based on the classification of
the parameters to OpenCL kernel calls depending on their
correlation with past execution times on a particular resource.

Hence, a profiling tool capable of automatically estimating
the work size should be able to examine the data structures
passed to and from the called functions in the context of the
previous and future activity of the traced application.

There are tools for tracing the shared library function calls,
such as latrace [11] and ltrace [12] However, in order to be
able to display the arguments passed to the called functions,
they rely on ABI-specific stack inspection, as well as custom-
formatted configuration files, which redefine the prototypes of
known library functions.

DTrace [13] is a dynamic instrumentation framework to be
integrated in the operating system kernel and allows for tracing
different aspects of a running system by means of user-defined
actions taken at specified execution points, called probes. It
focuses on minimizing the tracing overhead by only executing
the probes which are explicitly enabled for a specific session,
as well as reducing the amount of produced data. Tracing
user-level function calls is also possible, but it depends on
the ABI of the specific platform on which the application and
the framework are executed.

Although very flexible and powerful, instrumentation tools
based on runtime binary interpretation, such as Pin [14]
or Valgrind [15], impose noticeable overheads even without
profiling, and their use is limited to the supported Instruction
Set Architectures (ISA).

Hence, when compared with the above approaches, the
shared library interposing technique inherently enables the
combination of the static information of all the function
arguments with run-time access to the application state. Fur-
thermore, it does not require any support from the operating
system kernel and does not depend on any architecture-specific
implementation. Since the function arguments, as well as the
complete state of the application at the called function entry
and exit points are available for the wrapper library, any
kind of information about the application execution can be
extracted.

The major difficulty presented by shared library interposing,
which is the need to implement the wrapper library before it
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can be actually used, has been already addressed by several
code generation approaches, the following three being notable
examples.

Curry [16] presented the first profiling framework which
used automatically generated wrapper libraries to transparently
collect performance data. Adding function-specific code to the
generated libraries required that the generated sources were
manually edited.

In [8], automatically generated wrapper libraries are used to
redirect the BLAS subroutine calls to different heterogeneous
accelerators, based on their previously obtained performance
characteristics. These characteristics, however, were obtained
using a different approach, namely, the specifically crafted
Pintools [14].

The most flexible shared library generation tool to date was
presented by Fetzer and Xiao in [17], as a part of their frame-
work for increasing the robustness of shared libraries. The
architecture of their framework allows building the wrapper
libraries from small code pieces inserted at different scopes in
the generated source. A similar approach was adopted in the
work described herein, and will be described in the following
sections.

III. ACCURATE SPEEDUP PREDICTION IN
HETEROGENEOUS SYSTEMS

The maximum attainable speedup when accelerating a given
portion of an application is typically computed by applying the
Amdahl’s law:

SG =
1

(1− P ) + P
SP

, (1)

where SG is the attained global speedup, P is the execution
time fraction corresponding to the portion to be optimized,
and SP is the speedup for the accelerated portion alone.

However, the main difficulty in predicting the actual
speedup in real applications lies in the fact that applications
often call their computationally intensive kernels multiple
times for different inputs, so that each call corresponds to
a different fraction of the total execution time. Moreover, the
speedups offered by the accelerated kernel implementations in
a given system depend upon the problem size. This means that
the accelerated fraction and the partial speedups will differ
from one application to another, as well as between several
runs of the same application with different inputs, affecting the
global speedup accordingly. The situation is further aggravated
by the fact that the performance of the existing accelerated
kernels is usually announced without considering the commu-
nication overhead, which depends on the characteristics of the
communication interface and the amounts of transferred data.

Hence, the main aim of the proposed framework is to pro-
vide the means for an accurate measure of the execution time
of each kernel invocation, and a consequent substitution of the
measured value with the time the accelerated implementation

of the same kernel is expected to require for the same problem
size.

Let K be the set of kernels that are to be accelerated,
and Nk the number of times a particular kernel k ∈ K is
called during a single run of an application. Let tki be the
execution time (without acceleration) for each of these calls,
i ∈ {1, 2, . . . , Nk}. The fraction to be accelerated, including
all accelerated kernels, can thus be written as:

P =

∑
k∈K

∑Nk

i=1 tki

T
, (2)

where T is the total execution time of the application before
acceleration.

In order to obtain the predicted speedup for the considered
portion of the application (SP), let us consider wki as the
work size associated with the i-th call to kernel k. The work
size is a metric that quantifies the computational effort in a
kernel-specific way. For example, the work size for matrix
multiplication can be defined as the matrix dimension.

By introducing a performance model function t′ki =
fk (wki), which maps the work size wki to the execution time
of the accelerated kernel k, including the time needed to copy
the data between the CPU and the accelerator, the speedup for
the accelerated portion can be computed using the following
formula:

SP =

∑
k∈K

∑Nk

i=1 tki∑
k∈K

∑Nk

i=1 fk(wki)
. (3)

The global speedup SG can now be computed by sub-
stituting (2) and (3) into (1), provided that the execution
times tki and work sizes wki for each kernel invocation
are available. Optionally, the prediction procedure may even
consider only those calls for which t′ki < tki. This will allow
an implementation of an advanced scheduling mechanism that
will always choose the fastest available implementation.

Hence, the main contribution of the proposed framework is
to fully automate the process of measuring the execution times
and estimating the work sizes for multiple and possibly dif-
ferent kernel invocations. Assuming that a performance model
is available for a given accelerated kernel implementation, the
collected characteristics are combined with this model in order
to predict the speedup that can be achieved if the current kernel
implementation is replaced with an accelerated one.

IV. A PERFORMANCE PREDICTION FRAMEWORK USING
SHARED LIBRARY INTERPOSING

This section describes the developed framework for trans-
parent profiling of shared libraries and accurate prediction of
attainable performance gains in heterogeneous systems. The
main characteristics of this framework are:

• It does not require any modification to the traced appli-
cation or library. The wrapper libraries are automatically
generated based on the shared library binary and corre-
sponding header files installed in the system.
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Figure 2. Flow diagram depicting the speedup prediction process by using the proposed framework.

• Arbitrary actions can be executed upon each function
call. A set of default actions for tracing and profiling tasks
is provided in the form of micro-generators (as in [17]),
which can be enabled separately and combined according
to the user’s needs. User-defined actions can be supplied
via additional definition files.

• Entirely automatic use of the framework for performance
prediction provides meaningful estimates. Further refine-
ment is still possible, by using the customization options
mentioned above.

• It is fully portable to different instruction set architec-
tures. The only requirements are an available C compiler
and the operating system support for shared library
interposing by means of the LD PRELOAD environment
variable.

The following subsections provide a detailed description of
the key features of the developed framework.

A. Framework Architecture

The usage of the framework as a performance prediction
tool is depicted in Figure 2. The procedure consists of three
steps, which can be invoked either manually, in order to adjust
the available option settings, or by using a script, to automate
the task and avoid typing repetitive commands.

The first step is the generation of the actual tracing library
for a particular application and the targeted set of functions to
be traced, in order to collect the execution characteristics. This
is done by using the developed tool called dyliberator. It reads
the application executable file and the shared library files in
order to find all library functions that the application may call.
It then searches for the function prototypes in the C header
files for the relevant libraries. Based on these prototypes, it
generates new implementations for the set of functions selected
by the user, filling them with the required C code that: i) calls
the original function implementations and ii) traces all calls to
these functions, collecting the necessary profiling data. For the
purpose of performance prediction, at least the execution time
tki and the work size wki must be collected for each traced
call.

The second step is the compilation of the generated library
and the preload of it for the time of the application execution.
The execution traces should be collected for a sufficiently
large representative set of operating conditions for which the
accelerated application is intended to be used.

In the final step, the traces are combined with the perfor-
mance models for different implementations of the specific
function (or functions), in order to estimate the speedups that
can be obtained with each kernel. This last step is performed
using the developed dyl-speedup tool.

B. Wrapper Library Generation

The wrapper library generation (step 1 in Figure 2) is
implemented similarly to the framework presented in [17].
The architecture is based on micro-generators. Each micro-
generator is a class that inserts small portions of code related
to a specific feature in certain locations in the generated library
source. The user can compose multiple micro-generators, thus
combining different actions (such as profiling, tracing or call
delegation) in one wrapper library.

Compared to its predecessor, dyliberator offers a number
of improvements which make it more robust and flexible. The
headers are parsed using the Clang C compiler front-end [18],
which ensures correct parsing of headers written using recent
ANSI C standard and GCC-specific extensions.

Instead of fixed priorities (like in [17]) the micro-generators
of dyliberator may specify which other micro-generators pro-
vide their prerequisites, thus allowing for easier usage and
more flexible dependency relationships. The user can also
specify parametrization options for the micro-generators, in
order to fine-tune and adjust the code they generate.

In addition to the C source for the wrapper library, dyliber-
ator also generates an appropriate Makefile, ensuring that the
library will be built with the correct set of compiler and linker
options, and all the required external libraries will be linked.

An example of a wrapper function generated by dyliberator
is shown in Figure 3. It combines the following micro-
generators: std.FuncPtr, providing the pointer to the orig-
inal function; std.Loader, which is responsible for loading
the original function implementation; and std.Caller, which
inserts the call (through the function pointer) to the original
implementation.

C. Determining the Work Size

In the next step (see Figure 2), the application is executed
and the calls to library functions are traced. The execution
times and work sizes for each call are saved to a trace
file. The execution time can be measured precisely using the
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/* From header file "/usr/local/include/blas.h" */
double ddot_(const int* n, const double* dx,

const int* incx, const double* dy, const int* incy)
{

double __result;
/* generators.std.FuncPtr () */
static double (*__funcPtr)(const int* n,
const double* dx, const int* incx,
const double* dy, const int* incy) = NULL;

/* generators.std.Loader () */
if (!__funcPtr)
__funcPtr = __Dyl_loadFunction(__DYL_FID_ddot_);

/* generators.std.Caller () */
__result = (*__funcPtr)(n, dx, incx, dy, incy);
return __result;

}

Figure 3. Example of a wrapper function generated using a set of three
micro-generators: std.FuncPtr, std.Loader, and std.Caller.

system-wide real-time clock or hardware performance counters
via PAPI [19]. There are standard micro-generators for both
methods. The estimation of the work size deserves a more
detailed explanation.

For a large class of algorithms, the work size is directly
related to the size of the data passed to the called function
and returned from it. Even though the data structures may be
arbitrarily complex, many useful functions use plain arrays. In
C and Fortran libraries, arrays and matrices are usually passed
to functions by a pointer to the data under processing together
with one or more integer values defining the array dimensions
and strides. Although this scheme is very common, there is
no universal convention of specifying this information. The
input size and the expected output size may not be directly
specified in the function arguments, but rather hidden in the
data structures, for private use of the library. Thus, extracting
this information would require the understanding of at least
some of the library/function implementation details. Hence, an
autonomous algorithm might not be able to correctly derive
the data size from statically available information, such as
the function prototypes or even the complete source code. A
different approach is thus considered, in which the data size
is estimated based on the observed dynamic behavior of the
application.

1) Pointer Tracking Method for Automatic Work Size Es-
timation: The method herein proposed is based on dynamic
pointer inspection. It is assumed that whenever a pointer is
passed to a function, it is not by itself a parameter to the
kernel. Instead, the pointer usually points to a buffer where
the actual input data is placed before the function is called, or
where the output data is to be written by the function.

Most applications use heap-allocated buffers or memory-
mapped files to pass large amounts of data. Smaller buffers
are occasionally allocated on the stack. This method aims
at estimating the actual size of the data by monitoring the
structure of the memory areas used by the application and by
mapping the pointers passed as function arguments to these
regions.

The implementation of the proposed method is included in
the generated wrapper library by enabling the relevant micro-
generator upon dyliberator invocation. When the application
executes, the wrapper records all heap management activity
of the traced application, namely, the calls to the following C
standard library functions: malloc(), free(), calloc(), realloc(),
and posix mem align(). It also examines the process memory
map, in order to find the stack and static data regions.

The recorded information regarding identified data memory
regions consists of pairs Ri = (si, ei), where si and ei denote
the first address of the region, and the first address past the end
of the region, respectively. Since the regions do not overlap,
any pointer p points into at most one region in the linear virtual
address space of the traced process.

Locating a pointer within one of the known regions is not
sufficient to determine the actual size of the data within the
buffer pointed to by this pointer. Applications often allocate
more memory than they immediately need, because the buffers
may be reused for varying amounts of data. Furthermore,
one memory region may be allocated for multiple buffers,
or, alternatively, subvectors of one matrix may be passed by
different pointers. Deeper pointer hierarchies are also possible
(e.g. an array of pointers to multiple buffers), in which case
the algorithm continues to dereference successive pointers in
the potential array, until the first pointer that does not fall into
any known region is encountered.

In order to detect multiple buffers located within one
allocated memory region, the following solution was applied.
Upon each traced function call, the pointer arguments are
grouped by the region into which they point. Given a subset
P of pointers p1, . . . , pn falling into the same region Ri (i.e.
∀pj : si ≤ pj < ei) in a single function call, the upper
bound for the total amount of data passed via all n pointers
is l = ei −min(P ).

This rough, but rather useful estimate is the basis of the
fast variant of the proposed method. If any pointer within Ri
is const-qualified, l is added to the size of the input in the
current call. Otherwise, it is added to the size of the output.
In-out buffers are not detected by this variant.

2) Buffer Content Inspection: In an attempt to automat-
ically determine the size of the partially used buffers, an-
other variant of the proposed method was also implemented,
by considering only the memory contents that are actually
modified. In this approach, a copy of the previous content
of each memory region is kept, so that only the modified
content is included in the resulting estimate. Upon each call
to the wrapper function, the memory content is examined
twice to identify possible changes: before and after the original
function is called. If the buffer content is determined to have
changed at the entry point, the changed content is assumed to
be the input data to the function. The changes found at the
exit point contribute to the size of the function output. This
variant is referred to as the full inspection variant.

In both variants, arguments passed by value contribute to
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the amount of input data with the result of the sizeof operator
applied to them.

3) Manual Work Size Estimation: In case the automatic
work size estimation methods are unable to give sufficiently
accurate results, the proposed framework provides alternative
means for the user to manually specify the expression used to
compute the amount of data based on the function arguments.

This expression is defined in an external file, consisting of
a series of definitions in the following format:

library name::function name::location { C expressions }
Arbitrary C language code may be inserted. The function

arguments can be accessed by the same names specified in
the prototype contained in the library header file. The library
and function names may also contain wildcard symbols, which
allow the insertion of the same code for a group of functions.
The location is either “prefix” or “postfix” and tells the tool to
insert the code before or after the call to the original function,
respectively.

As an example, to compute the number of bytes corre-
sponding to the input and output matrices for the general
matrix multiply functions of BLAS, the user can specify the
expressions for the input and output size estimation as:

// void dgemm_(char *transa, char *transb,
// int *m, int *n, int *k, double *alpha,
// double *a, int *lda, double *b, int *ldb,
// double *beta, double *c, int *ldc);
libblas*::*gemm_::postfix {

output_size = *m * *n * sizeof(*c);
input_size = *m * *k * sizeof(*a)

+ *k * *n * sizeof(*b)
+ *beta == 0 ? 0 : output_size; }

D. Computing the Global Speedup

In the last step (step 3 in Figure 2), the collected trace files
are combined with the performance models of the considered
kernels in order to compute the predicted total execution time
and the speedup that is obtained when the acceleration is
enabled. It is assumed that the performance models were
obtained beforehand, by measuring or estimating the kernel
performance on an existing or simulated accelerator.

A performance model, as defined in Section III, is a function
that maps the work size w to the execution time t′ of each
kernel for a given work size. This function is defined by a
set of samples (wi, t

′
i). Execution times for work sizes not

included in this set are estimated by linear interpolation. Thus,
the samples should be denser in those regions where a small
change of work size induces a significant difference in the
resulting execution time.

For existing kernel implementations, these performance
models can be obtained by measuring the time of many
identical calls to the modeled kernel and computing the mean.
This procedure is repeated for a wide range of work sizes
with reasonable density. In order to have a reliable model, it
is important that the measured execution time includes all the

necessary communication overheads between the CPU and the
accelerator.

V. EXPERIMENTAL EVALUATION

In order to evaluate the proposed performance prediction
framework, the accuracy of the resulting estimates was mea-
sured for different application/library pairs. First, the accuracy
of the global speedup prediction is discussed based on the
comparison of the predicted values with the actual perfor-
mance gains for several benchmarks covering different work
sizes. Second, the results of the automatic data transfer size
estimation are compared with the expected values. Finally, in
order to evaluate the impact of the used wrapper libraries on
the execution of the traced applications, the overheads imposed
by the wrappers were measured.

A. Global Speedup Prediction

To accurately analyze the global speedup prediction, the
actual achievable speedup was measured for two distinct
applications, running on different heterogeneous architectures,
namely:

1) GNU Octave [20] for matrix multiplication, originally
using the reference BLAS implementation [21], and
subsequently accelerated using the equivalent function
from the CUBLAS library [22]. The considered setup is
denoted as GPU in Table I.

2) EncFS encrypted file system [23], using the Advanced
Encryption Standard (AES) implementation provided by
the OpenSSL library [24], and subsequently accelerated
using a state of the art equivalent implementation pro-
vided by a custom built cryptographic IP core [25].
The configuration used for this test is denoted FPGA in
Table I.

The performance charts for these accelerated implementa-
tions were obtained by measuring the kernel execution time
on the relevant accelerators for different input sizes. As it
can be seen in Figure 4, in both cases the difference in
the execution time between the accelerated and the non-
accelerated implementations depends on the size of the input
data. Moreover, it is also observed that for certain input sizes
the accelerated implementations are actually slower.

In order to evaluate the accuracy of the proposed speedup
prediction framework, a set of profiling runs was first carried
out for each application using the original shared library
(i.e. no acceleration). The execution time and the work size
for the relevant function calls were collected. The execution
times were measured with a resolution of 1 ns, while the
work sizes were computed using user-supplied expressions.
The obtained execution traces were then processed together
with the performance models of the considered accelerators,
in order to derive the predicted execution time and speedup
values. Finally, the wrapper libraries, which redirect the library
function calls to hardware-accelerated kernels were built,
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Figure 4. Performance models of two hardware-accelerated functions used to predict the attainable speedup values. Performance of equivalent software
implementations is included for comparison. (a) matrix multiplication. (b) AES (CBC, 256-bit key) encryption.

TABLE I
TEST SETUP CONFIGURATIONS.

GPU FPGA
CPU 4-core (8-thread) Intel Atom E665CT

Intel Core i7-950 1.3GHz, 512KB cache
3.06 GHz, 8 MB cache

Main mem. 12 GB DDR3-1033 1 GB DDR2-800
Accelerator GPU: NVIDIA GeForce FPGA: Arria II GX,
hardware GTX 680, PCIe 3.0 x16 PCIe 1.1 x1
Operating CentOS 6.3, kernel version Fedora 14, kernel version:
system 2.6.32-279.14.1.el6.x86 64 2.6.38-1.MSMST.fc14.i686
Software GCC 4.4.6, Octave 3.6.3, GCC 4.5.1, EncFS 1.7.4,

CUDA 5.0 OpenSSL 1.0.0e

and the benchmarks were rerun with transparent acceleration
enabled. The predicted and actual speedups for 4 considered
execution scenarios are presented in Tables II and III and
discussed in the following analysis.

The second column of both tables shows the total execution
time without acceleration. The next column shows the number
of times the kernel to be accelerated was called during each
scenario. The fourth column contains the percentage of the
total execution time that was taken by the execution of the
non-accelerated kernels. The next columns contain the pre-
dicted and actual execution time, as well as the corresponding
speedup values with the acceleration enabled. Finally, the last
column shows the relative error of the predicted speedup.

The results suggest that the predicted values are consistent
with the actual performance gains. However, the prediction
accuracy slightly drops with the increase of the number of
kernel calls (see rows 1 and 3 in Table II, as well as rows
3 and 4 in Table III). This deviation is mainly caused by
the fact that small inaccuracies that may be introduced in the
modeled execution times accumulate over multiple calls (see
eq. (3)) and their effect on the resulting total may become
more noticeable.

TABLE II
PREDICTED AND ACTUAL SPEEDUPS FOR MATRIX MULTIPLICATION.

Time on # of Replaced Predicted Actuala Relative
i CPU only replaced portion time speedup time speedup error

(s) calls (%) (s) (s) (%)
1 4.102 80000 27.8 12.35 0.332 13.52 0.303 9.5

2 18.15 90 96.4 0.998 18.19 0.986 18.38 −1
3 22.26 80090 83.6 13.37 1.67 14.49 1.54 8.4

4 22.26 90 78.5 5.13 4.34 5.17 4.3 0.9

a. Not including CUBLAS initialization

TABLE III
PREDICTED AND ACTUAL SPEEDUPS FOR FILE ENCRYPTION.

Time on # of Replaced Predicted Actual Relative
i CPU only replaced portion time speedup time speedup error

(s) calls (%) (s) (s) (%)
1 0.945 787 40.1 0.808 1.169 0.831 1.137 2.8

2 0.945 1229 40.5 0.896 1.055 0.916 1.031 2.3

3 49.145 65536 42.2 37.944 1.295 39.474 1.245 4

4 49.145 73732 47.8 39.573 1.242 40.745 1.206 2.9

In the presented results, the predicted speedups are generally
slightly higher than the measured values. This suggests that
the overheads involved in the transparent acceleration should
also be considered during the acquisition of the kernel perfor-
mance models. In fact, although usually negligible, the cost
of the additional call indirection may also become noticeable,
especially if many short calls are considered.

B. Automatic Estimation of Transferred Data Size

The pointer inspection methods for the automatic estimation
of the transferred data size were evaluated by comparing the
results they produce to the expected values computed using
user-supplied expressions. In the following discussion, three
applications are considered, namely: 1) matrix multiplication
using BLAS, 2) data encryption using OpenSSL, and 3)
Discrete Cosine Transform (DCT) using the libjpeg library by
the Independent JPEG Group. Each of them uses a different
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scheme for passing the data to the library functions. The
matrix multiplication functions employ the Fortran calling
convention, thus even scalar values are passed by pointers.
In the data encryption application, the data are passed using a
pointer to the buffer and an integer value for the buffer length,
plus a pointer to the context structure containing the encryption
key and additional temporary buffers. The last application uses
the most elaborate scheme of the three: the size of the data is
computed based on the information in the context structure and
the directly passed arguments. The actual data is passed using
an array of pointers to consecutive elements, thus it may not
be stored in a contiguous buffer. By analyzing such diverse set
of schemes, the applicability of the methods can be projected
to a broader spectrum of possible scenarios.

The obtained results are presented in the form of scatter
plots, where each function call is represented by two points,
representing the input and the output size. The x coordinate
represents the expected work size value, whereas the y coordi-
nate represents the automatic estimate. The closer these points
are to the identity line, the better the estimation.

The obtained results are depicted in Figures 5, 6 and 7. As it
can be seen, the accuracy of the results differs greatly between
the fast and the full estimation methods.

Three distinct regions can be identified in the graphs on
the right hand side, which correspond to the full method. For
large data sizes, starting from a few kilobytes, the accuracy is
very high. This consistence between the estimated model and
the measured values is particularly important when large data
sizes are involved, since the imposed communication overhead
is more significant in this cases and affects more severely the
resulting global speedup. In the middle region (for tens or
hundreds of bytes), some overestimation becomes noticeable,
comparing to the absolute values. The main reason for this
deviation arises from the the scalar values on the stack being
passed by pointers, making the estimation algorithm treat all
recent stack activity as data passed to the called function. The
current implementation is unable to detect stack frame bound-
aries (frame pointers are eliminated in optimized code), so the
entire stack must be treated as a single region. Finally, for
very small data sizes, the visible overestimation results from
the fact that not all scalar arguments were considered in the
user-supplied formulas. These arguments usually correspond to
control and status information transferred aside of the actual
data, and their real impact on the performance depends on the
particular implementation.

An interesting anomaly can be observed in Figure 7. For
larger data sizes, the estimated values are sometimes signif-
icantly lower than expected. The reason for this deviation
is that the performed tests include rescaling static images,
which results in certain pixel information being repeated in
consecutive scanlines for large zoom factors. The unchanged
buffer contents are not considered as new data to be trans-
ferred, hence the underestimation. Detecting such situations
can help in the optimization of the communication between

the CPU and the accelerator in cases where the gain from the
suppression of unnecessary transfers overcomes the cost of
checking the data for duplicates.

In general, the estimation error does not vary greatly with
the actual size of the data, and oscillates around a few hundred
bytes above the expected value over the entire examined
range. The root-mean-square error of the obtained estimates
in relation to the expected values was 284 bytes for BLAS,
335 bytes for OpenSSL and 482 bytes for libjpeg. Hence,
this method is particularly useful for estimating data sizes
starting from a few kilobytes, where such differences typically
cause a relatively small change in the data transfer and kernel
execution time.

At a first glance, the results obtained using the fast method
(left hand side graphs) contrast with the accuracy obtained for
the full method and do not seem useful in terms of work size
estimation. However, this method can still be used to reveal
the memory usage patterns of applications and compare them
to the actual needs. For example, if an application frequently
allocates significantly more memory than it actually needs, as
is the case for the Octave example (see Figure 5), revising the
allocation scheme could greatly reduce the overall memory
demand of the application. Furthermore, a potential situation
where the allocated buffer is too small can also be easily
identified, thus helping to solve a serious security problem.

C. Overheads

Shared library interposition obviously causes an increase
in the program execution time and in its memory footprint,
since the additional code is loaded into the process memory
and executed. The resulting overheads differ according to the
purpose and implementation of each particular wrapper library.
The overheads for a set of wrapper libraries which implement
the features described earlier were measured to evaluate their
impact on the execution of the profiled applications.

The overheads, measured using the test setup that was
denoted in Table I as GPU, are summarized in Table IV. The
presented execution time overhead resulting from the wrapper
library activity is normalized to one function call. The constant
memory overhead parcel includes the code and data structures
which reside in memory regardless of any wrapper library
activity. Additional memory may still be allocated during the
execution for any bookkeeping structures used by a given
wrapper library.

The “Trace” wrapper library writes the function name and
the arguments to the trace file upon each call, which makes
its impact noticeable, but not significant. The “Trace + fast”
wrapper library additionally performs the data transfer size
estimation using the faster variant of the automatic method
presented earlier. Finally, the “Trace + full” wrapper maintains
complete copies of all data that the traced program stores on
the heap and on the stack, effectively doubling the require-
ments of the process for the allocated memory. At this respect,
it is important to note that those automatic estimation methods
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Figure 5. Data transfer size estimates obtained by memory inspection compared to user-defined estimates; application: Octave, library: BLAS, function:
dgemm; 1000 points
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Figure 6. Data transfer size estimates obtained by memory inspection compared to user-defined estimates. 1188 points. Application: EncFS, library: OpenSSL,
functions: EVP EncryptUpdate, EVP DecryptUpdate.
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Figure 7. Data transfer size estimates obtained by memory inspection compared to user-defined estimates. 29500 points. Application: convert (ImageMagick),
library: jpeglib, functions: jpeg read scanlines, jpeg write scanlines.

are not intended for execution in production systems, and thus
the imposed overheads are only important in the context of the
accelerator development process.

VI. CONCLUSIONS AND FUTURE WORK

A novel approach for automatic performance prediction in
heterogeneous systems was presented. The proposed frame-

work allows a transparent and automatic estimation of the
work size and its relation to the execution time of the library
functions during application execution. It then combines the
collected execution traces with the accelerator performance
models in order to predict the overall speedup that can be ob-
tained for the considered application with a given accelerated
kernel implementation.
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TABLE IV
OVERHEADS IMPOSED BY THE DIFFERENT WRAPPER LIBRARIES.

Mean time ov. Const. memory Extra mem ov.
Wrapper library per call (µs) overhead (kB) per region (B)
Trace 8.2 3884 -
Trace + fast 9.3 5632 24

Trace + full 12.8 + 0.29/KBb 8208 24 + region size

a. i.e. 0.29µs per each kilobyte of inspected memory

The proposed prediction methods have been evaluated for a
set of existing applications without introducing any modifica-
tions to them. The obtained experimental results showed that
accurate work size estimation can be successfully performed
for diverse library interfaces. The estimated work size figures
are consistent with the actual values for all examined appli-
cations within the range from hundreds of bytes up to tens
of megabytes. The estimation error does not vary significantly
with the absolute work size. The root-mean-square error of the
estimated values was measured between 284 and 482 bytes for
the whole examined range.

Using the correctly estimated work sizes, the proposed
global speedup prediction method demonstrated the ability to
produce accurate results, with the relative error not exceeding
10%, and in most cases ranging between 1 and 4%.

Possible future improvements may concern the accuracy
of the automatic data transfer size estimation methods, as
well as the overheads they impose. Another interesting future
direction is the investigation of kernels which operate on data
structures that are more complex than arrays or matrices.
Reliable identification and quantification of structures such as
linked lists, trees or graphs without a priori knowledge is not
trivial, but may be feasible if certain patterns are properly
identified in a large set of samples.
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