
Advantages and GPU Implementation of High-Performance Indexed DNA Search
based on Suffix Arrays

Gustavo Encarnação Nuno Sebastião Nuno Roma
INESC-ID / IST-TU Lisbon INESC-ID / IST-TU Lisbon INESC-ID / IST-TU Lisbon

Portugal Portugal Portugal
gpfe@sips.inesc-id.pt Nuno.Sebastiao@inesc-id.pt Nuno.Roma@inesc-id.pt

ABSTRACT
A comparative analysis of high-performance implementa-
tions of two state of the art index structures that are of par-
ticular interest in the field of bioinformatics applications to
accelerate the alignment of DNA sequences is presented.
The two indexes are based on suffix trees and suffix arrays
and were implemented in two different platforms: a quad-
core CPU and a NVIDIA GeForce GTX 580 GPU, based on
the newest Fermi architecture. Unlike what happens in con-
ventional CPU implementations, the obtained experimen-
tal results reveal that GPU implementations clearly favor
the suffix arrays, due to the achieved performance in terms
of memory accesses. When compared with the CPU, the
results demonstrate the possibility to achieve speedups as
high as 85 when using the suffix array in the GPU, thus
making it an adequate choice for high-performance bioin-
fomatics applications.

KEYWORDS: GPGPU, Indexed Search, Bioinformatics

1. INTRODUCTION

Nowadays, the role of bioinformatics in the discovery of
new genetic information contained in the Deoxyribonucleic
Acid (DNA) sequence is unquestionable. With the advent
of the Next-Generation Sequencing Technologies [1], which
generate large amounts of short DNA segments (reads), the
amount of sequenced DNA has grown exponentially. As
an example, the December 15th 2010 release of the Gen-
Bank [2] database, one of the largest public databases of
DNA sequences, includes over 122× 109 base pairs.

One of the most used algorithms to extract information from
biological sequences is the Smith-Waterman (S-W) algo-
rithm. It is capable of finding the optimal local alignment
between any two sequences with sizes n and m in O(nm)

runtime. For large sequences, such as the human genome
(with about 3 × 109 base pairs), this runtime can be ex-
tremely large which led to the development of other sub-
optimal algorithms that typically start by finding an exact
match between small sub-sequences of the query and the
reference sequences (a seed). Afterwards, if such seed ful-
fills a given set of conditions, the alignment is extended to
the sides. To accelerate the search of the initial match, many
of these heuristics make use of a pre-prepared index of the
reference sequence. Such index can be built using differ-
ent data structures, such as the hash tables of q-mers (sub-
strings of pre-defined length q) used in BLAST [3] or the
suffix trees used in MUMmer [4].

Even though these index structures significantly acceler-
ate the search for the initial match, these algorithms still
present a high computational demand, mainly due to the
large amount of data they must process. As such, several
parallelization techniques have been considered to acceler-
ate these algorithms [5]. On the other hand, with the re-
cent developments on high-performance computer architec-
tures, a vast set of inexpensive parallel processing struc-
tures has emerged, such as multi-core CPUs with 4 or
even more homogeneous processors or Graphics Process-
ing Units (GPUs) with general purpose computation capa-
bilities that have as many as 512 processing cores. As a con-
sequence, it has become imperative to adapt the implemen-
tation of the most demanding algorithms in order to take the
maximum advantage of such processing capabilities.

Some previous work, focused on the parallelization of the
alignment algorithms in the several platforms has already
been presented [6–8]. The algorithm proposed by Farrar
et al. [7] is integrated in the SSEARCH35 application of
the FASTA framework and uses Single Instruction Multiple
Data (SIMD) instructions to parallelize the S-W algorithm
on the CPU at the algorithm level. Other programs, like
MUMmer [4] and Bowtie [9], are also targeted at the CPU
but mainly take advantage of data-level parallelism. While

MUMmer [4] uses a suffix tree as its index data structure,
Bowtie [9] uses the Burrows–Wheeler transform to reduce
the memory footprint of its index structure.

One common observation that has been retained is that the
great number of processors that are present in the GPU de-
vices make them ideal for computationally intensive appli-
cations, like bioinformatics algorithms. Nevertheless, the
inherent GPU restrictions on synchronous execution and on
memory access often impose a significant constraint on the
adopted programming model and limit the type of algo-
rithms that can be efficiently parallelized on these devices.
Nevertheless, independently of the set of constraints im-
posed by the target architecture, it is still necessary to find,
among the several available algorithms for a given applica-
tion, which is the best suited for parallelization.

The research that is presented in this paper focuses mainly
on the implementation and thorough evaluation and com-
parison of two optimized index structures: suffix trees and
suffix arrays. Both of these indexes are widely adopted to
perform DNA search operations of short query sequences
against a large reference sequence. The presented algo-
rithms were implemented using CUDA and executed in a
NVIDIA GPU providing significant speedups when com-
pared with CPU implementations. However, unlike what
happens in conventional CPU implementations, it is demon-
strated that suffix array index algorithms are able to offer
greater accelerations than suffix trees, mostly due to the
lower data transfer times required to move the index struc-
ture into the GPU.

2. INDEXED SEARCH

To accelerate string matching problems, it is common to
create an index of the reference string and then use it to
accelerate the match with a given query string. Several dif-
ferent data structures are currently available to build such
index, according to the specific requirements of the appli-
cation. In the case of DNA alignment, the use of an index
capable of finding the match location of a given query of
size n in linear time (O(n)) is highly desirable. The well
known MUMmer framework [4] makes use of an index with
such characteristics based on suffix trees. It uses this index
to determine the Maximal Unique Matching subsequences
(MUMs) between any two sequences.

2.1. Suffix Trees

A suffix tree is a data structure that represents all the suf-
fixes of a given sequence [10, 11] (see example in Fig. 1).
It is composed of a root node, several internal nodes and
leafs. Each node is connected, by an edge, to at least two
child-nodes or leafs and every edge is labeled with a subse-
quence of the original sequence. The sequence that results

mississippi$ $

p
is

si

ssippi$ ppi$ ssippi$ ppi$

i

i$ pi$$

ssi

ssippi$ ppi$

ppi$

Figure 1. Example of a suffix tree for the string
”mississipi”, including the suffix links (dashed lines).

from concatenating all the edge labels in the path from the
root node to a leaf represents a single suffix of the original
sequence. Typically, the original sequence is padded with
a special symbol ($) to assure that no suffix of the origi-
nal sequence is a prefix of another suffix. An n character
sequence has n suffixes and the corresponding suffix tree
has n leafs. An internal node of the suffix tree represents a
repeated subsequence of the original sequence and the num-
ber of occurrences of this subsequence equals the number of
leafs below that node.

By using suffix trees, it is possible to discover whether a
particular query string exists within a larger reference string
in O(n), where n is the size of the query string. This is
achieved by first creating a suffix tree that represents the ref-
erence sequence and then by following the tree edges that
match the query string. If it is possible to match all query
sequence characters with the characters encountered at an
edge path while navigating down the tree, then the query
exists somewhere in the reference. Furthermore, by per-
forming a depth-first search from the point where the search
stopped and finding all the leafs nodes from that point on-
wards, it is possible to exactly know how many times and
where the query occurs in the reference in linear time. Nev-
ertheless, all the significant features provided by suffix trees
are offered at the cost of an important drawback, related to
the amount of space that is required to store this index struc-
ture, which can be as high as 20 times the initial reference
size.

2.2. Suffix Arrays

When compared to suffix trees. suffix arrays [12] are re-
garded as a more space efficient structure typically requir-
ing three to five times less space. This structure (illustrated
in Fig. 2) can be seen as an array of integers representing
the start position of every lexicographically ordered suffix
of a string. The improvement that allows suffix arrays to
use less space than suffix trees come from the fact that the
array simply needs to hold a pointer to the start of the suf-
fix (or an index of the corresponding text) to store each of
these suffixes. This means that the element of the suffix ar-
ray that holds the value ’0’ points to the first character of the

Suffix Index
mississippi 0

ississippi 1
ssissippi 2
sissippi 3
issippi 4
ssippi 5
sippi 6
ippi 7
ppi 8
pi 9

i 10
(a) Unsorted suffix array.

Suffix Index
i 10

ippi 7
issippi 4

ississippi 1
mississippi 0

pi 9
ppi 8

sippi 6
sissippi 3

ssippi 5
ssissippi 2

(b) Lexicographically
sorted suffix array.

Figure 2. Suffix array for the string ”mississipi”.

text (assuming the text is a zero indexed array of characters)
and the suffix it represents corresponds to the whole text.

The most straightforward way to construct such data struc-
ture is to simply create an array with all the suffix elements
placed in ascending order and then apply a sorting algo-
rithm to properly sort the suffixes. A more complex alter-
native is to start by creating a suffix tree and then find all
the leafs in the tree. This approach, although being faster
than the direct sorting method, has the important drawback
of requiring much more space to hold the initial suffix tree.

The usage of a suffix array for string matching (in this case
for DNA sequence alignment) is similar to using any other
sorted array to search for a given element. The only dif-
ference is the way that two items are compared with each
other. Since the values in the suffix array are not strings but
indexes (pointer) of a string, it is not the values themselves
that must be compared but the text they point to. Hence,
when comparing two elements of the suffix array, not only
the character they point to must be compared but, if they are
equal, the subsequent characters must also be compared.

The overall performance of the alignment function will re-
flect the efficiency of the search algorithm used in the array.
By using a binary search algorithm the array is repeatedly
divided in half until the desired element is reached. Hence,
suffix arrays solve the string matching problem with an
O(n logm) complexity, where n is the length of the query
and m the length of the reference.

3. GPU ARCHITECTURE AND PRO-
GRAMMING MODEL

The basic building blocks in NVIDIA’s Fermi architec-
ture [13] are the Streaming Multiprocessors (SMs). Each
SM contains 32 processing cores and two warp schedulers.
A warp is a set of 32 parallel threads which are concurrently
executed in sets of 16 threads (a half-warp) on the same
SM. The most important characteristic of these SMs is that

they follow a Single Instruction Multiple Thread (SIMT)
paradigm, which means that the processing cores executing
a half-warp always execute the same instruction on the dif-
ferent threads. Hence, if a thread within a warp performs
a different branch, the processing of the several threads of
such warp will be serialized, thus presenting a major chal-
lenge to optimize the GPU code and avoid a significant loss
of efficiency.

Besides providing a large number of processing elements,
this GPU also offers a high capacity main memory with a
high bandwidth access (six 64-bit wide memory interfaces).
However, each access to this memory bank incurs in a high
latency (in the order of hundreds of clock cycles). As a
consequence, whenever possible the memory management
unit of the GPU tries to coalesce (join together 32 individ-
ual memory requests), in order to improve the performance.
Therefore, threads in the same warp should access neigh-
boring memory positions so that a single memory transac-
tion is capable of providing data to several threads of an
individual warp. Moreover, the new Fermi architecture pro-
vides an unified 768kB L2 cache for accessing the entire
main memory, which might significantly improve the mem-
ory access time for memory access patterns which can not
be efficiently coalesced.

4. ALGORITHM IMPLEMENTATIONS
To accelerate the execution of exact matching algorithms,
the adoption of current parallel platforms, such as multi-
core CPUs or GPU accelerators, has been regarded as
highly promising. In the particular case of indexed match-
ing algorithms, the index is firstly built, in a preliminary
stage, by using the reference sequence data. Then, the most
usual acceleration strategy adopts a pure data-level paral-
lelism approach, where the several queries that have to be
matched with the same reference sequence are distributed
by the several worker threads. Hence, the index can be
built offline and used afterwards for the search procedure.
Since the reference sequence is the same for a large number
of queries, the initial effort of building the index is widely
amortized.

4.1. Suffix Trees

The first step in the search procedure for DNA sequences is
to build the suffix tree of the reference sequence. This step
is usually performed in the CPU, since it is an inherently
sequential process. The suffix tree is then transferred to the
GPU to be accessed by the several concurrent threads, each
aligning a different query sequence to the same reference
sequence.

The suffix tree is constructed from the reference string and
is afterwards transformed into a flattened tree consisting of

an array of edges. Each node is represented in the flattened
tree by its set of outgoing edges, where each edge contains:
i) its starting index in the reference sequence, ii) the edge
length and iii) the index (in the array) of the first edge of
its destination node. Thus, each edge can be represented
using 3 integers. However, to allow a perfect alignment of
the memory accesses, the representation of a single edge is
padded to hold exactly 4 integers. Furthermore, each node
always contemplates space for its 4 possible edges (repre-
senting an A, C, G or T symbol), although it is possible that
some of these may be filled out as fake edges. The need for
flattening the tree arises from the fact that array indexes are
more conveniently addressed in the memory space of the
GPU than memory pointers. Furthermore, the traversal of
the tree leads to an unpredictable access pattern that may
significantly affect the performance of memory accesses
due to the inability to coalesce them.

Since the suffix tree only includes references to the origi-
nal sequence, besides transferring the flattened tree to the
GPU it is also necessary to transfer the original reference
sequence. To save space and to optimize certain parts of the
alignment function, the reference string is stored as a sec-
ond array of integers. Each of these integers holds 16 nu-
cleotides from the original sequence, each one represented
using two bits.

The original DNA query sequences are stored in the GPU
global memory in their string format. However, to maxi-
mally exploit the available memory bandwidth, each set of
16 nucleotides is packed into a single 32-bit integer and the
symbols of the different query sequences are interleaved.
Due to the particular way query characters are accessed us-
ing suffix trees (single character comparison, instead of 16
characters) these characters are stored in reverse order in
each integer cell: the first character corresponding to the
lowest order bits and the later characters are mapped in the
highest order bits. Such reverse order is preferred since it
allows to obtain the various characters by using a shift right
instruction followed by a binary AND always with the same
mask (’11’).

Due to the adopted encoding of the queries by using only
two bits, it might happen that the last memory position rep-
resents less than 16 nucleotides. This particularity and the
fact that the queries might differ in size, makes it neces-
sary to create an auxiliary structure that specifies how many
symbols each query actually has, so that their end can be
determined during the matching process.

The implemented alignment algorithm, which is executed
by each thread in the GPU, is depicted in Alg. 1. The first
step in the matching process consists of reading the query
sequence data. The first 16 nucleotides are read into a buffer
and the number of valid nucleotides (in case the query is

Algorithm 1 DNA alignment using suffix trees
Read query[thread ID] to query buffer

Extract ’test character’
Read edge[test character]

While (test character == reference[edge character]) {
edge character++

Refill the buffer if necessary
Return the edge’s destination if the buffer is empty

Extract ’test character’
If necessary
Read edge[edge destination + test character]

}
Return mismatch

less than 16 nucleotides long) is calculated. After filling
the query buffer, the first character is extracted from it and
assigned to a ’test character’. Afterwards the whole buffer
is shifted two bits, to prevent the same character from being
used again.

Then, the test character is used to read the first edge that
needs to be checked, by calculating its position in the flat-
tened tree using the character as an offset. Considering that
the algorithm starts navigating the tree from the root node
and the edges of the root node start at index 0, the edge
leading out of the root node by ’test character’ will be at
position tree[0 + test char].

Once the query buffer is filled and there is an edge to follow,
the alignment becomes a cycle of comparisons. The cycle
begins by comparing two characters, the test character and
the first character in the edge. As soon as there is a mis-
match, it is known that the query under processing does not
exist within the reference sequence. On the other hand, if a
point is reached where the query buffer is empty and there
are no more characters to read, then the end of the align-
ment has been reached, the query exists within the refer-
ence sequence and all the leafs that can be reached from the
destination node of the current edge represent one match.

4.2. Suffix Arrays

When compared to suffix trees, the suffix arrays are usu-
ally regarded as a more space-efficient implementation of
the index structure. Although their search time is asymp-
totically higher than suffix trees, in many applications their
smaller size leads to similar or even better performance lev-
els [14, 15], due to the attainable better cache performances.

The suffix array is an uni-dimensional array of integers and
its access pattern is usually as unpredictable as in the case
of suffix trees. Therefore, similar problems are encountered
in terms of coalescing the memory accesses. Just like in the
case of the suffix tree implementation, it is also necessary
to transfer the original reference sequence as well as the

query sequences to the GPU memory. The data structure
is the same as the one that was adopted to hold the query
sequences for the suffix tree implementation.

The alignment algorithm in the GPU was implemented by
conducting a binary search in the pre-processed array. In
each step, the whole query is compared against one entire
suffix, contrasting to what happens in the suffix tree imple-
mentation, where a single edge is compared. The main con-
sequence of this improved approach is that once the suffix to
be considered is determined, the memory accesses become
sequential until it becomes necessary to re-pick the suffix.
Therefore, by transforming the original reference sequence
representation (8-bit characters vector) to an array of inte-
gers where, just as in the queries, each integer holds 16 2-
bit nucleotides, the memory accesses can be reduced by 16
times. One additional (but also important) advantage that
also arises is concerned with the possibility to simultane-
ously compare, in the best case scenario, 16 characters in a
single instruction, leading to a rather efficient combination
of the SIMD parallel programming model with the SIMT
model, natively exploited by the GPU architecture.

The proposed matching algorithm, which is executed by
each of the GPU threads, consists of two nested loops de-
picted in Alg. 2 and Alg. 3, respectively. The first loop
is executed until all possible search options have been ex-
hausted. Since this implementation is based on a binary
search algorithm, such situation happens whenever the left
and right pointers are adjacent (right - left = 1). The first
task of this loop is to pick the next suffix array element to
be considered. This is done by calculating the mid-point be-
tween the left and right pointers. After picking which suffix
to use, it is necessary to read the query and suffix sequences
into a buffer. The read of the first is straightforward, since
it is always aligned. Nevertheless, a special care must be
taken when reading the suffix, since it might not be aligned
and thus the higher bits of the memory position will be in-
valid.

Before the comparison cycle begins, it is necessary to as-
sure that the query buffer and the suffix buffer hold the same
number of packed characters, since 16 symbols are com-
pared at once.

The inner loop, depicted in Alg. 3, is the comparison cy-
cle (’==’) which runs while the sequences are equal and
there are more symbols to be compared in the sequences.
When the algorithm enters the inner loop, the buffers hold
the same number of valid symbols. However, it is not re-
quired that the number of symbols in the buffers is always
the maximum buffer capacity. Consequently, the smaller
buffer will empty sooner than the larger one, which will
still have some data waiting to be compared. The main task
of the inner cycle is to read data into any of the buffers that

Algorithm 2 Alignment using suffix arrays - Outer cycle
While (right - left != 1) {
pivot = (left + right) / 2

Read reference buffer
Calculate reference buffer size

Read query buffer = query[thread ID]
calculate query buffer size

Remove trailing characters from largest buffer

< Inner cycle >
}

Algorithm 3 Alignment using suffix arrays - Inner cycle
While (
reference compare buffer == query compare buffer AND
reference buffer size > 0 AND
query buffer size > 0) {

Set smallest buffer size to 0
Remove leading characters from largest buffer
Update largest buffer’s size

Read data into any buffer of size 0
Calculate the size of updated buffers

Remove trailing characters from largest buffer
}

might have become empty after the last comparison, in or-
der to discard any previously used data and to make sure
that both buffers always contain the same amount of sym-
bols.

An interesting side-effect that arises from using this com-
parison method is that the kernel is more computationally
intensive, with more logic-arithmetic operations than mem-
ory accesses, which significantly benefits the parallel exe-
cution in the GPU.

5. RESULTS

The conducted evaluation of the conceived highly paral-
lel implementations of index based search algorithms was
performed by using real DNA sequence data. The refer-
ence sequence, which was used to build the indexes, corre-
sponds to the first 10× 106 nucleotides of the Homo Sapi-
ens Chromosome 1 (NT 167186.1). The considered set of
query sequences are 200 nucleotides long and come from a
mix of the DNA sequences extracted from the Homo Sapi-
ens Chromosome 1 (NT 167186.1) and the Mus Muscu-
lus Chromosome 1 (NT 039170.7). Several collections of
query sequences were used in the experiments, each one
composed by a different number of elements, ranging from
1024 to 4194304 queries.

The previously described algorithms were evaluated in a
computational system composed of an Intel Core i7 950
quad-core processor, running at 3GHz, with 6GB of RAM.

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1024 4096 16384 65536 262144 1048576 4194304

T
im

e
 (

s)

of 200bp query sequences to match

Tree serial Tree 2 threads Tree 4 threads Tree 8 threads Bowtie

Array serial Array 2 threads Array 4 threads Array 8 threads SSEARCH

Figure 3. Performance evaluation of suffix tree and
suffix array index based search algorithms in

multi-core CPUs.

This platform also includes a NVIDIA GeForce GTX 580
GPU, with 512 processing cores running at 1.54GHz and
1.5GB of RAM.

In a preliminary evaluation, it was compared the perfor-
mance provided by parallel implementations of DNA search
algorithms based either on the suffix tree index (asymptoti-
cally better) or on the suffix array index. The conceived al-
gorithms were compiled to be executed in a homogeneous
multi-core CPU, by making use of the POSIX threads API
to support the parallel execution of 2, 4 and 8 concurrent
threads. It is important to note that the 8 concurrent threads
were run by making use of the Hyper-Threading technol-
ogy leading to a slight lower efficiency in what concerns
the achieved acceleration. On the whole, this experimen-
tal procedure not only allowed to assess the scalability of
the two index algorithms, but it also provided a compara-
tive evaluation with other popular and highly efficient CPU
based software, namely Bowtie and SSEARCH35.

From the obtained results (see Fig. 3) it can be observed that
although the asymptotic runtime corresponding to the suf-
fix arrays is slightly greater than that of the suffix trees, in
practice the performance of both implementations is quite
similar. This result was already observed in [14, 15], and is
mainly due to a more efficient usage of the cache memory
by the suffix array, which is achieved due to its smaller and
more regular structure. Furthermore, by comparing the ex-
ecution time results with the Bowtie and SSEARCH35 pro-
grams, it is possible to observe that the implemented suffix
tree and suffix array algorithms are significantly faster, thus
plenty justifying their adoption whenever high performance
DNA alignment is required.

Then, the performance of the conceived concurrent al-
gorithms was assessed in a GPU platform, namely the
NVIDIA GeForce GTX 580. The obtained results are pre-
sented in Fig. 4. This chart also includes a comparison with

0.001

0.010

0.100

1.000

1024 8192 65536 524288 4194304

T
im

e
 (

s)

of 200bp query sequences to match

GPU Tree GPU Array MUMmerGPU

Figure 4. Performance evaluation of the considered
index based search algorithms in the GPU.

another DNA alignment framework, based on suffix trees,
executed in the GPU: MUMmerGPU [5]. These results cor-
respond to the total execution time of the algorithms, while
searching for the corresponding number of query sequences
in the reference sequence. The total execution time consid-
ers all the required data transfers (host to GPU and GPU to
host), as well as the kernel execution time. As it is possi-
ble to observe in Fig. 5, the data input time is very signif-
icant in all these index-based search algorithms, since the
large index data structure must always be transferred to the
GPU device memory. In fact, when the number of query
sequences to be searched is very small, this data input time
is the main responsible for the modest performance values
provided by the GPU implementations, when compared to
the corresponding CPU implementations. However, for a
larger number of query sequences (commonly adopted by
this application domain), the GPU implementations offer
a significantly better performance, with speedup values as
high as 85 for the suffix array implementation and 25 for
the suffix tree implementation.

These observations reveal that contrary to what is stated by
the asymptotical complexity analysis of these algorithms
(and unlike the obtained CPU performance results), the
GPU implementation clearly favors the suffix array index
structure. The justification for this fact is not only the more
regular execution flow of this algorithm and its more effi-
cient use of the cache memory, but is also the fact that the
space occupied by the suffix array index is much smaller
than that of the suffix tree index, which makes the suffix ar-
ray implementation to always present a much lower transfer
time from the host to the GPU device.

Finally, the obtained GPU implementations were also com-
pared with two other software frameworks: MUMmerGPU
and CUDASW++. While the results obtained with
MUMmerGPU were consistently higher than the imple-
mented suffix tree and suffix array runtimes, comparison

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

1024 8192 65536 524288 4194304

T
im

e
 (

s)

of 200bp query sequences to match

GPU Tree In GPU Tree Kernel GPU Tree Out

GPU Array In GPU Array Kernel GPU Array Out

MUMmerGPU In MUMmerGPU Kernel MUMmerGPU Out

Figure 5. Communication and kernel execution times
for the implementations in the GeForce GTX 580 GPU.

with CUDASW++ software was not possible since it has a
limitation on the maximum reference size of about 64×103

base pairs. Overall, the proposed suffix array implementa-
tion achieves the best results.

6. CONCLUSIONS

This paper presented a comparative evaluation of two in-
dex data structures that are especially suited for acceler-
ating DNA sequence alignment in bioinformatics applica-
tions: the suffix tree and the suffix array. These two in-
dexes were thoroughly compared in terms of performance
when implemented using two different parallel platforms: a
multi-core CPU system and a NVIDIA GeForce GTX580
GPU (Fermi architecture).

From the obtained results it was observed that although the
asymptotic search time of the suffix array (O(n logm)) is
higher than that of the suffix tree (O(n)), practical imple-
mentations in the multi-core CPU revealed that the perfor-
mance of the array is very similar to that of the trees. How-
ever, the same is not true when implemented in GPUs. As
opposed to the asymptotic analysis, the obtained experi-
mental results show that for this specific parallel architec-
ture the suffix arrays clearly outperform the suffix trees,
mainly due to their smaller amount of required memory
space and to the improved usage of cache.

ACKNOWLEDGMENTS

The presented research was performed in the scope of project
”HELIX: Heterogeneous Multi-Core Architecture for Biologi-
cal Sequence Analysis”, funded by the Portuguese Foundation
for Science and Technology (FCT) with reference PTDC/EEA-
ELC/113999/2009, and partially supported by FCT (INESC-ID
multiannual funding) through the PIDDAC Program funds and
through the Ph.D. grant with reference SFRH/BD/43497/2008.

REFERENCES
[1] J. Shendure and H. Ji, “Next-generation DNA sequencing,”

Nature Biotechnology, vol. 26, no. 10, pp. 1135–1145, Octo-
ber 2008.

[2] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Os-
tell, and E. W. Sayers, “GenBank,” Nucleic Acids Research,
vol. 38, no. Database, pp. D46–51, January 2010.

[3] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman,
“Basic local alignment search tool,” Journal of Molecular
Biology, vol. 215, no. 3, pp. 403–410, 1990.

[4] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M. Shumway,
C. Antonescu, and S. Salzberg, “Versatile and open soft-
ware for comparing large genomes,” Genome Biology, vol. 5,
no. 2, p. R12, 2004.

[5] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney, “High-
throughput sequence alignment using Graphics Processing
Units,” BMC Bioinformatics, vol. 8, no. 1, p. 474, 2007.

[6] T. Rognes and E. Seeberg, “Six-fold speed-up of Smith-
Waterman sequence database searches using parallel pro-
cessing on common microprocessors,” Bioinformatics,
vol. 16, no. 8, pp. 699–706, 2000.

[7] M. Farrar, “Striped Smith-Waterman speeds database
searches six times over other SIMD implementations,”
Bioinformatics, vol. 23, no. 2, pp. 156–161, 2007.

[8] Y. Liu, B. Schmidt, and D. Maskell, “CUDASW++2.0: en-
hanced Smith-Waterman protein database search on CUDA-
enabled GPUs based on SIMT and virtualized SIMD abstrac-
tions,” BMC Research Notes, vol. 3, no. 1, p. 93, 2010.

[9] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ul-
trafast and memory-efficient alignment of short DNA se-
quences to the human genome,” Genome Biology, vol. 10,
no. 3, p. R25, 2009.

[10] P. Weiner, “Linear pattern matching algorithms,” in Proceed-
ings 14th Annual Symposium on Switching and Automata
Theory. SWAT ’08., October 1973, pp. 1–11.

[11] E. Ukkonen, “On-line construction of suffix trees,” Algorith-
mica, vol. 14, no. 3, pp. 249–260, September 1995.

[12] U. Manber and G. Myers, “Suffix arrays: a new method for
on-line string searches,” in Proceedings First annual ACM-
SIAM Symposium on Discrete algorithms, ser. SODA ’90,
Philadelphia, PA, USA, 1990, pp. 319–327.

[13] J. Nickolls and W. Dally, “The GPU Computing Era,” IEEE
Micro, vol. 30, no. 2, pp. 56–69, March 2010.

[14] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing
suffix trees with enhanced suffix arrays,” Journal of Discrete
Algorithms, vol. 2, no. 1, pp. 53 – 86, 2004.

[15] G. Navarro and R. Baeza-yates, “A hybrid indexing method
for approximate string matching,” Journal of Discrete Algo-
rithms, vol. 1, p. 2000, 2000.

