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Abstract. The increased adoption of Graphics Processing Units (GPUs)
to accelerate modern computational intensive applications, together with
the strict power and energy constraints of many computing systems, has
pushed for the development of efficient procedures to exploit dynamic
voltage and frequency scaling (DVFS) techniques in GPUs. Although
previous works have applied several pattern recognition techniques for
GPGPU application classification, these approaches often result in many
misclassifications when trying to identify which applications can benefit
from DVFS. To circumvent this limitation, a new lightweight method-
ology for classifying GPU applications based on their performance and
power consumption in the presence of GPU core frequency scaling is pre-
sented. The proposed methodology is based on a set of performance coun-
ters, such as memory bandwidth utilization and memory-related stalls,
which are extracted during the application execution. Experimental re-
sults for a set of 20 applications from the Parboil, Rodinia and Polybench
benchmark suites show that the proposed classification approach is able
to correctly identify applications that can benefit from frequency scaling.

1 Introduction

Modern high performance computing (HPC) systems are increasingly making
use of general purpose accelerators, such as graphics processing units (GPUs),
in order to increase the resulting system performance. This is confirmed by
an analysis of the most recent version of the TOP500 list (November 2015),
where 103 of these systems are equipped with accelerators (75 and 90 in the
two previous editions of this list). However, with the established adoption of
GPUs, it is gradually important to find mechanisms that ensure the maximum
efficiency of the computing system, both in terms of performance and (most
importantly) energy. Accordingly, significant research efforts are being put forth
in the investigation of dynamic voltage and frequency scaling (DVFS) techniques,
due to the inherent potential for significant power and energy savings in many
of the computer system components, including the processor cores [1].

General-purpose applications can largely vary in the way they use the compu-
tational and memory resources of the devices where they are executing [2]. While
some applications perform a large number of computational operations for each
loaded data (more compute-bound), other applications may perform very few
operations for each portion of fetched data (more memory-bound). Although in



the former type of applications the resulting performance is more likely to scale
proportionally with the frequency of the cores (highest frequency ≡ best perfor-
mance), this behaviour is not guaranteed for the latter set of applications. This
opens an interesting window of opportunity, since some of these applications can
be executed at lower frequency levels with negligible performance drop-off. Con-
sequentially, and considering that (under DVFS) power consumption increases
with the operating frequency of the device, the identification of these classes
of applications can potentially be considered as an interesting opportunity for
energy savings. However, just as power scales up with the operating frequency,
the execution time scales down, making the definition of the optimal operat-
ing frequency a non-trivial choice. Hence, to perform this type of analysis, it
is therefore fundamental the adoption of appropriate methodologies that allow
the proper classification of the applications workloads, in order to identify which
cases could potentially result in power- or energy-savings.

Although some previous works have already addressed the topic of workload
classification, they have mostly focused on CPUs [2], even though addressing
many different goals, e.g. characterization, diversity analysis, subsetting, etc.. In
particular, the majority of the previous works on workload characterization in-
volves the combination of principal component analysis (PCA) and hierarchical
clustering [3]. As a consequence, some previous studies on workload characteri-
zation in the GPU-domain have tried to use similar approaches to the ones that
were applied to the CPUs. In particular, Kerr et al. [4] characterized PTX work-
loads using a GPU simulator with the purpose of optimizing these applications.
Che et al. [5] also performed a diversity analysis on the Rodinia benchmark
suite, by using a real GPU (NVIDIA GTX 480). However, when looking at the
majority of the state-of-the-art works in the area of GPU workload classification,
it can be seen that most of the research relies on the usage of GPU simulators
instead of real hardware. Although this allows for a detailed profiling of the work-
loads, usually by considering performance counters that are non-existent in real
hardware, this renders these approaches impossible to replicate in real systems.
Additionally, the existing GPU simulators are based on the NVIDIA’s Fermi
microarchitecture, which has already been followed by Kepler (2013), Maxwell
(late 2014) and more recently Pascal (2016).

In the same trend, Adhinarayanan et al. [6] also provided an automated
framework for characterizing and subsetting GPU workloads, by also relying
on PCA and hierarchical clustering. While this approach has the advantage of
reducing the dimensionality of the problem, usually by transforming a large
number of metrics into a smaller number of principal components, it makes the
understanding of each resulting class harder (from the computing architecture
perspective) and does not necessarily result in a energy-aware classification.

In contrast with the described approaches, this work specifically addresses
the definition of alternate classification methodologies in order to unveil which
workloads will benefit from the application of DVFS techniques to provide energy
savings. In fact, while it makes sense to classify applications and workloads as



compute-bound or memory-bound when analysing their performance on a given
GPU, it is observed that these notions cannot be applied in the same way when
the power consumption is considered. In particular, we show that classifying
for performance and for power consumption may result in different application
classifications, confirming the need for separate classification techniques that
depend on the considered goal. Additionally, unlike the previous proposals, this
work is performed by using real and modern hardware systems. Accordingly, the
major contributions of this paper are the following:

– Analysis of different types of performance and power consumption metrics
using several relevant GPU benchmarks on real hardware;

– novel application classification algorithms based on GPU performance and
power metrics, able to characterize the execution of each application on a
range of GPU frequencies based on its execution on a single core frequency;

– comparison with other state-of-the-art classification techniques for GPU ap-
plications.

To conduct this work, we study 20 applications from different relevant bench-
mark suites (Parboil [7], Rodinia [8] and Polybench [9]), and analyse how the
core frequency scaling affects their performance and their power consumption.
The obtained experimental results show that the proposed algorithms are able
to accurately and consistently classify the considered GPU applications in terms
of their behaviour in performance, power and energy consumption. Finally, the
proposed approach is compared with other state-of-the-art classification method-
ologies, which result in classes of applications that do not exhibit similar perfor-
mance/power behaviour in the presence of frequency scaling.

2 Application Classification for GPGPU DVFS

This work focuses on the classification of GPGPU applications, with the objec-
tive of identifying which applications can benefit from DVFS in order to provide
energy-savings. The goal is to be able to properly classify one given application
for all operating frequencies of a given GPU device, after the execution of that
application on a single operating frequency.

However, changing the frequency of the GPU cores may affect an application
execution in very different ways, depending on each application’s characteristics.
While it can be expected that a decrease in the core frequency (f) will cause the
kernel execution time to increase (T ∝ 1

f ) and power consumption to decrease

(Pdynamic ∝ V 2f and Pstatic ∝ V eγV ), the actual values for the application’s
performance and power consumption over different frequencies are highly depen-
dent on the application. In fact, it has been shown that accurately predicting the
impact of DVFS in the execution time or power consumption requires complex
predictive models [10]. Hence, given that the energy (E) consumed by the GPU
is computed as the product between power (P ) and execution time (t), E = P×t,
it is important to understand the effects of DVFS on both the execution time
and power consumption of applications.
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Fig. 1: Example of memory and compute operations overlap on three different
core frequencies, with F2 > F1 > F3. The instructions pairs (Mem1, Comp1)
and (Mem2, Comp2) require full synchronization.

The DVFS impact on execution time is a complex problem that require a
better understanding of the GPU architecture. In particular, one of the GPU
main design goals concerns the use of multiple groups of parallel threads (warps
in NVIDIA nomenclature) to hide instruction latency. However, in many gen-
eral purpose applications, it is not always possible to hide the instruction latency
with other warps. Therefore, when analysing the performance of applications,
from the perspective of their bottleneck, most works tend to consider two main
types of applications: compute-bound and memory-bound. Compute-bounded ap-
plications are defined as those where the execution time is mainly determined
by the performance of the processing components, and is a direct consequence
of an intensive utilization of the processing pipeline and functional units. On the
other hand, memory-bound applications have their execution time mainly de-
pendent on the bandwidth and latency of the memory hierarchy when satisfying
the memory access requests.

Accordingly, when applying core level DVFS, the performance of a memory-
bound kernel is limited by the communication with the GPU global memory,
since the operating frequency of such component does not scale with the core
frequency. However, such limitation is a consequence of the applied setup in terms
of the core and memory operating frequencies. Hence, while one kernel may be
compute-bound at one core operating frequency, it may become memory-bound if
the operating frequency increases. To illustrate such condition, Figure 1 presents
a simplification of relative weight represented by the memory and compute op-
erations of one given kernel at three different core frequencies. At frequency F1,
the threads start executing both the Mem1 and Comp1 instructions at the
same time and both finish their execution at the same time. In this example,
instructions Mem2 and Comp2 require full synchronization but since both in-
structions finish at the same time, the latency of the threads waiting to be issued
is fully hidden by the threads currently executing.
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Fig. 2: Execution of the training set applications on NVIDIA Tesla K40c.

However, if the core frequency is changed to a higher value (F2), there will
be a time interval where only the Mem instructions are executing on the GPU,
meaning that there are not enough compute threads to hide the latency of the
threads waiting to be issued. This will cause an increase of the number of stalls
caused by memory dependencies, therefore making the corresponding perfor-
mance counter a good indicator of the bottleneck of one application. Hence,
at core frequency F2, the application is memory-bounded, since its performance
bottleneck depends on the latency of the memory operations. If, on the contrary,
the core frequency is set to a value F3 that is lower than F1, the duration of the
Comp instructions will be longer than that of the Mem instructions. In this
case, the performance bottleneck will be determined by the critical path of the
compute instructions, thus resulting in a compute-bounded classification.

However, although such classification strategy is valid for the application ex-
ecution time, it is not entirely accurate for power classification. To demonstrate
such conclusion, a set of benchmark applications from the previously referred
Parboil, Rodinia and Polybench benchmark suites were executed on an NVIDIA
Tesla K40c GPU at different core frequency levels, namely 875 MHz (default
level), 810 MHz, 745 MHz and 666 MHz. Additionally, the DVFS impact on the
execution time and energy consumption was measured (see Figure 2). Also, the
applications were hand-classified as memory-bound and compute-bound at the
default operating frequency (Figure 2, top-right), by considering the execution
time increase when operating at the different frequencies, and each group’s en-
ergy variation was analysed (Figure 2, bottom-right). As can be observed, the
presented compute/memory bound classification presents uninteresting results
when energy consumption is considered. Hence, different methodologies must
be employed. As a consequence, and keeping in mind that E = P × t, a sepa-
rate methodology to characterize effects of DVFS on the power consumption of
applications is required.

In most GPUs (and in particular in modern NVIDIA GPUs) there are two
independent frequency domains: 1) Core domain, which includes the stream-
ing multiprocessors (SMs); and 2) Off-chip domain, which includes the off-chip
DRAM. Accordingly, the power consumption can be expressed as

P(fCORE, fMEM) = PCORE(fCORE) + PMEM(fMEM) (1)



where PCORE is the power consumed by the components of the core domain, and
PMEM is the power consumed by the memory components, i.e. by the DRAM,
which is herein assumed to remain constant. Based on Equation 1, it is possi-
ble to characterize the applications depending on their usage of the core and
memory components. Therefore, a given application shall be considered to have
a high memory utilization (i.e. with high activity of the memory resources)
if the power consumed by the GPU is dominated by the PMEM parcel, i.e. if
PMEM >> PCORE. As a consequence, when the frequency of the core is changed,
since the power consumed by the memory is independent of the frequency of the
core domain, the total power consumed will remain almost constant. On the
other hand, if PCORE >> PMEM, the GPU power consumption will scale lin-
early with the core frequency and the applications are considered to have a high
core utilization. In order to perform the power-aware classification of GPU ap-
plications, a third scenario is also herein considered where both the memory and
core components present a low utilization. Hence, since both components present
a low activation of their resources, the average power consumption variation will
be reduced when the core frequency is scaled.

Accordingly, when looking at the behaviour of the GPU power consumption
over different operating frequencies, three different classes will be considered:
High Core Utilization, High Memory Utilization and Low Device Utilization.

However, in order to perform such classification without having to execute
the kernel at a different operating frequency, it is necessary to retrieve some
profiling information regarding each application, which in this case must charac-
terize its usage of the memory components (specifically, of the off-chip DRAM).
One metric that gives a good indicator of the level of utilization of the memory
resources is the percentage of stalls caused by memory dependencies (Eq. 2).
However, it is still possible for one application to have other dominant causes
for stalls and still a have high utilization of the memory components. In accor-
dance, a complementary metric that quantifies the ratio of the achieved memory
bandwidth over the device’s peak (Eq. 3) is also considered.

Stallsmem =
Memory Dependency Stalls

All Stalls
(2)

Bandwidthmem =
Device memory transactions× Transaction size

Global memory bandwidth
(3)

Hence, in order to perform the power-aware classification, additional metrics
that characterize the utilization of the GPU resources are required, namely per-
formance counters that characterize the amount of time the GPU resources are
being used. Among the provided set of execution metrics that are nowadays
made available in GPU devices, it was selected a subset of metrics related with
the total kernel execution time and the core utilization (Utilcore) which corre-
sponds to the average percent of time over the previous sample period during
which one or more kernels was executing on the GPU.

Algorithms 1 and 2 formalize the proposed methodologies to classify GPU
applications into classes that characterize their performance and power consump-



tion, respectively, over different frequency levels based on performance counters
measured while executing on single core operating frequency.

Algorithm 1 Classification methodol-
ogy of GPU applications based on the
effects on execution time of DVFS.
Inputs: Bandwidthmem and Stallsmem.
Output: Benchmark classification.

1: if Bandwidthmem>α then
2: memory-bound class.
3: else
4: if Stallsmem depend>β then
5: memory-bound class.
6: else
7: compute-bounded class.
8: end if
9: end if

Algorithm 2 Classification methodol-
ogy of GPU applications based on the
DVFS effects on power consumption.

Inputs: Exec time, Stallsmem, Utilcore.
Output: Benchmark classification.

1: if Exec time<γ OR Utilcore<δ then
2: Low Device Utilization class
3: else
4: if Stallsmem>η then
5: High Mem. Utilization class
6: else
7: High Core Utilization class
8: end if
9: end if

For the performance-aware classification (Algorithm 1), a given application
can be classified by executing it in the target GPU on a single chosen frequency
level, during which the two mentioned performance counters are measured. The
application under analysis is considered to be memory-bounded if one of the two
measured values is higher than the corresponding respective thresholds, α and
β, respectively, whose values were experimentally determined by using a training
set to determine the combination of values that would result in the minimum
misclassified applications. The power-aware classification (Algorithm 2), is simi-
lar to the performance one, with an additional class that selects the applications
with low device utilization, according with a set of threshold γ, δ and η which
were determined in the same way as before.

3 Experimental Results

To evaluate the proposed methodologies, several CUDA-based application bench-
marks from the Parboil [7], Rodinia [8] and Polybench [9] suites (see Table 1)
were executed on a NVIDIA Tesla K40c GPU (Kepler microarchitecture), which
provides a user-level interface to scale the core operating frequency (fCORE) in
four non-idle levels, namely 875 MHz, 810 MHz, 745 MHz and 666 MHz.

Each application was executed at the four allowed core frequency levels and
their execution time was measured using CUDA events, together with the pre-
viously referred performance counters (see Section 2) for the reference (default)
frequency level (875 MHz). Finally, in order validate the devised power-aware
classification, the power consumption of each application executed on Tesla K40c
GPU was obtained using NVML. Such power samples were obtained at a sample
interval of 15 ms, and the final power consumption was computed as the average
of all the kernels that constitute each application benchmark.



Table 1: Summary of the considered application benchmarks.

Rodinia

Application Size

Backprop 655360
CFD missile.domn.0.2M

Gaussian 2048×2048
Hotspot 1024, 2, 10000
K-Means 3000000 34f.txt

Lud 8192×8192
SRAD2 4096

Streamcluster Default

Polybench

Application Size

2MM Default
CORR Default

COVAR Default
FDTD-2D Default

GEMM 2048×2048
GESUMMV 10240

GRAMSCHM Default
SYRK Default

Parboil

Application Size

CUTCP Large
Histo Large
LBM Long

MRI-Gridding Small

3.1 Classification Parameters

The previously proposed performance classification algorithm is dependent on
two architecture-related parameters (α and β), which are determined using a
randomly selected training set of applications. To assess such values Figure 3a
presents the number of misclassified benchmarks for different values of these
parameters for the Tesla K40c GPU, when comparing the classifications resulting
from the proposed algorithm with a manual classification of each application
(oracle classifications), which confirms that α = 0.5 and β = 0.5 correspond to
the optimal setup. The values for the γ, δ and η parameters used in the proposed
power classification methodology were also experimentally determined using the
same approach. The obtained values are γ = 170ms, δ = 50% and η = 22%.

3.2 Performance-Aware Algorithm Evaluation

Figure3b and 3c depict the obtained values for the two metrics considered in the
performance classification (Stallsmem and Bandwidthmem), with the GPU cores
set to 875 MHz. From these plots it can be observed that some applications
have the majority of stalls caused by memory dependencies, while simultane-
ously achieving low usage of the device memory bandwidth. Some others display
the opposite behaviour. Hence, after applying Algorithm 1, the two resulting
classes correspond the ones presented in Figure 4. To validate the obtained clas-
sification, all considered benchmarks were executed using the four allowed core
frequency levels for the considered GPU. The applications classified memory-
bounded (see Figure 4a) have a variation of their execution time lower than
the frequency variation for frequencies above 810 MHz. Hence, at this core fre-
quency the applications start behaving as compute-bound applications and have
their execution time scaling approximately linearly with the core frequency. Fur-
thermore, the compute-bounded applications (see Figure 4b) always have their
execution time scaling approximately linearly with the core frequency.

Again, it is important to stress that this methodology allows the classifica-
tion of GPU applications into classes that characterize their performance at all
frequency levels, by using the information obtained from their execution at a
single core frequency in a real hardware device.
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Fig. 3: Considered metrics for the performance-aware classification on NVIDIA’s
Tesla K40c.
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Fig. 4: DVFS effects on the execution time of the considered applications of the
two performance classes in NVIDIA’s Tesla K40c.

3.3 Power-Aware Algorithm Evaluation

Figure 5 presents the metrics considered in the devised power classification
methodology (Exec time, Utilcore and Stallsmem) for the considered applications.
By looking at their execution time (see Figure 5a) it can be observed that there
are many applications whose total kernel execution time is below the previously
obtained γ parameter (170 ms), which will classify them in the Low Device Uti-
lization class. By combining the values for these metrics for each of the workloads
and applying Algorithm 2, the three classes presented in Figure 6 are obtained.
To validate the obtained classification, all considered applications were executed
using the four allowed frequency levels for the considered GPU, resulting in dis-
tinct power curves. This is particularly noticeable by looking at the value of the
power decrease at 666 MHz, since in the Low Device Occupancy class all appli-
cations have a decrease in power consumption below 10%; in the High Memory
Utilization class have power savings between 10% and 20%; and finally in the
High Core Utilization class the applications decrease their power consumption
by more than 20%.
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Fig. 5: Considered metrics for power classification on NVIDIA’s Tesla K40c.
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Fig. 6: DVFS effects on power consumption of applications in the three power
classes in NVIDIA’s Tesla K40c.

3.4 Energy Clusters

Since the proposed methodology depicts two performance classes and three power
classifications for a given set of applications, it is possible to combine all this
information, thus obtaining six energy classes, whose results is depicted in Fig-
ure 7. Hence, when considering this classification methodology, it is not possi-
ble for one application to be simultaneously in the memory-bounded and high
core utilization classes (it would require an application to simultaneously have
Stallsmem > 0.5 and Stallsmem < 0.22).

When validating this classification by executing the applications at the GPU
core levels and measuring the consumed energy (see Figure 7), it can be seen that
the applications within each class display a similar behaviour in the presence
of DVFS. Hence, the result of those classification can be used to select the
applications in which DVFS is more likely to generate greater energy-savings.

The proposed approach is considerable more versatile than other related ap-
proaches. As an example, Adhinarayanan et al. [6] perform a clustering of GPU
applications using 13 performance counters, later reduced using Principal Com-
ponent Analysis (PCA) into 6 principal components used in the hierarchical
clustering stage. However, when their methodology is replicated in Tesla K40c
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Fig. 7: Different energy classes resulting from the performance and power classes
obtained for NVIDIA’s Tesla K40c.

using the applications benchmarks that were used in this work, and by consid-
ering six clusters during the hierarchical clustering stage, the results presented
in Figure 8 are achieved. As it can be seen, unlike the results from the proposed
methodologies, this approach produces classes of applications that do not ex-
hibit similar characteristics when DVFS is applied. Additionally, by using PCA
and hierarchical clustering makes it harder to extract any architectural meaning
from the resulting classifications. In particular, it is hard to understand from
Figure 8 which of the resulting classes would correspond to the class composed
by memory-bounded applications with high memory utilization.

4 Conclusion

A new methodology for GPU applications classification based on the resulting
effects of DVFS on the application’s execution time and power consumption was
proposed. Such results from the fact that, existing classification techniques are
not targeted for this specific goals, resulting in many wrongly classified applica-
tions when performance and power consumption are considered. To circumvent
this absence, the proposed algorithms allow the classification of GPU applica-
tions into classes that characterize their performance (or power consumption) at
all operating frequency levels, by solely using the information obtained from the
execution of each application at a single core frequency. The performance and
power classes define 6 distinct energy-aware classes of applications that present
a similar behaviour in the presence of DVFS.
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Fig. 8: Different classes resulting from the methodology proposed in [6].
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