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Abstract. Seismic inversion algorithms have been playing a key role
in the characterization of oil and gas reservoirs, where a high accuracy
is often required to support the decision about the optimal well loca-
tions. Since these algorithms usually rely on computer simulations that
generate, process and store significant amounts of data, their usage is
often limited by their long execution times. In fact, the acceleration of
these algorithms allows not only a faster execution, but also the develop-
ment of larger and more accurate models of the subsurface. This paper
proposes a novel parallelization approach of a state of art Stochastic Seis-
mic Amplitude versus Offset Inversion algorithm, by using heterogeneous
computing platforms based on a unified OpenCL programming frame-
work. To take full advantage of the computational power made available
by systems composed by multiple (and possibly different) accelerators, a
spatial division of the simulation space is performed, enabling the parallel
simulation of multiple regions of the geological model. This allows achiev-
ing a performance speed-up of 22.8× using two distinct GPUs without
compromising the accuracy of the obtained models.

Keywords: Stochastic Inversion of Seismic Data, Heterogeneous com-
puting, Graphics Processing Unit (GPU), OpenCL.

1 Introduction

In the last few years, High Performance Computing (HPC) platforms have been
playing a key role in the Oil and Gas prospecting industry. As a result of the
increased computing capabilities that have been offered to this industry, complex
computational models of the subsurface can now be applied to estimate reserves
and to diagnose and improve the performance of oil and gas producing fields.
However, such applications are characterized by huge execution times (up to
months), limiting their usefulness in most cases.

Stochastic algorithms have an important role in the characterization of oil
and gas reservoirs, where accurate predictions are essential and the available
information is often scarce and expensive. To compensate this issue, complex
geological interpretations are made by using approximate computational mod-
els that simulate the oil reservoirs. Some related stochastic algorithms have
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already been optimized and parallelized in multi-core General Purpose Proces-
sors (GPPs) [1–3]. Some promising results were also obtained by using Graphics
Processing Units (GPUs), such as the parallel implementation of the Stochastic
Simulation with Patterns (SIMPAT) algorithm [4].

However, typical approximations result in models with a high level of uncer-
tainty, leading to a faulty understanding of the geological structure and conse-
quently to drilling errors. The recently proposed stochastic seismic Amplitude
Versus Offset (AVO) inversion algorithm [5] using the Direct Sequential Simula-
tion (DSS) [6] approach represents a promising methodology to solve geophysical
inversion problems. It improves the generated models at a cost of a significantly
more complex processing of the gathered data, with strict non deterministic
dependencies among the several operations.

To the best of the authors’ knowledge, only one parallel implementation of the
DSS algorithm was proposed [3], where a multi-core approach was implemented
by considering a straightforward functional decomposition of the algorithm, pre-
senting considerable limitations in terms of scalability.

This paper proposes a parallelization approach of the stochastic seismic AVO
inversion algorithm by considering heterogeneous platforms, composed by sev-
eral devices with different computational capabilities. To achieve such a flexible
solution, the proposed implementation uses the OpenCL API, allowing each part
of the algorithm to be easily migrated among the several coexisting GPPs and
GPUs. After a careful analysis of the characteristics of the algorithm, it was
verified that the most significant part of the algorithm is composed by millions
of dependent iterations that individually are not computationally demanding.
Due to the lack of data parallelism opportunities presented, a relaxation of the
algorithm was considered in order to efficiently exploit the highly parallel archi-
tecture of such platforms, significantly reducing the algorithm execution time
without compromising the quality of the obtained models.

2 Stochastic Seismic AVO Inversion

The main goal of seismic inversion problems is to estimate a set of models that
characterize the physical properties of the Earth subsurface, given a limited set of
observed measurements. The reservoir models that are generated via stochastic
inversion algorithms can be significantly improved with the integration of differ-
ent kinds of information [7], e.g. well log and seismic reflection data. The most
common methodology to incorporate this seismic information, in stochastic fine
grid models, is known as geostatistical inversion [8]. Here, a state of art Stochastic
Seismic AVO Inversion algorithm [5] is considered, which is an iterative method,
based on the Global Stochastic Inversion [7, 9] approach. This method directly
inverts the density (ρ), P-wave velocity (Vp) and S-wave velocity (Vs) models,
allowing the use of AVO analysis, which can not be done with the more common
acoustic inversion methods. The stochastic seismic AVO inversion method can
be summarized in the following steps, which are also illustrated in Figure 1:
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Fig. 1. Stochastic seismic AVO inversion algorithm flowchart. The highlighted proce-
dure corresponds to the most computational demanding part of the whole algorithm.

1. Stochastic simulation of the ρ, Vp and Vs models, by using the DSS with
joint probability distributions algorithm;

2. Calculation of the synthetic pre-stack seismic cube with the simulated ρ, Vp
and Vs models, by using Shuey’s approximation [5];

3. Comparison between the synthetic seismic cube and the real seismic data,
creating a correlation cube that evaluates multiple regions of the model;

4. Definition of the best ρ, Vp and Vs models, using a genetic based algorithm;
5. Repeat steps 1 to 4 until no more realizations are desired;
6. Creation of the correlation cubes regarding the best ρ, Vp and Vs models;
7. Repeat of the whole procedure, using the best models and respective corre-

lation cubes to condition the next generation of simulations.

The stochastic simulation (step 1) adopts a Direct Sequential Simulation and
Cosimulation [6] approach, which starts by defining a random path through a
grid of nodes, to be considered during the simulation process. The stochastic
nature of the algorithm depends on this random path in order to find multiple
equiprobable models, and consequently to converge. Afterwards, each node is
simulated at a time, conditioned by the real data and all the previously simulated
values. The simulation procedure can be summarized in the following steps:

A. Randomly select a node from a regular grid;
B. Construct and solve a kriging system for the selected node;
C. Estimate a Local Cumulative Distribution Function (LCDF) at the selected

node, by linear interpolating both the real and the experimental data avail-
able in the neighbourhood (kriging estimate);
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D. Draw a value from the estimated LCDF, using a Monte Carlo method;
E. Return to the step A, until all nodes have been visited by the random path.

The cosimulation variant of this algorithm enables the simulated variable to
be conditioned to other previously simulated variables, without any prior trans-
formation. In this case it is only used for the simulation of Vp (conditioned by
the previously simulated density model) and Vs (conditioned by the previously
simulated Vp model). This is one of the main advantages of the DSS algorithm,
when compared with the other sequential simulation algorithms, as is the case
of the Sequential Indicator Simulation (SIS) and Sequential Gaussian Simula-
tion (SGS) algorithms.

3 Parallelization Approach

3.1 Problem Analysis

As stated by Amdahl’s law, only the most demanding and time-consuming
sections of an application are worth parallelizing. Accordingly, the algorithm
was profiled to find the most time consuming phases, considering two distinct
datasets: a smaller one composed of a grid of 101x101x90 nodes, and a larger
and more realistic one with 237x197x350 nodes. For such purpose, the execu-
tion time of the different parts of the algorithm was accurately measured using
the Performance Application Programming Interface (PAPI) [10] to interface
with the hardware performance counters. From the obtained profiling results,
it was verified that more than 90% of the algorithm execution time is spent in
the generation of the ρ/Vp/Vs models. Consequently, this part of the algorithm
was chosen as the prime focus for acceleration. In addition, other performance
counters were used in order to evaluate the limiting factor of the algorithm per-
formance. It was verified that the application has a significant amount of memory
instructions per floating point operation, which indicates that the application is
mainly memory bounded. The same conclusion can be drawn by using Sched-
Mon [11] to analyse the Cache-Aware Roofline model [12], where it is clearly
observed that the execution samples are located in the memory bounded region
of the model (see Figure 2).

The subsequent study considered a comprehensive analysis of the several ex-
isting data dependencies in the generation of the ρ/Vp/Vs models. In particular,
as represented in Figure 3(a), nodes from a not strictly defined neighbourhood
of the node being simulated are selected as conditioning data. As represented in
Figure 3(b), the estimation of the local conditional distribution function (step
C) requires the values of the previously simulated nodes (step D). As a con-
sequence, although steps A and B can be parallelized, the algorithm execution
path is limited by the sequential random path through every node, composed
by steps C and D, which still represents approximately 85% of the execution
time. Thus, by only performing the first two steps in parallel, it will be hard to
significantly accelerate the execution. Finally, individually accelerating each step
of the algorithm would also be difficult, since the complexity of the algorithm
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Fig. 2. Roofline model of the sequential execution of the DSS algorithm. Each point
in the chart represents a 10ms sample of the program execution.
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Fig. 3. Data dependencies on the stochastic simulation of the ρ, Vp and Vs models

lies in the number of nodes that are required to be simulated (usually several
millions) and not in the simulation of a single node, that not only presents few
parallelization opportunities but also does not take enough time to be worth the
overhead of transferring data to other devices.

3.2 Parallelization Approach

To circumvent the limitation imposed by the described data dependencies, the
proposed approach is based on a relaxation of this problem by dividing the sim-
ulation grid in multiple tri-dimensional sub-grids, and then randomly selecting
a node per sub-grid. Therefore, at each step of the simulation procedure, a set
of nodes are simulated and updated at once, conditioning the subsequent nodes
to be simulated (see Figure 4). Along the simulation, every sub-grid will select
the nodes to be simulated through the same relative sub-path, thus granting a
constant distance between the nodes being simulated in parallel. Note that the
considered sub-divisions of the simulation grid are not required to be cubic. In
fact, the anisotropic nature of the seismic data being processed indicates that
there are significantly less dependencies in the vertical direction, which allows
for a greater vertical division of the simulation grid.
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Fig. 4. Parallelization approach based on a spatial division of the original grid

Since the kriging estimate is computed by considering the closest available
data to the node being simulated, a spatial sub-division of the simulation grid
guarantees algorithm convergence, as it will be seen in section 4. In fact, as long
as the nodes being simulated are sufficiently apart from each other, being kept
outside of the search range, no data conflicts should be observed [13]. This may
become a limiting factor for smaller datasets, which provide less opportunities
to split the grid in many pieces without avoiding such conflicts in the first itera-
tions of the simulation procedure, where few data is available and not uniformly
distributed over the simulation grid.

Considering the GPU architecture and the adopted OpenCL programming
framework, there are at least two different ways to map the proposed approach:
each sub-grid is simulated by a distinct OpenCL work-group, being the inherent
parallelism of the algorithm explored by the OpenCL work-items within each
work-group; each sub-grid is simulated by a distinct work-item. The main dif-
ference regarding both approaches is concerned with the number of nodes being
simulated at the same time, since in the former approach more resources are be-
ing assigned to the simulation of a single node, thus limiting the number of nodes
that can actually be simulated at the same time. However, those resources are
only completely used when the code itself is parallelizable by a multiple of the
warp/wavefront size, which is not the case for a significant part of the algorithm,
where only a single work-item in the work-group would effectively be performing
useful computations. Although the second approach allows for a greater amount
of nodes to be simulated in parallel, it is more memory demanding (intermediate
buffers need to be replicated for every node under simulation), and performance
losses may occur due to warp divergence and non-coalesced memory accesses,
since each thread is simulating its own node, which may lead to different ex-
ecution paths or accesses to different regions of the memory. In case that the
device memory available is not enough, the simulation procedure is performed
by simulating the grid layer by layer, keeping a complete copy of the grid being
simulated only in the host device. This layers must contemplate not only the
blocks that will be simulated but also the neighbour blocks that will condition
the simulation.
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Fig. 5. Execution flowchart of the algorithm. The DSS Algorithm being executed in
the GPU is the most computational demanding part.

Accordingly, as illustrated in Figure 5, only tasks related with the simulation
procedure are effectively being performed by the GPU devices, being the host
device responsible not only by the generation and sending of the data required
in every step of the simulation procedure (overlapped with the computations),
such as the nodes to be simulated in parallel in the following step or the random
values required during the procedure, but also by performing all the other not
so significant parts of the algorithm.

3.3 Considered Optimizations

Optimization of the DSS Algorithm Kernels. Several optimizations were
considered in order to optimize the performance of the proposed implementa-
tion. A significant improvement comes with the efficient usage of local memory
in order to optimize not only parallel reductions, which are required to compute
the mean and variance of the previously simulated nodes in order to compute
the probability distribution functions, but also to improve the access times to
global memory buffers that are frequently used. Another aspect that in some
cases may be significant is the overhead related with the OpenCL calls. In fact,
considering the current AMD GPU drivers, those overheads are in the order of
hundreds of microseconds, which may become significant if there are a consider-
able number of kernel calls or memory transfers per iteration. At this respect, the
data transfers were performed using the minimum number of OpenCL enqueue
buffer calls possible, and a balance was achieved between the size of the kernels,
which influences the number of registers being used and consequently limits the
occupation of the device, and the number of kernel calls, which is related not
only with the number of different kernels but also with the number of divisions
that are performed to the simulation grid. The used data structures and its
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indexing were also optimized to increase the coalescence of memory accesses by
the work-items of a given work-group.

Application Specific Optimizations. Some other application specific opti-
mizations were also considered, such as the use of a bottom-up merge sort algo-
rithm in order to sort multiple arrays in parallel, instead of using the quick-sort
that provided better sequential results. This happens because the merge sort al-
gorithm has a fixed execution path if the arrays being sorted have the same size,
thus leading to significantly less warp divergence. Also, given the characteristics
of the algorithm under study, a significant part of the execution time lies in the
first steps of the simulation procedure, most specifically in the conditional data
search. This happens because the search procedure starts by looking for available
data from the closest nodes relative to the node being simulated, until a given
number of conditioning nodes is found (defined as a parameter). Therefore, since
initially the available data is scarce and it is not evenly distributed in the simu-
lation grid, the simulation of nodes in regions with few available data results in
significantly larger execution times. This problem was minimized by postponing
the simulation of nodes from blocks in which there is not enough available data
both in the block itself and in the neighbour blocks. This optimization can be
performed during the definition of the random path, since it is only required
to know the number of available data per block in each iteration. As a result,
the execution time of the first steps is significantly reduced at the cost of some
extra steps in the end of the simulation algorithm, when there is already a large
amount of available data, thus reducing the global execution time.

Optimizations to the Rest of the Algorithm. Finally, some optimizations
outside of the simulation procedure were also performed, such as the use of the
bitonic sort algorithm in order optimize the sorting of the array that stores the
nearest relative positions to a given reference, according to the non-euclidean
distances between nodes ( related with the anisotropy of the data). Moreover,
the output files that have to be written during the execution of the algorithm
are also written in parallel by a different GPP thread, thus becoming overlapped
with the computations, in order to avoid as much overhead as possible.

3.4 Multi-device Approach

Another important aspect that should also be considered is concerned with the
possibility of using multiple devices, in order to ensure another level of scalabil-
ity. A scalable approach was thus devised to decrease the execution time when
multiple GPU and GPP devices are available. Under such condition, the pro-
posed approach starts by first dividing the complete grid between the OpenCL
enabled accelerators, and then by sub-partitioning the sub-grids into smaller
blocks which are computed in parallel in each device. Also, to efficiently exploit
different computational capabilities delivered by different devices, the load is
balanced by distributing the nodes to be simulated between the multiple devices
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according to real-time performance measurements. Nevertheless, since the simu-
lation grid is stored in the device memory, it must be updated after the parallel
simulation of every bundle of nodes with the information being computed in the
other devices. This implies an all-to-all communication scheme and consequently
a synchronization point. In the end of the simulation procedure, the resulting
model must be read from any device, since every device has an updated copy of
the simulation grid (see Figure 6).

4 Experimental Results

The experimental setup considered the execution of 5 iterations of the algo-
rithm, composed by 8 sets of simulations each, over two real datasets: one with
101x101x90 and other with 237x197x350 nodes. Performance was measured by
comparing the execution times obtained using multiple heterogeneous environ-
ments with the sequential execution of the algorithm in an Intel i7-3820 proces-
sor, using the -O3 compiler optimization flag.

Figure 7 shows the obtained performance results when considering several
distinct mappings (programmed with the same OpenCL source code). It must
be noted that the simulation of the different physical properties (ρ, Vp and Vs)
uses different data along the simulation procedure, which naturally introduces
some variations in the resulting execution times (18%, 17% and 65% of the sim-
ulation execution time respectively). Also, only the time during the simulation
procedure itself (effectively being accelerated) was considered for those speed-up
measurements, without considering the time required to setup the simulation
data (5% of the sequential simulation execution time).

From the obtained results, it can be observed that the execution time was sig-
nificantly reduced in all the considered mappings. Namely, a speed-up of 15.8×
was obtained, considering the execution of the whole algorithm using a single
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GPU, and performance improvement of 5.3× when the algorithm was mapped
into the GPP. In the latter case, the obtained speed-up is bigger than 4 (num-
ber of cores) due to the use of the hyper-threading technology. The observed
performance improvements are coherent with previously mentioned limitations
of the sequential implementation. In fact, by comparing the effective bandwidth
of the sequential implementation (using the L1/L2/L3 cache hit rates), with the
Hawaii GPU theoretical bandwidth, a speed-up of 15× was expected. The speed-
ups observed experimentally were greater than this theoretical value because the
algorithm was optimized in order to efficiently use the shared memory, and the
computational parts of the algorithm are also being parallelized (e.g. parallel
reductions), further improving the algorithm performance.

Regarding the multi-device approach, when considering two GTX 680 GPUs,
higher improvements were verified in the simulation procedures (up to �1.8×
when comparing with a single device execution). However, only a global speed-
up of 1.24× was obtained because, as the performance is being improved, this
procedure becomes less significant in the overall execution time (see Figure 8(a)).
Significant improvements were also verified when considering the cooperative
execution with multiple different devices, which demonstrates the scalability of
the considered implementation in heterogeneous environments. Namely, by using
devices from different manufacturers with different computational capabilities,
a global speed-up of 18× was obtained.

It must be noted that a slightly worse scalability was verified in the less
computational demanding simulations (ρ and Vp), because the non-coalesced
memory accesses of the conditional data search procedure, due to the parallel
access to different regions of the grid, becomes a significant limiting factor. Also,
the machine using GTX 680 GPUs uses a different host device (Xeon E5-2609),
which justifies the observed full algorithm speed-up differences. Nevertheless,
although the obtained multiple device speed-up is slightly below the theoretical
limit (mainly due to the communication overhead), the load-balancer successfully
managed to divide the work-load between the available devices, maximizing the
achieved performance.
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Fig. 8. Graphical analysis of the obtained results comparing with the sequential im-
plementation of the algorithm

Despite being memory demanding, this implementation occupied approxi-
mately 580 MB of the device memory which, considering modern devices, still
leaves room for a significant scaling of the problem size until a layer by layer
simulation approach is required (that implies a slightly increased communication
overhead).

Finally, Figure 8(b) presents the evolution of both the speed-up and the global
correlation coefficient with the number of grid-divisions (which corresponds to
the nodes being simulated in parallel). The results were obtained by performing
several independent runs of 10 iterations, using the Hawaii GPU and consider-
ing the dataset composed by 101x101x90 nodes. As it can be observed, when
comparing the simulated models with real data, the convergence is still verified,
since the obtained global correlation coefficients are similar both for the parallel
and sequential implementations of the algorithm. This demonstrates that the
applied relaxations, toward an efficient parallelization, do not affect the qual-
ity of the results. In fact, it can be verified that, even when a very significant
amount of sub-grids was considered (resulting in a simulation composed only by
15 steps), the convergence of the algorithm was still verified. This is mainly due
to the postponing optimization that avoids simulating nodes that have few or
no conditional data in the neighbour blocks. As a result, when the block size be-
comes smaller (i.e., the number of grid divisions increases), a consistent spatial
distribution of the physical property being simulated is granted, which improves
the algorithm convergence.

5 Conclusions

This paper proposes a parallelization of a state of the art stochastic seismic AVO
inversion algorithm in heterogeneous platforms. The acceleration of such algo-
rithms not only allows for faster reservoir modeling, but also to make it possible
to develop larger and more accurate computational models of the Earth’s sub-
surface. To circumvent the strict data dependencies presented by this algorithm,
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the adopted approach considers a spatial relaxation of the dependencies and
consequent division of the simulation grid, thus allowing the parallel simulation
of multiple nodes corresponding to different regions of the model. Such division
comes with no loss of accuracy in the results. According to the obtained ex-
perimental results, the proposed acceleration efficiently balances the work-load
between multiple (possibly different) devices, achieving speed-ups over 22× in
the heterogeneous configuration with two different NVIDIA GPUs.
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