
Efficient Data-Stream Management for

Shared-Memory Many-Core Systems

Nuno Neves, Pedro Tomás and Nuno Roma

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Rua Alves Redol, 9, 1000-029 Lisboa - Portugal

Email: {nuno.neves,pedro.tomas,nuno.roma}@inesc-id.pt

Abstract—The design of most high-performance and het-
erogeneous processing platforms is usually solely focused on
the computational part, while neglecting the power/performance
impact of the data-management infrastructures. Moreover, such
systems often struggle to achieve their potential performance
when applications require fetching data with complex memory ac-
cess patterns. To overcome these issues, a energy-efficient stream-
based data-management infrastructure is herein proposed, relying
on a novel tree-based descriptor specification. Such descriptors
are decoded by a Descriptor Tree Controller (DTC) architecture,
which allows simple and efficient management of arbitrarily com-
plex memory access patterns. Moreover, a Stream Management
Engine (SME) ensures energy-efficient data-reutilization through
the application of automatic stream rerouting, splitting and
merging techniques. The obtained results show that the proposed
DTC architecture is capable of a highly efficient complex data-
pattern generation, while significantly reducing the size occupied
by the pattern description, when compared with state-of-the-
art approaches. By also enabling the deployment of data-reuse
techniques, a reduction of up to 85× in the number of accesses
to the main shared memory is achieved, resulting in a decrease
as high as 475× in the observed energy consumption.

I. INTRODUCTION

The ever increasing demand for computational processing
power at a significantly low energy consumption has pushed
the research for alternative heterogeneous and often specialized
processing structures. However, such architectures are usually
designed by focusing on the individual computational blocks,
often neglecting the power/performance impact of the inher-
ent data transfers and general data indexing. In fact, most
solutions mainly focus on increasing the throughput of the
data-processing system, while relying on conventional cache
structures to avoid the usually high memory access latencies.
However, such structures do not always work well when the
applications require streaming data with arbitrarily complex
memory access patterns.

Several approaches can be adopted in order to minimize
the power/performance impact of the data-management subsys-
tem. In particular, besides aggressive data prefetcher schemes
associated with high-energy consuming memory/cache hier-
archies with complex shared bus protocols, more efficient
and sophisticated stream-based communication schemes can
be deployed. That way, instead of having each system’s Pro-
cessing Element (PE) to concurrently perform main memory
requests, resulting in a tremendous pressure in the memory
and bus subsystems and, in turn, in increased energy con-

sumptions, it is possible to exploit the data-access pattern of
each individual processing block, in order to smoothly and
transparently buffer and stream the data to the corresponding
PEs. Hence, most of the contention usually observed in shared
communication structures can be eliminated. Moreover, by
relying on streaming approaches, and by decoupling the data
communication and processing structures, it is possible to hide
data transfers behind computation with the use of intermediate
(small) buffering memories, which can be preloaded by the
data streaming structures. This presents a rather interesting
outcome since, even without directly relying on aggressive
prefetching schemes and structures, it is still possible to exploit
the same advantages, such as handling of complex data-
patterns [1] or reducing the energy consumption of the data-
management infrastructure [2].

Regarding stream-based approaches, several techniques
have been proposed to improve the throughput of the data-
streaming and management infrastructure. Park [3] tackled
the data fetching from an external memory to a Field-
Programmable Gate Array (FPGA) in the context of stream-
computing. Acknowledging that proper data re-utilization
mechanisms are fundamental in FPGA-based systems, the
work was further extended to support the scheduling of simple
data operations (e.g. stripping, splitting or merging) in the con-
text of multi-processor systems [4]. Meanwhile, Hussain [5]
proposed a Programmable Pattern-based Memory Controller
(PPMC) that supports regular 1D, 2D and 3D data-fetching
mechanisms, such as scatter-gather and strided accesses with
programmable tiling. An efficient scheduler and an intelligent
memory manager were subsequently integrated in this data-
fetching controller, to facilitate elaborated data movement and
other computational tasks.

However, while the PPMC represents a step forward to-
wards the streaming of complex patterns, it was designed for
moving large and regular data-chunks and falls short with
irregular or arbitrarily complex indexing. To partially tackle
such a more ambitious challenge, the Hotstream framework [6]
relies on PE-coupled dedicated pattern-programmable Data-
Fetch Controllers (DFCs), capable of also deploying data-
reuse techniques. Nevertheless, although such a system can
greatly increase the system’s throughput, it still partially relies
on shared communication structures, thus still incurring in
increased pressure in the memory subsystem (although mit-
igated by application of the data-reuse techniques). More-
over, although the considered programmable approach eases



the description of complex, but still regular, data-patterns, it
also struggles with irregular and arbitrarily complex patterns.
Hence, a special attention must be given to the generation
of memory-access pattern structures, in order to tackle these
persisting issues.

Most of the above mentioned techniques, such as data-
reorganization and data-reuse schemes, combined with efficient
stream-based infrastructures, are still insufficient to provide the
aimed system throughput and energy savings. When irregular
indexing or complex data patterns are considered, it is still
clear that the adoption of more sophisticated techniques still
has to be highly exploited for further optimizations both at
the level of performance/throughput and at the level of energy
consumption of the data-management subsystem.

Accordingly, a novel energy-efficient stream-based data-
management infrastructure is herein proposed, based on a
novel tree-based data-pattern descriptor specification. This
specification relies on a specially devised descriptor to define
a tree-like hierarchical organization, which significantly eases
the description of arbitrarily complex memory access patterns.
To decode such descriptors, a Descriptor Tree Controller
(DTC) architecture is also proposed, capable of efficiently
handling the memory address generation and data indexing.
When combined with dedicated wrappers, the proposed DTC
architecture provides an efficient memory access and stream
generation, while also being used to promote data-reuse tech-
niques through on-the-fly stream manipulation operations, such
as stream merging and splitting, which is achieved relying
on stream-oriented First-In First-Out (FIFO) memories. Such
facilities are comprised in a Stream Management Engine
(SME), which also includes a dedicated communication infras-
tructure with broadcast capabilities. The obtained experimental
results demonstrate the address generation efficiency of the
proposed DTC architecture when compared to state-of-the-
art architectures. Furthermore, the combined data reuse and
manipulation facilities of the proposed SME allow reducing
the number of memory accesses by as much as 85×, which
in turn results in a reduction of 475× of the memory-access-
related energy consumption.

II. STREAMING OF COMPLEX DATA PATTERNS

Independently of their application domain, many algo-
rithms are characterized by memory access patterns repre-
sented by a n-dimensional affine function [7]. For a 2D
pattern, the affine function is typically written as y(i, j) =
offset+i+stride×j, where the current memory address (y) is
calculated based on an initial OFFSET, two increment variables
(i and j) and a STRIDE multiplication factor. Since such
representation allows indexing most regular access patterns, the
2D specification is commonly used by Direct Memory Access
(DMA) controllers or other similar data-fetch controllers, such
as the PPMC [5]. However, by only relying on such simplistic
representation, data-fetch controllers often need to combine
several descriptors to represent complex patterns [8].

Although this solution allows the representation of more
complex (but still regular) memory access patterns (e.g. 3D,
blocked, tiled patterns), it still struggles when trying to de-
scribe higher levels of pattern complexity (e.g. diagonal, zig-
zag, diamond patterns), requiring very large descriptor lists and

a very complex control, which not only increases the size of
the descriptors, but also the hardware structure that supports
it [6]. Moreover, there is usually a certain amount of overhead
associated to the switching between descriptors, which further
degrades the memory address generation rate and efficiency.
To circumvent these limitations, the new descriptor definition
that is herein proposed not only allows increasing the dimen-
sionality of the described pattern from the usual 2D to a 3D
representation, but also introduces a novel tree-like hierarchical
organization of such descriptors, which significantly eases the
description of arbitrarily complex data-patterns and reduces the
number of required descriptors.

A. 3D Data-Pattern Descriptor Tree

As the complexity and irregularity of a given pattern
increases, the number of 2D descriptors that are required to
represent it also increases in the same proportion, leading to
long and hardly efficient descriptor chains. To circumvent such
drawback, the new tree-like descriptor structure that is now
proposed is based on the adoption of a greater dimensionality
(from 2D to 3D) of memory access pattern description, allow-
ing a consequent simplification and reduction of the number
of required descriptors for complex patterns. In fact, the third
dimension that is now introduced provides the addition to the
above described pattern representation function of a new SPAN

multiplication factor weighted by a new increment variable (k).

Hence, each 3D memory access pattern is formally de-
scribed by the affine function:

y(i, j, k) = offset + i+ stride × j + span × k,

with i ∈ {0, ..., hsize− 1}

j ∈ {0, ..., vsize− 1}

k ∈ {0, ..., dsize− 1}

(1)

As depicted in the example of Fig. 1, this memory access
pattern is represented by the tuple {OFFSET, HSIZE, STRIDE,
VSIZE, SPAN, DSIZE}, specifying the starting address of the
first memory block (OFFSET), the size of each contiguous block
(HSIZE), the starting position of the next contiguous block with
relation to the previous (STRIDE), the number of repetitions of
the two previous parameters (VSIZE), the starting of the next
2D pattern in relation to the previous (SPAN), and the number
of repetitions of the four previous parameters (DSIZE).

Despite the significant advantages that are offered by this
newly proposed descriptor (capable of individually represent-
ing more complex patterns), the adoption of conventional

Fig. 1. 3D memory access pattern description example, with the order in
which the data positions are accessed. The vsize value indicates the number of
repetitions of the contiguous block of size hsize, separated by stride positions.
The dsize value indicates the number of repetitions of the pattern generated
by the hsize, stride and vsize values, separated by span positions.



Fig. 2. Proposed descriptor tree-based hierarchical organization, shown both
in tree representation (left) and with the corresponding referencing between
the descriptors (right). The number associated to each node represents the
order in which the descriptors are iterated. Note that the descriptor at the
bottom level is referenced twice, which means it is solved with two different
relative offset patterns.

cascaded lists of descriptors to represent highly complex data
patterns still poses difficult challenges in terms of the attained
efficiency. To also circumvent such adversity, the proposed
descriptor organization relies on a tree-based hierarchical
scheme (depicted in Fig. 2), in which multiple parent-child
relations can be established between descriptors, representing
dependencies between different descriptor levels. For such
purpose, the considered tree hierarchy distinguishes the de-
scriptors between offset-type descriptors (used to calculate
relative offsets) and address-type descriptors, which generate
memory addresses based on such relative offsets. Moreover,
address-type descriptors are characterized by not having any
depending-child descriptors in the tree hierarchy.

In order to deploy the proposed tree hierarchy, a double-
referencing type representation (usually used to represent trees
in programming languages) was used. Hence, each descriptor
has a reference to a child descriptor (NEXT) and a reference
to a descriptor that shares the same parent descriptor (LEVEL).
This way, a descriptor with multiple child descriptors only
references one of them, which in turn references another
of the parent descriptors’ child (and so on), as depicted in
Fig. 2. With such a definition, each descriptor is defined as
the tuple {OFFSET, {HSIZE, STRIDE, VSIZE, SPAN, DSIZE},
LEVEL, NEXT} and is paired with a unique identifier and the
corresponding data type of the addressed memory elements.

By adopting such a chained structure, the resolution of the
addressed positions is obtained by traversing this tree structure
in child-priority order (see Fig. 2). Hence, for each iteration of
a given descriptor, its child descriptor (referenced by the NEXT

field) should be completely solved once. Subsequently, when
the first is itself completely solved, the procedure will solve
the following descriptor that shares the same parent descriptor
with it (referenced by the LEVEL field). Fig. 3 illustrates this
resolution procedure applied to an example descriptor tree.

B. Promotion of Automatic Data Reutilization

The proposed descriptor structure was devised to also target
an efficient management and manipulation of the flowing data-
streams through the SME, as it will be seen in Section III. For
such purpose, each data element/block that composes a given
data-stream is conveniently tagged with a stream identifier,

Fig. 3. Example of a data-pattern descriptor tree. Note the order in which
blocks are accessed. d1 calculates a relative offset for both d2 and d3, which
generate two distinct patterns in relation to such offset.

unique to its corresponding stream, and with a serial number
indicating its position/order in the stream. Such ordering
mechanism of the streamed data makes each individual stream
analogous to a contiguous memory block of indefinite size,
which, in turn, allows applying the proposed descriptors in
order to extract a sub-patterns from the flowing data streams.
Accordingly, based on the proposed descriptor specification, it
is possible to apply run-time stream manipulation operations
(e.g. stream splitting and merging), as well as rerouting oper-
ations over the flowing streams between the PEs and memory.

In the implementation of such operations, the OFFSET field
of the output stream descriptor is replaced with the {ID,
SERIAL} tuple, specifying a stream identifier and a starting
serial number (analogous to a memory offset). In accordance,
any of these operations can be simply applied by flowing
the input streams through a descriptor solving structure and
by extracting the data blocks according to the output stream
descriptor pattern and stream identifiers.

With this approach, different stream operations can be
easily implemented at the SME, thus significantly alleviating
the addressing of the shared memory device (which would
have to support such operations if the offered data reutilization
facility was not directly provided at the SME level). Fig. 4(a)
depicts an example where a subset of the data flowing from
a PE to memory is extracted and redirected to a different
PE (useful in data-dependent applications). Fig. 4(b) shows
another example, where several streams generated at different
PEs are interleaved in a single stream and sent to another PE
(useful in reduction operations).

In accordance, such techniques promote the reutilization of
data, by keeping it in the SME as long as further computation
may be required, mitigating one of the most recurring concerns
in many-core systems which is the pressure on the main
memory system, due to the large number of PEs performing
data transfers.

III. STREAM MANAGEMENT ENGINE

The herein proposed Stream Management Engine (SME)
was specially devised in order to minimize the number of
main memory accesses and to promote data reutilization in-
side the multi-processor system, not only to maximize the
data throughput to the PEs, but also to decrease the energy
consumption associated with repeated memory accesses. Such
data reutilization techniques allow keeping data in local and
intermediate memories and buffers as long as they are nec-
essary for subsequent computations by other PEs, minimizing
the need for continuously accessing the main memory to store



(a) Stream Splitting.

(b) Stream Merging.

Fig. 4. Implementation of common stream manipulation operations with the
proposed descriptors. Notice that in (a) while the stream is being stored in
memory, part of it is being redirected to other PEs. On the other hand, in
(b) four different streams are being merged in a new stream in a interleaved
pattern.

partial results and make them available between the different
PEs of the system. Furthermore, by adopting such a stream-
based communication paradigm, it is also possible to mitigate
most of the inherent contention in shared communication
infrastructures, by making use of data acquisition modules that
directly address the main memory and distribute the data to
the appropriate PEs in parallel, instead of allowing them to
concurrently request data from the main memory.

The proposed SME, depicted in Fig. 5, is composed of a
set of controlling structures that allow the efficient generation
and management of data streams and their communication to
the system’s PEs. In particular, it comprises: i) two memory
access controllers, namely the Data-Stream Controller (DSC)
and the Memory Store Controller (MSC), both based on the
same Descriptor Tree Controller (DTC) architecture (illustrated
in see Fig. 6 and subsequently described in Section III-A),
capable of interpreting the proposed data-pattern descriptors
described in Section II to load/store data from/to the main
shared memory; ii) Stream FIFO memory modules, distributed
across the communication infrastructure, able to buffer multi-
ple data streams; iii) a stream-based communication bus with
broadcast functionalities, capable of simultaneously streaming
data to any of the accelerator’s PEs; iv) Sub-Stream Generator
(SSG) controllers, also based on the DTC architecture pre-
sented in Fig. 6, capable of splitting, merging and rerouting
data streams coming from the PEs and the main memory, and
redirecting them to their appropriate destination; and v) a
Stream Management Controller (SMC), which manages the
SME control-flow and controls and monitors the PEs execution
through a simple backbone communication bus.

Fig. 5. Stream Management Engine architecture overview.

A. Descriptor Tree Controller Architecture

In order to efficiently address the memory access pattern
described by the proposed descriptor tree specification, the
DTC architecture must use the least number of clock cycles
(per memory address) as possible. For such purpose, the
proposed DTC architecture was conveniently divided in two
parallel sub-modules: i) a control unit, herein denoted as
Tree Solver Unit (TSU), responsible for iterating over the
descriptor tree; and ii) an Address Generation Unit (AGU),
responsible for generating the memory addresses according to
the described pattern and starting at the offset address defined
by its parent descriptor. These two units communicate over
a register bank and operate completely in parallel. Hence,
while the AGU is executing a given address-type descriptor,
the TSU iterates over the tree to calculate the relative offset for
a subsequent descriptor. A minimal local scratchpad descriptor
memory is used to store the descriptors being processed.

The AGU functional unit, depicted in Fig. 6, iterates over
a descriptor according to the addressing function defined in
Eq. 1. In order to keep the architecture footprint as low as
possible, it is solely based on adders. Hence, the AGU is
simply connected to a control and a status register bank and
comprises three parallel functional blocks, each composed of
an adder and specific operand selection and control logic. The
stride control block is responsible for incrementing an inc

variable, representing the current contiguous data block, and
for generating the required multiplication factors, by succes-
sively adding the stride and span descriptor fields to the
voffset and doffset values, respectively. The voffset
and doffset are intermediate values initialized with the
current descriptor offset field. The offset control block
calculates the actual memory address based on the voffset,
doffset or offset values and the inc, stride or
span variables, depending on the current descriptor state. The
count control block is used to calculate the current descriptor
iteration state, by incrementing the i, j and k values (refer
to Eq. 1). Such values are limited by the hsize, vsize and
dsize descriptor fields, respectively. In accordance, a set of



Fig. 6. Descriptor Tree Controller and its functional units architecture.

control flags (sflags) is generated at the end of the logic
path of the count control block, to represent the iteration state
of the descriptor and it is used to control all three functional
blocks in terms of operand selection and reset logic. This way,
each functional block performs one iteration per clock cycle,
involving the computation of the current memory address,
the multiplication factors for the next iteration and the next
descriptor state, together with its corresponding control flags.

The TSU control unit, also represented in Fig. 6, is
composed of: i) a Finite-State Machine (FSM) that deploys
the descriptor tree solving procedure (see Section II-A); ii) an
iteration structure, composed by the same three-adder topology
used in the AGU, used to perform single iterations over the
tree’s offset-type descriptors (see Fig. 1); and iii) a descriptor
stack, to store the address-type descriptors state.

The TSU is initiated upon the reception of an offset
and a descriptor identifier (from the SMC), iterating over
the descriptor tree in the child-priority order (described in
Section II-A). This way, offset-type descriptors are iterated
once by the TSU and pushed into the stack, as the TSU is
going down through the tree’s hierarchy. This approach eases
the operation of the TSU since the order in which the descriptor
states are pushed into the stack is the reverse order in which
they are needed when the TSU is going up the tree’s hierarchy.

As referred in Section II, the proposed DTC architecture
was defined in order to ensure not only an efficient generation
of the memory addresses, but also as a flexible means to
implement a vast set of stream manipulations. Hence, three
different wrappers were devised, based on the same DTC
architecture:

1) Data-Stream Controller: implements a dedicated wrap-
per to the proposed DTC architecture to issue memory read
operations to the main memory and to generate the resulting
data-streams. The included memory access logic makes use of
the memory addresses generated by the DTC to issue memory
read requests. The obtained data is tagged with ordered serial
numbers and with a stream-unique identifier. The generated
data-stream is sent to an output Stream FIFO.

2) Sub-Stream Generator: makes use of a slightly different
version of the DTC to generate the sub-streams, which main
differences concern the specific descriptor modifications de-
scribed in Section II-B, such as the replacement of the OFFSET

descriptor field by the {ID, SERIAL} tuple. Hence, instead
of generating a memory address, the modified architecture
generates serial numbers, coupled with stream identifiers. The
SSG also includes a logic block that monitors incoming
streams and extracts data blocks according to the stream unique
identifier and the last serial number generated by the DTC.

3) Memory Store Controller: makes use of the original
DTC architecture to generate memory write operations. Spe-
cific monitoring logic is used to capture on-the-fly the in-
coming streams that should be stored in the main memory.
The involved memory access logic makes use of the memory
addresses generated by the DTC architecture to issue the
memory write operations.

B. Streaming Infrastructure

In order to communicate, buffer and accommodate the
streamed data as long as possible inside the SME, a number
of Stream FIFOs are included in the streaming infrastructure.
Formally, each of the system PEs will have associated two
(input and output) configurable-size FIFOs. Similarly, both the
DSC and the MSC are connected to the communication bus
through a Stream FIFO. This way, all the coexisting data-
streams are transfered between FIFOs, mitigating the usual
communication latencies by hiding data communication behind
data processing. The devised Stream FIFOs are implemented
with a common double pointer control structure and the stored
data comprises a streaming data-block, together with its serial
number and its corresponding stream unique identifier. Fig. 5
depicts the location of each Stream FIFO in the SME.

Although the proposed architecture can be easily be
adapted to any stream-based communication infrastructure,
the communication of data-streams between the SME Stream
FIFOs is herein achieved by a specially devised bus intercon-
nection, which provides single-cycle communication between a
master and a number of peripherals, featuring two independent
unidirectional channels: a one-to-many channel and a many-
to-one channel. The first channel routes data signals from the
master to the peripherals in one of two ways: i) establishing a
direct connection between the master and one of the periph-
erals, by using a decoder driven by the identification of one
of the peripherals; or ii) making use of a broadcast mask to
simultaneously connect to a set of the peripherals. The second
channel routes data signals from each of the peripherals to
the master. The channel is managed by a round-robin arbiter,
driven by request and acknowledge signals, from and to the
peripherals, respectively.

C. Stream Management Controller

The SME is managed by a specially devised Stream
Management Controller (SMC) responsible for monitoring and
controlling the PEs execution and the data-stream flow, main-
taining a central descriptor memory and assigning descriptors
to the DSC, MSC and SSGs.

In order to monitor and control the PEs execution, the SMC
maintains a set of status registers indicating the current state



TABLE I. RESOURCE USAGE FOR EACH COMPONENT OF THE SME

Available
DTC

DTC
Stream

1K Stream
SMC &

Resources w/ wrappers
Interconnect

FIFO
Backbone

(2-16 PEs) (2-16 PEs)

Slices 75,900 498 557 8 - 83 21 324 - 399

LUTs 303,600 952 1046 11 - 202 57 692 - 883

Registers 607,200 692 717 3 - 16 29 426 - 439

BRAM 3,090 7 7 0 2 1

Static Power* - 207.42

Dynamic Power*1 - 22.78 25.2 0.12-2.02 7.33 8.37-10.16

* Power consumption values displayed in mW 1 @100 MHz

of the each PE. Moreover, a backbone communication bus,
implementing the same protocol as the above described stream-
ing interconnection is used by the SMC to send execution
configuration commands to the PEs and to receive execution
status results from them. The latter is not only used to monitor
their execution but also to obtain control-relevant application
results. This is particularly useful in applications with varying
streaming patterns along the time - example: diamond search
algorithm, used in the video encoding motion estimation step,
where the data-pattern (i.e. the descriptor) varies depending on
the search direction in the frame [9].

Although the SMC could easily be paired with a dedicated
scheduler to manage the complete SME, it is out of the scope
of this work. Instead, a static execution queue is used to
control the execution flow (i.e. starting the execution of the
PEs and configuring the streaming interconnection with the
correct broadcast destination for stream redirection).

IV. EXPERIMENTAL EVALUATION

To evaluate the proposed tree-based descriptor specifica-
tion, its ability to promote data re-utilization and also the
devisedSME, it was prototyped in a Xilinx VC707 Evalua-
tion Kit, comprising a XC7VX485T Virtex-7 FPGA and a
1GB DDR3 SODIMM 800MHz/1600Mbps memory module
(MT8JTF12864HZ-1G6G1). The Synthesis and Place&Route
procedures were performed using Xilinx ISE 14.5. The power
consumption of each of the system’s components was esti-
mated with the Xilinx Power Estimation toolchain and the
DDR3 memory power consumption was calculated according
to the vendor’s guidelines and estimation tool [10]. Accu-
rate clock cycle simulations were performed with the Xilinx
iSim simulator. The obtained results for address generation
and efficiency were compared with the most relevant related
work, namely with a Xilinx AXI DMA engine [8], whose
functionalities are equivalent to those of the PPMC [5] and
with the Hotstream framework [6].

A. Hardware Resource Overhead

Although the subsequent parameters are completely con-
figurable, for this experimental evaluation 128-bit wide de-
scriptors were considered, i.e. all the descriptor’s fields are
16-bit wide, except for the OFFSET field and the NEXT and
LEVEL references, which are 32- and 8-bit wide, respectively.
The SMC features a 255×128-bit memory used to store the
application descriptors. Also, the local scratchpad memory of
each of the DTC-based controllers is 16×128 bits in size. This
particular scratchpad memory size assumes that, by default,
no descriptor tree requires more than 16 descriptors. For
the Stream FIFOs, it was considered a size of 1024 stream

TABLE II. ADDRESS GENERATION RATE AND DESCRIPTOR SIZE (IN

BYTES) FOR THE PROPOSED DTC AND THE RELATED WORK.

Pattern Pattern Length
Proposed DTC DFC (from [6]) AXI DMA [8]

Type (# words) Size Addr/cycle Size Addr/cycle Size Addr/cycle

Linear 1024 16 1 24 1 32 0.96

Tiled 128×721 32 1 40 0.99 32 1

Diagonal 1024×1024 128 1 44 1 65k 1

Zig-Zag 8×8 208 1 48 (132*) 0.36 (0.71*) 480 0.63

Cross 1024×1024 48 1 132 0.89 228k 1

* Values obtained after loop unrolling 1 Within a memory block of 512×512

elements (which include a 32-bit data block, a stream unique
identifier and the data block serial number).

The SME (depicted in Fig. 5) implementation results ob-
tained for the Virtex-7 FPGA prototyping device are detailed in
Table I. The presented results show that despite the complexity
of the proposed operations, in what concerns descriptor solving
and stream manipulation, the devised hardware modules incur
in a very low resource overhead. In fact, the entire SME
hardware structure (for a 16 PE configuration) requires only
4.5% of the FPGA resources. Also, the efficiency of the
SME structure itself (not accounting for the main memory
power consumption) is demonstrated by the estimated power
consumption values, which are below 355 mW. Finally, as can
also be concluded by analyzing the values on Table I, the
SME hardware structure shows to be highly scalable, requiring
only 5% of additional hardware resources when increasing the
number of PEs from 2 to 16.

B. Data-pattern generation efficiency

In order to properly evaluate the proposed DTC descriptor
solving efficiency and compare it with the considered state-of-
the-art PPMC [5] and Hotstream [6] solutions, a representative
evaluation benchmark was performed. To allow comparison
with [5] and [6], the same set of data patterns that were con-
sidered in [6] is herein used, namely: Linear; Tiled; Diagonal;
Zig-Zag; and Greek Cross. Fig. 7 depicts the considered pat-
terns and their corresponding descriptor specifications, whereas
Table II presents the DTC efficiency in solving tree-based
descriptors. For comparison purposes, the table also shows
the efficiency of state-of-art approaches (taken from [6]) when
solving the corresponding descriptors.

By analyzing Table II, it is clear that the proposed DTC
architecture provides a steady one-address per cycle generation
rate, whereas the considered state-of-the-art pattern generation
structures show a significant performance degradation for high
complex patterns. This is rather important since the address
generation rate typically constraints the system throughput,
specially in memory-bound applications. Another advantage
of the proposed system, when compared with the state-of-
art approaches, regards the memory requirements for storing
the actual data access pattern. As it can be concluded from
Table II, the proposed tree-based pattern descriptor leads to
an overall reduction in the memory size, achieving up to 2.7×
and 4800× memory savings for the Greek Cross pattern, when
comparing with the HotStream [6] and with the PPMC [5]
(through the AXI DMA [8]).

It can also be ascertained from Table II that in some of the
considered patterns the Hotstream DFC requires less memory
occupancy for its pattern description code. Although it does not
require significantly less memory, it must be kept in mind that,



Fig. 7. Considered data-patterns and the corresponding descriptor trees.

in what concerns the main memory address generation, the
Hotstream framework deploys two DFC controllers per PE [6],
while in the SME there are only two (the DSC and MSC)
independently of the number of PEs. This way, with a slightly
higher memory size that is required in some cases to store the
proposed descriptor tree specification, it is possible to achieve a
higher pattern generation rate (for any described pattern), with
significantly fewer data-fetching hardware structures. As such,
not only is most of the FPGA fabric left for computing struc-
tures but it also allows reducing the total energy consumption
of the data-management infrastructure.

C. Case Study A: Matrix Multiplication

In order to further demonstrate the proposed SME capabil-
ities, specially in what concerns promoting data reutilization, a
block matrix multiplication case study was specially devised.
For comparison purposes a shared memory communication
paradigm is used as a baseline, and compared with the pro-
posed SME, with different levels of available parallelism, in
terms of number of memory accesses and in memory-related
energy consumption.

The benchmark application performs the multiplication of
two 4096×4096 matrices (A and B), divided in 32×32 sub-
blocks. In order to do so, a 128:1 reduction step is required to
accumulate intermediate sub-block results (matrix C). Accord-
ingly, the computing infrastructure is composed of a number
of PEs, each one comprising: i) a pipelined multiply-add core,
based on Xilinx IP cores; ii) a local 128Kb scratchpad memory,
capable of storing a single column of 32x32 blocks; and iii)
two 1K Stream FIFOs, one for data input and one for data
output and result reutilization.

Fig. 8. Reduction factor observed in memory access and memory-related
energy consumption for the blocked matrix multiplication benchmark.

The application has an inherent parallelism which can be
exploited by calculating each matrix C sub-block column in
parallel. This achieved by performing the multiplication of
each sub-block column from matrix B with all the sub-block
rows from matrix A and then performing reduction steps for
each matrix C sub-block. By taking advantage of the Stream
Interconnect broadcast capabilities and of PE local memories,
it is possible to initially stream a sub-block column from matrix
B to each of the PEs (which is then stored in the local memory)
and then broadcast the entire matrix A to every PE. Moreover,
by reusing the partial data stored in the PE output Stream
FIFO, it is possible to eliminate the otherwise time-consuming
reduction steps by accumulating the partial sub-block results
and only stream them at the end of the computation. With
this approach, matrix B is streamed only once (one sub-block
column per PE), whereas matrix A is streamed a number
of times depending on the number available PEs. Hence, to
exploit the maximum achievable parallelism, the computation
can be distributed by 128 PEs (since there are 128 sub-blocks
columns in matrix B). If fewer numbers of PEs are used, each
will have to process more than one sub-block column, and
receive the entire matrix A that many times.

In Fig. 8, it is presented a graph of the memory access
reduction factor of the SME, depending on the level of
available parallelism, when compared to the considered shared
memory configuration. As it can be ascertained from the
figure, when using the maximum available parallelism, it is
possible to greatly reduce the number of memory accesses by
as much as 85×. Not only does this reduce the pressure on
the external DDR3 memory (possibly allowing for a reduction
in operating frequency), but it also allows for a significant
reduction in the memory energy consumption (see Fig. 8).
From the figure it is also possible to observe the energy
efficiency of the proposed data-reuse techniques, since even
with no parallelism the memory-related energy consumption
is reduced 3×. Moreover, when using the maximum available
parallelism it is possible to achieve an energy consumption
reduction by as much as 475×.

D. Case Study B: Biological Sequence Alignment

The proposed 3D tree-based descriptor specification was
devised not only to ease the description of arbitrarily complex
data-access patterns, but also to allow run-time stream manip-
ulation operations. In order to demonstrate such capabilities,
a second case study based on a biological sequence alignment
application [11] is presented. The application calculates the



Fig. 9. Biological sequence alignment diagonal striped computing pattern.
Dashed arrows represent the data flow direction; full arrows represent the data
dependencies between stripes. The highlighted data must be extracted from
the corresponding stream and sent to the PE computing the subsequent stripe.

alignment score between a reference and a query sequence
(with 1024 elements each), by making use of a substitution
score matrix between each of the sequences’ elements. The
score of matching a pair of elements from each sequence is
stored in a corresponding matrix cell and is calculated based
on the scores of three other cells (left, top and top-left).

In order to overcome such data dependencies the com-
putation can be performed in diagonal order of the matrix
cells [12]. However, the address calculation for such a memory
access pattern presents a considerable overhead to an otherwise
straightforward set of matrix cell computations. Hence, by
making use of a Diagonal data-pattern descriptor similar to
the one presented in Fig. 7(c), with the proposed SME, it is
possible to completely eliminate that overhead.

The computation can also be parallelized, which can be
done be dividing the score matrix in stripes that are computed
by different PEs. This approach results in a data-dependency
between the PEs (see Fig. 9), which, when considering a
shared memory communication paradigm, requires performing
subsequent writes and reads to the memory. Such an issue is
easily solved with the SME, by making use of the SSGs in
order to extract the required data from the output stream of a
PE and send it to another PE that depends on that data for its
computation.

In order to demonstrate both the efficient pattern gen-
eration and the data-manipulation capabilities of the SME
infrastructure, both a 16-PE SME setup and 16-PE shared
memory communication setup where designed in order to
process two sequences (query and reference) each composed
of 1024 elements. Although the obtained results show only a
small reduction in the number of memory accesses by 1.13×,
since only a small amount of data can be reused, a 6.5×
processing speedup is observed, resulting from the elimination
of the memory address generation overhead required in the
shared memory setup.

V. CONCLUSION

In this manuscript, an energy-efficient stream-based data-
management infrastructure was proposed. The devised Stream
Management Engine (SME) structure relies on a 3D tree-
based descriptor specification, capable of easily describing any
arbitrarily complex access pattern. In order to decode such
descriptors, a DTC architecture was specially devised that

is capable of one-address per clock cycle pattern generation
efficiency. The DTC architecture and the proposed tree-based
descriptor specification are also used by a SSG controller,
which is capable of extracting sub-stream patterns from on-
the-fly data-streams. Such functionality is used to deploy a
number of techniques for data-reutilization, such as stream
splitting, merging and rerouting operations. The obtained esults
demonstrate that combined data-reuse and manipulation fa-
cilities of the proposed SME allow reducing the number of
memory accesses by as much as 85x, which in turn results in
a 475× reduction in energy consumption related to memory
accesses.

ACKNOWLEDGMENT

This work was partially supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT) un-
der project Threads (ref. PTDC/EEA-ELC/117329/2010) and
project UID/CEC/50021/2013.

REFERENCES

[1] A. Jain and C. Lin, “Linearizing irregular memory accesses for im-
proved correlated prefetching,” in Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microarchitecture. ACM,
2013, pp. 247–259.

[2] Y. Guo, P. Narayanan, M. A. Bennaser, S. Chheda, and C. A. Moritz,
“Energy-efficient hardware data prefetching,” Very Large Scale Integra-

tion (VLSI) Systems, IEEE Transactions on, vol. 19, no. 2, pp. 250–263,
2011.

[3] J. Park and P. Diniz, “Synthesis of pipelined memory access controllers
for streamed data applications on fpga-based computing engines,” in
Proceedings of the 14th international symposium on Systems synthesis.
ACM, 2001, pp. 221–226.

[4] J. Park and P. C. Diniz, “Data reorganization and prefetching of pointer-
based data structures,” IEEE Design and Test of Computers, vol. 28,
no. 4, pp. 38–47, 2011.

[5] T. Hussain, M. Shafiq et al., “PPMC: a programmable pattern based
memory controller,” in Proceedings of the 8th international conference

on Reconfigurable Computing: architectures, tools and applications, ser.
ARC’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 89–101.

[6] S. Paiágua, F. Pratas, P. Tomás, N. Roma, and R. Chaves, “Hotstream:
Efficient data streaming of complex patterns to multiple accelerating
kernels,” in Computer Architecture and High Performance Computing

(SBAC-PAD), 2013 25th International Symposium on. IEEE, 2013, pp.
17–24.

[7] S. Ghosh, M. Martonosi et al., “Cache miss equations: An analytical
representation of cache misses,” in In Proceedings of the 1997 ACM

International Conference on Supercomputing. ACM Press, 1997, pp.
317–324.

[8] “LogiCORE IP AXI DMA v6.03a,” Xilinx, Tech. Rep. PG021, 2012.

[9] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Transactions on Image Processing,
vol. 9, no. 2, pp. 287–290, 2000.

[10] “TN-41-01: Calculating Memory System Power for DDR3,” Micron
Technology, Inc., Tech. Rep., 2007.

[11] N. Neves, N. Sebastiao, D. Matos, P. Tomas, P. Flores, and N. Roma,
“Multicore SIMD ASIP for Next-Generation Sequencing and Alignment
Biochip Platforms,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, July 2014.

[12] A. Wozniak, “Using video-oriented instructions to speed up sequence
comparison,” Computer applications in the biosciences: CABIOS,
vol. 13, no. 2, pp. 145–150, 1997.


