
Fast and Scalable Thread Migration for Multi-Core Architectures

Miguel Rodrigues, Nuno Roma and Pedro Tomás
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

miguel.pereira.rodrigues@tecnico.ulisboa.pt, {nuno.roma, pedro.tomas}@inesc-id.pt

Abstract—Heterogeneous computing is a promising approach
to tackle the thermal, power and energy constraints posed by
modern desktop and embedded computing systems. However,
by also allowing the migration of application threads to the
most appropriate cores, significant performance gains and
energy efficiency levels can also be attained. Nevertheless, the
considerably large overheads usually imposed by software-
based thread migration procedures only allow exploiting mi-
grations at a coarse-grained level, thus limiting the effectiveness
of using such techniques. Accordingly, this paper proposes a
fast and efficient hardware-based thread migration mechanism
that can be easily plugged-in into any core architecture. To
minimize the thread migration overhead and latency, the
proposed approach considers both soft- and hard-migration
procedures, and adopts a conventional “most recently used”
prediction scheme to identify the cache blocks that should be
migrated along with the thread context. Experimental results
show that the proposed scheme is lightweight and requires
limited hardware resources, while allowing to attain migration
latencies below 100 clock cycles and to reduce post-migration
overheads in up to 60%, making it particularly appropriate
for exploiting short-lived application phases.

1. Introduction

With the advent of many-core chips to allow the scal-
ing of the processing performance, the consequent increase
of the number of transistors within a single chip led to
difficult challenges related to power and thermal issues.
In particular, the advent of the Dark Silicon phenomenon
introduced a growing gap between the number of transistors
that fit in a chip and the number of transistors that can be
simultaneously used, due to thermal and power constraints
[8]. To overcome such an issue, several approaches have
been proposed, including the selective dimming of some
transistors, or the gating of processing components. Het-
erogeneous computing architectures pose an important role
in this matter, by allowing distribution of the computation
to the more energy efficient processors [16]. The use of
heterogeneous GPP architectures has even made its way to
industry, with ARM big.LITTLE [9] being the most widely
known processor. However, to fully harness the advantages
of heterogeneous architectures, application threads need to
be frequently and efficiently migrated between heteroge-
neous cores, according to the requirements of each indi-
vidual processing phase.

Typical thread migration mechanisms rely on software
based approaches to transfer the thread context via shared
memory [1], [9], [12], [15]. This can be done at OS time
slice intervals or by using specific load and store instruc-
tions. However, while such approaches allow addressing
thermal issues [17] and solving hardware fault tolerance [14]
problems, they do not allow exploiting the high variability
of fine grained thread phases (103 to 104 cycles, [13], [15]),
thus significantly limiting the attainable performance and
energy efficiency levels.

Faster migration mechanisms have been proposed at the
cost of additional hardware [4], [13]. Besides the extra
hardware, the main drawbacks of such implementations are
the poor scalability and/or the implicit requirements of major
microarchitectural modifications. Furthermore, decreasing
migration latency does not linearly increase the frequency
at which threads can be migrated, due to the increased
sensibility to post-migration overheads.

Post-migration overheads arise from what is usually
denoted by “cold resources” in the architecture, such as
the loss of caches contents, branch predictor, etc. In fact,
although the data from these structures does not necessarily
need to be migrated along with the thread (it can be dinami-
cally rebuilt after migration) it usually imposes a significant
application slowdown [3], especially for short-lived threads.

To overcome such issues, a Fast and Scalable Thread
Migration (FSTM) mechanism is herein proposed that not
only allows low-latency thread migrations, but also reduces
overheads imposed by cold cache resources. FSTM is suit-
able for homogeneous or heterogeneous multi-core architec-
tures with shared memory and can be easily plugged-in into
many-core processor aggregates, composed of any arbitrary
number and core types, hence being scalable and flexible.

2. System Overview

A thread migration can be roughly defined as moving
a thread from one execution environment to another, such
as transferring a thread between cores. Thread migration
mechanisms typically consist in the following steps:

1) Generate a thread interruption;
2) Flush the pipeline and the cache write buffer;
3) Copy the thread context to memory;
4) Load the thread context from memory.

The Operating System (OS) scheduler is responsible
for generating the thread interruption, which informs the



TABLE 1: Application slowdown due to cold cache effects.
Clock frequency at 1GHz.

Migration period (clock cycles)
Caches 2K 10K 50K

BackProp Warm 0.01 0.00 0.00
Cold L1 0.24 0.07 0.04

(3.2ms) Cold L1+L2 2.64 0.50 0.32

Kmeans Warm 0.05 0.02 0.01
Cold L1 1.21 0.28 0.07

(1.7ms) Cold L1+L2 9.60 1.78 0.28

LavaMD Warm 0.04 0.01 0.01
Cold L1 0.42 0.16 0.08

(4.3ms) Cold L1+L2 4.70 0.67 0.30

LUD Warm 0.03 0.01 0.00
Cold L1 2.16 0.44 0.09

(8.2ms) Cold L1+L2 10.06 6.99 0.37

hardware to stop fetching new instructions. This results in
flushing the processor pipeline, allowing to safely gather the
correct thread state and context. Such thread state usually
includes the general purpose register file and specific pur-
pose registers (e.g. Program Counter). However, exchanging
such context data naturally imposes time costs, which limits
the resulting execution efficiency.

The main causes for such thread migration time over-
head can be classified in direct and indirect effects. Thread
migration direct effects include flushing the pipeline and
transferring the thread context. Indirect effects arise from
loss of caches, branch predictors and instruction queue
contents, usually denoted as cold resources. Together, these
effects cause a significant application slowdown when a
thread is migrated to a different core.

Application slowdown in single-threaded applications
increase with the migration frequency [6]. To experimentally
illustrate such an issue, zero latency thread migrations were
used to quantify the overhead introduced by cold cache ef-
fects as presented in Table 1. These results were obtained in
gem5 simulator [2] using an ARM Out-of-Order processor
and running the Rodinia benchmarks suit [5].

The obtained results show almost no performance degra-
dation for warmed-up caches, where the observed degrada-
tion mainly comes from flushing the pipeline. However, for
the highest migration frequency (corresponding to 2K clock
cycles between thread migrations), cold L1 caches result in
slowdowns ranging from 0.24x (in BackProp) to 2.16x (in
LUD). The problem is even worse when cold L1+L2 caches
are evaluated where the slowdown can exceed 10x.

The observed results show that not only a low latency
migration mechanism is required for highly frequent thread
migrations, but an efficient method for dealing with cold
cache resources is also required. The herein proposed FSTM
mechanism represents a Fast and Scalable Thread Migra-
tion to circumvent this problem. In the remaining of this
section, the hardware structures sustaining such migration
mechanism will be described.

Core A1 Core A2Core
B1

Core
 B2

Core
 B3

Core
B4

L2 Cache L2 Cache

Main Memory

Figure 1: System with 2 cores of type A and 4 cores of type
B grouped into 2 clusters. Each core has private L1 caches
and shared L2 caches within a cluster.

2.1. System Baseline

The proposed structure targets efficient thread migrations
on conventional homogeneous or heterogeneous processor
aggregates equipped with a shared memory to ensure inter-
core communication. Additionally, it assumes the cores to
be grouped into clusters, in order to provide a better organi-
zation and enable heterogeneity at a cluster granularity. An
example of such system is depicted in Figure 1.

Due to the increased heteogeneity, thread migrations
either occur within a cluster (intra-cluster) or across cluster
boundaries (inter-cluster). Intra-cluster migrations are as-
sumed to be much more frequent than inter-cluster ones
but the latter are still supported at the cost of additional
latency (driven by the increased physical distance). It is also
assumed the presence of a dynamic ISA translator when
dealing with heterogeneous ISAs [7].

Additionally, the proposed system baseline assumes the
presence of a thread scheduler to trigger the migrations.
Although the integration of FSTM with the OS main sched-
uler is discussed in Section 2.3, other types of schedulers
(hardware or software based) can be used. This happens
because FSTM is implemented as a passive mechanism,
simply receiving the migration commands and executing
them in an efficient way.

2.2. Proposed Migration Mechanisms

The idea behind FSTM consists in streaming the thread
contents through specific hardware communication chan-
nels, in order to avoid the pollution of shared caches with
thread context data. Such hardware (depicted in Figure 2)
includes Input and Output Buffers to interface the cores with
a Thread Router (to ensure the thread transfer between the
cores) and a Thread Storage, especially designed to tem-
porarily store evicted threads, avoiding data cache pollution
and allowing for faster context switches.

To further minimize the migration overheads, the herein
proposed approach is not limited to conventional thread
migration styles where the processor pipeline needs to be
flushed before starting the actual migration procedure. Since
this may be a limiting factor for applications with rapid
phase changes (pipeline flushing can lead to considerable
overheads, especially for out-of-order processors with long
pipelines), the proposed approach considers initiating the
migration of thread contents while the thread is still being
executed. As a consequence, not only there is a considerable



Core A1
Core
 B1

Core
 B2

Thread
Storage

Thread Router

I I I IO O O O

Figure 2: FSTM hardware structures connected to a cluster
with 1 core of type A and 2 cores of type B. Input (I) and
Output (O) Buffers used as interface.

reduction of the thread migration latency, but it also allows
anticipating the scheduling decisions (whenever possible).

To further detail the operation of the proposed FSTM
mechanism, Figure 3 depicts the thread migration procedure
from core I to core II. When signaled for migration (time
t0 in Figure 3), FSTM starts transferring the thread state
to the Output Buffer, including not only the general and
special purpose registers, but also the state of other thread
resources, such as cache contents. To minimize the amount
of resources to be transferred, the proposed FSTM mecha-
nism also integrates a set of snooping mechanisms (detailed
in section 3) that are especially devised to keep track of the
registers and cache contents that are actually used by the
running thread.

When triggering migrations, the scheduler must detail
the type of migration, which can be soft or hard. Soft migra-
tions indicate FSTM to transfer thread state while executing
the thread, overlapping thread migration and execution. On
the other hand, hard migrations force the fetching unit to
stop fetching new instructions, thus flushing the pipeline.
Naturally, hard migrations must always follow soft migra-
tions in order to stop the thread execution. In this example
we assume a soft migration (triggered at time t0) followed
by a hard migration (triggered at time t2). After flushing the
pipeline and transferring all thread contents (time t3), core I
becomes idle and is ready to load a new thread.

In the meanwhile (time t1), the first contents of thread A
arrive at the Input Buffer of the targeted core II (remember
that thread contents are streamed instead of bulk trans-
ferred), after being properly routed by the Thread Router.
Such structure interconnects the Input and Output Buffers
by using communication channels that may be pipelined (if
necessary) to maintain high clock frequencies.

Figure 3: Temporal diagram of thread migration.

The arrival of thread A to the targeted Input Buffer will
cause the eviction of the running thread B whenever the
just arrived thread A has a higher priority. In the depicted
example, this case is assumed and a new hard migration
(thread B) is triggered via a thread eviction signal. However,
should thread A had a lower priority than thread B, the
latter would continue executing until completion or being
interrupted. In either case, thread A needs to wait at the
Input Buffer for the core to become free. As soon as the
core is free (time t4), thread A can be loaded and resume
its execution. After a while (time t5), thread B arrives to the
Thread Storage, where it will wait to be scheduled onto a
new core thus being migrated to it and resuming execution.
Naturally, depending on the scheduler decisions, the eviction
of thread B from core II, could also originate its direct
migration to another core (e.g., core I), instead of being
moved to the Thread Storage.

2.3. Integration with the OS Scheduler

To control the threads execution and to trigger thread
migration commands, a tight relation between FSTM and
the OS scheduler must exist. Although different scheduling
strategies (master) may be employed, especially considering
that FSTM is a passive mechanism, the following descrip-
tion will focus on its integration with the Completely Fair
Scheduler (CFS), as used by modern Linux kernels.

In particular, CFS aims at ensuring fairness between
running applications while also guaranteeing interactive per-
formance. This is attained by creating a time ordered red-
black tree of the active (runnable) tasks for each core,
which is then used to schedule (prioritize) threads execution.
Although such mechanism allows ensuring fairness at a
coarse-grained level (miliseconds), it leads to unsustain-
able overheads when scheduling threads with rapid phase
changes and difficults an efficient exploitation of heteroge-
neous architectures.

To overcome such an issue, the presented proposal envi-
sions the usage of auxiliary hardware schedulers underneath
the software layer (see Figure 4), which are responsible for
managing threads at an intra-cluster level, while the OS
scheduler performs the scheduling at an inter-cluster level.

Although the description of such schedulers is out of the
scope of this manuscript, its general operation is depicted in
Figure 4. Accordingly, while the software layers (OS) are
responsible for assigning tasks to clusters and for managing

Cluster #1...
Hardware Scheduler

Runnable Threads

...

OS Scheduler

Core A Core B
Cluster #N...

Hardware Scheduler

Runnable Threads

Core X Core Y

Figure 4: Multi-layer scheduling using auxiliary hardware
schedulers within clusters.



Registers To Migrate

Fetch

Decode Issue

WritebackExecute
Integer

Multiply

Floating-point / NEON

Dual Issue

Load/Store

Queue

M
U

X

Blocks To Migrate

MUX

Register File

Input FIFO

Output FIFO

Priority Encoder

ICache Snp. DCache Snp. Registers Snp.

(a) In-order core.

Registers To MigrateBlocks To Migrate

Priority Encoder
ICache Snp. DCache Snp. Registers Snp.

M
U

X

Commit

Register File

Input FIFO

Output FIFO

Decode, Rename & Dispatch

Fetch

Loop Cache
Branch

Queue Issue Execute
Integer

Integer

Multiply

Load

Store

M
U

X

(b) Out-of-order core.

Figure 5: Integration of the FSTM modules in a heterogeneous processor.

exceptions (e.g., triggered by page faults), the per-cluster
hardware schedulers are responsible for implementing the
CFS decisions by assigning tasks to cores (according to
specific policies related to the core’s architectures, compu-
tational resources, thermal/power restrictions, etc.), and by
also collecting important run-time information, in order to
identify phase changes and to trigger migrations between
heterogeneous cores.

3. FSTM Implementation

Contrasting to what happens with conventional migra-
tion approaches, the efficiency of the proposed mechanism is
maximized by selectively transferring the subset of registers
or cached contents that are actually being used by the
thread under consideration. The following subsections de-
scribe these mechanisms, together with the communication
infrastructure that supports such transfer.

3.1. Selective migration of thread context

To keep track and selectively transfer the subset of regis-
ters and cache lines being used by the thread, FSTM requires
a snooping mechanisms for registers and cache contents.
Figure 5 depicts an application example where an in-order
processor and an out-of-order processor are aggregated in an
heterogeneous multi-core. Cache snooping is implemented
by ICache Snp and DCache Snp modules (see gray
boxes), while Register Snp module selectively selects
the set of general- and special-purpose registers in use. Then,
a Priority Encoder is used to order the transfer of the
thread context to the Output FIFO.

Furthermore, to allow the overlapping of the thread
migration procedure with the thread execution, the modi-
fied logical registers are marked in an auxiliary migration
scoreboard table (composed of two dirty bits per logical
register), either at the writeback stage (in-order processor) or
at the commit stage (out-of-order processor) of the pipeline.

However, although this strategy allows reducing the
thread migration latency, it may give rise to data hazards
at the destination core, due to the writing of new contents

to a register which has already been migrated. To overcome
this issue and also to avoid constant migration of the same
register, which may be modified several times before thread
eviction, the following strategy is adopted: i) the first dirty
bit is used to keep track of the registers that have been mod-
ified, and is used to control the registers that are transferred
upon reception of the thread migration signal; ii) the second
dirty bit is used to mark registers that have been modified
after thread migration starts, and is used only after pipeline
flushing, in order to migrate the remaining thread context.

For the migration of the cache contents, which would
lead to substantial migration overheads, a similar strategy is
herein adopted. However, instead of transferring the whole
cache contents, a Most Recently Used prediction scheme is
used. Although other more sophisticated policies could be
used, an important compromise must be reached between
the migration of cache contents (which increase migration
latency) and the mitigation of the thread slowdown imposed
from uninitialized cache contents. The adopted strategy
consists in using a valid bit that indicates which cache
blocks (from either Instruction or Data caches) have been
touched in a time window preceding the current clock cycle,
taking advantage of temporal locality. Upon migration, the
selected cache blocks are streamed alongside with the pro-
cessor registers, in order to reduce the cold cache effects
in the migration. Naturally, enlarging such time window
will increase the number of migrated blocks, which may (or
may not) be beneficial considering the cost and overhead of
thread migration and the accuracy of the prediction.

The actual migration of the thread context, as marked
in the migration scoreboard table, can be made by any
order. However, the proposed approach adopts a priority
encoder to give precedence to the general- and special-
purpose registers. In particular, since the cache contents can
be dynamically rebuilt at the destination core, this approach
ensures that the thread can start executing at the destination
core as soon as its architectural state is received. Addition-
ally, the priority encoder performs a second important role
in thread migration, by creating labels that identify which
contents are being transferred, which are used at thread
arrival to write the data in the appropriate locations.



3.2. Migration Channels
Figures 5a and 5b show how the Input and Output

Buffers are connected to the cores, providing a mean to
store and load the threads. Such buffers are implemented
by using a dual clocked FIFO, to support per-core Dynamic
Voltage Frequency Scaling (DVFS).

Figure 6 shows how the Thread Router multiplexes the
communication channels (wires) between Output and Input
FIFOs, routing the threads according to migration param-
eters (thread origin and destination). Hence, the Thread
Router is responsible for checking the existence of threads
awaiting at the Output Buffers and, whenever required,
migrating them accordingly. Such structure is mainly im-
plemented with multiplexers to choose from which Output
Buffer is a thread migrating from, sending the migrating
thread to the correct destination. Furthermore, a mutex is
made available to manage concurrent requests. In particular,
the Thread Router locks such mutex to the first migrating
thread arising from the Output Buffers, solving conflicts
with a round-robin priority scheme.

Just as an ordinary core, the Thread Storage is connected
to the routing infrastructure through an Input and Output
Buffer. Despite the several alternatives that could be adopted
to implement this element, a direct mapped memory was
herein adopted, in which the threads have a specific location
to be stored, according to their ID, which is dynamically
assigned by FSTM (not to be confused with the ID used
by the OS). Such approach eases the management of the
threads locations when triggering a migration from the
Thread Storage. During the course of such migration, an
auxiliary hardware vector indicating which threads exist and
are valid inform if such migration is valid (e.g. trying to
migrate a thread from the Thread Storage when the thread
is not there is not possible). If such migration is allowed,
thread contents are streamed through the Output Buffer and
the migration will elapse in a similar way as when threads
migrate from processing cores.

When an arriving thread (at the core Input Buffer) should
be loaded, a convenient set of multiplexers is used to choose
the origin of data being stored at the register file: either
from the Input Buffer or from the core writeback/commit
stages (see Figure 5). Hence, such multiplexers forward
the thread contents from the core Input Buffer into the
internal registers and caches, according to the labels that are
migrated alongside with the registers and cache contents. As
soon as the thread has finished loading all its registers, it
may resume its execution, independently on the initialization
of other resources, which may be loaded from outer cache
levels or from the Input Buffer, whichever is faster.

...Input FIFO #1 Input FIFO #N Input FIFO #TS...Input FIFO #1 Input FIFO #N Input FIFO #TS

...Output FIFO #1 Output FIFO #N Output FIFO #TS

Thread Router

Figure 6: Interfacing FIFOs between cores and Thread Stor-
age (TS), managed by Thread Router.

TABLE 2: Parameters of the used CPU model.

Parameter L1 L2
Size 32 kB 512 kB

Cache Line Size 64 B
Associativity 4 8

Latency 4 20
MSHRs 4 11

Write Buffers 9 16

Clock Freq.
1 GHz

Prefetcher
None

3.3. Communication Protocol

The Wormhole Switching protocol was chosen to stream
threads across cores, as it introduces very small overhead.
It only adds a header (with destination) and a tail (signaling
the end of thread) to the data packet corresponding to the
thread being migrated. Such tail is necessary because the
thread packet size is not fixed. Furthermore, a thread ID
must be sent alongside with the thread contents, to provide
the necessary information to the Thread Storage. Such ID
is dynamically assigned and identifies the thread in FSTM
channels (not to be confused with the thread ID assigned by
the Operating System). This protocol specific information is
added at the beginning of a migration, before sending the
thread through the Output Buffers.

4. Experimental Evaluation

In order to evaluate the proposed FSTM mechanism,
the widely adopted gem5 simulator [2] was used in its
Syscall Emulation mode, to model a real multi-core pro-
cessor. In particular, the considered processing structure
mimics a dual-core aggregate composed by two out-of-
order A15 ARM cores. The adoption of such homogeneous
aggregate arises from our interest in quantifying the overall
processing gains that are obtained by using the proposed
efficient migration scheme. For such purpose, this simulation
environment ensures not only an accurate emulation of all
these processors, but also a rigorous modeling and evalu-
ation of all elements that support the migration procedure.
Private L1 and shared L2 caches of these cores (see Table 2)
were used by default, unless when stated otherwise. The
considered parameterization considers a migration latency
of 1 clock cycle for each 64-bits block, plus 7 cycles for
filling the migration pipeline. The same clock frequency
(1GHz) is assumed for all cores, as well as for the mi-
gration infrastructure. To emulate the interference between
threads, as well as the consequent thread migrations, the
adopted simulation environment also comprised appropriate
mechanisms to evaluate the resulting effects of cold cache
resources, by invalidating the core destination private cache
prior to migration.

Four distinct and representative benchmarks from Ro-
dinia suit [5] were used to evaluate the proposed scheme,
namely BackProp, Kmeans, LavaMD and LUD, running in
a single thread. The migrations were manually triggered in
fixed size intervals, ranging from 2K to 250K clock cycles,



2K 10K 50K 250K
60

70

80

90

Period between thread migrations (Cycles)

M
ig

ra
tio

n
la

te
nc

y
(C

yc
le

s)

BackProp Kmeans
LavaMD LUD

Figure 7: Migration period using FSTM hard migrations.

in order to understand how thread migration overheads
varies across different migration periods.

4.1. Time Overhead

Time overheads are of major importance when consid-
ering thread migrations, due to the imposed limitations in
exploiting short-lived application phases to migrate between
cores. Thus, in order to increase performance and energy-
efficiency, it is necessary to consider if the cost of migrating
the thread is worth the gains achieved by doing so. In
this section, we focus on studying the overheads of hard
thread migration (see Section 2.2) with the proposed FSTM
mechanism.

As detailed in Section 2, migration overheads arise from
both migration latency and post-migration overheads caused
by cold resources. In order to quantify the migration cost,
the inherent migration latencies were measured and depicted
in Figure 7. The obtained results show that migration latency
remain almost constant across different migration periods.
That is explained by the fact that migration latencies using
FSTM exclusively depend on the amount of thread contents
to transfer, which are mostly independent of thread migra-
tion frequency.

Furthermore, these results also show that these migration
latencies are no greater than 100 clock cycles, which repre-
sents an improvement of more than two orders of magnitude
when compared with ARM big.LITTLE that has a migration
latency of about 20,000 clock cycles [9] when switching
between A7 and A15 cores. Such is possible because FSTM
is a hardware based mechanism, whereas big.LITTLE de-
pends on the OS software to implement this. Furthermore,
by relying on the implemented snooping mechanisms to
keep track of which logical registers are effectively being
used, the proposed FSTM mechanism avoids transferring the
complete set of logical register file (as defined at the ISA
level), which would include over 300 registers. In particular,
the proposed snooping technique allows for a significant
reduction of up to 80% of the amount of registers being
transferred which effectively provides a large reduction in
the migration latencies.

To evaluate the provided gains in terms of migration
overheads, the cache contents corresponding to each thread

0 64 128 256 512 1024
0

50

100

Time Window (Cycles)

R
el

at
iv

e
M

ig
ra

tio
n

O
ve

rh
ea

d
(%

)

BackProp Kmeans
LavaMD LUD
Priv. L1 Priv. L1+L2

Figure 8: Migration overhead reduction due to initialization
of cache contents (migration period of 2K cycles).

were transferred via the FSTM communication channels.
The selection of such contents considered the adopted Most
Recently Used prediction scheme, where cache blocks are
marked for transfer if they have been touched during a
specific time window preceding the migration.

The migration overhead was measured as the difference
between the observed execution times with and without
cache and registers migrations. Furthermore, the size of the
time window was varied to understand its influence. Then,
the obtained results were normalized according to equation
(1) and depicted in Figure 8:

Overhead =
(TMigCache − TNoMig)

(TMigReg − TNoMig)
(1)

where:

TMigCache : Execution time with thread, cache and
registers migration

TMigReg : Execution time with thread and registers
migration (only)

TNoMig : Execution time without thread migration

On a side note, it is worth noting that the overhead
reduction represented in Figure 8 represents a worst-case
situation, since it assumes that all marked cache blocks are
effectively migrated before the thread resumes execution. In
fact, the thread may resume execution as soon as the archi-
tectural thread state is transferred, where cache contents are
subsequently migrated while the thread is already executing,
with data being retrieved from either the outer level caches
or from FSTM channels, whichever is faster.

Despite this limitation, the obtained results show that
the overhead due to cold cache effects can be effectively
reduced, especially when using private L1+L2 caches. More-
over, since FSTM does not rely on any existent memory
sub-systems to migrate threads, its effectiveness increases
as threads are more sensitive to cold resources (due to a
higher cache-miss penalty).

Furthermore, it was also observed that the time window
size plays an important role in this matter, since its increase



causes more cache blocks to be transferred. In fact, when-
ever useful cache blocks are transferred, the cache hit rate
will increase, thus reducing the overhead. On the contrary,
transferring useless data will intensify post-migration over-
heads, due to the additional migration latency of transferring
such blocks.

Kmeans and LUD benchmarks are two distinct examples
of such events. Kmeans shows continuous improvements
while increasing the time window size – even at a time
window of 1024 cycles, 85% of the transferred cache blocks
are used in the near future. On the other hand, LUD shows
less improvements, since the accuracy of the adopted sim-
plistic prediction is very poor – as low as 35% in the worst
case, having even a worst performance with larger time
windows, when compared to not transferring any cache con-
tents. Furthermore, in the case of the BackProp benchmark
using shared L2 caches, it is possible to observe that the
overhead has a minimum for a time window size of 256
cycles. Such observation is consistent with the previously
described tradeoff between migrating more or less blocks.
The same effect is not so easily seen while using private
L1+L2 caches, due to the higher post-migration overheads.

In summary, the obtained time overhead results can be
summarized in three key conclusions:

1) FSTM is able to reduce the migration latency from
20,000 cycles to less than 100;

2) FSTM with cache contents migration reduces cold
cache effects, thus decreasing migration overheads.

3) FSTM does not rely on any existing memory sub-
system, making it more effective as threads are
more sensitive to cold cache effects.

4.2. Hardware Resources

To quantify the added hardware resources required by
the proposed FSTM, all needed modules were implemented
and aggregated to a cluster of MB-Lite cores [11], proto-
typed in a Xilinx Virtex-7 (XC7VX485T) FPGA. Conve-
nient synthesis and post-place and route procedures were
performed using Xilinx ISE 13.4 software. In accordance,
the implemented baseline system consists in a variable num-
ber (N) of MB-Lite cores, each with private instruction and
data cache memories, and accessing a shared memory, made
available to provide inter-core communication. This system
was described using generic VHDL code to ease system
configuration and to provide consistency across implemen-
tations with varying parameters.

The required hardware resources were measured with
and without the FSTM modules and by varying the number
of cores (2, 4, 8 and 16). The results obtained with different
core count were averaged since they presented an area per
core almost identical in every case.

Figure 9 presents the obtained measures in form of Slice
Registers, RAM blocks and Slice LUTs. It is worth noting
that the usage of the multiplier and barrel shifter does not
change the number of occupied Slice Registers and RAM
blocks (RAMB36E1), since they are implemented as pure

Figure 9: Required hardware resources per core type. The
proposed FSTM mechanisms had no impact on the maxi-
mum operating frequency.

combinatorial blocks. The obtained results show that, in
the worst case of a simple core supporting only logic and
integer 32-bit add operations, the FSTM mechanisms occupy
at most 35% of the used Slice Registers and 44% of the
used RAM blocks, mainly due to the usage of FIFOs to
implement the Input and Output Buffers, and 20% to 35%
of the Slice LUTs in use.

Naturally, this overhead is less notorious as the core
complexity increases. In fact, since MB-Lite cores are very
simple and small, the measured overheads represent a quasi-
worst case scenario. In particular, such overheads would
be significantly less representative when considering typical
super-pipelined and out-of-order cores supporting integer,
floating point and vector arithmetic, such as the out-of-order
ARM core simulated in gem5.

Moreover, the impact of the aggregation of FSTM in the
maximum allowed clock frequency was also measured, by
evaluating the maximum clock frequencies before adding
FSTM under the three cases depicted in Figure 9. After
adding the FSTM modules, it was confirmed that their inclu-
sion does not reduce the clock frequency. This is mainly due
to the configurable pipeline stages that were specially added
to the FSTM paths to prevent such degradation, allowing to
maintain the original clock frequencies even when using 16
cores in the system. Nonetheless, another possible option
would be to use a different clock frequency domain for the
FSTM communication channels, which could be adapted in
real-time using DVFS techniques according to the system
run-time requirements.

4.3. Related Work

To the best of the authors’ knowledge, the proposed
FSTM mechanism is the first that implements a complete
hardware-based solution for an efficient thread migration
mechanism, where cache contents are streamed alongside
with the register values via specific communication chan-
nels. Nonetheless, other related work concerning cold re-
sources effect have been done [3], [6], [10], [13].

Constantinou et al. [6] studied the performance implica-
tions of single thread migration, showing the importance of



warming-up resources to reduce post-migration overheads.
They propose warming-up resources (caches and branch
predictor) prior to migration, which can only be done if
the destination core is idle. FSTM differs from this work
by migrating thread contents alongside with the thread,
being able to reduce cold cache effects even without a
priori training. This is particularly useful in multi-threaded
environments, where cores are unlikely to be idle.

Brown et al. [3] study the usage of several cache working
set predictors and propose a prefetching of such contents at
destination core. Information indicating which contents to
prefetch is migrated with the thread and prefetching can be
done in parallel with thread execution. FSTM differs from
this work by moving cache contents proactively with the
thread, not depending on the memory sub-system.

Lukefahr et al. [13] brings the concept of heterogeneity
within a single core. Such composite cores allow intra-core
thread migrations, solving the problem of cold resources.
Only the architectural thread state must be transferred while
the core is executing, although it can be speculatively trans-
ferred beforehand, thus further reducing migration latency.
FSTM differs from this work by being easily plugged into
several systems, not requiring any major micro-architectural
modifications.

5. Conclusion

Heterogeneous computing has recently emerged as a
viable way to overcome the power, energy and thermal
constraints of modern computing systems, by providing the
means to schedule the execution of the application phases
to different processing cores. However, typical software-
based approaches lead to migration latencies that range
from thousands to millions of clock cycles. This seriously
constraints the exploitation of fine-grained application phase
changes, limiting the attained performance and energy effi-
ciency levels.

Accordingly, this paper proposes a new Fast and Scal-
able Thread Migration (FSTM) mechanism that makes use
of specialized hardware to significantly reduce thread mi-
gration latency and overhead. In particular, it relies on a
scoreboard table in order to detect, in run-time, the actual
thread context and therefore limit the amount of resources
that would otherwise be transferred. As a result, an up
to 80% reduction in thread context transfer is observed,
which allows keeping the thread migration latency below 80
clock cycles for the considered benchmarks. Furthermore,
the proposed approach also adopts a conventional “most re-
cently used” prediction scheme to identify the cache blocks
that should be migrated, which allows attaining up to 60%
reduction in post-migration overheads.

To evaluate the inherent overhead in terms of hardware
resources, the proposed FSTM mechanism was prototyped
in a Xilinx Virtex-7 FPGA and compared with the hardware
resources of an MB-lite core. Experimental results show
that, even when compared with such a small processor, there
is a limited increase in the used resources and no observable
impact in the operating frequency.

Acknowledgments

This work was partially supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT), un-
der projects Threads (ref. PTDC/EEA-ELC/117329/2010),
P2HCS (ref. PTDC/EEI-ELC/3152/2012) and project
UID/CEC/50021/2013.

References

[1] M. Becchi and P. Crowley, “Dynamic thread assignment on heteroge-
neous multiprocessor architectures,” in Proc. 3rd Conf. on Computing
Frontiers. ACM, 2006, pp. 29–40.

[2] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[3] J. A. Brown, L. Porter, and D. M. Tullsen, “Fast thread migration
via cache working set prediction,” in Proc. Int. Symp. on High
Performance Computer Architecture. IEEE, 2011, pp. 193–204.

[4] J. A. Brown and D. M. Tullsen, “The shared-thread multiprocessor,”
in Proc. 22nd Int. Conf. on Supercomputing. ACM, 2008, pp. 73–82.

[5] S. Che et al., “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proc. Int. Symp. Workload Characterization. IEEE, 2009,
pp. 44–54.

[6] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis, and A. Seznec,
“Performance implications of single thread migration on a chip multi-
core,” ACM SIGARCH Computer Architecture News, vol. 33, no. 4,
pp. 80–91, 2005.

[7] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution migration in a
heterogeneous-ISA chip multiprocessor,” ACM SIGARCH Computer
Architecture News, vol. 40, no. 1, pp. 261–272, Mar. 2012.

[8] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proc.
38th Int. Symp. Computer Architecture. IEEE, 2011, pp. 365–376.

[9] P. Greenhalgh, “big.LITTLE processing with ARM Cortex-A15 &
Cortex-A7,” ARM White paper, 2011.

[10] A. Gutierrez, R. G. Dreslinski, and T. Mudge, “Evaluating private
vs. shared last-level caches for energy efficiency in asymmetric
multi-cores,” in Proc. Int. Conf. on Embedded Computer Systems:
Architectures, Modeling, and Simulation. IEEE, 2014, pp. 191–198.

[11] T. Kranenburg and R. Van Leuken, “MB-LITE: A robust, light-weight
soft-core implementation of the microblaze architecture,” in Proc.
Conf. Design, Automation and Test in Europe, 2010, pp. 997–1000.

[12] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, “Single-ISA heterogeneous multi-core architectures: The po-
tential for processor power reduction,” in Proc. 36th IEEE/ACM Int.
Symp. Microarchitecture. IEEE, 2003, pp. 81–92.

[13] A. Lukefahr et al., “Composite cores: Pushing heterogeneity into a
core,” in Proc. 45th IEEE/ACM Int. Symp. Microarchitecture. IEEE,
2012, pp. 317–328.

[14] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee, “Ar-
chitectural core salvaging in a multi-core processor for hard-error
tolerance,” in ACM SIGARCH Computer Architecture News, vol. 37,
no. 3. ACM, 2009, pp. 93–104.

[15] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-
grained power management for multi-core systems,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 3, pp. 302–313, 2009.

[16] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of
the coming dark silicon apocalypse,” in Proc. 49th Design Automation
Conference. ACM, 2012, pp. 1131–1136.

[17] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal
management for multicore systems,” in Proc. 45th Design Automation
Conference. ACM, 2008, pp. 734–739.


