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a b s t r a c t 

This work introduces and formalizes the Flying Tourist Problem (FTP), whose goal is to find the best 

schedule, route, and set of flights for any given unconstrained multi-city flight request. To solve the FTP, 

the developed work proposes a methodology that allows an efficient resolution of this rather demand- 

ing problem. This strategy uses different heuristics and meta-heuristic optimization algorithms, allowing 

the identification of solutions in real-time, even for large problem instances. The implemented system 

was evaluated using different criteria, including the provided gains (in terms of total flight price and 

duration) and its performance compared to other similar systems. The obtained results show that the 

developed optimization system consistently presents solutions that are up to 35% cheaper (or 60% faster) 

than those developed by simpler heuristics. Furthermore, when comparing the developed system to the 

only publicly available (but not-disclosed) alternative for flight search, it was shown that it provides the 

best-recommended and the cheapest solutions, respectively 74% and 95% of the times, allowing the user 

to save time and money. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Consider a person who wants to visit N different cities in the

most efficient way possible. In the combinatorial optimization do-

main, this problem is well known as the Traveling Salesman Prob-

lem (TSP) and it is considered to be part of one of the most com-

plex classes of problems ( Karp, 1972 ). This difficulty arises from

the exponential growth of the number of possible solutions, given

approximately by N !. 

Upon the introduction and formalization of the TSP, this prob-

lem could simply be stated as “Given a list of N cities and the dis-

tances between them, what is the best closed tour that visits every city

exactly once?” or, as considered in the graph theory domain, “Given

a complete undirected graph with weighted edges, what is the mini-

mum cost Hamiltonian cycle?”. This formulation has a vast number

of applications and it is very useful for the majority of the rout-

ing problems that occur on a network that can be modulated as

a graph ( Applegate, Bixby, Chvátal, & Cook, 2007; Gross, Yellen, &

Zhang, 2013 ). 

In this paper, the classic problem of traveling through N dif-

ferent cities is revisited, but assuming the particular case applied
∗ Corresponding author at: INESC-ID, Rua Alves Redol, 9, 10 0 0-029 Lisboa, Portu- 

gal. 
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o commercial flights transportation. This specific formulation is

losely related to the generic TSP, in the sense that both prob-

ems aim to find the most efficient way to visit a given number of

ities. However, there are some considerable differences. While the

eneric TSP (and its asymmetric variation) considers that the cost

etween two cities is always constant over time, such assumption

s certainly not true for the case of commercial flights, as the tick-

ts price depend not only on the date, but also on the direction of

he trip (i.e., price ( A → B ) � = price ( B → A )). 

As a result of this time (and direction) dependency, a reason-

ble assumption would be to consider this as a Time-Dependent

raveling Salesman Problem (TDTSP) ( Fox, Gavish, & Graves, 1980 ).

ue to the specific characteristics and goals of the problem, this

s, in fact, the case. However, the majority of the literature around

he TDTSP makes a number of assumptions that, in many cases,

o not adequately describe the problem. An example of this is

he TDTSP formulation introduced by Picard and Queyranne (1978) ,

hich considers that the waiting period in each city is exactly one

ime-period. Such an assumption is not always verified, not only

ue to existing restrictions of flight offers in such routes, but also

ecause flying dates are also dependent on the traveler’s conve-

ience. 

Another variation of the TSP that is directly related to the

onsidered problem is the TSP with time windows, where each

ity must be visited in a given time window. There are several

https://doi.org/10.1016/j.eswa.2019.04.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.04.024&domain=pdf
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pproaches to solve this problem. A recent and efficient approach

as presented by Boland, Hewitt, Vu, and Savelsbergh (2017) ,

hich uses a time-expanded Integer Linear programming (ILP) for-

ulation that is exploited without ever explicitly creating the com-

lete formulation. A carefully designed partially time-expanded

etwork is used to produce upper and lower bounds, which are

teratively refined until optimality is reached. 

The observed limitations of these formulations lead to the need

f a more realistic formulation of the problem (herein referred to

s the Flying Tourist Problem (FTP)). In particular, while the goal

f the TSP is to find the best route which efficiently connects all

 cities (minimizing the distance), the goal of the FTP is to find

he best route, schedule and set of flights for the trip. Furthermore,

he objective function of this problem must also reflect multi-

le objectives, particularly the total cost and flight duration of the

rip. 

To the best of the authors’ knowledge, no formal solution exists

o solve this specific problem. While there are several meta-search

ngines that are capable of responding to multi-city requests, the

ser must always specify a particular route and schedule. However,

rom the analysis of the search space perspective, such scenario

orresponds to the inspection of a single solution among the N !

olutions to the problem. Furthermore, as the number of cities to

e visited increases, finding the best set of flights rapidly becomes

 slow, time consuming, and tedious process. 

On the other hand, a commercial flight search application was

ecently launched by Kiwi ( www.kiwi.com ), denoted as Nomad .

his web-service addresses the same problem as the presented

ork and it is currently the only publicly available (non-disclosed)

ool for the resolution of this problem. Consequently, it will be

reated as the state-of-the-art in the quantitative evaluation of the

eveloped system. According to the obtained results, the presented

ptimization algorithm is able to provide cost and flight duration

ains as high as 25% when compared to Kiwi ’s Nomad implemen-

ation, when considering trips with more than 5 nodes. 

With this in mind, the goals and major contributions of this

ork are the following: 

• Formal definition of the Flying Tourist Problem that looks for the

best schedule and set of flights that visit a given list of cities,

by minimizing both the total cost and flight duration ; 
• Identification of several optimization methods that can be used

to solve the stated problem; 
• Implementation of a system prototype capable of providing a

high-quality solution for the problem (in an efficient manner)

when using real-world data and resources; 
• Analysis and evaluation of the obtained results, not only in

terms of the obtained set of solutions, but also in terms of the

achieved gains (time and cost). 

The remaining of this article is structured as follows.

ection 2 presents a brief overview of the most relevant literature.

his is followed by a formal definition of the problem, presented

n Section 3 . Section 4 covers in detail the considered optimiza-

ion procedure and Section 5 presents the architecture of the de-

eloped system prototype and the most relevant implementation

etails. Section 6 presents a quantitative analysis of the obtained

olutions based on several conducted experiments and compares

t to the current state-of-the-art. Section 7 briefly describes other

elated TSP formulations that have been presented in recent liter-

ture and Section 8 presents the major conclusions and addresses

ossible future work directions. 

. Literature review 

The TSP is a classical formulation in several domains, includ-

ng routing and graph theories ( Applegate et al., 2007; Gross et al.,
013 ). It is also frequently applied in other specific optimization

cenarios, including the Vehicle Routing Problem (VRP) or the

ingle-machine scheduling. Although its symmetric versions over

n undirected graph are usually considered, other variations are

lso common, based on its asymmetric counterpart over a directed

raph ( Öncan, Altınel, & Laporte, 2009 ). 

The several optimization algorithms that have been proposed

or the TSP are usually grouped into exact, heuristic and metaheuris-

ic approaches. 

Most exact algorithms ( Laporte, 1992a; Laporte, 1992b ) rely

n an Integer Linear Programming (ILP) formulation, while oth-

rs are based on branch and bound ( Lawler & Wood, 1966; Mor-

ison, Jacobson, Sauppe, & Sewell, 2016 ) and minimum spanning

ree ( Bazlamaçci & Hindi, 2001 ) techniques. However, the long ex-

cution times that characterize these approaches make them im-

ractical in most application scenarios. 

As a result, many heuristic methods to solve either the

SP ( Rego, Gamboa, Glover, & Osterman, 2011 ) and the VRP

 Laporte, Gendreau, Potvin, & Semet, 20 0 0 ) have been proposed.

mong the most common approaches are improvement heuris-

ics, such as the k-opt exchange ( Golden, Bodin, Doyle, & Stew-

rt, 1980 ), construction heuristics, including the nearest neighbor

 Laporte, 1992a ) and tabu search ( Glover & Laguna, 1999 ). For

he particular case of the TSP, the Lin-Kernighan heuristic ( Lin &

ernighan, 1973 ) is a particularly efficient algorithm. It was the

tate-of-the-art (for asymmetric TSPs) for over a decade. In general,

ts results are within 2% of the lower bound and often generate op-

imal solutions ( Johnson & McGeoch, 1997 ). Despite this, the Lin-

ernighan heuristic cannot be directly applied to the asymmetric

SP. Instead, it is necessary to apply a graph transformation, con-

erting the asymmetric TSP into a symmetric instance, with twice

s many nodes ( Jonker & Volgenant, 1983 ). 

In the last 30 years, a great interest has also been devoted

o the usage of metaheuristic algorithms to solve the TSP. Meta-

euristics can be seen as higher order heuristics: they take advan-

age of an underlying heuristic and guide the algorithm to produce

n efficient search space exploration. The class of metaheuristics

s vast and includes algorithms such as the Simulated Annealing

 Kirkpatrick, Gelatt, & Vecchi, 1983 ), Genetic Algorithm ( Goldberg,

989 ), Ant Colony Optimization ( Dorigo & Gambardella, 1997 ), Par-

icle Swarm Optimization ( Kennedy & Eberhart, 1995 ) and many

ore. 

The Simulated Annealing (SA) was one of the first meta-

euristic methods to be developed, and its success resides on its

bility to escape local minimum, by performing hill-climbing tech-

iques. During the development of these algorithms, the TSP was

he first optimization problem to be solved using these meta-

euristics ( Malek, Guruswamy, Pandya, & Owens, 1989 ). This was

rimarily because the TSP served as a good benchmark test for

valuating the algorithm’s performance. The VRP was a natu-

al consequence of this ( Osman, 1993 ). There are also several

orks which focus on TSP and VRP with time-windows ( Czech

 Czarnas, 2002; Ohlmann & Thomas, 2007 ), including real-world

nvironments that consider that the travel time is stochastic in-

tead of well defined ( Laporte, 1992b ), as well as several SA al-

orithms which focus on multi-objective optimization ( Czyz ̇zak &

aszkiewicz, 1998 ). 

The Ant Colony Optimization (ACO) is actually a group of sev-

ral different optimization algorithms, as the Ant System (AS),

litist AS, Ant Colony System, and min-Max AS. Just like the

A, the TSP was one of the first optimization problems to be

olved using ACO. The first of these algorithms, the AS, did not

onsistently present high-quality results. However, the later algo-

ithms (including the Ant Colony System) were capable of compet-

ng with the state-of-the-art ( Dorigo & Gambardella, 1997 ). After

ne-tuning, the ACO was rapidly applied to a vast collection of

http://www.kiwi.com
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combinatorial optimization problems, as the VRP ( Gambardella,

Taillard, & Agazzi, 1999 ), quadratic assignment ( Gambardella, Tail-

lard, & Dorigo, 1999 ), and weighted tardiness ( den Besten, Stützle,

& Dorigo, 20 0 0 ), where the TSP occurs as a special case of these

three problems. Other multi-objective examples were presented by

Doerner, Gutjahr, Hartl, Strauss, and Stummer (2004) and Lopez-

Ibanez and Stutzle (2012) . More recent works obtained fast and

reliable TSP solutions by using parallelism and cooperation among

multiple colonies ( Gülcü, Mahi, Baykan, & Kodaz, 2018 ). Their par-

allel cooperative hybrid algorithm (PACO-3Opt) avoids local min-

ima by sharing information among colonies. This process continues

until the termination criterion meets. Thus, it can reach the global

optimum. 

Another important metaheuristic is the Particle Swarm Opti-

mization (PSO), proposed by Kennedy and Eberhart (1995) and

Shi and Eberhart (1998) . In this method, each particle represents

a potential solution to the search space and the algorithm pro-

ceeds by having several particles moving around. The movement

of each particle, characterized by its position and speed, is in-

fluenced by its known optimum value and the optimum value

of the other particles. This gives the particles swarm like be-

havior. The method was later applied to TSP by a series of au-

thors, including Clerc and Kennedy (2002) , Goldbarg, de Souza, and

Goldbarg (2006) , Rosendo and Pozo (2010) and Jianchao and Zhi-

hua (2006) . 

Besides these classical approaches, there are also some other

proposals that apply hybrid optimization algorithms, combining

two or more meta-heuristics. An example of this is the genetic

simulated annealing ant colony system ( Chen & Chien, 2011 ).

Another recent improvement to solve the TSP was obtained

by Osaba, Ser, Sadollah, Bilbao, and Camacho (2018) , which use

the Water Cycle Algorithm (WCA), a nature-inspired meta-heuristic

proposed in 2012. This algorithm is motivated by the natural sur-

face runoff phase in the water cycle process and on how streams

and rivers flow into the sea. The application of WCA to the TSP

shows relevant improvements to the existing approaches, both in

terms of convergence, speed, and optimality. 

Another bio-inspired metaheuristic is the bat-algorithm, pro-

posed in 2010, based on the echolocation or bio-sonar character-

istics of microbats. In particular, Osaba, Yang, Diaz, Lopez-Garcia,

and Carballedo (2016) presented a discrete version of this algo-

rithm that can be applied to the symmetric and asymmetric TSPs.

They showed that good performance results can be obtained with

this method when compared to the state-of-the-art. 

A heuristic that is particularly resilient to large instances is

the Partial OPtimization Metaheuristic Under Special Intensification

Conditions (POPMUSIC). An application of this heuristic to the TSP

(considering instances of up to several million cities) was proposed

by Taillard and Helsgaun (2019) . Their approach considers only a

subset of the edges connecting the cities and the candidate edges

are found with a technique exploiting tour merging and POPMU-

SIC. Then, high quality solutions can be efficiently found by pro-

viding these candidate edges to a local search engine. 

An interesting variation of TSP is the Pickup and Delivery Trav-

eling Salesman Problem with Handling costs (PDTSPH), where a

single vehicle has to transport loads from origins to destinations.

Loading and unloading of the vehicle is operated in a Last-In-First-

Out (LIFO) fashion. However, if the load that must be unloaded is

not the one that was loaded last, additional handling operations

are allowed to unload and reload other loads that block the access.

The additional handling operations take time and effort, to which

penalty costs are associated. The aim of the PDTSPH is to find a

feasible route such that the total costs, consisting of travel costs

and penalty costs, are minimized. This problem was recently stud-

ied by Veenstra, Roodbergen, Vis, and Coelho (2017) , who used a
arge Neighborhood Search (LNS) heuristic. The authors performed

xhaustive experimental tests to validate this approach, which ob-

ained new optimal solutions in several instances. 

However, despite its tight relation with the TSP (and with some

f its presented variations), the particular problem that is formu-

ated in this paper (see Section 3 below) differs significantly from

he previous alternatives. Recently, some other formulations more

losely related to the proposed FTP were presented in the litera-

ure. Some of these works shall be surveyed in Section 7 , after the

TP formulation and evaluation, to allow a more consolidated con-

ext and analysis. 

. Flying tourist problem (FTP) formulation 

Consider a tourist who wishes to take a trip that visits ev-

ry node (city) i in the set of nodes V , | V | = N , with no particu-

ar order. The start node will be denoted as v 0 , while the return

ode as v n +1 , and the complete set of nodes is given by V c =
 ∪ { v 0 } ∪ { v n +1 } . The trip must start at a time t ∈ T 0 = [ T 0 m 

, T 0 M 

] .

pon visiting a node, the tourist will stay there for a duration

f d time-units (days). Consider that for each node to be visited,

here is a range for the value that d might take, restricted as

 ∈ d i = [ d im 

, d iM 

] and d iM 

≥ d im 

≥ 1. The complete set of durations

ssociated to each city is given by D = { d i | i ∈ V } , therefore | D | = N.

urthermore, to each city i ∈ V , there is an associated time-window

 i which defines the set of dates in which the city i may be vis-

ted. The set of all time windows is denoted T W = { w i | i ∈ V } and

as size N , | T W | = | V | = N, 

The FTP is completely defined by a structure G = (V c , A,

 0 , D, T W ) , used to create a multipartite graph describing the re-

uest. This multipartite graph is divided into k layers, where each

ayer corresponds to a particular moment in time. Besides this, ev-

ry node in a layer is connected to all nodes in the subsequent

ayer. The set of arcs that connects these nodes is given by A . To

ach arc a ∈ A , it is associated a cost c a (ticket cost) and a process-

ng time p a (flight duration), which depend upon the routed nodes,

s well as the time ( t ) in which the arc transition is initiated, that

s, ∀ a t 
i j 

∈ A, c t 
i j 

≥ 0 and p t 
i j 

≥ 0 . 

A valid solution s to the formulated FTP is a set of arcs (com-

ercial flights) which start from node v 0 during the defined start

eriod, visit every node i in V during its defined time-window w i ,

y considering the staying duration defined by d i , and finally re-

urn to node v n +1 . The set of all valid solutions is given by S . The

oal of the FTP is to find the global minimum s ∗ ∈ S , with respect

o the considered objective function. 

The objective function associated to this problem depends on

he user criteria. While some users might consider the expended

ost to be the most important factor, there are others who con-

ider the total flight duration of crucial importance. Thus, a total

f three different objective functions shall be herein considered:

i) the flight price F p (see Eq. (1) ), (ii) the flight duration F d (see

q. (2) ), and (iii) a balanced cost F bc (see Eq. (3) ), corresponding to

 weighted sum between the former two. 

 p (s ) = 

N+1 ∑ 

n =0 

c(s [ n ]) (1)

 d (s ) = 

N+1 ∑ 

n =0 

p(s [ n ]) (2)

 bc (s ) = 

N+1 ∑ 

n =0 

w c ∗ c(s [ n ]) + w p ∗ p(s [ n ]) (3)
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Fig. 1. Illustration of a Flying Tourist Problem using a multipartite graph. To each node (A,B,C) it is associated a waiting period of 1, 2, and 3 time-units, respectively. The 

red arrows represent a possible solution to the problem. 
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Fig. 1 illustrates the multipartite graph associated to a simple

nstance of the FTP with v n +1 = v 0 = X, one possible start date ( t =
 ), 3 nodes to visit ( A, B, C ), with a fixed duration of 1, 2, and

 time-units, respectively, and no constraints relative to the time-

indow of each city. A possible solution to this problem instance

orresponds to the set of arcs (a 0 
X,B 

, a 2 
B,A 

, a 3 
A,C 

, a 6 
C,X 

) . 

Despite the apparent complexity of the proposed definition, it

an be used to state ordinary and real-life flight searches, includ-

ng one-way and round-trip flights. For example, the problem of

nding a single flight from A to B at date T can be instantiated as

 FTP given by v 0 = A , v n +1 = B , T 0 = T , and V = D = TW = {}. In

ts turn, a round-trip flight involving the same two cities and the

ame start date, in which the staying period in B is b days, is given

y v 0 = v n +1 = A, T 0 = X, V = { B } , D = { b} and TW = {}. Thus, this

efinition is adequate either for simple and complex trips, which

an be customized according to the user search criteria, by setting

ither an extended start period, or flexible waiting periods. 

.1. Relation to the TSP 

As previously stated, the proposed FTP is closely related to the

SP and to its time-dependent variation. Given the following list of

onstraints: 

1. v n +1 = v 0 ; 
2. T 0 = 0 ; 

3. w i = [0 , + ∞ [ , ∀ i ∈ V ; 

4. d i = 1 , ∀ i ∈ V ; 

5. c t 
i j 

= c i j , ∀ i, j ∈ V , ∀ t ; 

ne observes that constraints (1–4) provide a reduction of the de-

ised FTP to a TDTSP, as proposed by Picard and Queyranne (1978) ,

nd the final constraint (5) reduces the problem to the classical

SP. 

Since the FTP occurs as a generalization of the TSP, and given

hat the latter problem is well-known to be Np-hard complex, then

o is the former one. 

.2. Graph construction 

By considering the presented FTP definition, the total number

f layers ( k ) of the devised multipartite graph represents the total

ime span between the earliest date at which the trip might start

nd the latest date in which it should finish. The arcs that connect

hose nodes are divided into three groups: initial, transition and fi-

al arcs. 
The initial arcs are those which might initiate the trip. Conse-

uently, they must start at node v 0 , at a time t ∈ T 0 = [ T 0 m 

, T 0 M 

] ,

onnecting v 0 to every node in V . There are a total of k i = T 0 M 

−
 0 m 

+ 1 layers for the initial arcs. 

Conversely, the final arcs are those that connect every node in

 to the return node, v n +1 . There are as many final layers as there

re initial layers, and the final layer extends from T fm 

to T fM 

, where

 fm 

= T 0 m 

+ 

∑ 

(D ) and T fM 

= T 0 M 

+ 

∑ 

(D ) , where �( D ) corresponds

o the summation of all entries belonging to D . In the example de-

icted in Fig. 1 , there is a single initial and final layer, since there

s only one possible start date. 

The transition arcs are those which fully connect the N nodes

elonging to V . The earliest transition arc occurs at a time no

ooner than t 1 = T 0 m 

+ min (D ) , where min ( D ) corresponds to the

owest entry of the set of staying durations. Hence, if the trip

tarts by transiting an initial arc at time T 0 m 

, the first transi-

ion arc might only be traversed min ( D ) time-units later. By fol-

owing a similar approach, the latest transition arc can occur no

atter than t 2 = T 0 M 

+ 

∑ 

(D ) − min (D ) . Thus, there are a total of

 2 = t 2 − t 1 + 1 transition layers, and k 2 ∗ n ∗ (n − 1) transition arcs.

The union of the initial, transition and final arcs gives the set A

f all the arcs, which may be used to construct a solution to the

equested trip. 

Having the information relative to the multipartite graph asso-

iated to the devised FTP, it is now possible to construct a three-

imensional array matrix representing this problem, where each

ntry of the array corresponds to an arc connecting two nodes, at

 particular moment in time. This weight matrix is initialized with

 very high cost value (as to reject arcs which may not be part

f the solution), and every entry of it is updated according to the

nformation of the multipartite graph and the respective objective

unction. Finally, this weight matrix may be used as input for the

ptimization system (see Section 4 ). 

Although it is clear that any arc a ∈ A corresponds to a particular

ight, it should be noted that no specific or limiting assumption

as considered up until now. Instead, it was assumed an entirely

bstract arc definition, connecting two nodes at a specific moment

n time. In order to transform this set of arcs into a corresponding

et of flights, it is necessary to obtain real-world flight data from

ome external source. This will be further detailed in Section 5 . 

. Optimization system 

Three distinct and widely known metaheuristic algorithms were

onsidered to implement the devised optimization system: the

imulated Annealing (SA), the Ant Colony Optimization (ACO), and
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the Particle Swarm Optimization (PSO). Each FTP instance is solved

with these three algorithms and the best solution is selected. 

4.1. Simulated annealing 

The implemented SA solver receives, as input, the weight ma-

trix of the problem instance, together with other parameters re-

garding the depot nodes and the waiting periods. Based on this in-

put data, an initial solution x is randomly generated. This solution

must be valid, that is, it may not violate any problem constrain.

To create such a valid initial solution x , a closed trip is randomly

generated based on the set of vertex V c , on the starting date t 0 (ac-

cording to T 0 ), and on the time of each node (according to t 0 and

the waiting period of each previously visited node). 

The SA metaheuristic relies on two iterative cycles: the outer

cycle and the inner cycle (Markov chain) – see Algorithm 1 . At each

Algorithm 1 SA implementation of the FTP. 

1: generateInitialSolution() 
2: while termination condition not met do 

3: for i = 0 to i = M do 

4: generateLocalNeighbourhoodSolution() 
5: applyAcceptanceCriteria() 
6: end for 
7: updateTemperature() 
8: end while 

Procedure generateLocalNeighbourhoodSolution 

9: Input: sol c ur - a solution to the FTP, v 0 - departure city;
v n +1 - arrival city; D - nights in each destination; 

10: Output: sol _ neigh - neighbourhood solution 

11: origin ← v 0 
12: time ← random( T 0 ) 
13: sol _ neigh ← [] 
14: path _ cur ← extractPathFromSolution( sol _ cur) 
15: path _ neigh ← 2-opt( path _ cur r ) 
16: for dest inat ion in path _ neigh do 

17: sol _ neigh .append(( time, origin, dest inat ion )) 
18: time = time + nights [ destination ] 
19: origin ← dest inat ion 

20: end for 
21: dest inat ion ← n f 

22: sol _ neigh .append(( time, origin, dest inat ion )) 
23: return sol _ neigh 

iteration step, the inner Markov chain is responsible for generat-

ing a new candidate solution y , according to an appropriate neigh-

borhood function and a proper validation step, using a predefined

acceptance criteria. Then, the outer cycle updates the state tem-

perature based on a predefined cooling schedule. The considered

length of the Markov chain ( M ) was set to the number of nodes m .

The neighborhood function that was used for the generation

of new candidate solutions is the 2-opt swap procedure. Hence,

at each iteration step of the Markov chain, it selects two random

nodes and swaps the corresponding path. Since this swapping pro-

cedure may change the dates at which each node is visited, it is

necessary to adjust the dates and calculate the weight of the new

solution. 

The used acceptance criteria is the Metropolis criteria

( Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953 ),

presented in Eq. (4) . This criterion dictates that: (i) if a candidate

solution y is better than the current solution x , it is always ac-

cepted; (ii) if the solution is worse, it may, or may not be accepted.
he probability ( p ) by which a worse solution is accepted depends

pon: a) the difference in the objective function values �f of the

wo solutions; b) the current temperature of the system. As �f 

ncreases, and as the temperature decreases, the probability of

ccepting a worse solution is reduced. With such an approach, the

etropolis acceptance criteria allows up-hill moves, which allows

he algorithm to escape from local minimum. Notwithstanding, as

he temperature reaches very low values, the algorithm becomes

ncreasingly greedy. 

p = 

{ 

1 , if f (y ) ≤ f (x ) , 

e −
f (y ) − f (x ) 

t , otherwise 
(4)

The developed SA optimization uses a geometric cooling sched-

le. It starts with an initial temperature t 0 , and at each outer

teration, the temperature is decreased, using Eq. (5) , where k

s the iteration counter of the outer loop and λ is the cooling

arameter. 

 k +1 = λ ∗ t k (5)

The t 0 , t f and λ terms must be calculated beforehand based on

he probability of accepting a worse solution during the first itera-

ion ( p 0 ) and during the last iteration ( p f ), and on the total number

f outer iterations ( k ). The defined algorithm establishes p 0 as 0.98

nd p f as a positive close to zero value. The total number of iter-

tions is set according to the time available for the optimization

rocess. 

To calculate the value of t 0 and t f , the algorithm starts by gen-

rating some candidate solutions using the neighborhood function

nd the current solution x ( Wang, Lin, Zhong, & Zhang, 2015 ).

hese candidate solutions are used to calculate the average ab-

olute difference in the objective function �avg . This allows the

alculation of the t 0 value according to Eq. (6) , based on the

etropolis criteria. The final temperature t f is given by t f = λk t 0 .

his allows the calculation of λ with Eq. (7) . Given t 0 , t f and λ, the

eometric cooling schedule is completely defined. 

 0 = 

−�a v g 

ln (p 0 ) 
(6)

= 

( −�a v g 

ln (p f ) t 0 

)
1 /k (7)

.2. Ant colony optimization 

Similarly to the SA, the developed ACO algorithm receives, as

nput, a weight matrix with the information concerning the solu-

ion components of the problem. It must also receive other rele-

ant parameters for the solution construction process, as the initial

nd final node and the set of waiting periods D – see Algorithm 2 .

The initialization of the ACO metaheuristic requires the con-

truction of an initial pheromone matrix. The initial pheromone

alue is set according to Eq. (8) , where n is the number of nodes

nd C nn is the cost of the nearest neighbor heuristic. 

t 
i j = τ0 = 

1 

nC nn 
(8)

The initialization of the metaheuristic also requires the defini-

ion of a variety of algorithm-specific parameters, such as the num-

er of ants m , the pheromone evaporation rate ρ , the heuristic

elative influence β , the pheromone relative influence α, and the

xploration rate Q 0 . 

After the initialization, and until the termination condition is

et, the algorithm enters into an iterative cycle, where every ant

elonging to the colony constructs a solution to the problem. This

s followed by a pheromone update phase, to reflect the colony

earch experience. A new iteration may only start after all ants
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Algorithm 2 ACO implementation of the FTP. 

1: Input: G - weight matrix, v 0 - departure city; v n +1 - ar- 
rival city; V - array of cities to visit; D - nights in each 

destination; m - number of ants; 
2: initPheromone() 
3: while termination condition not met do 

4: for all ants do 

5: antProcedure() 
6: end for 
7: updateGlobalBest() 
8: updatePheromoneMatrix() 
9: end while 

Procedure antProcedure 

10: Input: v 0 - departure city; v n +1 - arrival city; V - array 

of cities to visit; D - nights in each destination; 
11: Output: solution - an array of triplets (time, origin, des- 

tination) 
12: time ← random( T 0 ), origin ← n 0 

13: cit ies _ to _ v isit ← V , night s ← D 

14: solution ← [] 
15: while ctv not empty do 

16: if random(0, 1) ≤ Q 0 then 

17: dest inat ion ← exploitation() 
18: else 

19: dest inat ion ← exploration() 
20: end if 
21: solution.append((time, origin, destination )) 
22: ct v .remov e (dest inat ion ) 
23: time = time + nights [ destination ] 
24: origin = dest inat ion 

25: end while 

26: dest inat ion ← n f 

27: solution.append((time, origin, destination )) 
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ave finished the solution construction process and the pheromone

atrix has been updated. 

The construction process that is undertaken by each ant is as

ollows. First, the current time is set to a value belonging to the

llowable trip starting dates, t ∈ T 0 , and the current node is set to

he start node v 0 . Each ant enters an iterative cycle until all nodes

elonging to V have been visited. At every step of this cycle, an

nt chooses a solution component by either exploiting or exploring

he search space. The decision of exploiting or exploring depends

n the algorithm parameter Q 0 and on a pseudo-random value q ,

alculated at runtime. The selection of the solution component j ,

hich identifies the next city to be visited, is given by Eq. (9) . After

he selection of each solution component, it is necessary to update

he time, incrementing it by the duration relative to the selected

ity. 

j = 

{
exploitation ( Eq. 10) , if q ≤ Q 0 

exploration ( Eq. 11) , otherwise 
(9) 

The exploitation of the search space utilizes the random-

roportional rule, defined by Eq. (10) , which determines the next

olution component of the ants’ solution. The J k ( i, t ) term repre-

ents the set of solution components that might be selected to

orm a valid solution component by an ant in its current state ,

here the state refers to the current ant position of the trip it has

onstructed so far. 

rg max j∈ J k (i,t) [ τ (i, j, t)][ η(i, j, t)] β (10) 
On the other hand, the exploration is given by Eq. (11) , with

 a ( i, j, t ) representing the probability of ant a (which is currently at

ode i at time t ) selects j as the next node to visit. In the presented

quations, η is the inverse of the weight matrix value. 

p a (i, j, t) = 

⎧ ⎨ 

⎩ 

[ τ (i, j, t)][ η(i, j, t)] β∑ 

u ∈ J k (i,t) [ τ (i, u, t)][ η(i, u, t)] β
, if j ∈ J k (i, t) 

0 , otherwise 

(11) 

By following an iterative construction procedure, an incomplete

but valid) solution is found. To complete this solution, it is nec-

ssary to add an extra solution component, which closes the route

y adding the return node, v n +1 . 

After each ant finishes its iterative solution construction pro-

ess, the ACO metaheuristic enters into its pheromone update

tep. Depending on the chosen ACO algorithm, the pheromone up-

ate may vary. This work follows the Ant Colony System (ACS)

trategy, whose pheromone global update requires both a deposit

nd an evaporation step. Unlike many other ACO algorithms, the

heromone update applies only to the arcs belonging to the best

olution found so far, S bs . Furthermore, it is also necessary to ap-

ly a local pheromone update (see Eq. (12) ), after the selection of

ach solution component, as to reduce the probability of other ants

electing the same one in the current iteration ( Dorigo & Gam-

ardella, 1997 ). This results in an update of the pheromone values,

y means of Eq. (13) , where (�τ t 
i j 
) bs is given by 1/ C bs , where C bs 

epresents the objective function value of the best solution. 

t 
i j = (1 − ρ) τ t 

i j + ρτ0 (12) 

t 
i j = (1 − ρ) τ t 

i j + ρ(�τ t 
i j ) 

bs (13)

ACO algorithms are often combined with local search heuristics

hat try to improve the quality of the ants’ solutions, after each it-

ration. However, this was not considered in the implemented op-

imizer, due to the nonexistence of adequate local search proce-

ures for the time-dependent TSP. In fact, even the k -opt exchange

rocedures, widely used in the classical TSP as local search, are not

fficient for the time-dependent TSP because it requires, at each

tep, the computation of the entire trip cost, as opposed to just

he cost difference regarding the k arcs, as in the symmetric TSP. 

.3. Particle swarm optimization 

The implemented PSO algorithm receives, as input, the weight

atrix of the corresponding FTP instance, as well as any other at-

ributes relevant to the description of the problem, such as the ini-

ial and final city, respectively v 0 and v n +1 , the list of cities to visit

 , the start window T 0 and the list of number of nights in each

estination D . This is followed by the initialization of a swarm of

articles, whose size ( M ) is equal to the number of cities to visit

| V |). 

To initialize the swarm of particles, it is necessary to set the

osition and velocity of each particle. These values are initialized

ith a randomly generated solution, by using the same process as

sed and described in Section 4.1 . Likewise, the initial velocity is

andomly generated, by using the velocityCalculate procedure de-

cribed in Algorithm 3 . Having all positions initialized, the global

est solution ( P gb ) is updated, and each particle registers its cur-

ent position as the particle’s local best solution ( P lb ). 

At this point, the PSO algorithm enters an iterative cycle until

he termination condition is met. At each iteration step ( �t ), every

article generates a new solution. This particle movement only de-

ends on its current position and velocity, as defined in Eq. (14) .

 

t+1 
c = X 

t 
c + V 

t 
c · �t (14) 
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Algorithm 3 PSO implementation of the FTP. 

1: swarm ← [] 
2: p gb ← None , f gb ← in f 
3: for i=1 to i=M do 

4: swarm [ i ] ← initParticle() 
5: end for 
6: updateGlobalBest() 
7: while termination condition not met do 

8: for i=1 to i=M do 

9: pos _ next ← positionUpdate( particle ) 
10: v el _ next ← velocityUpdate( particle ) 
11: ob j _ next ← calculateObjective( pos n ext) 
12: updateParticleInfo( pos _ next, v el _ next, ob j _ next) 
13: end for 
14: updateGlobalBest() 
15: end while 

Procedure positionUpdate 

16: Input: position - the particle’s current position; velocity 

- the list of swap operators; 
17: Output: the next particle’s position 

18: next _ pos ← copy( position ) 
19: for swap _ op in v elocity do 

20: (i, j) ← swap _ op
21: x i , x j = next _ pos [ i ] , next _ pos [ j] 
22: next _ pos [ i ] , next _ pos [ j] = x j , x i 
23: end for 
24: return next _ pos 

Procedure velocityCalculate 

25: Input: pos _ current , pos _ wanted
26: Output: v elocity - the list of swap operators that when 

applied to pos _ current yields pos _ wanted
27: v el ← [] 
28: while True do 

29: pos _ next ← positionUpdate( pos _ current, v el) 
30: if pos _ next equals pos _ wanted then 

31: return v elocity 
32: end if 
33: for index _ curr = 1 to index c urr = length (pos _ next) do 

34: if pos _ next[ index _ cur r ] not equals 
pos _ next[ index _ cur r ] then 

35: city _ curr ← pos _ next[ index _ cur r ] 
36: index _ wanted ← pos _ wanted .ind ex (city _ cur r ) 
37: swap _ op ← (ind ex _ curr, ind ex _ wanted ) 
38: v el.append(swap _ op) 
39: break out for cycle 
40: end if 
41: end for 
42: end while 
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It must be noted that the velocity of a particle corresponds to

a swap sequence - a list of swap operators - that transforms the

path of one solution into another, as proposed and described in the

work of Wan, Huang, Zhou, and PhG (2003) . This method is sum-

marized in the positionUpdate procedure described in Algorithm 3 . 

Having calculated the next position ( X t+1 
c ), it is necessary to

calculate the particle’s next velocity ( V t+1 
c ), by applying Eq. (15) .

Note that the difference operation between two positions (e.g.

P lb − X t+1 
c ) uses the method described in the velocityCalculate pro-
edure of Algorithm 3 to calculate a swap sequence. When calcu-

ating the next velocity, α and β represent the relative influence

f the particle’s own best solution and the swarm’s global best, re-

pectively, which determine the probability of keeping each swap

perator of the swap sequence. 

 

t+1 
c = V 

t 
c � α ∗ (P lb − X 

t+1 
c ) � β ∗ (P gb − X 

t+1 
c ) (15)

Every iteration cycle (which starts with the update of the parti-

le’s position and velocity) is finished by calculating the objective

unction of each particle and by updating the information of its

ocal best solution. Finally, the global best solution of the swarm

s updated, and the iteration cycle restarts, until the termination

ondition determines the end of the PSO algorithm. 

. System prototype 

Due to the NP-hardness nature of the FTP for unconstrained

ulti-city requests, the associated optimization procedure tends to

e computationally heavy. As a consequence, the developed sys-

em prototype consists of a distributed web service composed of a

erver-side application that satisfies the requests received from the

lients (see Fig. 2 ). 

.1. Client-side application 

The Client-Side Application (CSA) is responsible for the user in-

eraction, allowing him to define the requested trip (number 1 in

he figure), by supplying the following set of parameters: 

• The start and return cities, v 0 and v n +1 ; 
• A list of cities to visit V ; 
• The waiting periods ( D ) associated to each city in V ; 
• The start time/period ( T 0 ) of the trip. 

The response to a user request is not directly processed by the

SA, but rather by the Server-Side Application (SSA), which uses

he issued parameters to produce a solution that minimizes the

onsidered cost function. Such a solution contains (at least) one set

f flights that satisfy the user-defined request. Nonetheless, several

ther valid solutions may also be provided, to allow the user to

hoose the one that is more adequate to his needs. The most rel-

vant information about each of the suggested flights is also pro-

ided (number 6), including: 

• The flight cost; 
• The flight duration; 
• The date, departure and arrival time; 
• A hyperlink to a third-party API that allows a direct booking of

the flight. 

The developed CSA was implemented using the React

avaScript library ( www.reactjs.org ) and Redux framework

 www.reduxframework.com ), and the communication between

he client and the server applications is done via Asynchronous

avaScript and XML (AJAX), which means that upon submitting the

equest (number 2), the user may continue interacting with the

pplication until the SSA returns a response to the CSA (number 5).

.2. Server-side application 

The SSA was implemented in a Python environment, together

ith Django framework ( www.djangoproject.com ). It comprises

he following two main components: (i) a Data Management mod-

le, to fetch the flights data; and (ii) an Optimization module,

hich implements the devised search algorithms that find the best

et of flights that satisfy the user request. 

http://www.reactjs.org
http://www.reduxframework.com
http://www.djangoproject.com
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Fig. 2. Structure and data flow of the developed prototype. 
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Table 1 

Algorithm specific parameters. 

Alg. Parameter Value 

SA First iter. acceptance prob. ( p 0 ) 0.98 

Last iter. acceptance prob. ( p f ) 10 −300 

Initial temperature ( t 0 ) see Eq. (6) 

Final temperature ( t f ) see Eq. (5) 

Cooling parameter ( λ) see Eq. (7) 

Markov chain length ( M ) N 

ACO Pheromone relative influence ( α) 1 

Heuristic relative influence ( β) 5 

Pheromone evaporation rate ( ρ) 0.1 

Exploration rate ( Q 0 ) 0.9 

Number of ants ( m ) 10 

PSO Swarm size N 

Particle best solution relative influence ( α) 0.9 

Global best solution relative influence ( β) 0.9 
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.2.1. Data management module 

Since the issued user request only specifies an unordered list

f trip nodes (i.e., the set of cities to be visited), the Data Man-

gement module is responsible for collecting all the flights infor-

ation that is required to execute the devised optimization algo-

ithms, thus completing the arcs (flights) that connect those nodes.

ence, an arc connecting two nodes corresponds to a flight be-

ween two cities, at a specific date. However, there are many flights

hat fit this description and each one may have several attributes

hat differentiate it from the others. For example, every flight has

 particular cost, duration, departure and arrival time, airline com-

any, bag limit or even different number of layover flights. 

Due to the vast number of attributes that define every flight,

t is impossible to know which particular flight is the most ad-

quate for a specific user, because users often have different se-

ection criteria. Hence, upon the construction of the multipartite

raph, it makes sense to have a list of possible flights for every

rc in A , instead of just a single one. This allows the selection

f a specific flight according to the objective function being mini-

ized. For example, if the goal is to minimize the total flight cost,

t makes sense to select those flights that present the lowest cost,

isregarding other attributes such as the airline company of the

ights duration. This means that upon referring to an arc connect-

ng two nodes, the Data Management module is actually consid-

ring a family of arcs that share key characteristics (such as the

rigin, destination and date), but which may vary regarding other

ttributes. 

To collect the data corresponding to each arc belonging to A ,

he developed system communicates with a third-party API and

ends a request seeking the required flight objects. Among the

everal free and public flight-data APIs that might be used, it

as adopted the API provided by the Kiwi flight search company

 docs.kiwi.com ). Among the several useful features that are pro-

ided by this API is its ability to respond to a query over an ex-

ended search period. That is, upon requesting a flight between

wo cities, it is possible to specify a time window, instead of a sin-

le date. This is particularly useful because it allows the reduction

f the total number of requests. Hence, while the total number of

rcs in an FTP instance might be considerable, there is no need to

ake an individual request for every single arc. Instead, it is pos-

ible to submit a request for every pair of cities, by extending the

earch period to reflect the total number of necessary layers. 

Having defined a complete graph, it is possible to run the opti-

ization module (number 4), in order to produce a valid solution

o the user request. 

.2.2. Optimization module 

The implemented optimizer was developed by using a strictly

odular approach, allowing the integration of several different op-

imization strategies and algorithms. In particular, the three con-

idered metaheuristic algorithms (SA, ACO, and PSO) were im-

lemented in the evaluated prototype, by using conventional and

traightforward implementations and parameterizations. 
All these algorithms require an initialization phase, which,

mong other things, defines some algorithm specific parameters.

n order to inspect the same number of solutions in any given iter-

tion of the algorithms, the total number of cities to visit in V was

ssigned to the Markov chain length ( M ) in the SA, to the num-

er of ants ( m ) in the ACO, and to the swarm size ( N ) in the PSO.

able 1 summarizes the set of parameters used by the two meta-

euristic algorithms of the implemented prototype. 

. Experimental results 

In order to validate and evaluate the performance of the pro-

osed system, several tests were developed and executed. First,

he overall utility of the implemented system was evaluated, by

erforming a series of tests on the Flying Tourist Problem. In par-

icular, the quality of the obtained solutions was compared with

hose provided by a metric Nearest Neighbor (mNN) heuristic, which

romotes the nodes’ proximity to define the traveling route (this

traightforward approach closely approximates the strategy usually

ollowed by a human solver). Then, a thorough comparison with a

tate-of-the-art alternative for the devised FTP was performed by

onsidering a comprehensive set of real-world multi-city formula-

ions using different objective functions. 

These experiments were executed on a 2.6GHz Intel i7-6700

PU, with 8GB of RAM, and all the code was developed using the

ython3 programming language. 

.1. Flying tourist problem evaluation 

To demonstrate and quantify the actual benefits of the proposed

ystem, a series of FTP instances were defined, ranging from just

 city to visit (which corresponds to a round-way flight), up to a

otal of 20 cities (see Table 2 ). For each problem instance, three

ifferent solutions were determined based on the following three

ptimization goals: 

http://www.docs.kiwi.com
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Table 2 

Comparison of different Flying Tourist Problem solutions obtained with distinct algorithms and optimization goals. 
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• Total price of the trip; 
• Total duration of the trip; 
• A balanced cost , corresponding to a weighted sum between the

former two, where the price and flight duration contribute with

70% and 30%, respectively. 

These three solutions were obtained by individually considering

he following optimization approaches: 

• metric Nearest-Neighbor (mNN) heuristic; 
• regular Nearest-Neighbor (rNN) heuristic; 
• Simulated Annealing (SA) metaheuristic; 
• Ant Colony Optimization (ACO) metaheuristic; 
• Particle Swarm Optimization (PSO) metaheuristic. 

In this experiment, each request was run 20 times, in order to

btain a representative averaged solution. Moreover, to obtain a

ystem response time compatible with a real-time user experience,

 maximum optimization time of 1 second was allowed to each

xecution. In all the considered cases, the trip starts and returns

o the same randomly chosen city, and visits a given set of cities,

andomly chosen from the following set: Abuja, Atlanta, Barcelona,

eijing, Cairo, Casablanca, Dubai, Dublin, Frankfurt, Hong Kong, Is-

anbul, Johannesburg, Kiev, Los Angeles, Madrid, Miami, Moscow,

ew-York (JFK), Oslo, San Francisco, Sidney, Singapore. The start

ate was set to be the same for all requests ( 1 May 2019 ), which,

pon the execution of the tests, was 50 days into the future. The

aiting period on each city was set to a random value between 1

nd 5 nights. 

.1.1. Quantitative evaluation and improvement 

The result of the execution of the described evaluation is pre-

ented in Table 2 , where the solutions for the three considered op-

imization goals (total flight cost, total flight duration and balanced

ost) are presented, as a function of the adopted optimization ap-

roaches and the number of cities of the trip. 

By analyzing the obtained values, it can be observed that sig-

ificant gains are obtained for each considered optimization metric

hen the system is configured to use that same metric as the opti-

ization goal. Moreover, it can also be seen that such optimization

ends to also favor the other optimization metrics (except in some

etups with 15, 17 and 20 cities), resulting in solutions with con-

iderable benefits in what concerns both the total flight price and

uration. 

Although remarkable results are obtained with all the con-

idered metaheuristics, it is also observed that the PSO tends to

rovide slightly higher gains than the other optimization methods

or the defined FTP formulation. However, since this comparison

overs averaged results, this observation does not imply that
(a) Total flight price. (b) Total fligh

ig. 3. Statistical characterization of the results obtained with the PSO metaheuristic. The

ars represent the corresponding standard deviation. 
SO always conducts to the best optimization. Sometimes, the

CO algorithm provides better values than PSO. Fig. 3 presents

 brief statistical characterization of the results obtained with

he PSO metaheuristic, depicting the relation between the mean

alue of the obtained gains (for each trip configuration) and the

orresponding standard deviation, by using lines to illustrate one

tandard deviation from the average. On normal distributions, this

ange contains around 68% of all possible values. In the obtained

esults, the ACO average generally falls within this range. For

xample, for the price objective of 15 cities in Table 2 , the ACO

lgorithm obtains an average cost of 2473 and this value is well

ithin the corresponding lines for the 15 cities bar in Fig. 3 a.

ence, the good performance of PSO is not a guarantee that it

lways achieves the best objective. Moreover, it should be noted

hat all these algorithms were limited to a 1 second execution

ime, in order to keep the systemâs response time within tolerable

imits required by a human user using this web-service. If more

xecution time was allowed, the ACO and SA algorithms would

btain better results. Hence, the good results provided by PSO

ithin this time limit are mostly due to its ability to escape

o local minima and not necessarily to its ability to converge

o the global minimum. Keeping these caveats in mind, it was

ecided to use PSO as the chosen metaheuristic in the following

iscussion. 

The chart and data presented in Fig. 4 summarize the gains

price, duration and balanced cost) that are obtained using the

SO metaheuristic, by using the metric nearest-neighbor solutions

s reference. The first insight into these results allows a prelim-

nary evaluation of the utility of the proposed system. In fact, it

an be seen that whenever the trip visits more than one city, the

onsidered optimization system greatly improves the total flights

ost ( ≈6–35%) and duration ( ≈15–60%). 

.1.2. Balancing the total flight price and duration 

As it was referred before, the considered Balanced Cost opti-

ization goal envisages a better compromise between the total

rice of the trip and the total flight duration, by minimizing a

eighted value where the price and flight duration contribute with

0% and 30%, respectively. 

As it can be observed in Table 2 , such minimization also pro-

ides significant gains (when compared to the straightforward met-

ic Nearest-Neighbor ), although it introduces slight penalizations

hen compared with the best gains that are obtained when in-

ividually considering the total flight price and the total flight du-

ation optimization goals. This happens because the two objective

unctions (price and duration) can hardly be simultaneously min-

mized, and thus, a compromise has to be reached. In this case,
t duration. (c) Balanced cost.

 colored bars represent the mean value of the observed metric, whereas the error 
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Fig. 4. Average gains provided by the PSO metaheuristic when considering the price, duration and balanced cost optimization goals. 

Fig. 5. Variation of the total flight price and duration when minimizing the Balanced Cost objective function. 
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(  
compromising means slightly increasing the price to significantly

reduce the duration (or vice-versa). 

This compromise between flight price and duration is also illus-

trated in Fig. 5 , which presents the relative duration gain as a con-

sequence of the increase in price. This figure shows that, in gen-

eral, increasing the price by around 15% leads to a decrease in the

flight duration by around 55%, when compared to the price-only

metaheuristic. 

6.1.3. Impact of the trip start interval 

To evaluate the influence of the trip start interval on the ob-

tained results, the same queries and data sets were used to solve

these same FTPs using trip start windows of different lengths. The

resulting gains (decrease of the total price) are illustrated in Fig. 6 ,

when considering start periods of length 1, 15 and 31 days, respec-

tively. The solution corresponding to the 1-day start window was

used as reference. 

By analyzing the results presented in Fig. 6 , it can be observed

that increasing the interval of the start date may lead to even

greater benefits, with flight price improvements as high as 24%. 
.1.4. Response time 

The response time of any FTP query depends on two different

rocedures: the data gathering and the optimization. In this case,

he optimization time is mostly constant and established apriori .

n contrast, the data gathering is usually the bottleneck of the pro-

ess, because the construction of the cost matrix requires massive

mounts of data. 

The total time that is necessary to respond to a request, as a

unction of the number of cities and the length of the start interval,

s illustrated in Fig. 7 . From the analysis of this figure, it can be

een that requests with up to 10 cities can be solved in less than

0 seconds. It can also be seen that the response time increases

on-linearly as the number of visited cities increases. On the other

and, increasing the length of the start interval has low influence

or small instances (up to 10 cities), but has a significant impact

or greater instances. 

.2. Comparison with Kiwi ’s nomad 

At the present time, Kiwi ’s Nomad is the only publicly available

but non-disclosed) tool that is capable of addressing the defined
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Fig. 6. Price improvement as a function of the trip start interval. 

Fig. 7. Total response time to a request, as a function of the number of visited cities and length of start period. 
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lying Tourist Problem in the form of an unconstrained multi-city

outing problem, although its queries are limited to only 10 differ-

nt cities. To facilitate the comparison of the conceived optimiza-

ion system with this tool, the definition of the user requests of

he proposed FTP (see Section 3 ) was kept as similar as possible

o Kiwi ’s Nomad interface. The user is asked to specify the depart-

ng/arriving city, together with the start date, the set of cities to be

isited and the duration of the stay in each city. 

The results provided by both applications were extensively

ompared against each other, according to each considered objec-

ive function. The difference in the total flight price and duration

for each query) was also measured and analyzed as a function of

he query parameters. The former evaluation will be called absolute

omparison , while the latter quantative evaluation . 

The execution of these tests involved over 100 different queries,

y varying not only the number of cities (2–10), but also the length

f the trip start interval (1–15 days). All queries that were per-

ormed on both applications had its start and return city set to

isbon (Portugal), while each city to be visited belongs to the same

et of hub airports that were considered in the previous subsec-

ions. These queries were executed during the period between 15
nd 16 of June 2018 and the base start date was set to the 1st of

ugust 2018, which, at the time of the tests, was 45 days in the

uture. The staying period in each city was set to a random value

etween 1 and 5 days. For extended start periods, the base start

ate was extended by 31 days. 

.2.1. Absolute comparison 

Both applications respond to each query with three different

ets of flights, serving the following different optimization crite-

ia: the cheapest , the fastest and the recommended . For each query,

 winner was determined according to these criteria. The cheapest

et of flights is determined according to the total flight price, while

he fastest depends solely on the total flight duration. The recom-

ended set of flights depends on both the price and the duration,

nd the winner for this criteria must have both lower prices and

uration. 

Fig. 8 illustrates the obtained comparison, by presenting the

otal number of times that an application outperformed the

ther, for each of the three different optimization criteria. It also

hows the number of cases in which the responses were very

imilar. 



184 R. Marques, L. Russo and N. Roma / Expert Systems With Applications 130 (2019) 172–187 

Fig. 8. Comparison of the results provided by the proposed tool and by Kiwi ’s Nomad application. 
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The analysis of this figure indicates that the developed applica-

tion presents better solutions for a significant amount of queries.

In fact, while the fastest set of flights is only achieved in 42% of

the queries, it presents the cheapest set of flights 95% of the times

and the best recommended result 75% of the times. 

6.2.2. Quantitative evaluation 

To evaluate the difference of the responses provided by both

applications, the total flight price and duration of the recom-

mended set of flights was also quantitatively measured (see Fig. 9 ).

The values presented in these graphs refer to the developed appli-

cation response and were normalized using the Kiwi ’s Nomad re-

sponse as reference. 

Fig. 9 a presents the results of the queries performed for a sin-

gle start date. Its analysis shows that, for a small number of nodes

(2 and 3), the developed application recommends flights that are

slightly more expensive (10 to 19%) than those presented by Kiwi .

In contrast, the flight duration of these flights is much lower (33-

46%). For requests with more nodes (5 to 10), the results presented

by the developed application have both lower prices (2-18%) and

flight duration (9-24%). Fig. 9 b depicts the obtained results when

the length of the start interval was extended to 31 days. With such

an extended start period, every recommended set of flights pro-

vided by the proposed application has a lower price and duration.

The price presents the most significant change: the minimum im-

provement is 8%, while the maximum is 29%. 

Finally, it is worth noting that all the presented experiments

only consider up to 10 different cities to be visited by the traveler.

The reason why more cities were not considered arises not from

the developed application (which could easily accommodate more

cities), but it is motivated by a strict limit presented by Kiwi ’s No-

mad user interface, which does not support more than 10 cities in

the planned route. 

7. Related work 

Before the release of Kiwi ’s newest flight search service,

this travel agency launched a “Travelling Salesman Challenge”,

which attracted the attention of several researchers. In particular,

Duque, Cruz, Cardoso, and Oliveira (2018) considered the Kiwi

challenge and presented a formulation similar to the one that

is now presented in this manuscript. Although their motivation

is similar, their formulation is significantly different, as they do

not consider a staying duration associated with each city. They

consider only variable costs, which, to our knowledge, can not be

used to model a duration in a simple way. As such, the problem

they consider is less restricted and can be directly solved with

a time dependent TSP approach. Interestingly, these authors also
pplied conventional SA and ACO meta-heuristics. They also use

enetic algorithms to optimize the ACO approach and consider a

ybrid algorithm that combines ACO and SA. 

Although a direct comparison with the techniques presented by

uque et al. (2018) is not possible (since the considered problems

re somewhat different), it is possible to present some observa-

ions about their data set. First, their approach was designed to

cale well for a very large number of cities (they consider up to

00 cities). Considering the intrinsic motivation of a touristic pas-

enger, the proposal that is now presented was only tested with

maller datasets, of at most 20 cities. On the other hand, their ap-

roach optimizes only the cost of the trip, whereas this proposal

lso considers the total duration and a balance of these two. When

onsidering only up to 15 cities, their results ( Table 1 ) show that

A obtained better results than ACO and even ACO-SA. This is inter-

sting, as a different result was obtained in this proposal, possibly

ecause of the different nature of the problem that was consid-

red. Moreover, this FTP implementation only allowed 1 second of

he solver execution, whereas these authors used 30 seconds on

heir test. 

Another previous approach that is very similar to FTP was pro-

osed by Li, Zhou, and Zhao (2016) , where they presented the

ravel Itinerary Problem (TIP). TIP also considers duration con-

traints but their constraints are only lower bounds, meaning that

ach city must be visited by a certain minimum number of days,

ut no upper bound is defined. There is a global up-bound that

imits the total amount of days for the trip, but there is no limit

er city. This differs from the FTP approach, where an upper bound

s set in each city but not on the global trip. Their approach is very

exible, as they formulate this problem as a 0–1 integer program-

ing model. These authors only consider optimizing the travel

ost, not the duration. The focus of the paper is mostly on for-

ulating the problem and in setting up the information system

o process the necessary data. From an algorithmic point of view,

heir approach does not use any meta-heuristics approach. They

efer to an enumeration approach which seems to require expo-

ential time, as the number of cities increases (Table 5). 

A time-dependent TSP with time windows was also considered

y Montero, Méndez-Díaz, and Miranda-Bront (2017) , by using an

nteger programming formulation and an upper and a lower bound

or the duration in each city. However, the focus of this problem

s in modeling the flow of transit in a city and therefore it does

ot consider costs, only trip duration. The authors present an exact

lgorithm for this formulation that scales up to 40 customers. 

Hence, the existence of these alternative TSP formulations, that

re somewhat close to the proposed FTP, is a clear evidence of the

rowing interest on this kind of TSP formulations, highlighting the

mportance of the presented FTP. Naturally, part of this interest is
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(a) Single start date.

(b) Extended start period (31 days).

Fig. 9. Comparison of the recommended flights price and duration, as a function of the number of nodes and the length of start interval. The presented values refer to the 

proposed application response, and were normalized with respect to Kiwi ’s Nomad response value. 
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ue to the Kiwi travel agency. However, the presented work be-

an even before their challenge, as a consequence of the growing

mount of airline traveling information that is now available. 

Nevertheless, it should be noted that an exact and quantitative

omparison of these approaches with the work that was now pre-

ented is not a straightforward task, as they all consider slightly

ifferent problems. Still, the authors believe that this comparison

ighlights the relevance of the presented contributions. Just as TIP

 Li et al., 2016 ), the FTP formulation was driven by a concrete prob-

em that can be solved with existing data. This real-world applica-

ion means that FTP formulation is more elaborated that the other

ime-dependent TSP formulations, that abstract away part of the

roblem. Besides this focus on the problem formulation, classical

eta-heuristics that allowed the obtention of viable solutions for

arge problem sizes (20 cities, in only 1 second) were studied and

valuated. These problem sizes are well within the desired appli-

ation range, which (in general) uses fewer cities. 

. Conclusions 

Despite the existence of numerous flight search applications,

ost of them lack the ability to properly address unconstrained
ulti-city flight requests, since this problem is generally not

ractable. To circumvent this absence, the present work formalizes

nd addresses the Flying Tourist Problem (FTP), a NP-hard problem

hat occurs as a generalization of the Traveling Salesman Problem

TSP), and whose goal is to find the best schedule, route, and set

f flights, for an unconstrained multi-city flight request. 

An effective methodology that allows an efficient resolution of

his rather demanding problem was proposed, based on differ-

nt heuristics and meta-heuristic optimization algorithms, includ-

ng the Simulated Annealing, the Ant Colony Optimization and the

article Swarm Optimization, allowing the identification of solu-

ions in real-time, even for large instances. The developed meth-

ds were integrated into a web application prototype, allowing a

ast resolution of user-defined requests. 

The implemented system was evaluated using different crite-

ia, including the provided gains (in terms of total flight price and

uration) and its performance compared to other similar systems.

he obtained results show that the developed optimization sys-

em consistently presents solutions that are up to 35% cheaper (or

0% faster) than those developed by simpler heuristics. Further-

ore, when comparing the developed system to the only publicly
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available (but not-disclosed) alternative, it was shown that it pro-

vides the cheapest and the best-recommended solutions, respec-

tively 95% and 74% of the times. 

As a result, upon the planning of a complex multi-city trip, the

developed system showed to allow the user to save a significant

amount of time and money. 

Credit authorship contribution statement 

Rafael Marques: Conceptualization, Methodology, Software,

Validation, Investigation, Writing - original draft. Luís Russo:

Methodology, Formal analysis, Writing - review & editing, Super-

vision. Nuno Roma: Conceptualization, Methodology, Resources,

Writing - review & editing, Visualization, Supervision, Project ad-

ministration. 

Acknowledgement 

This work was partially supported by national funds

through Fundação para a Ciência e a Tecnologia under projects

UID/CEC/50021/2019 and PTDC/EEI-HAC/30485/2017. 

Conflict of interest 

The authors have no affiliation with any organization with a di-

rect or indirect financial interest in the subject matter discussed in

this manuscript. 

References 

Applegate, D. L. , Bixby, R. E. , Chvátal, V. , & Cook, W. J. (2007). The traveling sales-

man problem: A computational study. Princeton series in applied mathematics .
Princeton, NJ, USA: Princeton University Press . 

Bazlamaçci, C. F., & Hindi, K. S. (2001). Minimum-weight spanning tree algorithms a
survey and empirical study. Computers and Operations Research, 28 (8), 767–785.

doi: 10.1016/S0305-0548(0 0)0 0 0 07-1 . 

den Besten, M. , Stützle, T. , & Dorigo, M. (20 0 0). Ant colony optimization for the
total weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,

E. Lutton, J. J. Merelo, & H.-P. Schwefel (Eds.), Parallel problem solving from nature
PPSNVI (pp. 611–620). Berlin, Heidelberg: Springer Berlin Heidelberg . 

Boland, N. , Hewitt, M. , Vu, D. M. , & Savelsbergh, M. (2017). Solving the traveling
salesman problem with time windows through dynamically generated time-ex-

panded networks. In D. Salvagnin, & M. Lombardi (Eds.), Integration of AI and

OR techniques in constraint programming (pp. 254–262). Cham: Springer Interna-
tional Publishing . 

Chen, S.-M., & Chien, C.-Y. (2011). Solving the traveling salesman problem based
on the genetic simulated annealing ant colony system with particle swarm op-

timization techniques. Expert Systems with Applications, 38 (12), 14439–14450.
doi: 10.1016/j.eswa.2011.04.163 . 

Clerc, M. , & Kennedy, J. (2002). The particle swarm - Explosion, stability, and con-

vergence in a multidimensional complex space. IEEE Transactions of Evolutionary
Computation, 6 , 58–73 . 

Czech, Z. J., & Czarnas, P. (2002). Parallel simulated annealing for the vehicle routing
problem with time windows. In Proceedings 10th Euromicro workshop on paral-

lel, distributed and network-based processing (pp. 376–383). doi: 10.1109/EMPDP.
2002.994313 . 

Czyz ̇zak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing – a metaheuristic

technique for multiple-objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis, 7 (1), 34–47. doi: 10.1002/(SICI)1099-1360(199801)7:

1 < 34::AID- MCDA161 〉 3.0.CO;2- 6 . 
Doerner, K. , Gutjahr, J. W. , Hartl, R. , Strauss, C. , & Stummer, C. (2004). Pareto ant

colony optimization: a metaheuristic approach to multiobjective portfolio selec-
tion. Annals of Operations Research, 131 , 79–99 . 

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1 (1), 53–66. doi: 10.1109/4235.585892 . 

Duque, D. , Cruz, J. A. , Cardoso, H. L. , & Oliveira, E. (2018). Optimizing meta-heuristics
for the time-dependent tsp applied to air travels. In H. Yin, D. Camacho, P. No-

vais, & A. J. Tallón-Ballesteros (Eds.), Intelligent data engineering and automated
learning – ideal 2018 (pp. 730–739). Cham: Springer International Publishing . 

Fox, K. R., Gavish, B., & Graves, S. C. (1980). Technical note-an n -constraint formu-
lation of the time-dependent traveling salesman problem. Operations Research,

28 (4), 1018–1021. doi: 10.1287/opre.28.4.1018 . 

Gambardella, L. M. , Taillard, E. , & Agazzi, G. (1999a). Macs-vrptw: A multiple ant
colony system for vehicle routing problems with time windows. In D. Corne,

M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, & K. V. Price (Eds.), New
ideas in optimization (pp. 63–76). Maidenhead, UK, England: McGraw-Hill Ltd.,

UK . 
ambardella, L. M., Taillard, É. D., & Dorigo, M. (1999). Ant colonies for the quadratic
assignment problem. Journal of the Operational Research Society, 50 (2), 167–176.

doi: 10.1057/palgrave.jors.2600676 . 
lover, F., & Laguna, M. (1999). Tabu search. In D.-Z. Du, & P. M. Pardalos (Eds.),

Handbook of combinatorial optimization: Volume1–3 (pp. 2093–2229). Boston,
MA: Springer US. doi: 10.1007/978- 1- 4613- 0303- 9 _ 33 . 

oldbarg, E. F. G. , de Souza, G. R. , & Goldbarg, M. C. (2006). Particle swarm for the
traveling salesman problem. In J. Gottlieb, & G. R. Raidl (Eds.), Evolutionary com-

putation in combinatorial optimization (pp. 99–110). Berlin, Heidelberg: Springer

Berlin Heidelberg . 
oldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learn-

ing (1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc . 
olden, B. , Bodin, L. , Doyle, T. , & Stewart, W. (1980). Approximate traveling salesman

algorithms. Operations Research, 28 (3), 694–711 . 
ross, J. L. , Yellen, J. , & Zhang, P. (2013). Handbook of graph theory (2nd ed.). Chap-

man & Hall/CRC . 
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