Expert Systems With Applications 130 (2019) 172-187

Expert
Systems
with
Applications §#

An Intemational
Journal

Contents lists available at ScienceDirect

Expert Systems With Applications

Eatorin-Chiet
Bivhan

journal homepage: www.elsevier.com/locate/eswa

Flying tourist problem: Flight time and cost minimization in complex n
routes st

Rafael Marques®P, Luis Russo®", Nuno Roma?P*

aInstituto Superior Técnico, Universidade de Lisboa, Portugal
b INESC-ID, Rua Alves Redol, 9, Lishoa 1000-029, Portugal

ARTICLE INFO ABSTRACT

Article history:

Received 26 October 2018
Revised 11 March 2019
Accepted 11 April 2019
Available online 16 April 2019

This work introduces and formalizes the Flying Tourist Problem (FTP), whose goal is to find the best
schedule, route, and set of flights for any given unconstrained multi-city flight request. To solve the FTP,
the developed work proposes a methodology that allows an efficient resolution of this rather demand-
ing problem. This strategy uses different heuristics and meta-heuristic optimization algorithms, allowing
the identification of solutions in real-time, even for large problem instances. The implemented system
was evaluated using different criteria, including the provided gains (in terms of total flight price and
duration) and its performance compared to other similar systems. The obtained results show that the
developed optimization system consistently presents solutions that are up to 35% cheaper (or 60% faster)
than those developed by simpler heuristics. Furthermore, when comparing the developed system to the
only publicly available (but not-disclosed) alternative for flight search, it was shown that it provides the
best-recommended and the cheapest solutions, respectively 74% and 95% of the times, allowing the user

Keywords:

Flight search

Traveling salesman problem
Combinatorial optimization
Evolutionary algorithms.

to save time and money.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a person who wants to visit N different cities in the
most efficient way possible. In the combinatorial optimization do-
main, this problem is well known as the Traveling Salesman Prob-
lem (TSP) and it is considered to be part of one of the most com-
plex classes of problems (Karp, 1972). This difficulty arises from
the exponential growth of the number of possible solutions, given
approximately by N!.

Upon the introduction and formalization of the TSP, this prob-
lem could simply be stated as “Given a list of N cities and the dis-
tances between them, what is the best closed tour that visits every city
exactly once?” or, as considered in the graph theory domain, “Given
a complete undirected graph with weighted edges, what is the mini-
mum cost Hamiltonian cycle?”. This formulation has a vast number
of applications and it is very useful for the majority of the rout-
ing problems that occur on a network that can be modulated as
a graph (Applegate, Bixby, Chvatal, & Cook, 2007; Gross, Yellen, &
Zhang, 2013).

In this paper, the classic problem of traveling through N dif-
ferent cities is revisited, but assuming the particular case applied

* Corresponding author at: INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa, Portu-
gal.
E-mail address: nuno.roma@inesc-id.pt (N. Roma).

https://doi.org/10.1016/j.eswa.2019.04.024
0957-4174/© 2019 Elsevier Ltd. All rights reserved.

to commercial flights transportation. This specific formulation is
closely related to the generic TSP, in the sense that both prob-
lems aim to find the most efficient way to visit a given number of
cities. However, there are some considerable differences. While the
generic TSP (and its asymmetric variation) considers that the cost
between two cities is always constant over time, such assumption
is certainly not true for the case of commercial flights, as the tick-
ets price depend not only on the date, but also on the direction of
the trip (i.e., price(A— B) # price(B— A)).

As a result of this time (and direction) dependency, a reason-
able assumption would be to consider this as a Time-Dependent
Traveling Salesman Problem (TDTSP) (Fox, Gavish, & Graves, 1980).
Due to the specific characteristics and goals of the problem, this
is, in fact, the case. However, the majority of the literature around
the TDTSP makes a number of assumptions that, in many cases,
do not adequately describe the problem. An example of this is
the TDTSP formulation introduced by Picard and Queyranne (1978),
which considers that the waiting period in each city is exactly one
time-period. Such an assumption is not always verified, not only
due to existing restrictions of flight offers in such routes, but also
because flying dates are also dependent on the traveler’s conve-
nience.

Another variation of the TSP that is directly related to the
considered problem is the TSP with time windows, where each
city must be visited in a given time window. There are several

https://doi.org/10.1016/j.eswa.2019.04.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.04.024&domain=pdf
mailto:Nuno.Roma@inesc-id.pt
https://doi.org/10.1016/j.eswa.2019.04.024

R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187 173

approaches to solve this problem. A recent and efficient approach
was presented by Boland, Hewitt, Vu, and Savelsbergh (2017),
which uses a time-expanded Integer Linear programming (ILP) for-
mulation that is exploited without ever explicitly creating the com-
plete formulation. A carefully designed partially time-expanded
network is used to produce upper and lower bounds, which are
iteratively refined until optimality is reached.

The observed limitations of these formulations lead to the need
of a more realistic formulation of the problem (herein referred to
as the Flying Tourist Problem (FTP)). In particular, while the goal
of the TSP is to find the best route which efficiently connects all
N cities (minimizing the distance), the goal of the FTP is to find
the best route, schedule and set of flights for the trip. Furthermore,
the objective function of this problem must also reflect multi-
ple objectives, particularly the total cost and flight duration of the
trip.

To the best of the authors’ knowledge, no formal solution exists
to solve this specific problem. While there are several meta-search
engines that are capable of responding to multi-city requests, the
user must always specify a particular route and schedule. However,
from the analysis of the search space perspective, such scenario
corresponds to the inspection of a single solution among the N!
solutions to the problem. Furthermore, as the number of cities to
be visited increases, finding the best set of flights rapidly becomes
a slow, time consuming, and tedious process.

On the other hand, a commercial flight search application was
recently launched by Kiwi (www.kiwi.com), denoted as Nomad.
This web-service addresses the same problem as the presented
work and it is currently the only publicly available (non-disclosed)
tool for the resolution of this problem. Consequently, it will be
treated as the state-of-the-art in the quantitative evaluation of the
developed system. According to the obtained results, the presented
optimization algorithm is able to provide cost and flight duration
gains as high as 25% when compared to Kiwi’s Nomad implemen-
tation, when considering trips with more than 5 nodes.

With this in mind, the goals and major contributions of this
work are the following:

o Formal definition of the Flying Tourist Problem that looks for the
best schedule and set of flights that visit a given list of cities,
by minimizing both the total cost and flight duration;

o Identification of several optimization methods that can be used
to solve the stated problem;

o Implementation of a system prototype capable of providing a
high-quality solution for the problem (in an efficient manner)
when using real-world data and resources;

e Analysis and evaluation of the obtained results, not only in
terms of the obtained set of solutions, but also in terms of the
achieved gains (time and cost).

The remaining of this article is structured as follows.
Section 2 presents a brief overview of the most relevant literature.
This is followed by a formal definition of the problem, presented
in Section 3. Section 4 covers in detail the considered optimiza-
tion procedure and Section 5 presents the architecture of the de-
veloped system prototype and the most relevant implementation
details. Section 6 presents a quantitative analysis of the obtained
solutions based on several conducted experiments and compares
it to the current state-of-the-art. Section 7 briefly describes other
related TSP formulations that have been presented in recent liter-
ature and Section 8 presents the major conclusions and addresses
possible future work directions.

2. Literature review

The TSP is a classical formulation in several domains, includ-
ing routing and graph theories (Applegate et al., 2007; Gross et al.,

2013). It is also frequently applied in other specific optimization
scenarios, including the Vehicle Routing Problem (VRP) or the
single-machine scheduling. Although its symmetric versions over
an undirected graph are usually considered, other variations are
also common, based on its asymmetric counterpart over a directed
graph (Oncan, Altinel, & Laporte, 2009).

The several optimization algorithms that have been proposed
for the TSP are usually grouped into exact, heuristic and metaheuris-
tic approaches.

Most exact algorithms (Laporte, 1992a; Laporte, 1992b) rely
on an Integer Linear Programming (ILP) formulation, while oth-
ers are based on branch and bound (Lawler & Wood, 1966; Mor-
rison, Jacobson, Sauppe, & Sewell, 2016) and minimum spanning
tree (Bazlamacci & Hindi, 2001) techniques. However, the long ex-
ecution times that characterize these approaches make them im-
practical in most application scenarios.

As a result, many heuristic methods to solve either the
TSP (Rego, Gamboa, Glover, & Osterman, 2011) and the VRP
(Laporte, Gendreau, Potvin, & Semet, 2000) have been proposed.
Among the most common approaches are improvement heuris-
tics, such as the k-opt exchange (Golden, Bodin, Doyle, & Stew-
art, 1980), construction heuristics, including the nearest neighbor
(Laporte, 1992a) and tabu search (Glover & Laguna, 1999). For
the particular case of the TSP, the Lin-Kernighan heuristic (Lin &
Kernighan, 1973) is a particularly efficient algorithm. It was the
state-of-the-art (for asymmetric TSPs) for over a decade. In general,
its results are within 2% of the lower bound and often generate op-
timal solutions (Johnson & McGeoch, 1997). Despite this, the Lin-
Kernighan heuristic cannot be directly applied to the asymmetric
TSP. Instead, it is necessary to apply a graph transformation, con-
verting the asymmetric TSP into a symmetric instance, with twice
as many nodes (Jonker & Volgenant, 1983).

In the last 30 years, a great interest has also been devoted
to the usage of metaheuristic algorithms to solve the TSP. Meta-
heuristics can be seen as higher order heuristics: they take advan-
tage of an underlying heuristic and guide the algorithm to produce
an efficient search space exploration. The class of metaheuristics
is vast and includes algorithms such as the Simulated Annealing
(Kirkpatrick, Gelatt, & Vecchi, 1983), Genetic Algorithm (Goldberg,
1989), Ant Colony Optimization (Dorigo & Gambardella, 1997), Par-
ticle Swarm Optimization (Kennedy & Eberhart, 1995) and many
more.

The Simulated Annealing (SA) was one of the first meta-
heuristic methods to be developed, and its success resides on its
ability to escape local minimum, by performing hill-climbing tech-
niques. During the development of these algorithms, the TSP was
the first optimization problem to be solved using these meta-
heuristics (Malek, Guruswamy, Pandya, & Owens, 1989). This was
primarily because the TSP served as a good benchmark test for
evaluating the algorithm’s performance. The VRP was a natu-
ral consequence of this (Osman, 1993). There are also several
works which focus on TSP and VRP with time-windows (Czech
& Czarnas, 2002; Ohlmann & Thomas, 2007), including real-world
environments that consider that the travel time is stochastic in-
stead of well defined (Laporte, 1992b), as well as several SA al-
gorithms which focus on multi-objective optimization (Czyzzak &
Jaszkiewicz, 1998).

The Ant Colony Optimization (ACO) is actually a group of sev-
eral different optimization algorithms, as the Ant System (AS),
Elitist AS, Ant Colony System, and min-Max AS. Just like the
SA, the TSP was one of the first optimization problems to be
solved using ACO. The first of these algorithms, the AS, did not
consistently present high-quality results. However, the later algo-
rithms (including the Ant Colony System) were capable of compet-
ing with the state-of-the-art (Dorigo & Gambardella, 1997). After
fine-tuning, the ACO was rapidly applied to a vast collection of

http://www.kiwi.com

174 R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187

combinatorial optimization problems, as the VRP (Gambardella,
Taillard, & Agazzi, 1999), quadratic assignment (Gambardella, Tail-
lard, & Dorigo, 1999), and weighted tardiness (den Besten, Stiitzle,
& Dorigo, 2000), where the TSP occurs as a special case of these
three problems. Other multi-objective examples were presented by
Doerner, Gutjahr, Hartl, Strauss, and Stummer (2004) and Lopez-
Ibanez and Stutzle (2012). More recent works obtained fast and
reliable TSP solutions by using parallelism and cooperation among
multiple colonies (Giilcii, Mahi, Baykan, & Kodaz, 2018). Their par-
allel cooperative hybrid algorithm (PACO-30pt) avoids local min-
ima by sharing information among colonies. This process continues
until the termination criterion meets. Thus, it can reach the global
optimum.

Another important metaheuristic is the Particle Swarm Opti-
mization (PSO), proposed by Kennedy and Eberhart (1995) and
Shi and Eberhart (1998). In this method, each particle represents
a potential solution to the search space and the algorithm pro-
ceeds by having several particles moving around. The movement
of each particle, characterized by its position and speed, is in-
fluenced by its known optimum value and the optimum value
of the other particles. This gives the particles swarm like be-
havior. The method was later applied to TSP by a series of au-
thors, including Clerc and Kennedy (2002), Goldbarg, de Souza, and
Goldbarg (2006), Rosendo and Pozo (2010) and Jianchao and Zhi-
hua (2006).

Besides these classical approaches, there are also some other
proposals that apply hybrid optimization algorithms, combining
two or more meta-heuristics. An example of this is the genetic
simulated annealing ant colony system (Chen & Chien, 2011).
Another recent improvement to solve the TSP was obtained
by Osaba, Ser, Sadollah, Bilbao, and Camacho (2018), which use
the Water Cycle Algorithm (WCA), a nature-inspired meta-heuristic
proposed in 2012. This algorithm is motivated by the natural sur-
face runoff phase in the water cycle process and on how streams
and rivers flow into the sea. The application of WCA to the TSP
shows relevant improvements to the existing approaches, both in
terms of convergence, speed, and optimality.

Another bio-inspired metaheuristic is the bat-algorithm, pro-
posed in 2010, based on the echolocation or bio-sonar character-
istics of microbats. In particular, Osaba, Yang, Diaz, Lopez-Garcia,
and Carballedo (2016) presented a discrete version of this algo-
rithm that can be applied to the symmetric and asymmetric TSPs.
They showed that good performance results can be obtained with
this method when compared to the state-of-the-art.

A heuristic that is particularly resilient to large instances is
the Partial OPtimization Metaheuristic Under Special Intensification
Conditions (POPMUSIC). An application of this heuristic to the TSP
(considering instances of up to several million cities) was proposed
by Taillard and Helsgaun (2019). Their approach considers only a
subset of the edges connecting the cities and the candidate edges
are found with a technique exploiting tour merging and POPMU-
SIC. Then, high quality solutions can be efficiently found by pro-
viding these candidate edges to a local search engine.

An interesting variation of TSP is the Pickup and Delivery Trav-
eling Salesman Problem with Handling costs (PDTSPH), where a
single vehicle has to transport loads from origins to destinations.
Loading and unloading of the vehicle is operated in a Last-In-First-
Out (LIFO) fashion. However, if the load that must be unloaded is
not the one that was loaded last, additional handling operations
are allowed to unload and reload other loads that block the access.
The additional handling operations take time and effort, to which
penalty costs are associated. The aim of the PDTSPH is to find a
feasible route such that the total costs, consisting of travel costs
and penalty costs, are minimized. This problem was recently stud-
ied by Veenstra, Roodbergen, Vis, and Coelho (2017), who used a

Large Neighborhood Search (LNS) heuristic. The authors performed
exhaustive experimental tests to validate this approach, which ob-
tained new optimal solutions in several instances.

However, despite its tight relation with the TSP (and with some
of its presented variations), the particular problem that is formu-
lated in this paper (see Section 3 below) differs significantly from
the previous alternatives. Recently, some other formulations more
closely related to the proposed FTP were presented in the litera-
ture. Some of these works shall be surveyed in Section 7, after the
FTP formulation and evaluation, to allow a more consolidated con-
text and analysis.

3. Flying tourist problem (FTP) formulation

Consider a tourist who wishes to take a trip that visits ev-
ery node (city) i in the set of nodes V, |V| = N, with no particu-
lar order. The start node will be denoted as vy, while the return
node as v,,1, and the complete set of nodes is given by V. =
VU {vg} U {vyyq}. The trip must start at a time ¢t € Ty = [Tom, Tom]-
Upon visiting a node, the tourist will stay there for a duration
of d time-units (days). Consider that for each node to be visited,
there is a range for the value that d might take, restricted as
d e d; = [di, diyy] and djp; > di, > 1. The complete set of durations
associated to each city is given by D = {d;|i € V}, therefore |D| = N.
Furthermore, to each city i€V, there is an associated time-window
w; which defines the set of dates in which the city i may be vis-
ited. The set of all time windows is denoted TW = {w;|i € V} and
has size N, |[TW| = |[V| =N,

The FTP is completely defined by a structure G= (V. A,
To, D, TW), used to create a multipartite graph describing the re-
quest. This multipartite graph is divided into k layers, where each
layer corresponds to a particular moment in time. Besides this, ev-
ery node in a layer is connected to all nodes in the subsequent
layer. The set of arcs that connects these nodes is given by A. To
each arc aeA, it is associated a cost ¢4 (ticket cost) and a process-
ing time p, (flight duration), which depend upon the routed nodes,
as well as the time (t) in which the arc transition is initiated, that
is, Va,Fj cA, cfj >0 and pfj >0.

A valid solution s to the formulated FTP is a set of arcs (com-
mercial flights) which start from node vg during the defined start
period, visit every node i in V during its defined time-window w;,
by considering the staying duration defined by d;, and finally re-
turn to node v,,q. The set of all valid solutions is given by S. The
goal of the FTP is to find the global minimum s* € S, with respect
to the considered objective function.

The objective function associated to this problem depends on
the user criteria. While some users might consider the expended
cost to be the most important factor, there are others who con-
sider the total flight duration of crucial importance. Thus, a total
of three different objective functions shall be herein considered:
(i) the flight price F, (see Eq. (1)), (ii) the flight duration F; (see
Eq. (2)), and (iii) a balanced cost F;,. (see Eq. (3)), corresponding to
a weighted sum between the former two.

N+1

Fy(s) =Y _c(s[n]) (1)

n=0

N+1

Fi(s) = Y p(sin]) 2)
n=0

N+1

Foe(s) =Y we s c(s[n]) + wp = p(s[n]) 3)

n=0

R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187 175

nodes

» v,

time

»
»

Fig. 1. Illustration of a Flying Tourist Problem using a multipartite graph. To each node (A,B,C) it is associated a waiting period of 1, 2, and 3 time-units, respectively. The

red arrows represent a possible solution to the problem.

Fig. 1 illustrates the multipartite graph associated to a simple
instance of the FTP with v,,q = vy = X, one possible start date (t =
0), 3 nodes to visit (A, B, C), with a fixed duration of 1, 2, and
3 time-units, respectively, and no constraints relative to the time-
window of each city. A possible solution to this problem instance
corresponds to the set of arcs (af 5, a ,. a3 -, a2).

Despite the apparent complexity of the proposed definition, it
can be used to state ordinary and real-life flight searches, includ-
ing one-way and round-trip flights. For example, the problem of
finding a single flight from A to B at date T can be instantiated as
aFIP given by v =A, V.1 =B, Tp=T,and V=D =TW = {}. In
its turn, a round-trip flight involving the same two cities and the
same start date, in which the staying period in B is b days, is given
by vg = vy =A, Ty =X, V ={B}, D= {b} and TW = {}. Thus, this
definition is adequate either for simple and complex trips, which
can be customized according to the user search criteria, by setting
either an extended start period, or flexible waiting periods.

3.1. Relation to the TSP

As previously stated, the proposed FTP is closely related to the
TSP and to its time-dependent variation. Given the following list of
constraints:

1 Vpy1 =vo;

2. Ty = 0;

3. w; =0, +oo|, VieV;
4.d;=1, VieV;

5. ct. = Cl‘j, Vl, jGV, Vt,

1

one observes that constraints (1-4) provide a reduction of the de-
vised FTP to a TDTSP, as proposed by Picard and Queyranne (1978),
and the final constraint (5) reduces the problem to the classical
TSP.

Since the FTP occurs as a generalization of the TSP, and given
that the latter problem is well-known to be Np-hard complex, then
so is the former one.

3.2. Graph construction

By considering the presented FTP definition, the total number
of layers (k) of the devised multipartite graph represents the total
time span between the earliest date at which the trip might start
and the latest date in which it should finish. The arcs that connect
those nodes are divided into three groups: initial, transition and fi-
nal arcs.

The initial arcs are those which might initiate the trip. Conse-
quently, they must start at node vg, at a time t € Ty = [Tom, Tom].
connecting vy to every node in V. There are a total of k; = Toy —
Tom + 1 layers for the initial arcs.

Conversely, the final arcs are those that connect every node in
V to the return node, v,,, 1. There are as many final layers as there
are initial layers, and the final layer extends from T, to Ty, where
T = Tom + >_(D) and Tpy = Tom + Y- (D), where X(D) corresponds
to the summation of all entries belonging to D. In the example de-
picted in Fig. 1, there is a single initial and final layer, since there
is only one possible start date.

The transition arcs are those which fully connect the N nodes
belonging to V. The earliest transition arc occurs at a time no
sooner than t; = Ty, + min(D), where min(D) corresponds to the
lowest entry of the set of staying durations. Hence, if the trip
starts by transiting an initial arc at time Ty, the first transi-
tion arc might only be traversed min(D) time-units later. By fol-
lowing a similar approach, the latest transition arc can occur no
latter than t; = Top + Y. (D) — min(D). Thus, there are a total of
ky =t, — t1 + 1 transition layers, and k, x n * (n — 1) transition arcs.

The union of the initial, transition and final arcs gives the set A
of all the arcs, which may be used to construct a solution to the
requested trip.

Having the information relative to the multipartite graph asso-
ciated to the devised FTP, it is now possible to construct a three-
dimensional array matrix representing this problem, where each
entry of the array corresponds to an arc connecting two nodes, at
a particular moment in time. This weight matrix is initialized with
a very high cost value (as to reject arcs which may not be part
of the solution), and every entry of it is updated according to the
information of the multipartite graph and the respective objective
function. Finally, this weight matrix may be used as input for the
optimization system (see Section 4).

Although it is clear that any arc a € A corresponds to a particular
flight, it should be noted that no specific or limiting assumption
was considered up until now. Instead, it was assumed an entirely
abstract arc definition, connecting two nodes at a specific moment
in time. In order to transform this set of arcs into a corresponding
set of flights, it is necessary to obtain real-world flight data from
some external source. This will be further detailed in Section 5.

4. Optimization system

Three distinct and widely known metaheuristic algorithms were
considered to implement the devised optimization system: the
Simulated Annealing (SA), the Ant Colony Optimization (ACO), and

176 R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187

the Particle Swarm Optimization (PSO). Each FTP instance is solved
with these three algorithms and the best solution is selected.

4.1. Simulated annealing

The implemented SA solver receives, as input, the weight ma-
trix of the problem instance, together with other parameters re-
garding the depot nodes and the waiting periods. Based on this in-
put data, an initial solution x is randomly generated. This solution
must be valid, that is, it may not violate any problem constrain.
To create such a valid initial solution x, a closed trip is randomly
generated based on the set of vertex V., on the starting date t; (ac-
cording to Ty), and on the time of each node (according to t; and
the waiting period of each previously visited node).

The SA metaheuristic relies on two iterative cycles: the outer
cycle and the inner cycle (Markov chain) - see Algorithm 1. At each

Algorithm 1 SA implementation of the FTP.

1: generatelnitialSolution()

2: while termination condition not met do
3: fori=0toi=Mdo

4 generateLocalNeighbourhoodSolution()
5 applyAcceptanceCriteria()

6: end for
7

8:

updateTemperature()
end while

Procedure generateLocalNeighbourhoodSolution

9: Input: sol.ur - a solution to the FIP, v, - departure city;
Uny1 - arrival city; D - nights in each destination;

10: Output: sol_neigh - neighbourhood solution

11: 0rigin < Vg

12: time <« random(Ty)

13: sol_neigh <« []

14: path_cur < extractPathFromSolution(sol_cur)

15: path_neigh < 2-opt(path_curr)

16: for destination in path_neigh do

17 sol_neigh.append((time, origin, destination))

18: time = time + nights[destination]

19: origin < destination

20: end for

21: destination < ny

22: sol_neigh.append((time, origin, destination))

23: return sol_neigh

iteration step, the inner Markov chain is responsible for generat-
ing a new candidate solution y, according to an appropriate neigh-
borhood function and a proper validation step, using a predefined
acceptance criteria. Then, the outer cycle updates the state tem-
perature based on a predefined cooling schedule. The considered
length of the Markov chain (M) was set to the number of nodes m.

The neighborhood function that was used for the generation
of new candidate solutions is the 2-opt swap procedure. Hence,
at each iteration step of the Markov chain, it selects two random
nodes and swaps the corresponding path. Since this swapping pro-
cedure may change the dates at which each node is visited, it is
necessary to adjust the dates and calculate the weight of the new
solution.

The wused acceptance criteria is the Metropolis criteria
(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953),
presented in Eq. (4). This criterion dictates that: (i) if a candidate
solution y is better than the current solution x, it is always ac-
cepted; (ii) if the solution is worse, it may, or may not be accepted.

The probability (p) by which a worse solution is accepted depends
upon: a) the difference in the objective function values Af of the
two solutions; b) the current temperature of the system. As A
increases, and as the temperature decreases, the probability of
accepting a worse solution is reduced. With such an approach, the
Metropolis acceptance criteria allows up-hill moves, which allows
the algorithm to escape from local minimum. Notwithstanding, as
the temperature reaches very low values, the algorithm becomes
increasingly greedy.

1, if f(y) < f(x),
p= _fm-fe . (4)
©, otherwise

The developed SA optimization uses a geometric cooling sched-
ule. It starts with an initial temperature tp, and at each outer
iteration, the temperature is decreased, using Eq. (5), where k
is the iteration counter of the outer loop and A is the cooling
parameter.

tkp1 = Axty (5)

The ¢, t; and A terms must be calculated beforehand based on
the probability of accepting a worse solution during the first itera-
tion (po) and during the last iteration (py), and on the total number
of outer iterations (k). The defined algorithm establishes py as 0.98
and pr as a positive close to zero value. The total number of iter-
ations is set according to the time available for the optimization
process.

To calculate the value of ty and t;, the algorithm starts by gen-
erating some candidate solutions using the neighborhood function
and the current solution x (Wang, Lin, Zhong, & Zhang, 2015).
These candidate solutions are used to calculate the average ab-
solute difference in the objective function Agyg. This allows the
calculation of the t; value according to Eq. (6), based on the
Metropolis criteria. The final temperature ¢ is given by t; = Akt
This allows the calculation of A with Eq. (7). Given t, t; and A, the
geometric cooling schedule is completely defined.

_ —Aqg

= Tcpo) ©
_(—Dag 1

r= <1n<pf>ro> ™

4.2. Ant colony optimization

Similarly to the SA, the developed ACO algorithm receives, as
input, a weight matrix with the information concerning the solu-
tion components of the problem. It must also receive other rele-
vant parameters for the solution construction process, as the initial
and final node and the set of waiting periods D - see Algorithm 2.

The initialization of the ACO metaheuristic requires the con-
struction of an initial pheromone matrix. The initial pheromone
value is set according to Eq. (8), where n is the number of nodes
and C™ is the cost of the nearest neighbor heuristic.

1
_ (8)

The initialization of the metaheuristic also requires the defini-
tion of a variety of algorithm-specific parameters, such as the num-
ber of ants m, the pheromone evaporation rate p, the heuristic
relative influence B, the pheromone relative influence «, and the
exploration rate Q.

After the initialization, and until the termination condition is
met, the algorithm enters into an iterative cycle, where every ant
belonging to the colony constructs a solution to the problem. This
is followed by a pheromone update phase, to reflect the colony
search experience. A new iteration may only start after all ants

t_
'L'ij—'L'()

R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187 177

Algorithm 2 ACO implementation of the FTP.

1: Input: G - weight matrix, vy - departure city; v, - ar-
rival city; V - array of cities to visit; D - nights in each
destination; m - number of ants;

2: initPheromone()

3: while termination condition not met do
4. for all ants do

5 antProcedure()

6: end for
7
8
9

updateGlobalBest()
updatePheromoneMatrix()
: end while

Procedure antProcedure

10: Input: vy - departure city; v, - arrival city; V - array
of cities to visit; D - nights in each destination;

11: Output: solution - an array of triplets (time, origin, des-
tination)

12: time < random(Ty), origin < ng

13: cities_to_visit < V, nights < D

14: solution <[]

15: while ctv not empty do

16: if random(0, 1) < Qo then

17: destination <« exploitation()
18: else

19: destination < exploration()
20: end if

21: solution.append ((time, origin, destination))
22: ctv.remove(destination)

23: time = time + nights[destination]

24: origin = destination

25: end while

26: destination < ny

27: solution.append ((time, origin, destination))

have finished the solution construction process and the pheromone
matrix has been updated.

The construction process that is undertaken by each ant is as
follows. First, the current time is set to a value belonging to the
allowable trip starting dates, te Ty, and the current node is set to
the start node vy. Each ant enters an iterative cycle until all nodes
belonging to V have been visited. At every step of this cycle, an
ant chooses a solution component by either exploiting or exploring
the search space. The decision of exploiting or exploring depends
on the algorithm parameter Qp and on a pseudo-random value g,
calculated at runtime. The selection of the solution component j,
which identifies the next city to be visited, is given by Eq. (9). After
the selection of each solution component, it is necessary to update
the time, incrementing it by the duration relative to the selected
city.

if g<Qo
otherwise

{exploitation (Eq. 10),)

exploration (Eq. 11),

The exploitation of the search space utilizes the random-
proportional rule, defined by Eq. (10), which determines the next
solution component of the ants’ solution. The Ji(i, t) term repre-
sents the set of solution components that might be selected to
form a valid solution component by an ant in its current state,
where the state refers to the current ant position of the trip it has
constructed so far.

argmax;ey, o[t (i, . Oln G, j, 01 (10)

On the other hand, the exploration is given by Eq. (11), with
pa(i, j, t) representing the probability of ant a (which is currently at
node i at time t) selects j as the next node to visit. In the presented
equations, 1 is the inverse of the weight matrix value.

[t(. j.O]nG. j.OIP
Zue]k(i,[)[r(iﬂ u, t)][n(lﬂ u, t)]ﬂ '
0, otherwise

if jei(i,t)

Pa(i, j. t) =

(11)

By following an iterative construction procedure, an incomplete
(but valid) solution is found. To complete this solution, it is nec-
essary to add an extra solution component, which closes the route
by adding the return node, v, .

After each ant finishes its iterative solution construction pro-
cess, the ACO metaheuristic enters into its pheromone update
step. Depending on the chosen ACO algorithm, the pheromone up-
date may vary. This work follows the Ant Colony System (ACS)
strategy, whose pheromone global update requires both a deposit
and an evaporation step. Unlike many other ACO algorithms, the
pheromone update applies only to the arcs belonging to the best
solution found so far, Sp,. Furthermore, it is also necessary to ap-
ply a local pheromone update (see Eq. (12)), after the selection of
each solution component, as to reduce the probability of other ants
selecting the same one in the current iteration (Dorigo & Gam-
bardella, 1997). This results in an update of the pheromone values,
by means of Eq. (13), where (Ari‘j)bs is given by 1/C", where CPs
represents the objective function value of the best solution.

th=(1-p)Th+pTo (12)
th=(1-p)th+ p(ATH™ (13)

ACO algorithms are often combined with local search heuristics
that try to improve the quality of the ants’ solutions, after each it-
eration. However, this was not considered in the implemented op-
timizer, due to the nonexistence of adequate local search proce-
dures for the time-dependent TSP. In fact, even the k-opt exchange
procedures, widely used in the classical TSP as local search, are not
efficient for the time-dependent TSP because it requires, at each
step, the computation of the entire trip cost, as opposed to just
the cost difference regarding the k arcs, as in the symmetric TSP.

4.3. Particle swarm optimization

The implemented PSO algorithm receives, as input, the weight
matrix of the corresponding FTP instance, as well as any other at-
tributes relevant to the description of the problem, such as the ini-
tial and final city, respectively vo and vy, 1, the list of cities to visit
V, the start window T, and the list of number of nights in each
destination D. This is followed by the initialization of a swarm of
particles, whose size (M) is equal to the number of cities to visit
(vn.

To initialize the swarm of particles, it is necessary to set the
position and velocity of each particle. These values are initialized
with a randomly generated solution, by using the same process as
used and described in Section 4.1. Likewise, the initial velocity is
randomly generated, by using the velocityCalculate procedure de-
scribed in Algorithm 3. Having all positions initialized, the global
best solution (Pg,) is updated, and each particle registers its cur-
rent position as the particle’s local best solution (Py).

At this point, the PSO algorithm enters an iterative cycle until
the termination condition is met. At each iteration step (A¢), every
particle generates a new solution. This particle movement only de-
pends on its current position and velocity, as defined in Eq. (14).

X=X VE A (14)

178 R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187

Algorithm 3 PSO implementation of the FTP.

1. swarm < []

2: pgy < None, fg, < inf

3: for i=1 to i=M do

4: swarmli] < initParticle()
s: end for
6
7
8
9

: updateGlobalBest()
- while termination condition not met do

for i=1 to i=M do
pos_next < positionUpdate(particle)

10: vel_next < velocityUpdate(particle)
11: obj_next < calculateObjective(pos,ext)
12: updateParticleInfo(pos_next, vel_next, obj_next)

13: end for
14: updateGlobalBest()
15: end while

Procedure positionUpdate

16: Input: position - the particle’s current position; velocity
- the list of swap operators;

17: Output: the next particle’s position

18: next_pos < copy(position)

19: for swap_op in velocity do

20: (i, j) < swap_op

21: X;, Xj = next_pos[i], next_pos] j]

22: next_pos[i], next_pos[j] = x;, x;

23: end for

24: return next_pos

Procedure velocityCalculate

25: Input: pos_current, pos_wanted

26: Qutput: velocity - the list of swap operators that when
applied to pos_current yields pos_wanted

27: vel <[]

28: while True do

29: pos_next < positionUpdate(pos_current, vel)

30: if pos_next equals pos_wanted then

31 return velocity

32: end if

33: for index_curr = 1 to index.urr = length(pos_next) do

34: if pos_next[index_curr] not equals
pos_next[index_curr] then

35: city_curr < pos_next[index_curr]

36: index_wanted < pos_wanted.index(city_curr)

37: swap_op < (index_curr, index_wanted)

38: vel.append (swap_op)

39: break out for cycle

40: end if

41: end for
42: end while

It must be noted that the velocity of a particle corresponds to
a swap sequence - a list of swap operators - that transforms the
path of one solution into another, as proposed and described in the
work of Wan, Huang, Zhou, and PhG (2003). This method is sum-
marized in the positionUpdate procedure described in Algorithm 3.

Having calculated the next position (X!*!), it is necessary to
calculate the particle’s next velocity (V{+1), by applying Eq. (15).
Note that the difference operation between two positions (e.g.
Py, — Xt*1) uses the method described in the velocityCalculate pro-

cedure of Algorithm 3 to calculate a swap sequence. When calcu-
lating the next velocity, @ and B represent the relative influence
of the particle’s own best solution and the swarm’s global best, re-
spectively, which determine the probability of keeping each swap
operator of the swap sequence.

VAT =VEi@ax (P — X @ B+ Py — XIHT) (15)

Every iteration cycle (which starts with the update of the parti-
cle’s position and velocity) is finished by calculating the objective
function of each particle and by updating the information of its
local best solution. Finally, the global best solution of the swarm
is updated, and the iteration cycle restarts, until the termination
condition determines the end of the PSO algorithm.

5. System prototype

Due to the NP-hardness nature of the FTP for unconstrained
multi-city requests, the associated optimization procedure tends to
be computationally heavy. As a consequence, the developed sys-
tem prototype consists of a distributed web service composed of a
server-side application that satisfies the requests received from the
clients (see Fig. 2).

5.1. Client-side application

The Client-Side Application (CSA) is responsible for the user in-
teraction, allowing him to define the requested trip (number 1 in
the figure), by supplying the following set of parameters:

« The start and return cities, vg and v, 1;

o A list of cities to visit V;

o The waiting periods (D) associated to each city in V;
o The start time/period (Ty) of the trip.

The response to a user request is not directly processed by the
CSA, but rather by the Server-Side Application (SSA), which uses
the issued parameters to produce a solution that minimizes the
considered cost function. Such a solution contains (at least) one set
of flights that satisfy the user-defined request. Nonetheless, several
other valid solutions may also be provided, to allow the user to
choose the one that is more adequate to his needs. The most rel-
evant information about each of the suggested flights is also pro-
vided (number 6), including:

o The flight cost;

o The flight duration;

o The date, departure and arrival time;

o A hyperlink to a third-party API that allows a direct booking of
the flight.

The developed CSA was implemented using the React
JavaScript library (www.reactjs.org) and Redux framework
(www.reduxframework.com), and the communication between
the client and the server applications is done via Asynchronous
JavaScript and XML (AJAX), which means that upon submitting the
request (number 2), the user may continue interacting with the
application until the SSA returns a response to the CSA (number 5).

5.2. Server-side application

The SSA was implemented in a Python environment, together
with Django framework (www.djangoproject.com). It comprises
the following two main components: (i) a Data Management mod-
ule, to fetch the flights data; and (ii) an Optimization module,
which implements the devised search algorithms that find the best
set of flights that satisfy the user request.

http://www.reactjs.org
http://www.reduxframework.com
http://www.djangoproject.com

©)

—

R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187

a @
Client Side App h AJAX Server Side App h

179

User

Input » Data Management
() resource

response

N J

g — Output <
® : ®

Optimization %4]
J

(&

Fig. 2. Structure and data flow of the developed prototype.

5.2.1. Data management module

Since the issued user request only specifies an unordered list
of trip nodes (i.e., the set of cities to be visited), the Data Man-
agement module is responsible for collecting all the flights infor-
mation that is required to execute the devised optimization algo-
rithms, thus completing the arcs (flights) that connect those nodes.
Hence, an arc connecting two nodes corresponds to a flight be-
tween two cities, at a specific date. However, there are many flights
that fit this description and each one may have several attributes
that differentiate it from the others. For example, every flight has
a particular cost, duration, departure and arrival time, airline com-
pany, bag limit or even different number of layover flights.

Due to the vast number of attributes that define every flight,
it is impossible to know which particular flight is the most ad-
equate for a specific user, because users often have different se-
lection criteria. Hence, upon the construction of the multipartite
graph, it makes sense to have a list of possible flights for every
arc in A, instead of just a single one. This allows the selection
of a specific flight according to the objective function being mini-
mized. For example, if the goal is to minimize the total flight cost,
it makes sense to select those flights that present the lowest cost,
disregarding other attributes such as the airline company of the
flights duration. This means that upon referring to an arc connect-
ing two nodes, the Data Management module is actually consid-
ering a family of arcs that share key characteristics (such as the
origin, destination and date), but which may vary regarding other
attributes.

To collect the data corresponding to each arc belonging to A,
the developed system communicates with a third-party API and
sends a request seeking the required flight objects. Among the
several free and public flight-data APIs that might be used, it
was adopted the API provided by the Kiwi flight search company
(docs.kiwi.com). Among the several useful features that are pro-
vided by this API is its ability to respond to a query over an ex-
tended search period. That is, upon requesting a flight between
two cities, it is possible to specify a time window, instead of a sin-
gle date. This is particularly useful because it allows the reduction
of the total number of requests. Hence, while the total number of
arcs in an FTP instance might be considerable, there is no need to
make an individual request for every single arc. Instead, it is pos-
sible to submit a request for every pair of cities, by extending the
search period to reflect the total number of necessary layers.

Having defined a complete graph, it is possible to run the opti-
mization module (number 4), in order to produce a valid solution
to the user request.

5.2.2. Optimization module

The implemented optimizer was developed by using a strictly
modular approach, allowing the integration of several different op-
timization strategies and algorithms. In particular, the three con-
sidered metaheuristic algorithms (SA, ACO, and PSO) were im-
plemented in the evaluated prototype, by using conventional and
straightforward implementations and parameterizations.

Table 1
Algorithm specific parameters.
Alg. Parameter Value
SA First iter. acceptance prob. (po) 0.98
Last iter. acceptance prob. (py) 10300
Initial temperature (to) see Eq. (6)
Final temperature (t;) see Eq. (5)
Cooling parameter (1) see Eq. (7)
Markov chain length (M) N
ACO Pheromone relative influence (o) 1
Heuristic relative influence (8) 5
Pheromone evaporation rate (p) 0.1
Exploration rate (Qp) 0.9
Number of ants (m) 10
PSO Swarm size N

Particle best solution relative influence (@) 0.9
Global best solution relative influence (8) 0.9

All these algorithms require an initialization phase, which,
among other things, defines some algorithm specific parameters.
In order to inspect the same number of solutions in any given iter-
ation of the algorithms, the total number of cities to visit in V was
assigned to the Markov chain length (M) in the SA, to the num-
ber of ants (m) in the ACO, and to the swarm size (N) in the PSO.
Table 1 summarizes the set of parameters used by the two meta-
heuristic algorithms of the implemented prototype.

6. Experimental results

In order to validate and evaluate the performance of the pro-
posed system, several tests were developed and executed. First,
the overall utility of the implemented system was evaluated, by
performing a series of tests on the Flying Tourist Problem. In par-
ticular, the quality of the obtained solutions was compared with
those provided by a metric Nearest Neighbor (mNN) heuristic, which
promotes the nodes’ proximity to define the traveling route (this
straightforward approach closely approximates the strategy usually
followed by a human solver). Then, a thorough comparison with a
state-of-the-art alternative for the devised FTP was performed by
considering a comprehensive set of real-world multi-city formula-
tions using different objective functions.

These experiments were executed on a 2.6GHz Intel i7-6700
CPU, with 8GB of RAM, and all the code was developed using the
Python3 programming language.

6.1. Flying tourist problem evaluation

To demonstrate and quantify the actual benefits of the proposed
system, a series of FTP instances were defined, ranging from just
1 city to visit (which corresponds to a round-way flight), up to a
total of 20 cities (see Table 2). For each problem instance, three
different solutions were determined based on the following three
optimization goals:

http://www.docs.kiwi.com

Table 2

Comparison of different Flying Tourist Problem solutions obtained with distinct algorithms and optimization goals.

Cities 1 2 3 4 5 6 7
Ontimization | Ontimization | o ion Result
Goal Method | Price Duration 222%d | price Duration P221¢d | pijce Duration P2 | price Duration P2 [price Duration B2 | price Duration B2 | price Duration Dalanced
Cost Cost Cost Cost Cost Cost Cost
mNN 138 2742 1128 722 5169 2145 952 7728 2082 1126 3685 3391 1207 5948 3589 1311 9519 3779 1550 10871 1313
NN 438 2742 1128 627 5205 1999 856 6418 2523 1016 7617 2094 1232 8152 3305 1266 8194 3341 1562 10419 4216
SA 438 2742 1128 624 1861 865 6517 2559 1169 7524 3073 1203 9793 3840 1417 9581 3364 1851 12712 5105
) ACO 2742 1128 627 1999 873 6530 2568 1048 7963 3120 1218 8041 3262 1347 8959 3 1562 10419 4216
Price PSO 2742 1128 597 1749 831 6295 2469 960 7230 2839 1114 7889 3144 1232 9215 3 1339 10466 4073
Best Method PSO PSO PSO PSO PSO PSO
Solution 2742 1128 507 1749 831 6295 960 7230 114 7889 3144 1232 9215 3623 1339 10466 4073
Gain 0.0% 00% _ 21.0% 26% 145% 228% 208% 17.2% 201% 194% 164% 134% 141% 64% 36% 13% _ 158% 3.9% 6.6%
mNN 1602 398 S11 1453 1129 4181 2042 1335 1813 2376 1506 5414 2675 1561 5427 2717 1840 6547 3218
NN 1602 898 766 1271 1027 3919 1895 1198 4276 2122 1475 4600 2413 1520 4815 2509 1846 5716 3007
SA 1602 898 726 1293 1053 4142 1979 1371 5039 272 1600 5387 2736 1789 5939 3035 2413 8437 4220
. ACO 1602 898 766 1271 1030 3838 1873 1186 4287 2116 1457 4570 2391 1629 5090 2667 1846 5716 3007
Duration PSO 1602 898 769 1231 1002 3204 1663 1216 3502 1902 1444 3975 2203 1527 2296 1719 4589 2580
Best Method mNN PSO PSO PSO PSO
Solution 507 1602 398 769 1231 1002 3204 1663 1216 3502 1902 1444 3975 1527 2296 1719 1589 2580
Gain 0.0% 0.0% 0.0% 5.5% 180% [127% 30.5% 28% | 98% 374% 209% | 43% 362% 204% | 22% 184% | 71% 427% 25.9%
mNN 167 1653 822 8T 1439 1070 4247 2021 1274 844 2312 1447 5471 2651 1512 2696 1723 6634 3192
NN 467 1653 822 708 1245 1027 3919 1895 1130 4426 2219 1360 4989 2450 1467 2453 1677 6041 2086
SA 467 1653 822 700 1269 1052 4170 1988 1233 527 2445 1413 5317 2584 1784 3260 2208 8111 3978
Balanced ACO 467 1653 822 08 1245 1007 3860 1863 1122 4429 2114 1342 4922 2416 1500 2529 1677 6041 2086
Cost PSO 467 1653 822 696 1196 974 3254 1658 1056 3590 1816 1257 4040 2092 1389 2249 1539 4795 2516
Best Method mNN PSO PSO PSO PSO PSO PSO
Solution | 467 1653 822 [6% 196 | 974 3254 1658 | 1056 3590 1816 | 1257 4040 2092 [1389 4255 2249 [1539 4795 2516
Gain [0.0% 0.0% 00% [13.0% 203% | 9.9% 30.5% 21.9% [207% 350% 20.0% [151% 354% 267% | 88% 28.6% 199% [120% 384% 26.9%
Cities 8 9 10 12 15 17 20
Optimizati Optimization [C Result
Goal Method | Price Duration 522%d | price Duration 542 | piice Duration B2 | price Duration B2 [price Duration B2 | price Duration B2 | price Duration Dalanced
Cost Cost Cost Cost Cost Cost Cost
mNN 1835 11443 4713 1715 11658 1693 2070 13684 5549 2446 16215 6570 2422 16099 6517 3303 7632 3029 21460 8548
rNN 1641 11102 4476 1700 12058 1803 1828 11976 1868 2027 13240 5385 2473 16216 6589 2827 7743 3018 23891 9280
SA 2051 14872 5894 2067 15571 6114 2452 18019 77 2861 18467 3629 26553 10498 4103 9780 5633 40056 15960
. ACO 1609 11198 1482 1714 12453 1931 1967 13058 5290 2027 13240 2473 16216 6589 3247 8965 2978 24519 9440
Price PSO 1423 10714 1206 1441 11206 1366 1547 11207 1440 1809 13994 2252 16471 6510 2788 20490 8091 2651 24370 9167
Best Method PSO PSO PSO PSO PSO PSO PSO
Solution 1423 10714 4206 1441 11206 1366 1547 11207 4440 1809 13994 2052 16471 6510 2788 20490 8091 2651 24370 9167
Gain 200% 6% 121% 190% __ 4.0% T5% _ 338% 22.1% 25.0% _ 352% 159% 204% _ 15% 3% 01% _ 185% -13.4% 5.7% 143% 119% 6.7%
mNN 2119 6729 3197 2026 6768 3144 2398 3060 1092 2754 8502 1199 2740 9165 1660 13402 7825 16 13381 7259
rNN 2009 5744 3130 2065 6075 3638 2185 6508 3482 2379 6964 3754 2780 6897 4022 9480 6600 4720 14065 7524
SA 2252 8036 987 2388 8720 3083 10881 5423 12570 6097 3671 14203 6831 15089 9022 5641 16490 8896
. ACO 2009 5744 3130 2095 6405 2195 6675 3539 2579 8311 1299 3024 8345 1621 135 13401 7825 3803 12679 6465
Duration PSO 2017 4609 2795 1920 4669 208 4990 2965 2343 5681 3344 2800 7212 1187 3705 10599 5764 3655 11689 6062
Best Method PSO PSO PSO PSO INN INN PSO
Solution 2017 4609 2795 1920 4669 2744 4990 2065 2313 5681 3344 2780 6897 4022 9480 6600 3655 11689 6062
Gain 50% _ 46.0% 25.1% | 55% _ 450% 25.5% 61.5% 38.0% | 17.6% _ 51.2% 345% | 1A% 32.9% 15.9% 41.4% 18.6% | 268% _ 145% 19.7%
mNN 1993 6821 3137 1865 6912 3374 2296 3156 1019 2655 3642 1451 2635 9305 1636 10783 5707 33 11932 5013
rNN 1878 5858 3072 1934 6313 3258 2050 6859 3493 2142 7024 3607 2666 8479 4410 10995 5631 10075 5574
SA 2235 8356 4071 2463 9035 4434 12732 5942 3417 11386 5807 4751 18280 8809 18501 9202 20499 10483
Balanced ACO 1878 5858 3072 2010 6811 3450 7531 3750 2143 4 3607 2921 9943 5028 13918 6845 12081 5921
Cost PSO 1658 4771 2592 1728 1852 2665 5171 2839 2090 1 3180 2599 6776 3852 10046 5311 14027 6205
Best Method PSO PSO PSO PSO PSO PSO NN
Solution [1658 4771 2592 [1728 1852 2665 [1840 5171 2839 [2000 5724 3180 [2509 6776 3852 10046 5311 [3646 10075 5574
Gain [202% 3.0% 326% | 80% 425% 26.6% | 248% 51.7% 42.6% | 271.1% 5L.0% 100% | 14% 31.3% 20.4% 7.3% T4% | 86% 184% 6.1%

081

281-221 (6102) 0€] suoypdyddy yam swaisAs 1iadxq /pwoy ‘N pup ossny T ‘sanbiopy -y

R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187 181

 Total price of the trip;

« Total duration of the trip;

o A balanced cost, corresponding to a weighted sum between the
former two, where the price and flight duration contribute with
70% and 30%, respectively.

These three solutions were obtained by individually considering
the following optimization approaches:

o metric Nearest-Neighbor (mNN) heuristic;

o regular Nearest-Neighbor (rNN) heuristic;
Simulated Annealing (SA) metaheuristic;

o Ant Colony Optimization (ACO) metaheuristic;
Particle Swarm Optimization (PSO) metaheuristic.

In this experiment, each request was run 20 times, in order to
obtain a representative averaged solution. Moreover, to obtain a
system response time compatible with a real-time user experience,
a maximum optimization time of 1 second was allowed to each
execution. In all the considered cases, the trip starts and returns
to the same randomly chosen city, and visits a given set of cities,
randomly chosen from the following set: Abuja, Atlanta, Barcelona,
Beijing, Cairo, Casablanca, Dubai, Dublin, Frankfurt, Hong Kong, Is-
tanbul, Johannesburg, Kiev, Los Angeles, Madrid, Miami, Moscow,
New-York (JFK), Oslo, San Francisco, Sidney, Singapore. The start
date was set to be the same for all requests (1 May 2019), which,
upon the execution of the tests, was 50 days into the future. The
waiting period on each city was set to a random value between 1
and 5 nights.

6.1.1. Quantitative evaluation and improvement

The result of the execution of the described evaluation is pre-
sented in Table 2, where the solutions for the three considered op-
timization goals (total flight cost, total flight duration and balanced
cost) are presented, as a function of the adopted optimization ap-
proaches and the number of cities of the trip.

By analyzing the obtained values, it can be observed that sig-
nificant gains are obtained for each considered optimization metric
when the system is configured to use that same metric as the opti-
mization goal. Moreover, it can also be seen that such optimization
tends to also favor the other optimization metrics (except in some
setups with 15, 17 and 20 cities), resulting in solutions with con-
siderable benefits in what concerns both the total flight price and
duration.

Although remarkable results are obtained with all the con-
sidered metaheuristics, it is also observed that the PSO tends to
provide slightly higher gains than the other optimization methods
for the defined FTP formulation. However, since this comparison
covers averaged results, this observation does not imply that

3500 16000

Price
ion

3000 14000

Durat

12000

2500 I
I 10000

2000
8000

1500
6000
1000 I
I I 4000 I
500 I I 2000 I I
12 3 4 5 6 7 8 9 10 12 15 17 20 1 2 3 4 5

Cities

(a) Total flight price.

(b) Total flight duration.

PSO always conducts to the best optimization. Sometimes, the
ACO algorithm provides better values than PSO. Fig. 3 presents
a brief statistical characterization of the results obtained with
the PSO metaheuristic, depicting the relation between the mean
value of the obtained gains (for each trip configuration) and the
corresponding standard deviation, by using lines to illustrate one
standard deviation from the average. On normal distributions, this
range contains around 68% of all possible values. In the obtained
results, the ACO average generally falls within this range. For
example, for the price objective of 15 cities in Table 2, the ACO
algorithm obtains an average cost of 2473 and this value is well
within the corresponding lines for the 15 cities bar in Fig. 3a.
Hence, the good performance of PSO is not a guarantee that it
always achieves the best objective. Moreover, it should be noted
that all these algorithms were limited to a 1 second execution
time, in order to keep the systemds response time within tolerable
limits required by a human user using this web-service. If more
execution time was allowed, the ACO and SA algorithms would
obtain better results. Hence, the good results provided by PSO
within this time limit are mostly due to its ability to escape
to local minima and not necessarily to its ability to converge
to the global minimum. Keeping these caveats in mind, it was
decided to use PSO as the chosen metaheuristic in the following
discussion.

The chart and data presented in Fig. 4 summarize the gains
(price, duration and balanced cost) that are obtained using the
PSO metaheuristic, by using the metric nearest-neighbor solutions
as reference. The first insight into these results allows a prelim-
inary evaluation of the utility of the proposed system. In fact, it
can be seen that whenever the trip visits more than one city, the
considered optimization system greatly improves the total flights
cost (~6-35%) and duration (~15-60%).

6.1.2. Balancing the total flight price and duration

As it was referred before, the considered Balanced Cost opti-
mization goal envisages a better compromise between the total
price of the trip and the total flight duration, by minimizing a
weighted value where the price and flight duration contribute with
70% and 30%, respectively.

As it can be observed in Table 2, such minimization also pro-
vides significant gains (when compared to the straightforward met-
ric Nearest-Neighbor), although it introduces slight penalizations
when compared with the best gains that are obtained when in-
dividually considering the total flight price and the total flight du-
ration optimization goals. This happens because the two objective
functions (price and duration) can hardly be simultaneously min-
imized, and thus, a compromise has to be reached. In this case,

8000

7000
6000 I

}‘ 5000
4000

—_
Balanced Cost

1 |
ERreret i) e r 111

1000 I

8 9 10 12 15 17 20 12 3 4 5 6 7 8 9 10 12 15 17 20
Cities # Cities

(c) Balanced cost.

Fig. 3. Statistical characterization of the results obtained with the PSO metaheuristic. The colored bars represent the mean value of the observed metric, whereas the error

bars represent the corresponding standard deviation.

182 R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187

70%

60%

50%

40%

30%

20%

10%

Objective function difference

0%

1 2 3 4 5 6

7 8 9 10 12 15 17 20

Price 0.0% 21.0% | 14.5% | 17.2% | 16.4% 6.4%

15.8% | 29.0% | 19.0% | 33.8% | 35.2% 7.5% 18.5% | 14.3%

Duration 0.0% 28.0% | 30.5% | 37.4% | 36.2% | 32.7%

42.7% | 46.0% | 45.0% | 61.5% | 51.2% | 32.9% | 41.4% | 14.5%

Balanced Cost| 0.0% 20.3% | 21.9% | 29.0% | 26.7% | 19.9%

26.9% | 32.6% | 26.6% | 42.6% | 40.0% | 20.4% 7.4% 6.1%

Fig. 4. Average gains provided by the PSO metaheuristic when considering the price, duration and balanced cost optimization goals.

Cities
20
17
15
12

iy
o

N W bh 0O N 0O

-60% -50% -40% -30%

-20%

Duration Price

-10% +0% +10% +20%

Fig. 5. Variation of the total flight price and duration when minimizing the Balanced Cost objective function.

compromising means slightly increasing the price to significantly
reduce the duration (or vice-versa).

This compromise between flight price and duration is also illus-
trated in Fig. 5, which presents the relative duration gain as a con-
sequence of the increase in price. This figure shows that, in gen-
eral, increasing the price by around 15% leads to a decrease in the
flight duration by around 55%, when compared to the price-only
metaheuristic.

6.1.3. Impact of the trip start interval

To evaluate the influence of the trip start interval on the ob-
tained results, the same queries and data sets were used to solve
these same FTPs using trip start windows of different lengths. The
resulting gains (decrease of the total price) are illustrated in Fig. 6,
when considering start periods of length 1, 15 and 31 days, respec-
tively. The solution corresponding to the 1-day start window was
used as reference.

By analyzing the results presented in Fig. 6, it can be observed
that increasing the interval of the start date may lead to even
greater benefits, with flight price improvements as high as 24%.

6.1.4. Response time

The response time of any FTP query depends on two different
procedures: the data gathering and the optimization. In this case,
the optimization time is mostly constant and established apriori.
In contrast, the data gathering is usually the bottleneck of the pro-
cess, because the construction of the cost matrix requires massive
amounts of data.

The total time that is necessary to respond to a request, as a
function of the number of cities and the length of the start interval,
is illustrated in Fig. 7. From the analysis of this figure, it can be
seen that requests with up to 10 cities can be solved in less than
60 seconds. It can also be seen that the response time increases
non-linearly as the number of visited cities increases. On the other
hand, increasing the length of the start interval has low influence
for small instances (up to 10 cities), but has a significant impact
for greater instances.

6.2. Comparison with Kiwi’s nomad

At the present time, Kiwi’s Nomad is the only publicly available
(but non-disclosed) tool that is capable of addressing the defined

R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187

25%

20%

15%

10%

Total price gain

5%

0%

1 2 3 4 5 6
31-day start window 10% 7% 12% 13% 17% 17%
15-day start window 6% 2% 7% 8% 15% 15%

183

Fig. 6. Price improvement as a function of the trip start interval.

400
31-day start window

350 15-day start window

300 1-day start window

Response time (s)

250

200

100

50

1 2 3 4 5 6 7 8 9

7 8 9 10 12 15 17 20
18% 13% 13% 18% 17% 21% 24% 8%
14% 8% 3% 15% 13% 12% 21% 3%
0 11 12 13 14 15 16 17 18 19 20
Cities

Fig. 7. Total response time to a request, as a function of the number of visited cities and length of start period.

Flying Tourist Problem in the form of an unconstrained multi-city
routing problem, although its queries are limited to only 10 differ-
ent cities. To facilitate the comparison of the conceived optimiza-
tion system with this tool, the definition of the user requests of
the proposed FTP (see Section 3) was kept as similar as possible
to Kiwi’'s Nomad interface. The user is asked to specify the depart-
ing/arriving city, together with the start date, the set of cities to be
visited and the duration of the stay in each city.

The results provided by both applications were extensively
compared against each other, according to each considered objec-
tive function. The difference in the total flight price and duration
(for each query) was also measured and analyzed as a function of
the query parameters. The former evaluation will be called absolute
comparison, while the latter quantative evaluation.

The execution of these tests involved over 100 different queries,
by varying not only the number of cities (2-10), but also the length
of the trip start interval (1-15 days). All queries that were per-
formed on both applications had its start and return city set to
Lisbon (Portugal), while each city to be visited belongs to the same
set of hub airports that were considered in the previous subsec-
tions. These queries were executed during the period between 15

and 16 of June 2018 and the base start date was set to the 1st of
August 2018, which, at the time of the tests, was 45 days in the
future. The staying period in each city was set to a random value
between 1 and 5 days. For extended start periods, the base start
date was extended by 31 days.

6.2.1. Absolute comparison

Both applications respond to each query with three different
sets of flights, serving the following different optimization crite-
ria: the cheapest, the fastest and the recommended. For each query,
a winner was determined according to these criteria. The cheapest
set of flights is determined according to the total flight price, while
the fastest depends solely on the total flight duration. The recom-
mended set of flights depends on both the price and the duration,
and the winner for this criteria must have both lower prices and
duration.

Fig. 8 illustrates the obtained comparison, by presenting the
total number of times that an application outperformed the
other, for each of the three different optimization criteria. It also
shows the number of cases in which the responses were very
similar.

184 R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187

Recommended

Fastest

Cheapest

0% 20% 40%

Kiwi's Nomad Ties Proposed work

60% 80% 100%

Fig. 8. Comparison of the results provided by the proposed tool and by Kiwi’'s Nomad application.

The analysis of this figure indicates that the developed applica-
tion presents better solutions for a significant amount of queries.
In fact, while the fastest set of flights is only achieved in 42% of
the queries, it presents the cheapest set of flights 95% of the times
and the best recommended result 75% of the times.

6.2.2. Quantitative evaluation

To evaluate the difference of the responses provided by both
applications, the total flight price and duration of the recom-
mended set of flights was also quantitatively measured (see Fig. 9).
The values presented in these graphs refer to the developed appli-
cation response and were normalized using the Kiwi’s Nomad re-
sponse as reference.

Fig. 9a presents the results of the queries performed for a sin-
gle start date. Its analysis shows that, for a small number of nodes
(2 and 3), the developed application recommends flights that are
slightly more expensive (10 to 19%) than those presented by Kiwi.
In contrast, the flight duration of these flights is much lower (33-
46%). For requests with more nodes (5 to 10), the results presented
by the developed application have both lower prices (2-18%) and
flight duration (9-24%). Fig. 9b depicts the obtained results when
the length of the start interval was extended to 31 days. With such
an extended start period, every recommended set of flights pro-
vided by the proposed application has a lower price and duration.
The price presents the most significant change: the minimum im-
provement is 8%, while the maximum is 29%.

Finally, it is worth noting that all the presented experiments
only consider up to 10 different cities to be visited by the traveler.
The reason why more cities were not considered arises not from
the developed application (which could easily accommodate more
cities), but it is motivated by a strict limit presented by Kiwi's No-
mad user interface, which does not support more than 10 cities in
the planned route.

7. Related work

Before the release of Kiwi’'s newest flight search service,
this travel agency launched a “Travelling Salesman Challenge”,
which attracted the attention of several researchers. In particular,
Duque, Cruz, Cardoso, and Oliveira (2018) considered the Kiwi
challenge and presented a formulation similar to the one that
is now presented in this manuscript. Although their motivation
is similar, their formulation is significantly different, as they do
not consider a staying duration associated with each city. They
consider only variable costs, which, to our knowledge, can not be
used to model a duration in a simple way. As such, the problem
they consider is less restricted and can be directly solved with
a time dependent TSP approach. Interestingly, these authors also

applied conventional SA and ACO meta-heuristics. They also use
genetic algorithms to optimize the ACO approach and consider a
hybrid algorithm that combines ACO and SA.

Although a direct comparison with the techniques presented by
Duque et al. (2018) is not possible (since the considered problems
are somewhat different), it is possible to present some observa-
tions about their data set. First, their approach was designed to
scale well for a very large number of cities (they consider up to
100 cities). Considering the intrinsic motivation of a touristic pas-
senger, the proposal that is now presented was only tested with
smaller datasets, of at most 20 cities. On the other hand, their ap-
proach optimizes only the cost of the trip, whereas this proposal
also considers the total duration and a balance of these two. When
considering only up to 15 cities, their results (Table 1) show that
SA obtained better results than ACO and even ACO-SA. This is inter-
esting, as a different result was obtained in this proposal, possibly
because of the different nature of the problem that was consid-
ered. Moreover, this FTP implementation only allowed 1 second of
the solver execution, whereas these authors used 30 seconds on
their test.

Another previous approach that is very similar to FTP was pro-
posed by Li, Zhou, and Zhao (2016), where they presented the
Travel Itinerary Problem (TIP). TIP also considers duration con-
straints but their constraints are only lower bounds, meaning that
each city must be visited by a certain minimum number of days,
but no upper bound is defined. There is a global up-bound that
limits the total amount of days for the trip, but there is no limit
per city. This differs from the FTP approach, where an upper bound
is set in each city but not on the global trip. Their approach is very
flexible, as they formulate this problem as a 0-1 integer program-
ming model. These authors only consider optimizing the travel
cost, not the duration. The focus of the paper is mostly on for-
mulating the problem and in setting up the information system
to process the necessary data. From an algorithmic point of view,
their approach does not use any meta-heuristics approach. They
refer to an enumeration approach which seems to require expo-
nential time, as the number of cities increases (Table 5).

A time-dependent TSP with time windows was also considered
by Montero, Méndez-Diaz, and Miranda-Bront (2017), by using an
integer programming formulation and an upper and a lower bound
for the duration in each city. However, the focus of this problem
is in modeling the flow of transit in a city and therefore it does
not consider costs, only trip duration. The authors present an exact
algorithm for this formulation that scales up to 40 customers.

Hence, the existence of these alternative TSP formulations, that
are somewhat close to the proposed FTP, is a clear evidence of the
growing interest on this kind of TSP formulations, highlighting the
importance of the presented FTP. Naturally, part of this interest is

R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187 185

120

100

Price Time ===Kiwi's Nomad

80

60 119
110

40

Normalized Value

&0 54

20

35 89 91 90 88

Cities

5 7 10

(a) Single start date.

120

100

Price Time ==Kiwi's Nomad

80

60

88

Normalized Value

40 77 75

67

20

87

75 75 77
66

Cities

5 7 10

(b) Extended start period (31 days).

Fig. 9. Comparison of the recommended flights price and duration, as a function of the number of nodes and the length of start interval. The presented values refer to the
proposed application response, and were normalized with respect to Kiwi's Nomad response value.

due to the Kiwi travel agency. However, the presented work be-
gan even before their challenge, as a consequence of the growing
amount of airline traveling information that is now available.

Nevertheless, it should be noted that an exact and quantitative
comparison of these approaches with the work that was now pre-
sented is not a straightforward task, as they all consider slightly
different problems. Still, the authors believe that this comparison
highlights the relevance of the presented contributions. Just as TIP
(Li et al., 2016), the FTP formulation was driven by a concrete prob-
lem that can be solved with existing data. This real-world applica-
tion means that FTP formulation is more elaborated that the other
time-dependent TSP formulations, that abstract away part of the
problem. Besides this focus on the problem formulation, classical
meta-heuristics that allowed the obtention of viable solutions for
large problem sizes (20 cities, in only 1 second) were studied and
evaluated. These problem sizes are well within the desired appli-
cation range, which (in general) uses fewer cities.

8. Conclusions

Despite the existence of numerous flight search applications,
most of them lack the ability to properly address unconstrained

multi-city flight requests, since this problem is generally not
tractable. To circumvent this absence, the present work formalizes
and addresses the Flying Tourist Problem (FTP), a NP-hard problem
that occurs as a generalization of the Traveling Salesman Problem
(TSP), and whose goal is to find the best schedule, route, and set
of flights, for an unconstrained multi-city flight request.

An effective methodology that allows an efficient resolution of
this rather demanding problem was proposed, based on differ-
ent heuristics and meta-heuristic optimization algorithms, includ-
ing the Simulated Annealing, the Ant Colony Optimization and the
Particle Swarm Optimization, allowing the identification of solu-
tions in real-time, even for large instances. The developed meth-
ods were integrated into a web application prototype, allowing a
fast resolution of user-defined requests.

The implemented system was evaluated using different crite-
ria, including the provided gains (in terms of total flight price and
duration) and its performance compared to other similar systems.
The obtained results show that the developed optimization sys-
tem consistently presents solutions that are up to 35% cheaper (or
60% faster) than those developed by simpler heuristics. Further-
more, when comparing the developed system to the only publicly

186 R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187

available (but not-disclosed) alternative, it was shown that it pro-
vides the cheapest and the best-recommended solutions, respec-
tively 95% and 74% of the times.

As a result, upon the planning of a complex multi-city trip, the
developed system showed to allow the user to save a significant
amount of time and money.

Credit authorship contribution statement

Rafael Marques: Conceptualization, Methodology, Software,
Validation, Investigation, Writing - original draft. Luis Russo:
Methodology, Formal analysis, Writing - review & editing, Super-
vision. Nuno Roma: Conceptualization, Methodology, Resources,
Writing - review & editing, Visualization, Supervision, Project ad-
ministration.

Acknowledgement

This work was partially supported by national funds
through Fundacdo para a Ciéncia e a Tecnologia under projects
UID/CEC/50021/2019 and PTDC/EEI-HAC/30485/2017.

Conflict of interest

The authors have no affiliation with any organization with a di-
rect or indirect financial interest in the subject matter discussed in
this manuscript.

References

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W.]. (2007). The traveling sales-
man problem: A computational study. Princeton series in applied mathematics.
Princeton, NJ, USA: Princeton University Press.

Bazlamagci, C. F,, & Hindi, K. S. (2001). Minimum-weight spanning tree algorithms a
survey and empirical study. Computers and Operations Research, 28(8), 767-785.
doi:10.1016/S0305-0548(00)00007-1.

den Besten, M., Stiitzle, T., & Dorigo, M. (2000). Ant colony optimization for the
total weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J.]. Merelo, & H.-P. Schwefel (Eds.), Parallel problem solving from nature
PPSNVI (pp. 611-620). Berlin, Heidelberg: Springer Berlin Heidelberg.

Boland, N., Hewitt, M., Vu, D. M., & Savelsbergh, M. (2017). Solving the traveling
salesman problem with time windows through dynamically generated time-ex-
panded networks. In D. Salvagnin, & M. Lombardi (Eds.), Integration of Al and
OR techniques in constraint programming (pp. 254-262). Cham: Springer Interna-
tional Publishing.

Chen, S.-M., & Chien, C.-Y. (2011). Solving the traveling salesman problem based
on the genetic simulated annealing ant colony system with particle swarm op-
timization techniques. Expert Systems with Applications, 38(12), 14439-14450.
doi:10.1016/j.eswa.2011.04.163.

Clerc, M., & Kennedy,]J. (2002). The particle swarm - Explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions of Evolutionary
Computation, 6, 58-73.

Czech, Z.]., & Czarnas, P. (2002). Parallel simulated annealing for the vehicle routing
problem with time windows. In Proceedings 10th Euromicro workshop on paral-
lel, distributed and network-based processing (pp. 376-383). doi:10.1109/EMPDP.
2002.994313.

Czyzzak, P, & Jaszkiewicz, A. (1998). Pareto simulated annealing - a metaheuristic
technique for multiple-objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis, 7(1), 34-47. doi:10.1002/(SICI)1099-1360(199801)7:
1<34::AID-MCDA161)3.0.CO;2-6.

Doerner, K., Gutjahr, J. W., Hartl, R., Strauss, C., & Stummer, C. (2004). Pareto ant
colony optimization: a metaheuristic approach to multiobjective portfolio selec-
tion. Annals of Operations Research, 131, 79-99.

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53-66. doi:10.1109/4235.585892.

Duque, D., Cruz, J. A., Cardoso, H. L., & Oliveira, E. (2018). Optimizing meta-heuristics
for the time-dependent tsp applied to air travels. In H. Yin, D. Camacho, P. No-
vais, & A.]. Tallén-Ballesteros (Eds.), Intelligent data engineering and automated
learning - ideal 2018 (pp. 730-739). Cham: Springer International Publishing.

Fox, K. R., Gavish, B., & Graves, S. C. (1980). Technical note-an n-constraint formu-
lation of the time-dependent traveling salesman problem. Operations Research,
28(4), 1018-1021. doi:10.1287/opre.28.4.1018.

Gambardella, L. M., Taillard, E., & Agazzi, G. (1999a). Macs-vrptw: A multiple ant
colony system for vehicle routing problems with time windows. In D. Corne,
M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, & K. V. Price (Eds.), New
ideas in optimization (pp. 63-76). Maidenhead, UK, England: McGraw-Hill Ltd.,
UK.

Gambardella, L. M., Taillard, E. D., & Dorigo, M. (1999). Ant colonies for the quadratic
assignment problem. Journal of the Operational Research Society, 50(2), 167-176.
doi:10.1057/palgrave.jors.2600676.

Glover, F, & Laguna, M. (1999). Tabu search. In D.-Z. Du, & P. M. Pardalos (Eds.),
Handbook of combinatorial optimization: Volumel-3 (pp. 2093-2229). Boston,
MA: Springer US. doi:10.1007/978-1-4613-0303-9_33.

Goldbarg, E. F. G., de Souza, G. R., & Goldbarg, M. C. (2006). Particle swarm for the
traveling salesman problem. In J. Gottlieb, & G. R. Raidl (Eds.), Evolutionary com-
putation in combinatorial optimization (pp. 99-110). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learn-
ing (1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
Golden, B., Bodin, L., Doyle, T., & Stewart, W. (1980). Approximate traveling salesman

algorithms. Operations Research, 28(3), 694-711.

Gross, J. L, Yellen, J., & Zhang, P. (2013). Handbook of graph theory (2nd ed.). Chap-
man & Hall/CRC.

Giilci, S., Mahi, M., Baykan, O. K., & Kodaz, H. (2018). A parallel cooperative hy-
brid method based on ant colony optimization and 3-opt algorithm for solv-
ing traveling salesman problem. Soft Computing, 22(5), 1669-1685. doi:10.1007/
s00500-016-2432-3.

Jianchao, Z., & Zhihua, C. (2006). A new unified model of particle swarm optimiza-
tion and its theoretical analysis. Journal of Computer Research and Development,
43(1), 96.

Johnson, D. S., & McGeoch, L. A. (1997). The traveling salesman problem: A case
study in local optimization. In E. H. L. Aarts, & J. K. Lenstra (Eds.), Local search
in combinatorial optimization (pp. 215-310). Chichester, United Kingdom: John
Wiley and Sons.

Jonker, R., & Volgenant, T. (1983). Transforming asymmetric into symmetric travel-
ing salesman problems. Operations Research Letters, 2(4), 161-163. doi:10.1016/
0167-6377(83)90048-2.

Karp, R. (1972). Reducibility among combinatorial problems. In R. Miller, &
J. Thatcher (Eds.), Complexity of computer computations (pp. 85-103). New York:
Plenum Press.

Kennedy,]., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
IEEE international conference on neural networks: Vol. 4 (pp. 1942-1948).

Kennedy,]J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
ICNN'95 - international conference on neural networks: 4 (pp. 1942-1948 vol.4).
doi:10.1109/ICNN.1995.488968.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated an-
nealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671.

Laporte, G. (1992a). The traveling salesman problem: An overview of exact and ap-
proximate algorithms. European Journal of Operational Research, 59(2), 231-247.
doi:10.1016/0377-2217(92)90138-Y.

Laporte, G. (1992b). The vehicle routing problem: An overview of exact and ap-
proximate algorithms. European Journal of Operational Research, 59(3), 345-358.
doi:10.1016/0377-2217(92)90192-C.

Laporte, G., Gendreau, M., Potvin,].-Y., & Semet, F. (2000). Classical and modern
heuristics for the vehicle routing problem. International Transactions in Opera-
tional Research, 7(4), 285-300. doi:10.1016/S0969-6016(00)00003-4.

Lawler, E. L., & Wood, D. E. (1966). Branch-and-bound methods: A survey. Operations
Research, 14(4), 699-719. doi:10.1287/opre.14.4.699.

Li, X., Zhou, J., & Zhao, X. (2016). Travel itinerary problem. Transportation Research
Part B: Methodological, 91, 332-343. doi:10.1016/.trb.2016.05.013.

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2), 498-516. doi:10.1287/opre.21.2.
498.

Lopez-Ibanez, M., & Stutzle, T. (2012). The automatic design of multiobjective ant
colony optimization algorithms. IEEE Transactions on Evolutionary Computation,
16(6), 861-875.

Malek, M., Guruswamy, M., Pandya, M., & Owens, H. (1989). Serial and parallel sim-
ulated annealing and tabu search algorithms for the traveling salesman prob-
lem. Annals of Operations Research, 21(1), 59-84. doi:10.1007/BF02022093.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. The Journal of Chem-
ical Physics, 21(6), 1087-1092. doi:10.1063/1.1699114.

Montero, A., Méndez-Diaz, 1., & Miranda-Bront, J. J. (2017). An integer programming
approach for the time-dependent traveling salesman problem with time win-
dows. Computers & Operations Research, 88, 280-289. doi:10.1016/j.cor.2017.06.
026.

Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016). Branch-and-
bound algorithms: A survey of recent advances in searching, branching, and
pruning. Discrete Optimization, 19, 79-102. doi:10.1016/j.disopt.2016.01.005.

Ohlmann, J., & Thomas, B. (2007). A compressed-annealing heuristic for the trav-
eling salesman problem with time windows. INFORMS Journal on Computing,
19(1), 80-90.

Oncan, T, Altinel, I. K., & Laporte, G. (2009). A comparative analysis of several asym-
metric traveling salesman problem formulations. Computers and Operations Re-
search, 36(3), 637-654. doi:10.1016/j.cor.2007.11.008.

Osaba, E., Ser,]. D., Sadollah, A., Bilbao, M. N., & Camacho, D. (2018). A discrete wa-
ter cycle algorithm for solving the symmetric and asymmetric traveling sales-
man problem. Applied Soft Computing, 71, 277-290. doi:10.1016/j.as0c.2018.06.
047.

Osaba, E., Yang, X.-S., Diaz, F, Lopez-Garcia, P, & Carballedo, R. (2016). An improved
discrete bat algorithm for symmetric and asymmetric traveling salesman prob-
lems. Engineering Applications of Artificial Intelligence, 48, 59-71. doi:10.1016/j.
engappai.2015.10.006.

http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0001
https://doi.org/10.1016/S0305-0548(00)00007-1
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0004
https://doi.org/10.1016/j.eswa.2011.04.163
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0006
https://doi.org/10.1109/EMPDP.2002.994313
https://doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0009
https://doi.org/10.1109/4235.585892
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0011
https://doi.org/10.1287/opre.28.4.1018
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0013
https://doi.org/10.1057/palgrave.jors.2600676
https://doi.org/10.1007/978-1-4613-0303-9_33
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0019
https://doi.org/10.1007/s00500-016-2432-3
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0022
https://doi.org/10.1016/0167-6377(83)90048-2
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0025
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/0377-2217(92)90138-Y
https://doi.org/10.1016/0377-2217(92)90192-C
https://doi.org/10.1016/S0969-6016(00)00003-4
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1016/j.trb.2016.05.013
https://doi.org/10.1287/opre.21.2.498
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0034
https://doi.org/10.1007/BF02022093
https://doi.org/10.1063/1.1699114
https://doi.org/10.1016/j.cor.2017.06.026
https://doi.org/10.1016/j.disopt.2016.01.005
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30254-4/sbref0039
https://doi.org/10.1016/j.cor.2007.11.008
https://doi.org/10.1016/j.asoc.2018.06.047
https://doi.org/10.1016/j.engappai.2015.10.006

R. Marques, L. Russo and N. Roma/Expert Systems With Applications 130 (2019) 172-187 187

Osman, . H. (1993). Metastrategy simulated annealing and tabu search algorithms
for the vehicle routing problem. Annals of Operations Research, 41(4), 421-451.
doi:10.1007/BF02023004.

Picard, J.-C., & Queyranne, M. (1978). The time-dependent traveling salesman prob-
lem and its application to the tardiness problem in one-machine scheduling.
Operations Research, 26(1), 86-110. doi:10.1287/opre.26.1.86.

Rego, C., Gamboa, D., Glover, F,, & Osterman, C. (2011). Traveling salesman problem
heuristics: Leading methods, implementations and latest advances. European
Journal of Operational Research, 211(3), 427-441. doi:10.1016/j.ejor.2010.09.010.

Rosendo, M., & Pozo, A. (2010). A hybrid particle swarm optimization algorithm for
combinatorial optimization problems. In IEEE congress on evolutionary computa-
tion (pp. 1-8). doi:10.1109/CEC.2010.5586178.

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE
international conference on evolutionary computation proceedings. IEEE world
congress on computational intelligence (cat. no.98th8360) (pp. 69-73). doi:10.
1109/ICEC.1998.699146.

Taillard, E. D., & Helsgaun, K. (2019). Popmusic for the travelling salesman prob-
lem. European Journal of Operational Research, 272(2), 420-429. doi:10.1016/].
€jor.2018.06.039.

Veenstra, M., Roodbergen, K. J., Vis, I. F, & Coelho, L. C. (2017). The pickup and
delivery traveling salesman problem with handling costs. European Journal of
Operational Research, 257(1), 118-132. doi:10.1016/j.ejor.2016.07.009.

Wan, K., Huang, L., Zhou, C., & PhG, W. (2003). Particle swarm optimization for
traveling salesman problem. In Proceedings of the 2003 international conference
on machine learning and cybernetics (IEEE cat. no.03ex693): 3 (pp. 1583-1585 3).
doi:10.1109/ICMLC.2003.1259748.

Wang, C., Lin, M., Zhong, Y., & Zhang, H. (2015). Solving travelling salesman prob-
lem using multiagent simulated annealing algorithm with instance-based sam-
pling. International Journal of Computing Science and Mathematics, 6(4), 336-353.
doi:10.1504/IJCSM.2015.071818.

https://doi.org/10.1007/BF02023004
https://doi.org/10.1287/opre.26.1.86
https://doi.org/10.1016/j.ejor.2010.09.010
https://doi.org/10.1109/CEC.2010.5586178
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1016/j.ejor.2018.06.039
https://doi.org/10.1016/j.ejor.2016.07.009
https://doi.org/10.1109/ICMLC.2003.1259748
https://doi.org/10.1504/IJCSM.2015.071818

	Flying tourist problem: Flight time and cost minimization in complex routes
	1 Introduction
	2 Literature review
	3 Flying tourist problem (FTP) formulation
	3.1 Relation to the TSP
	3.2 Graph construction

	4 Optimization system
	4.1 Simulated annealing
	4.2 Ant colony optimization
	4.3 Particle swarm optimization

	5 System prototype
	5.1 Client-side application
	5.2 Server-side application
	5.2.1 Data management module
	5.2.2 Optimization module

	6 Experimental results
	6.1 Flying tourist problem evaluation
	6.1.1 Quantitative evaluation and improvement
	6.1.2 Balancing the total flight price and duration
	6.1.3 Impact of the trip start interval
	6.1.4 Response time

	6.2 Comparison with Kiwi’s nomad
	6.2.1 Absolute comparison
	6.2.2 Quantitative evaluation

	7 Related work
	8 Conclusions
	Credit authorship contribution statement
	Acknowledgement
	Conflict of interest
	References

