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Abstract—Data streaming and data-flow computing paradigms
have been on the rise, aiming to improve the performance of
general-purpose processors. However, providing support for data
streaming typically requires the definition of new Instruction Set
Architecture (ISA) extensions, which must be thoroughly vali-
dated before being implemented in hardware. This step is usually
carried out using Instruction Set Simulators (ISSs), to which
the necessary streaming support must be added. Accordingly,
this work proposes a new validation simulator for the recently
presented stream-based RISC-V ISA Unlimited Vector Extension
(UVE). The proposed tool is based on Spike, the golden reference
ISS for RISC-V extensions. It is capable of processing a wide
range of memory access patterns and provides the necessary
mechanisms to validate the target extension, as well as to evaluate
the resulting instruction reduction gains.

Index Terms—Data Streaming, RISC-V, Instruction Set Simu-
lator, ISA SIMD Extensions, Unlimited Vector Extension.

I. INTRODUCTION

W ITH the end of Dennard Scaling and the presumed
slowdown of Moore’s Law, traditional methods to

improve the processor’s performance, such as increasing the
clock frequency, have gradually been revealed to no longer be
sufficient. Data streaming is a promising paradigm, offering
decoupled memory accesses, indexing-free loops, simplified
vectorisation, and implicit load and store operations [1]. It
works by allowing for the configuration of memory access
patterns at the loop preamble, hence allowing data fetch-
ing to operate in the background, decreasing the average
memory access latency and increasing throughput. Because
memory access patterns in most memory-bound applications
are mathematically deterministic and thus appropriate for data
streaming [2], data transfers can be offloaded to specialised
modules, improving throughput and energy efficiency [3], [4].

Several existing data streaming solutions rely on dedicated
instructions, as well as on specific streaming modules, leading
to the definition of new Instruction Set Architecture (ISA)
extensions [3], [5], [6], [2], [7]. Nevertheless, the development
of new ISA extensions is not trivial and requires thorough
testing and validation before any real hardware implementation
attempts are made. For this purpose, Instruction Set Simulators
(ISSs) are commonly used [8].
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Because most recent data streaming extensions, including
the Unlimited Vector Extension (UVE), adopt RISC-V as
their base ISA, this is the target architecture for the herein
proposed simulation tool. However, there is a tough compro-
mise between simulation accuracy and speed when choosing
between the available RISC-V simulators [9]. In particular,
while QEMU is a generic tool that allows the modelling of
different architectures, its complexity hinders the implementa-
tion of new extensions. On the other hand, Spike1 is the golden
reference for validating RISC-V extensions, and is widely used
as the proof-of-concept target [10]. As such, it was chosen
as the most appropriate simulator for the development of the
aimed tool.

In accordance, this work presents a new simulation and
validation tool to support the development of RISC-V data
streaming Unlimited Vector Extension (UVE). For this pur-
pose, data streaming mechanisms were introduced on Spike, on
which new stream support instructions were added and tested.
By creating such a functional validation tool, it is possible
to focus solely on the instructions’ behaviour, detaching the
ISA development from implementation details, which can be
prone to specification errors. Accordingly, the simulator was
modified and expanded to include a new Streaming Unit (SU),
which receives the statically generated stream descriptors (e.g.,
by the compiler), with the required memory access patterns,
and acts as an address generator. The developed simulator
was then used to validate and evaluate the performance of
the target streaming extension, by comparing the number of
executed instructions of UVE code against scalar code without
data streaming. In the sequence of the development of this
tool, this extension was meanwhile modified and improved.
The developed tool and supporting documentation are publicly
available online2.

II. THE UNLIMITED VECTOR EXTENSION

This work presents a new simulation environment for the
RISC-V Unlimited Vector Extension (UVE) [1], which is here
summarised.

A. Overview

UVE is a RISC-V extension born from the combination of
Single Instruction, Multiple Data (SIMD) computing and data
streaming paradigms [1]. It features a scalable ISA extension,

1https://github.com/riscv-software-src/riscv-isa-sim
2https://github.com/hpc-ulisboa/UVE2
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which includes stream configuration instructions that allow its
streaming specification to be resolved at runtime, as well as
the pre-loading of input data.

With a total of 474 instructions (including variants), UVE
introduces 32 vector registers to the base ISA (named from
”u0” to ”u31”). The length of each vector is implementation-
dependent, with a minimum value equal to the maximum
width (64 bits) of the supported data types (byte, half-word,
word, and double-word). The maximum value is unlimited
at ISA level. Each vector register can be associated with
a data stream. In addition, sixteen predicate registers are
present, named ”p0” to ”p15”, although only eight can be
used in arithmetic and regular memory instructions (p0-p7).
A predicate register corresponds to a vector with a fixed size
of 64 bytes, and a predicate is thus evaluated according to the
data type of the instruction source operands. As a result, in
each predicated instruction the predicate register is read for
each active lane, and the operation is only performed if it
evaluates to 1, as stated by the ISA specification [1]. Register
p0 is hardwired to 1 (predicate true), which means it can be
used in operations where predication is not necessary (i.e. non-
conditional loops), as all valid lanes of the operating streams
execute. The remaining predicate registers (p8-p15) are used
in the configuration of the other eight.

B. Pattern Representation

In the UVE extension, a stream is defined as a predictable
vector of data elements processed sequentially. Each stream
data element is subject to the same set of operations and
is discarded after the computation is complete. This scheme
follows the premise that data accesses are often deterministic
and, as such, the order in which the data is consumed can be
specified beforehand (e.g., by the compiler) [11], [1], [2], [3].
In particular, UVE considers that any regular n-dimensional
memory access sequence can be represented by the following
affine function:

y(X) = ybase +

dimy∑
k=1

xk × Sk, (1)

with X = x1, ..., xdimy and xk ∈ [Ok, Ek+Ok], i.e., a stream
access y(X) is described as the sum of the base address
of an n-dimensional variable (ybase) with dimy indexing
variables (xk) multiplied by their respective strides (Sk), each
k corresponding to a dimension of the pattern. Ek represents
the number of elements in each k dimension and Ok the
indexing offset. Naturally, the composition of several functions
allows the representation of highly complex patterns. As an
example, memory access indirection can be represented by
assigning data obtained from the addresses generated by one
function to the input variables of another function.

UVE encodes the function parameters with a header (spec-
ifying base address, data type, and vectorisation), followed
by a list of one-dimensional pattern descriptors (d1,d2,· · · )
and modifiers (m1,m2,· · · ). The combination of multiple one-
dimensional descriptors allows the description of multi-
dimensional patterns, thus resolving Equation (1). Modifiers
are used to change the parameters of a dimension descriptor

at runtime, allowing the description of more complex memory
access patterns. In particular, modifiers change a given target
parameter by a fixed value (static modifiers - see Figure 1(a))
or by a value obtained from another stream (dynamic modi-
fiers). In the last case, this results in native indirect memory
access support, which is further enhanced with dedicated
scatter-gather accesses (scatter-gather modifiers - e.g., B[A[i]],
as illustrated in Figure 1(b)).

Listing 1 shows how this representation model is translated
into UVE stream configuration instructions, for the particular
example of a lower triangular matrix.

III. PROPOSED MODIFICATIONS OF THE SPIKE SIMULATOR

The base Instruction Set Simulator (ISS), Spike, is currently
at Version 1.1.0 and supports many RISC-V ISA features.
However, data streaming support had yet to be developed
for this simulator. For this purpose, several structures were
added to the Spike simulator. The modified simulator is hereby
described in detail and its structure is represented in Figure 2.

The focal component of the proposed simulator is the
Streaming Unit (SU), a new class that has access to the
new stream registers. Each register may or may not be as-
sociated with a stream, and this module is responsible for the
implicit loading and storing of data, as well as the iteration
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sA: {Abase, v1}

Dimension: {offset, size, stride}

Header: stream_id: {base address, vectorised_dim}

sA: {Abase, -}

sB: {Bbase, v1}

Fig. 1: UVE data stream model and description examples of (a)
a triangular access pattern description, where a static modifier
is applied to increment the size of the first dimension, and (b)
an indirect access pattern description, where a scatter-gather
modifier is applied to add the correct matrix index from A to
the offset of the dimension of matrix B.
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1 ; Stream configuration
2 ss.sta.ld.w.v.1 u1, &A ; matrix A stream
3 ss.app u1, 0, M, N ; d2
4 ss.app.mod.siz.inc.1 u1, 1 ; m2
5 ss.end u1, 0, 1, 1 ; d1
6

7 ss.sta.st.w u2, &r ; vector r stream
8 ss.end u2, 0, N, 1 ; d1
9

10 ; Computation
11 .iloop:
12 li a1, 0
13 .jloop:
14 so.a.adds.acc.sg a1, u1, p0
15 so.b.ndc.1 u1, .jloop
16 so.v.mvsv.w u2, a1
17 so.b.nc u1, .iloop

Listing 1: Lower triangular matrix row accumulation UVE
pseudo-assembly code, as described in Figure 1(a).

of the streams. The iteration and address generation emulate
a streaming engine, and are implemented in the descriptor
classes, Dimension and Modifier, which contain the UVE
pattern descriptors. Each stream register, when associated with
a stream, is therefore also associated with n dimensions.
The SU uses these descriptors to perform the computations
described by Equation (1). For the desired functional evalu-
ation, scheduling modules and FIFOs were not required, as
streams are iterated while they are being consumed, with
each instruction triggering the iteration of the source streams
(implicit loading) and the destination streams (implicit stor-
ing). Hence, the resulting elements are immediately placed in
the associated registers. Additionally, the SU is responsible
for keeping track of the stream state, such as the current
iteration, and associated flags, as well as the configuration
of their memory access patterns. This information is kept in
a Stream Table, which can be accessed by some instructions.
One key feature of UVE is the flag-dependent loop control.
During the iteration of a stream, End Of Dimension flags
are updated and saved to the Stream Table. These are used
by branch instructions, with no need for indexing variable
control. Instead, loops are controlled by the configured pattern
dimensions and their status, as depicted in Listing 1, where
loop iteration is determined by the end of the first dimension
(line 15) and stream completion (line 17). For simplicity,
predication support was developed at the instruction level,
meaning that the predicate values are not handled by the SU.

With this streaming infrastructure in place, specialised in-
structions were added to create, configure and manipulate the
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Fig. 2: Simulation environment structure and file organisation.

TABLE I: Benchmarks used for testing and respective
characteristics.

Benchmark Num. of Num. of Max. Loop Memory Access
Streams Kernels* Nesting Pattern

M
em

or
y Memcpy 1 1 1 1D

Stream 10 4 2 2D

B
L

A
S SAXPY 3 1 1 1D

GEMM 6 2 3 3D

A
lg

eb
ra

3MM 3 3 3 3D
MVT 8 2 2 2D
GEMVER 17 4 2 2D
Trisolv 5 1 2 2D + SM

St
en

ci
l Jacobi-1D 8 2 1 1D

Jacobi-2D 12 2 2 2D

M
L

/A
I Convolution 10 1 1 2D

SGD 9 3 3 3D

D
at

a
M

in
in

g Covariance 9 3 3 4D + 2 SM
SpMV-1 4 1 2 3D + DM
SpMV-2 6 1 2 2D + SG

* The number of kernels corresponds to the number of disjunct loop statements
(i.e., excluding nested loops).

streams. For the simulator to recognise these new instructions,
the encoding file had to be updated. To obtain the necessary
code, the official RISC-V Opcodes project3 was used, where
the encoding of each instruction was added to the standard
ISA. For this purpose, the necessary streaming registers and
operand encoding were also added to this tool. Moreover, the
simulator’s disassembler was extended to fully support the
added instructions, allowing the correct trace generation and
debugging of the streaming ISA.

IV. EXPERIMENTAL VALIDATION

Data streaming support was successfully added to Spike, as
well as most instructions from the UVE data streaming exten-
sion. The conceived tool currently supports multi-dimensional
pattern descriptors, as well as static, dynamic, and scatter-
gather modifiers. Stream-based branching and predication are
also supported, as well as multiple arithmetic and vector
operations on the streaming registers. In total, 158 instructions
have been implemented and validated on Spike.

To validate the UVE ISA functional simulation, a compre-
hensive set of benchmarks from a wide range of application
domains was chosen, as depicted in Table I. These were either
hand-coded to obtain its corresponding UVE implementation
or generated by an adapted and preliminary version of the
LLVM compiler with stream-based autovectorisation support
(that is also under development [4]). To obtain a meaningful
evaluation of the UVE ISA, each benchmark was compared
to its scalar version.

Figure 3 depicts the improvement of the number of executed
instructions in double-precision floating-point benchmarks. It
is possible to observe that UVE achieves a reduction of the
number of executed instructions in every benchmark by over
90% in most cases.

By using the newly developed simulation framework, the
UVE extension also went through a rigorous validation process

3https://github.com/riscv/riscv-opcodes
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and was improved in many aspects, therefore validating the
usefulness of the proposed tool. In short, UVE received several
updates and new features:

• Added support for scalar streams: As not all code can be
vectorised, the revised version of UVE introduces a flag
(in the header instruction) to distinguish between scalar
and vector data streams;

• Revised predication mechanisms: Instruction predication
policies are now directly configured in the predication
registers. Additionally, the destination vector register el-
ements corresponding to inactive lanes are now handled
with either a zeroing (set to zero) or merging (retain orig-
inal value) policy. Stream predication policies were also
extended by allowing configuration through the stream
description (header).

• Formalised support for scatter-gather memory accesses:
Conflicting behaviour in using dynamic modifiers re-
quired the redefinition of this modifier class. In par-
ticular, specific scatter-gather modifiers were added to
differentiate between applying an indirect offset to each
address generated by a descriptor (i.e., scatter-gather)
and modifying a descriptor field with an indirect value
(equivalent behaviour to a static modifier);

• Improved instruction set encoding: Following the removal
of some instructions (in the meanwhile shown to be
unnecessary) and simplification of others, the general
encoding of instructions was revised.

• Multiple modifiers per dimension: The limit of one mod-
ifier per dimension was extended to three. This change
provides support for more complex kernels, such as
covariance, which requires modifiers for both the offset
and size, or triangular patterns with indirection, which
require both static and dynamic modifiers.

These changes are now reflected in the newly devised UVE
specification4, and are supported by the proposed simulator.

V. CONCLUSION

In this paper, a new validation and simulation tool for
the stream-specialised UVE ISA based on the Spike RISC-
V simulator is proposed. This new tool provides efficient
development and functional evaluation means, not only of
the newly introduced instructions but also of their supporting
microarchitecture. The new UVE instructions that were added
support data streaming with implicit loads/stores, predication,
and n-dimensional pattern description with static and dynamic
modifiers. Additionally, the simulator’s debugging and trace
generation tool was extended to fully support the extension.
A representative set of benchmarks was tested and verified.
This tool can also be used to assess the number of executed
instructions, which revealed an average reduction of 92.95%
of retired instructions, showing the potential of this data
streaming ISA extension.

The modified simulator can easily be adapted to support
other data streaming extensions, as their basic functioning is
similar to UVE.

4https://github.com/hpc-ulisboa/UVE2/blob/main/documentation.pdf
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