
High Performance Unified Architecture for
Forward and Inverse Quantization in H.264/AVC

Tiago Dias§‡†, Luı́s Rosário§‡, Nuno Roma§‡ and Leonel Sousa§‡
§INESC-ID Lisbon / ‡IST-TU Lisbon / †ISEL-PI Lisbon

Rua Alves Redol, 9
1000-029 Lisboa, Portugal

{Tiago.Dias, Nuno.Roma, Leonel.Sousa}@inesc-id.pt, lrosario@sips.inesc-id.pt

Abstract—A new high-performance and reduced hardware
architecture for the computation of the H.264/AVC forward and
inverse quantization operations is presented in this paper. This
architecture is based on a highly flexible processing structure
that is suitable for very efficient implementations using both
FPGA and ASIC technologies. Moreover, it offers several
different configurations, in order to provide different trade-
offs in terms of performance and hardware cost. Experimental
results concerning implementations using a Xilinx Virtex-5
FPGA and a 90 nm CMOS process from UMC demonstrated
that the proposed architecture can be used to compute, in
real-time, the forward and inverse quantization operations
for videos with resolutions up to the Digital Cinema format
(4096 × 2048 @ 30fps).

Keywords-Video coding; H.264/AVC; Quantization; Unified
architecture; FPGA; ASIC.

I. INTRODUCTION

H.264/AVC [1] is currently considered the de-facto stan-
dard for modern multimedia applications based on digital
video. Such achievement is the consequence of its extraordi-
nary flexibility to allow efficient implementations in several
different and distinct application domains, as well as from
its higher compression efficiency levels.

Likewise any other block-based motion compensated
transform coding scheme, compression in H.264/AVC is
mostly achieved by lossy quantization. Such process is
implemented by two distinct modules in the encoder loop
(the forward quantizer and the inverse quantizer), and by
the inverse quantizer module present at the decoder structure
(see Figure 1). However, in order to guarantee the desired
high coding efficiency levels, this standard adopts signifi-
cantly more complex quantization algorithms. Such augment
in complexity is mainly owed to the inclusion of multipli-
cation operations by rational numbers in the quantization
process, as well as to the several memory accesses that
it involves [2]. In addition, the very tight interconnection
between the transform and quantization operations further
increases these complexity requirements [1], [2].

Altogether, this poses several difficult challenges to the
design of H.264/AVC video codecs aiming at the process-
ing of real-time and high definition video content, since
quantization significantly influences the performance of such
systems in terms of throughput and latency. To address this
problem, several different solutions have been proposed,

Transform Quantization

Inverse

Transform

Quantized

Coefficients

Prediction

Residuals

Inverse

Quantization

Reconstructed

Residuals

W Z

W
S

(a) Encoder.

Inverse

Transform

Reconstructed

Residuals

Quantized

Coefficients

Inverse

Quantization

Z W
S

(b) Decoder.

Figure 1. Block diagrams of the lossy coding part of video codecs.

which can be classified as single, unified or integrated
quantization architectures, as described below.

Single quantization architectures consist of independent
processing structures that only compute either the forward or
the inverse quantization algorithms. Typically, they combine
generic multipliers and Look-Up Tables (LUTs) to directly
implement the desired H.264/AVC quantization function.
However, a couple of alternative implementations have also
been proposed that simplify the quantization scheme, in
order to reduce the complexity of its implementation in
hardware. In [3] and [4] the multiplication operation was
rather simplified by modifying the quantization parame-
ter so as to use smaller bit-width adders. Although this
greatly reduces the complexity of the multiplication op-
eration, it also introduces a mismatch error between the
encoder and the decoder. Other more recent proposals of
forward quantization circuits [5] use time-multiplexed Mul-
tiple Constant Multipliers to reduce the implementation area
and improve the performance of the quantization process.
Nonetheless, most known proposals of quantization circuits
for H.264/AVC are still based on generic multipliers.

Kordasiewicz [6] proposed both speed and area optimized
structures for the computation of the forward quantization
operation. However, the offered processing rates are more
suitable for low and medium performance encoders. For
high performance coding systems, parallel realizations of
the H.264/AVC quantizer with 4, 8, 16 and 32 fundamen-
tal elements have also been proposed [7], [8], [9], [10],
[11]. Among these proposals, the architectures presented by
Lin [7] and Husemann [10] evidence some improvements

!000111! 111555ttthhh EEEuuurrrooommmiiicccrrrooo CCCooonnnfffeeerrreeennnccceee ooonnn DDDiiigggiiitttaaalll SSSyyysssttteeemmm DDDeeesssiiigggnnn

!777888---000---777666!555---444777!888---555///111222 $$$222666...000000 ©©© 222000111222 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///DDDSSSDDD...222000111222...777333

777555666

!000111! 111555ttthhh EEEuuurrrooommmiiicccrrrooo CCCooonnnfffeeerrreeennnccceee ooonnn DDDiiigggiiitttaaalll SSSyyysssttteeemmm DDDeeesssiiigggnnn

!777888---000---777666!555---444777!888---555///111222 $$$222666...000000 ©©© 222000111222 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///DDDSSSDDD...222000111222...777333

666333222

!000111! 111555ttthhh EEEuuurrrooommmiiicccrrrooo CCCooonnnfffeeerrreeennnccceee ooonnn DDDiiigggiiitttaaalll SSSyyysssttteeemmm DDDeeesssiiigggnnn

!777888---000---777666!555---444777!888---555///111222 $$$222666...000000 ©©© 222000111222 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///DDDSSSDDD...222000111222...777333

666333222

in what concerns the offered hardware efficiency, since they
share some of the hardware resources between all the quan-
tizers. Moreover, as a result of these simplifications, these
structures can also be used to implement high performance
inverse quantizers.

Korah [12] proposed a different type of design based
on dedicated pipelined add-and-shift multipliers that is also
suitable to implement forward and inverse high-performance
quantizers, but with a more reduced hardware cost. Simi-
larly, Lee [13] also presented a processing structure for the
computation of the two H.264/AVC quantization algorithms.
However, such circuit consists of an unified architecture.
This means that the desired quantization operation is not
defined at design time. Instead, it is specified in run-time and
as needed by the control unit of the video coding system.
Finally, integrated transform-quantization architectures

were also proposed in [14] and [15], but using two quite
different approaches. The architecture proposed by Tas-
dizen [14] combines in a single pipelined hardware struc-
ture a unified architecture for quantization and a transform
computation circuit. Conversely, the highly specialized and
parallel processing structure presented in [15] makes use of
the same hardware resources to compute the transform and
the forward quantization operations, which greatly increases
its hardware efficiency.

In this paper, a new unified architecture for the computa-
tion of the H.264/AVC quantization operations is presented.
Unlike other similar structures, the proposed architecture
uses very few hardware resources and can be easily con-
figured in run-time to implement either the forward or
the inverse quantization algorithm. Moreover, its highly
flexible structure also supports several different designs that
allow to obtain implementations with distinct performance
vs hardware cost trade-offs, and thus to be used in multiple
applications with distinct performance requirements. In fact,
the application scenarios of the proposed computational
circuits range from the implementation, using both ASIC
and FPGA technologies, of hardware accelerators in modern
System-on-Chips (SoCs) to specialized functional units of
Application Specific Instruction-Set Processors (ASIPs). In
addition, the proposed architecture can also be integrated
with other existing processing structures for the computation
of the H.264/AVC transforms, in order to develop integrated
transform-and-quantization specialized processors that can
include either a single or multiple instances of the proposed
architecture when parallel quantizers are required.

The rest of this paper is organized as follows. In section II
the H.264/AVC forward and inverse quantization operations
are analyzed. The proposed configurable architecture for im-
plementing the forward and inverse quantization algorithms
is presented in section III, together with its corresponding
supporting mathematical model. Section IV describes the
most relevant implementation details of such processing
structure and discusses the experimental results that were
obtained with its implementation using FPGA and ASIC
technologies. Finally, section V concludes the presentation.

II. THE H.264/AVC QUANTIZATION PROCESS

The H.264/AVC quantization operation is based on an
improved scalar quantizer that significantly differs from the
ones implemented in previous ITU-T and MPEG video
standards.
On the one hand, because it consists of a non-linear func-

tion supporting 52 distinct QuantizationSteps(Qsteps)
of rational values. Such values, which are specified as a
function of a Quantization Parameter (QP), are in the range
between 0.625 and 224 and increase by 6

√
2 (i.e., 12%) for

each increment of QP. Moreover, any value of the Qstep
function can be derived from its first 6 values [2]. As a result,
a wide range of quality levels can be efficiently addressed,
since fine control is possible at low quantization and coarse
quantization is not burdened.
On the other hand, the very strong inter-dependencies that

H.264/AVC introduced between the transform and the quan-
tization procedures also significantly influence the quantizer.
More specifically, the complexity of the H.264/AVC quan-
tization function was greatly increased due to the incorpo-
ration of the Scaling Factors (SFs) that were left over from
the H.264/AVC integer transform path [2].
By following the above considerations, Equation 1 rep-

resents the H.264/AVC quantization procedure, where Wij

is the transform coefficient (see Figure 1(a)), Zij is the
resulting quantized coefficient, and i and j are the line and
column indexes for the considered blocks of coefficients,
respectively. SFij andQstep(QP) are the applicable scaling
factor and quantization step, respectively.

Zij = round

(

Wij
SFij

Qstep(QP)

)

(1)

As it can be seen, despite its simplicity this formulation
considers two quite complex operations: a multiplication and
a division involving rational numbers. Hence, the alternative
representation based on integer arithmetic operations shown
in Equation 2 is usually adopted for Equation 1, so as to
simplify the computational complexity of such operation.

Zij =
(

Wij ×MF (QP)ij + f × 2h
)

×
1

215+"
QP
6 #+h

(2)

This simpler formulation merges into a single non-linear
function (MF) all the possible combinations for the ratio
between SF and Qstep, therefore allowing to speed up
the computation procedure and to significantly reduce the
memory requirements. In fact, the MF function consists
only of 6×3 different 14-bit positive integer constant values,
as it can be seen from Equation 3 and Table I.

MF (QP)ij =

[

m(QP,0) m(QP,2) m(QP,0) m(QP,2)
m(QP,2) m(QP,1) m(QP,2) m(QP,1)
m(QP,0) m(QP,2) m(QP,0) m(QP,2)
m(QP,2) m(QP,1) m(QP,2) m(QP,1)

]

(3)

In addition, the f and h terms in Equation 2 provide
finer control of the quantization procedure near the origin

777555777666333333666333333

Table I
DEFINITION OF THE VALUES FOR m(QP,n).

QP%6 0 1 2 3 4 5
n=0 13107 11916 10082 9362 8192 7282
n=1 5243 4660 4194 3647 3355 2893
n=2 8066 7490 6554 5825 5243 4559

(”the dead zone”) for all types of macroblock (INTRA and
INTER) and transforms (i.e., 4 × 4 Hadamard and 2 × 2
Hadamard for the DC coefficients and the DCT for the AC
coefficients), as it is shown in Equation 4 and Equation 5.

f =

{

2
3
"QP

6 # , if INTRA block
2
6
"QP

6 # , otherwise
(4)

h =

{

1 , if H4×4
∨

H2×2

0 , otherwise (5)

In what concerns the inverse quantization operation, the
algorithm considered in the H.264/AVC standard also re-
flects the tighter coupling with the inverse transform process
and, obviously, the improvedQstep values. Hence, similarly
to quantization, the complexity of the H.264/AVC inverse
quantization algorithm is also higher than in previous video
standards, and mostly for the same reasons.
As it can be seen in Equation 6, which formulates this

inverse quantization operation, in H.264/AVC the computa-
tion of the reconstructed coefficients (WS) corresponding
to the quantized terms (Z) requires, fundamentally, two
multiplications involving rational numbers: the Qstep and
the Pre-scaling Factors (PFs) left over from the inverse
transform procedure [2] (see Figure 1(b)). The multiplication
by the constant value 64, which is used only to improve the
accuracy in the computation of the inverse transforms, does
not contribute to such complexity augment, since it can be
easily computed by a shift-left operation.

W S
ij = Zij ×Qstep(QP)× PFij × 64 (6)

Equation 1 and Equation 6 evidence the quite similar char-
acteristics of the operands involved in the computation of the
forward and inverse quantization operations, respectively. As
a result, all the considerations mentioned above focusing on
the optimization of the quantization operation can also be
applied to Equation 6, in order to obtain a less complex
representation of the inverse quantization function.
Such alternative formulation is shown in Equation 7,

which is also based on integer arithmetic operations and
makes use of a non-linear function (V) to compute all the
possible combinations of PF × Qstep. In fact, V has a
definition that is identical to the one presented in Equation 3
forMF , but involving the 5-bit width positive integer values
presented in Table II. The values of α and τ are shown in
Equation 8 and Equation 9, respectively.

W S
ij = (Zij × V (QP)ij + α)× 2"

QP
6 #−τ (7)

α =

{

21−"
QP
6
, if H4×4

∧

(QP < 12)
0 , otherwise

(8)

Table II
DEFINITION OF THE VALUES FOR ν(QP,n).

QP%6 0 1 2 3 4 5
n=0 10 11 13 14 16 18
n=1 16 18 20 23 25 29
n=2 13 14 16 18 20 23

τ =

{

2 , if H4×4

1 , if H2×2

0 , otherwise
(9)

This generic formulation for the inverse quantization al-
gorithm addresses the reconstruction of both the AC and
the DC coefficients for all types of macroblock, since it not
only maximizes the dynamic range for all transform types,
but it also takes into consideration the differences in the
quantization step sizes for luma and chroma blocks.

III. UNIFIED QUANTIZATION ARCHITECTURE

The very tight coupling of the H.264/AVC transform
and quantization algorithms (see Figure 1) has for long
motivated the proposal of hardware structures combining the
two operations. Most of such processing structures have been
specifically designed to efficiently implement the operations
either of the coding or of the decoding path of the video
codec. However, most of the designs that are nowadays
being proposed to implement the H.264/AVC transform
modules consist of unified architectures that are able to
compute all the transform functions defined in the standard.
Consequently, the design of modern hardware structures
combining the transform and quantization functionalities
also requires the development of efficient, fast and unified
architectures for the computation of the forward and inverse
quantization operations.
In the following subsections, the mathematical model

of one of such processing structures is formulated and
its corresponding hardware design is presented. Moreover,
specific optimizations targeting efficient implementations
using distinct technologies are also discussed.

A. Mathematical Model

A careful analysis of the formulations of the H.264/AVC
forward and inverse quantization operations shown in Equa-
tion 2 and Equation 7, respectively, reveals that their
corresponding algorithms and involved operands are quite
similar. In fact, both expressions require a multiplication by
a quantization parameter (σ), include a dead-zone control
value (ϕ) and involve a scaling factor (ε). Hence, the two
operations can be represented using a generic expression:

Oij = [Sij × σ(QP)ij + ϕ]× 2ε (10)

where Sij can be either the transform or the quantized
coefficient of line i and column j of the block of coefficients
that is being forward or inverse quantized, respectively.
In what concerns its complexity, this new formulation

can be optimized by taking into consideration the quite
specific properties of the involved operands. In particular,

777555888666333444666333444

by recalling that all operands are either positive or negative
integer values, which provides the means required to realize
all the computations in integer arithmetic. As a result of this
observation, the following simplifications can be applied in
the implementation of the two algorithms.
For the quantization (see Equation 2), the dead-zone

control parameter can be computed as shown in Equation 11,
where << is a logical shift left operation, >> denotes an
arithmetic shift right operation and β and h are given by
Equation 12 and Equation 5, respectively.

ϕQ = f × 2h

=

(

2
3

"QP
6 #

× 2−β

)

× 2h

=

(

2
3

"QP
6 #

>> β

)

<< h (11)

β =

{

0 , if INTRA block
1 , otherwise (12)

In addition, the multiplication involving ε can also be
realized with an arithmetic shift right operation, owing to
the fact that this scaling factor always takes negative integer
values, as it is shown in Equation 13.

εQ = −

(

15 +

⌊

QP

6

⌋

+ h

)

(13)

As a result of these simplifications, Equation 10 can
be rewritten for the quantization operation as shown in
Equation 14, where the quantization parameter σQ consists
on function MF presented in Equation 3.

OQij =
[

Sij × σQ(QP)ij + ϕQ

]

>> |εQ| (14)

Regarding to the inverse quantization operation, the com-
putation of the dead-zone control parameter can be greatly
simplified by carefully analyzing Equation 8, which reveals
that ϕIQ can only take the three values shown in Equa-
tion 15.

ϕIQ =

{

0 , if H4×4
∧

(QP ≥ 12)
1 , if H4×4

∧

(QP ≥ 6
∧

QP < 12)
2 , otherwise

(15)

In what concerns the scaling factor, εIQ can take both
positive and negative integer values, as it is shown in
Equation 16. Consequently, the multiplication involving εIQ
can be implemented by an arithmetic shift right or logical
shift left operation, depending on the value of QP and on
the inverse transform function that are being considered.

εIQ =

−
(

2−
⌊

QP
6

⌋)

, if c1

−
(

1−
⌊

QP
6

⌋)

, if c2

⌊

QP
6

⌋

, otherwise

c1 : H4×4
∧

QP < 12
c2 : H2×2

∧

QP < 6

(16)

By considering all the above simplifications, Equation 17
presents the integer arithmetic representation of Equation 10
for the inverse quantization operation, where the quantiza-
tion parameter σIQ consists on function V .

Oij =

[

Sij × σIQ(QP)ij + ϕIQ

]

>> |εIQ| , if c1
∨

c2

[

Sij × σIQ(QP)ij + ϕIQ

]

<< |εIQ| , otherwise

(17)

B. Proposed Architecture

The architecture herein proposed to realize the
H.264/AVC forward and inverse quantization operations
simultaneously implements the functionalities represented
in Equation 14 and Equation 17 (or more generally,
in Equation 10), but exclusively using integer arithmetic
computational circuits. As a result, such processing structure
mostly consist of a very simple and yet efficient integer
datapath with four different processing phases and only
three distinct computation circuits (a 16 × 15-bits signed
multiplier, a 31-bit adder and a 32-bit barrel-shifter), which
are shared for the implementation of the two quantization
operations. Nonetheless, the proposed architecture also
includes other less complex logical elements, as it can
be seen in Figure 2. Such logic is required not only to
support the combined forward/inverse functionalities, but
also for the computation of some intermediate values, such
as a 4-bit adder to obtain the value of ε and ROM devices
to provide all the required constant values (i.e., f , MF ,
V , QP%6, etc). Table III describes the functionality of
block η, which allows using the same adder to compute
εQ (Equation 13) and εIQ (Equation 16).
Figure 2 also evidences the very flexible structure

of the proposed architecture, being capable of sup-
porting multiple configurations with distinct hardware
cost/performance/latency characteristics, in order to opti-
mally address the requirements of any given application.
Such configurations consist of non-pipelined and pipelined
versions of the proposed architecture, as shown in Table IV.
The configuration with the most reduced hardware cost

is also the one providing the lowest latency and consists of
the non-pipelined version of the architecture, where all the
pipeline registers (represented with black circles in Figure 2)
are replaced by direct point-to-point circuit interconnections.
On the other hand, the highest performance levels are
obtained with the design implementing a fully pipelined
architecture with the four stages A, B, C and D, as defined

Table III
FUNCTIONALITY OF THE BLOCK η.

Opcode T TYPE QP < 12 QP < 6 η
0 - - - 1
1 00 - 0 0
1 00 - 1 1
1 01 0 - 0
1 01 1 - 1
1 10 - - 0
1 11 - - 0

777555!666333555666333555

Figure 2. Proposed unified configurable architecture for the computation of the H.264/AVC quantization operations.

Table IV
CONFIGURATIONS OF THE PROPOSED ARCHITECTURE.

Architecture Pipeline Registers
Configuration A/B B/C C/D
Non-pipelined - - -
2 pipeline stages -

√
-

3 pipeline stages
√ √

-
4 pipeline stages

√ √ √

in the bottom of Figure 2. The remaining configurations
are also pipelined versions of the architecture, but using
fewer pipeline stages so as to guarantee the different trade-
offs between hardware cost, performance and latency. For
all these configurations, the obtained throughput is always
one quantized/scaled transform coefficient per clock cycle.
Moreover, the processing rate is also maximized in each
configuration, as a result of all the efforts that were devised
to keep the pipeline stages properly balanced.
In what concerns the functionality of the proposed ar-

chitecture, phase A is used to fetch from the ROMs all
the constant coefficients depending on QP , as well as the
scaling factors (MF and V). The amount and direction of
the shift for the final adjustment of the processed values
are also computed in this phase, together with the rounding
factors (ϕ) for the forward and inverse quantization opera-
tions. Nonetheless, the final value to be used in the rounding
operation is only definitely computed in the multiplier in
phase B, in order to keep all the processing phases as
balanced as possible. Consequently, the rounding operation
is realized in phase C, using the scaled data value that is
selected in phase B. In phase D, the final values of the
quantized/scaled transform coefficients are adjusted using
the barrel shifter and the correct 16-bit value of either the
quantized or scaled transform coefficient is provided at the
output port of the architecture.

C. Optimized Multiplier for ASIC Implementations

The multiply operation that is required by the forward
and inverse quantization algorithms can be regarded as
a Multiple-Constant Multiplier (MCM) problem, because
it consists in the computation of a product involving a

transform coefficient and a constant that can take one out of
several different values (see Tables I and II). This approach
is highly advantageous when considering ASIC implemen-
tations of the proposed architecture, since it allows avoiding
the usage of hardware costly generic binary multiplication
circuits to compute the required product values.
Although different approaches are available to implement

MCMs, the time-multiplexed Multiple Constant Multiplier
(mux-MCM) method was adopted [16] to design the spe-
cialized multiplier unit for implementations of the proposed
architecture in ASIC. Unlike parallel MCM solutions, this
approach provides a multiplier structure containing several
multiplexers that are switched by control logic to compute
the products for different constants. This allows to greatly
increase the circuit’s hardware efficiency for applications
that only compute one product at a time, just like the
H.264/AVC quantization operations.
In this work a mux-MCM circuit was developed to

implement the multiplier of the proposed architecture. The
Directed Acyclic Graph of such specilized arithmetic unit is
based on [16] and was generated using the SPIRAL project
framework (www.spiral.net).

IV. EXPERIMENTAL RESULTS

To demonstrate the advantages offered by the proposed
architecture in terms of performance and hardware cost, as
well as to validate its functionality, this dedicated processing
structure was described using IEEE-VHDL and synthesized
for both FPGA and ASIC implementations.
A single description of the circuit presented in Figure 2

was developed to implement the four different configurations
listed in Table IV, for which generic type parameteriza-
tion inputs were used to specify the design to be imple-
mented. Such description was carried out by using a quite
generic VHDL coding style, in order to achieve efficient im-
plementations when using the two considered technologies.
Nonetheless, a special attention was given to the description
of the most performance critical blocks of the proposed
architecture (i.e., the multiplier, the adders and the ROMs),

777666000666333666666333666

in order to assist the synthesis tools in inferring the most
efficient primitives for its implementation, according to the
chosen synthesis strategy and implementation constraints.

A. FPGA Implementation

In what concerns to the conducted FPGA implementa-
tions, such design effort was especially relevant for the
adopted FPGA device (Virtex5 XC5VFX70TFFG1136) and
synthesis tool (xst, from Xilinx Design Suite 13.2i), since it
allowed to use the DSP48E slice to efficiently implement the
multiplication operation. The impact of these optimizations
in terms of hardware cost and performance is demonstrated
in Table V, which presents the most relevant implementa-
tion results obtained for the adopted performance oriented
synthesis procedure.

Regarding to the occupied hardware resources, the re-
sults shown in Table V demonstrate the rather insignificant
requirements of the proposed architecture for any of its
four designs, despite the offered flexibility in terms of
functionality. In fact, a single DSP48E slice and less than
40 ordinary Virtex-5 slices (about 1% of the total capacity
of the adopted FPGA device) are used in the implementation
of the most hardware costly (and also faster) configuration
of this processing structure. The maximum allowed clock
frequencies presented in Table V demonstrate the high pro-
cessing rates that are offered by the proposed architecture,
i.e., between 126 and 311 Mcoefs/s. These differences in the
attained performance are not only owed to the application of
the multi-stage pipeline technique, but also to a better usage
of the DSP48E slice in the case of pipelined configurations.
In such slightly more hardware costly configurations, the
DSP48E macrocell implements a very optimized and fast
multiply-and-accumulate unit, required in processing phases
B and C, where the flip-flops of the pipeline register are
pushed into the DSP48E slice, as a result of the synthesis
tool being capable to successfully infer the multiply-and-
accumulate coding pattern. Hence, it can be concluded
that the four configurations of the proposed architecture
effectively allow to trade-off latency for performance in
FPGA implementations. Figure 3 shows the upper bound
limits for the performance offered by the four configurations
when operating with the clock frequencies presented in
Table V. According to these results, it can be concluded
that the proposed processing structure is able to comply with
the real-time requirements of video codecs up to the Digital
Cinema format (4096× 2048 @ 30fps).

B. ASIC Implementation

A very similar IEEE-VHDL description of the proposed
architecture was also used to implement in ASIC the four

Table V
FPGA IMPLEMENTATION RESULTS.

Configuration Slices FFs LUTs DSP48Es Max. F.
Non-pipelined 193 0 193 1 126.5 MHz
2 pipeline stages 195 6 194 1 142.8 MHz
3 pipeline stages 208 20 191 1 216.3 MHz
4 pipeline stages 214 26 192 1 311.0 MHz

Figure 3. Performance comparison of several configurations of the
proposed architecture.

configurations presented in Table IV. The only difference
between such description and the one used for the FPGA
implementations concerns strictly to the multiplier, which
for the ASIC implementations consisted of a structural
description of the mux-MCM unit described in section III-C.

Table VI presents the implementation results obtained
with the synthesis of the four configurations using a stan-
dard cell library based on a 90 nm CMOS process from
UMC [17], and by considering the typical operating condi-
tions (Vdd=1.2V, T=25oC). Likewise the FPGA implemen-
tations, a performance oriented synthesis procedure was also
adopted. However, specific timing constraints were used to
guide the synthesis tool, in order to obtain the most hardware
efficient designs capable of complying with the desired
performance requirements, i.e., support for the HDTV 1080p
video format.

The results shown in Table VI evidence that the hardware
resources required to implement each of the four designs
are quite small and also very similar. In fact, the minor dif-
ferences that can be observed concern only to the resources
required to implement the several pipeline registers. This
is a direct consequence of the timing constraints that were
imposed to the synthesis tool, which generated a very similar
multiplication circuit for all the four configurations of the
architecture. As it can be seen in Table VI and Table VII,
the adopted mux-MCM occupies about 2/3 of the circuits
implementation areas and restricts their maximum operating
frequencies. Nonetheless, such clock frequencies are still
compliant with the requirements of the HDTV 1080p video
format, as it is shown in Figure 3. Moreover, the reduced
amount of hardware required by the considered mux-MCM
circuit fully justifies their usage, since they provide a sig-
nificant reduction of the silicon area when compared with a

Table VI
ASIC IMPLEMENTATION RESULTS.

Configuration Area Gate Count Max. F.

Non-pipelined 0.030 mm2 5942 kgates 253.9 MHz

2 pipeline stages 0.027 mm2 5308 kgates 254.4 MHz
3 pipeline stages 0.028 mm2 5410 kgates 253.8 MHz

4 pipeline stages 0.029 mm2 5610 kgates 254.5 MHz

777666111666333777666333777

Table VII
COMPARISON OF THE MULTIPLICATION CIRCUITS.

Architecture Area Gate Count Max. F.

Parallel MCM with 3 levels 0.033 mm2 6377 kgates 365.0 MHz

Parallel MCM with 4 levels 0.032 mm2 6318 kgates 325.7 MHz

Parallel MCM with 5 levels 0.031 mm2 6110 kgates 282.5 MHz
mux-MCM 0.019 mm2 3712 kgates 254.4 MHz

binary multiplier alternative solution, without compromising
the attained performance levels (see Table VII). Hence, it
can be concluded that the best compromise of the proposed
architecture when implemented in an ASIC corresponds to
the non-pipelined configuration, owing to its smaller latency
and to the almost identical hardware cost/efficiency and
performance levels offered by the four designs.

C. Discussion

The advantages offered by the proposed architecture in
terms of performance and hardware cost were assessed
by comparing it with the most prominent related designs.
Table VIII presents the results of such comparative anal-
ysis for the subset of designs that were reviewed. These
designs not only present different functionalities but were
also implemented using distinct technologies, i.e., FPGA
and ASIC. As a result, a more comprehensive figure of
merit was adopted to conduct this comparison: the Data
Throughput per Unit of Area (DTUA). The DTUA is defined
as the ratio of the data throughput rate (in coefficients per
second), over the hardware cost (in terms of unit of area). In
ASIC implementations, the number of gates was chosen to
represent the unit of area, while in FPGA implementations
it was considered a slice as a unit of area.
As it can be seen in Table VIII, the proposed architec-

ture is one of the most hardware efficient structures for
both FPGA and ASIC implementations, despite being the
only one that is capable of computing the forward and
the inverse quantization operations. In fact, the proposed
structure outperforms all the other designs, even when its
lower performance configuration (non-pipelined) is used.
The only exception is the set of structures presented in [10]
that achieve higher DTUAs. However, it is important to
observe that this set of designs only implements a single
quantization operation and presents latency values equal to
the 3-stages and the 2-stages pipelined configurations of the
proposed architecture. Consequently, it can be concluded
that the quantizer proposed in [10] has a much lower
DTUA value than the 3-stages pipelined configuration of
the proposed architecture. Still, the DTUA value of the
inverse quantizer presented in [10] is relatively higher than
that of the 2-stages pipelined configuration of the proposed
architecture, owing to its highly parallel structure that shares
many of its hardware resources. Nevertheless, an entirely
similar approach could equally be adopted to design parallel
quantizers based on the proposed base architecture, since
many of its hardware resources can also be shared by
multiple instances of the architecture (i.e., all the circuits
except the ROM, the multiplier, the 32-bit adder and the
barrel-shifter). In such cases, it is expected that these designs

would present even higher DTUA values, similar to the ones
provided by the inverse quantizer in [10].
Table VIII also evidences that the reduced hardware char-

acteristic of the proposed architecture does not compromises
its performance regarding the other alternative solutions.
In fact, the proposed unified quantization circuit not only
presents the highest DTUA values, but it is also capable
of complying with the requirements of real-time operation
up to the Digital Cinema format (4096× 2048 @ 30fps) for
implementations in FPGA and in ASIC. Nevertheless, higher
performance levels targeting superior video formats can also
be achieved by exploiting the scalable nature of the proposed
architecture, in order to combine several of its instances
in a single design, as it was stated before. For example,
the throughput of a circuit using four instances of the
proposed base architecture can be as high as 1244 MCoefs/s,
which is fully compliant with the requirements for real-
time processing of the Ultra High Definition Video (UHDV)
format (4320× 7680 @ 30fps).
From Table VIII it is also possible to conclude that

the proposed architecture allows to adjust the hardware
cost / performance trade-off in a different dimension. In
fact, by alternating its operation (forward and inverse quan-
tization) along the time, a codec that includes a single
instance of this processing structure is able to compute both
quantization operations and still saves over 70% in hardware
cost, when compared to a codec that uses two independent
and dedicated functional units to realize the same operations.
This is especially relevant when such video codecs are
implemented in ASIC, since the final cost of the corre-
sponding ICs is directly and significantly affected by the
amount of required hardware resources. Such codec design,
using only one instance of the proposed architecture, is most
suitable for the implementation of reduced complexity and
low cost video coding systems with moderate requirements
in terms of performance. Conversely, higher performance
video coding systems will use the proposed architecture, by
considering a more hardware costly structure that integrates
two instances of the proposed architecture to compute the
forward and inverse quantization operations in parallel.

V. CONCLUSION

An innovative unified architecture for the computation
of the H.264/AVC quantization operations was proposed.
This high performance dedicated processing structure is
characterized by a quite flexible architecture, exclusively
based on integer arithmetic computational circuits, which are
shared for the computation of both the forward and inverse
quantization algorithms. As a result, it presents several
advantages in what concerns to hardware efficiency and cost,
which is quite diminished. Conversely, its highly flexible
nature also provides significant advantages in terms of
performance, since the most critical computational elements
can be not only efficiently implemented using different
technologies (e.g., mux-MCMs for ASICs or optimized
fabric slices for FPGAs), but also instantiated using several

777666222666333888666333888

Table VIII
COMPARISON WITH OTHER RELATED ARCHITECTURES.

Design
Quantization

Technology Area
Max. F. Latency Throughput DTUA

Function [MHz] [CC] [Coefs/CC] (×10
3)

[6] (area) Forward Virtex2 Pro 143 slices 135 4 0.25 236.3
[6] (speed) Forward Virtex2 Pro 192 slices 97 1 1.00 97.9
[10] Forward Virtex2 Pro 483 slices 108 3 4.00 892.4
[10] Inverse Virtex2 Pro 222 slices 136 2 4.00 2457.0
Proposed (no pipeline) Unified Virtex5 193 slices 127 1 1.00 655.5
Proposed (2 stages) Unified Virtex5 195 slices 143 2 1.00 732.5
Proposed (3 stages) Unified Virtex5 208 slices 216 3 1.00 1039.7
Proposed (4 stages) Unified Virtex5 214 slices 311 4 1.00 1453.5

[5] Forward SMIC 180 nm 28.56 kgates 250 4 4.00 35.0
[6] (area) Forward TSMC 180 nm 1.75 kgates 85 4 0.25 12.2
[6] (speed) Forward TSMC 180 nm 39.90 kgates 68 1 1.00 1.7
[11] Forward Tower 180 nm 104.05 kgates 76 1 32.00 23.4
[11] Inverse Tower 180 nm 76.11 kgates 76 1 32.00 32.0
Proposed (no pipeline) Unified UMC 90 nm 5.94 kgates 254 1 1.00 42.7

different configurations (i.e., non-pipelined and 4-stage fully
pipelined circuits). The experimental results obtained for
implementations in FPGA and ASIC have proved the above
observations and showed that the proposed architecture is
capable of processing, in real-time, video sequences up to
the Digital Cinema format (4096× 2048 @ 30fps).

ACKNOWLEDGMENT

This work was supported by the Portuguese Founda-
tion for Science and for Technology (INESC-ID mul-
tiannual funding) through the PIDDAC Program funds
and under project HELIX: Heterogeneous Multi-Core Ar-
chitecture for Biological Sequence Analysis (PTDC/EEA-
ELC/113999/2009), and by the PROTEC Program funds
under the research grant SFRH / PROTEC / 50152 / 2009.

REFERENCES

[1] T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13,
no. 7, pp. 560–576, Jul. 2003.

[2] I. E. Richardson, The H.264 Advanced Video Compres-
sion Standard, 2nd ed. John Wiley & Sons, Ltd, 2010.

[3] Y. Zhang, G. Jiang, and M. Yu, “Low-complexity
quantization for H.264/AVC,” J. Real-Time Image Pro-
cessing, vol. 4, no. 1, pp. 3–12, 2009.

[4] M. Michael and K. Hsu, “A low-power design of
quantization for H.264 video coding standard,” in 2008
IEEE Int. SOC Conf., Sep. 2008, pp. 201–204.

[5] J. Ying, X. Chen, Y. Fan, and X. Zeng, “MUX-MCM
based quantization VLSI architecture for H.264/AVC
high profile encoder,” in IEEE/IFIP 19th Int. Conf.
VLSI and Syst.-on-Chip, Oct. 2011, pp. 72–77.

[6] R. Kordasiewicz and S. Shirani, “ASIC and FPGA im-
plementations of H.264 DCT and quantization blocks,”
in IEEE Int. Conf. Image Processing, 2005, vol. 3, Sep.
2005, pp. 1020–1023.

[7] H.-Y. Lin, Y.-C. Chao, C.-H. Chen, B.-D. Liu, and J.-
F. Yang, “Combined 2-D transform and quantization
architectures for H.264 video coders,” in IEEE Int.
Symp. Circuits and Syst.s, 2005, vol. 2, May 2005, pp.
1802–1805.

[8] M. Owaida, M. Koziri, I. Katsavounidis, and G. Sta-
moulis, “A high performance and low power hardware
architecture for the transform & quantization stages in
H.264,” in IEEE Int. Conf. Multimedia and Expo, 2009,
Jul. 2009, pp. 1102–1105.

[9] M. Elhaji, A. Zitouni, S. Meftali, J.-l. Dekeyser, and
R. Tourki, “A low power and highly parallel implemen-
tation of the H.264 8x8 transform and quantization,” in
2010 IEEE Int. Symp. Signal Processing and Informa-
tion Technol., Dec. 2010, pp. 528–531.

[10] R. Husemann, M. Majolo, V. Guimaraes, A. Susin,
V. Roesler, and J. Lima, “Hardware integrated quan-
tization solution for improvement of computational
H.264 encoder module,” in 18th IEEE/IFIP VLSI Syst.
on Chip Conf., Sep. 2010, pp. 316–321.

[11] G. Pastuszak, “Transforms and quantization in the
high-throughput H.264/AVC encoder based on ad-
vanced mode selection,” in 2008 IEEE Computer So-
ciety Annual Symp. on VLSI, Apr. 2008, pp. 203–208.

[12] R. Korah and J. Perinbam, “FPGA implementation of
integer transform and quantizer for H.264 encoder,”
Journal of Signal Processing Syst.s, vol. 53, pp. 261–
269, 2008.

[13] S. Lee and K. Cho, “Implementation of an AMBA-
compliant IP for H.264 transform and quantization,”
in 2006 IEEE Asia Pacific Conf. Circuits and Syst.s,
Dec. 2006, pp. 1071–1074.

[14] O. Tasdizen and I. Hamzaoglu, “A high performance
and low cost hardware architecture for H.264 transform
and quantization algorithms,” in 13th European Signal
Processing Conf., 2005, pp. 4–8.

[15] S. Lee and K. Cho, “Design of high-performance
transform and quantization circuit for unified video
CODEC,” in 2008 IEEE Asia Pacific Conf. Circuits
and Syst.s, Dec. 2008, pp. 1450–1453.

[16] P. Tummeltshammer, J. C. Hoe, and M. Püschel,
“Time-multiplexed multiple constant multiplication,”
IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 26, no. 9, pp. 1551–1563, 2007.

[17] Faraday ASIC Cell Library FSD0A A 90nm Standard
Cell, Faraday Technology Corporation, Feb. 2009.

777666333666333!666333!

