Fast Adder Architectures. Modeling and
Experimental Evaluation

Nuno Roma and Tiago Dias and Leonel Sousa
Dept. of Electrical and Computer Engineering, 1.S.T. / INESC-1D
R. Alves Redol, 9, 1000-029 Lisboa, Portugal
Email: nuno.roma@inesc-id.pt, tdias@sips.inesc-id.pt, las@inesc-id.pt

Abstract— This paper presents a detailed comparison analysis
of several fast adder architectures for high performance VLSI
design. The evaluation of those architectures is firstly carried
out based on a simple gate-count model for area and gate-
delay units for time. The results obtained with such model
were then validated by using two entirely different real-world
implementation technologies, namely CMOS integrated circuits
and Field Programmable Gate Arrays (FPGA). Experimental
results show that among the modeled and evaluated topologies,
the adder architecture based on the radix-2 redundant format
converter offered the lowest delay when implemented with any
of the considered technologies. However, it was also the topology
that required the highest amount of hardware. The presented
results can be seen as an invaluable resource in the selection of the
most appropriate adder topology that will be used to implement
a given arithmetic operation in a specified technology.

I. INTRODUCTION

In the design of specialized or dedicated VVLSI architectures,
the usage of particularly efficient processing units is often of
great importance to achieve the required performance levels
for the overall system. This performance is usually adjusted
in terms of the tradeoff: processing time versus circuit area.

From a careful analysis of the whole processing system, one
frequently concludes that the used arithmetic units are often
the most responsible for the achievement of such requirements.
Consequently, it has been widely accepted that high perfor-
mance levels can only be achieved by using arithmetic units
that have been optimized to the characteristics of the operation
that they are intended to perform. Nevertheless, despite the
immensity of different arithmetic operations that can be im-
plemented in VVLSI circuits, one can usually decompose them
into elementary operators, such as additions and subtractions.
Consequently, it is consensus that it is often preferable and
easier to perform such optimizations by selecting the most
appropriate architectures for addition/subtraction.

Therefore, the main objective of the research presented in
this paper is to perform a detailed comparison analysis of
several fast adder architectures, to ease the selection of the
most appropriate topology for a given operation and a specified
technology. Several different architectures were considered
in this study: binary-tree carry-lookahead structures [1], [2],
redundant number system adders [3], [4], [5] and Sklansky
prefix-adders [6], [7]. Since the obtained performance level
is also greatly dependent on the technology used for the
implementation, the main concern in the comparison of the
several topologies was to use a neutral criteria that could
evaluate each architecture independently of the target imple-
mentation. Consequently, it was decided to adopt the model

proposed by Tyagi, which relates the required circuit area
with the propagation time of each logic cell [8], [6]: each
two-input monotonic gate (w.g., AND,NAND) counts as one
gate (area and delay); an XOR counts as two gates both to
the area and to the delay; and an m-bit logic cell derived
from the elementary logic cells count as m — 1 gates to the
area and [log, m] gates to the delay. To assess the accuracy
of this model, the obtained performance measures will be
contrasted with the implementation results obtained using two
distinct technology supports: a StdCell library based on a
0.25um CMOS process [9] that can be used to implement the
desired circuit on an ASIC and a VIRTEX-E general purpose
FPGA [10] from Xilinx.

Il. ADDER ARCHITECTURES

During the presentation of the several architectures, it will
be used, for comparison purposes, the performance levels
obtained for the simpler (and slower) ripple-carry (RC) adder.
This topology is composed by w cascaded full-adder circuits
that perform the computation of the sum of the two w-bit
operands A = ay_1,-.-,a0 and B = by _1,...,by with an
input carry bit (¢c;, = ¢o):

si=a; Db ® ¢ ; cip1 = azb; + aie; + bic; 1)
By using this hardware model, the processing time is:

Teont =T =w-Tpi' = 3w
Tow = (w—1)-Tpt' + Tyop =3w —1) + 2~ 3w

)
and the circuit area, considering a direct implementation, is:

A. Carry-lookahead adder

A carry-lookahead (CLA) adder with a binary-tree structure
is composed by only [log, w] hierarchical logic levels, where
w states the operands width.

The operation of this adder lies in the computation of a w-
dimensional carry vector, which is generated and propagated
from the A and B input operands through the whole adder
structure. Let G; ,, and P; . be the carry signal and the propa-
gation signal generated from inputs ¢ and k, respectively. The
carry vector can be calculated using the following recursive
equations:

k1 =Gip+ Py - ¢ 4)
Giw =Gjr1k + Pit1r - Giyj)
Ppy=PF; Pir;i<j<k (6)

(a) Block Diagram.

Th=2; T =2

Th =2
{Ag=3; AL =2

Ti=1;

Al =2 ; Al =4

(b) Time and Area corresponding to the A and B blocks.
Fig. 1. 8-bit carry-lookahead adder.

where Gi,z’ = g;, Pi,'i =Dpi, i = a;.b; and P =a; + b;.

In fig. 1 it is presented the hierarchical structure of this
binary-tree adder. This adder performs the computation in
three phases: i) the p; and g; values are computed in the A
blocks and fed into the B blocks, where the P and G values
are computed using egs. 5 and 6; ii) the input carry bit (cg)
is fed into the B block at the bottom of the tree; B blocks
are used to compute the w-dimensional carry bit vector in an
ascending data flow, according to eq. 4; finally iii) the sum
vector is computed by supplying the carry bit vector to the A
type blocks. The carry out bit can be easily calculated using
the co input signal and the Gg,,—1 and Fy—1 outputs of
the B block at the bottom of the tree. The logic circuit that
implements this expression is entirely similar to the ascending
part of B type blocks, characterized by 7., = 2 and A., = 2.
The overall processing time of the binary-tree shown in fig. 1
is:

Tg = Tj + ([logy w] — 1) x TE + [log, w] x T; +TI1
(72)
=4log, w] +1 (7b)

The processing time of the carry out with (7, = Tg) is:
T

Cout

= Tj + [log, w] x T]‘; + T, (8a)
= 2 [logy, w] + 3, (8b)

It should be noted that due to its binary-tree structure, the
number of representation bits of each operand of a carry-
lookahead adder like this is usually an integer power of two.
Under certain circumstances, this fact can lead to a misuse
of the hardware resources. Therefore, from this point on the
number of representation bits of each input operand of this
type of structures shall be referred by @, where @ = 21082 w1,

The circuit area required to implement this adder is:

—1)XAB+ACW
11w — 3

A= x Ag+ (0
=W x6+W—1)x5+2 =

(92)
(9b)

B. Sklansky prefix adder

Prefix-adder architectures [6] are generally characterized by
the fact that the outputs (yw—1,Yw—2,---,%o) are computed
from the w-bit inputs (zy—1,Zw—2,---,To) by means of an
associative binary operator x in a recursive form:

Yo = To; Yi = Ti*Yi—1 ; i:1727"'7w_1 (10)

Consequently, every output signal depends on the input
signals of equal or lower weight. Due to the associative
properties of this generic x operator, the operations may
be executed in any arbitrary order. In particular, subsets of
operands can be grouped together to obtain in parallel partial
solutions, giving rise to group variables Y; ;. The variable Y‘—’
will stand for the output of the operation that takes the set of
bits (zg,zg—1,-..,x;) at level £. The group variables at the
last level m will comprise the entire range of the input bits,
from 0 to i (Yy7%):

Vi =V5I Y i<i<k;

0 _
Y;,z'_xz7yz_ YE),z'? 1_0717"'7

,m (11a)
(11b)

0=1,2,...
(w—1)

Among the several different prefix-adder architectures [6],
the Sklansky topology [7] is one of the most efficients (fig. 2).
By adopting the tree-type model, all intermediate signals are
computed in a minimal tree structure and are fed, in parallel,
to all higher levels that require those signals. Nevertheless,
this architecture still presents some disadvantages concerned
with the fanout of the output nodes, which shows a significant
increment as the number of bits of the adder increases.

Each bit (¢;) of the carry vector is computed from the sig-
nals of the last level (G, Pg";). The sum bits are computed
in a post-processing operation. The variables G? , and P}, at

gd @& 7 ds I 8 G IS

SE S AR S JF S oo od

0 1L 1 LI 1 L

g Hith 555 .;.t. f

s LSS GGG

Fig. 2. Structure of the Sklansky preflx adder

O

(@:P) g P

X X, a b a b,
Te =2 T =2
& & o
‘/+'/ {A. = % {AD =
er er
) i P

(b) Pre-processing.

[P G
' &
s, Si

(d) Post-processing.

Ty =2
Ay =2

[

(c) Pre-processing for carry-in.

Fig. 3. Internal structure of the blocks that compose the Sklansky adder.

the intermediate levels [are computed by the blocks presented
in fig. 3.

The Sklansky structure presents the following characteristics
in what concerns the processing time and circuit area:

Tsa’b:Tsci" :1XT§+lOg2ﬁ)XT.+1XTQ
=3+ 2log,w+2= 2log,w+5

(12a9)
(12b)

A=w—-1)xAg+1x A+ (%wlog2’lﬁ> X Ae + 1 X Ag
(12¢)

=2 —1)+7+3 Gwlog2 w) + 20 (12d)
= gwlog2w+4w+5 (12¢)

An alternative solution for the processing of the carry input
consists in using an extra level of the ® type operators [6].
Since the carry bit is only used in this last extra level, its
processing is quite fast. These structures are particular suitable
for the implementation of incrementers, where the critical path
usually lies between the ¢;,, input and the ¢,,; output. The time
associated with such structure is given by:

T2 =1 x Tg + (logy 0 + 1) x Te + 1 x Ty
=2+2(og,w+1)+2= 2log,w+6

(13a)
(13b)

Assuming that the critical path of the circuit does not
include the processing of the input operands, the time required
to obtain the output sum depends only on the ¢;, input bit and
is given by:

Tém = 1xTe+1xTo=2+2=4 (l4a)

The circuit area is given by:
1
A=wx Ag+ <§1blog2u§+fu§) x Ae +w x Ay (15a)

(15b)

= guﬂog2 W+ 8w

C. Redundant arithmetic adder

The attractiveness of the redundant signed-digit number
systems [3], [4], [5] lies in their “carry-free” addition property,
by limiting the carry propagation to a few bit positions, which
is usually independent of the word length w. For the particular
case of a radix-2 signed-digit system, any number may be
coded using two unsigned binary numbers, one positive and
one negative, as X = Xt — X —. Hence, each signed digit
z; = x7 — =z, is represented by two bits (z},z;), where
zf,x; € {0,1} and z; € {1,0,1} [5]. According to this
notation, the 0 value can be represented by either the (1,1)
or (0,0) values. However, it can be shown that if the (1,1)
representation is not allowed, faster and simpler circuits can
be obtained [4]. A straightforward approach to avoid the (1, 1)
representation consists in its replacement by (0,0) before
performing any operation, which can be done using the circuit
presented in fig. 4.

The conversion between the redundant format (X+, X ™)

and the two’s complement nonredundant format (X) can be

4—- VMMP - |g— MP - |——- MMP - |g— MP - [—— Cj
c, C, c, c,
+ + + +
S S S S

X=X X"

X7 = XF X"
Fig. 4. Digit conversion to perform the replacement of (1,1) by (0, 0).

carried out by considering X+ and X ~ as two independent un-
signed numbers and subtracting X — from X+ as follows [5]:

.73;'_ —z; —¢ =2c41 + X;, (16)

where ¢y = 0. The carry and the X; bits are given by:
Cit1 :ci-g+c_i-x; (17)
Xi:ci-(azf+x;)+c_i-(wf+:c;) (18)

A simple format conversion circuit is shown in fig. 5(a)
for a word length w = 4. The arithmetic operation required
by the conversion can be performed by a dedicated full-
adder, usually known as Minus-Minus-Plus adder (MMP). It
is interesting to note that these two equations can be directly
implemented using two multiplexers, whose selection signal
is the ¢; signal. Such an implementation is only possible due
to the pre-conditioning transform presented in fig. 4.

To understand the usefulness of redundant number repre-
sentation to implement fast adder structures consider S:

S=A+B=A-(-B)=(A-B)+(-1). (19

In the last term of eq. 19, the (A — B) value can be seen as
a number represented in the redundant number system, where
each (zf,z;) = (ai,b;) digit has the value (a; — b;) [4].
Hence, the radix-2 redundant to nonredundant format converter
using MMP full-adders presented in fig. 5 can be directly
applied to obtain the sum vector. In fact, the (—1) term
presented in eq. 19 can be easily integrated in the conversion
scheme by considering the initial value of the input carry bit
Cop = 1.

Similarly to what happens in the carry-propagate adder
topologies [6], the sum bits of this adder architecture are only
computed after the evaluation of all carry bits. Nevertheless,
since the conversion from the redundant into the two’s com-
plement binary representations is quite similar to a binary
addition, it is possible to implement fast conversion circuits
based on the same techniques used in the carry-lookahead
adders and by making use of the simpler circuits presented in
fig. 5(b), which can be even implemented using transmission-
gates.

S
(b) MMP cell.

2 1 0
(a) w cascaded MMP full-adders.

Fig. 5. Radix-2 redundant to nonredundant format converter using four
cascaded MMP full-adders.

To illustrate the implementation of an adder architecture
based on the redundant number representation consider an
adder using a tree structure and @ = 4 bit operands. According

to eq. 17 and assuming that fo(i) = = and go(i) = z; :

Ci+2 = Ci+1 -:L‘?'_,_l +Ci1 T (20a)

= [ci-wj'+c_¢-:cl] -x;‘;1+ [ci-xf+c_¢-wi] "Ly

(20b)

=c; - [Ex;_l +w?-w,-_+1] +c; - [zi_ -ﬁ+§-x;1]

) fl(;;l) ’) 91(;;-1) ’

(20c)

=c-fHlE+1)+e-g1(i+1) (20d)
where:

fi(i+1) = fo(d) - fo(i + 1) + fo(i) - go(i + 1) (21)

91(i+1) = go(d) - fo(i + 1) + go(3) - go(i +1) (22)

Hence, it can be shown that all carry signals can be computed
by using only multiplexer blocks. This structure has (log,, w +
1) processing levels and uses a total of @ x (logy,w + 1)
multiplexers. Fig. 6(a) presents the circuit used to compute
the carry bits for this considered case (w = 4). However,
since the input carry bit for this particular situation is known
(co = 1), the circuit presented in fig. 6(a) can be considerably
simplified, as shown in fig. 6(b). This simplified circuit is only
composed by 5 multiplexers and has 2 processing levels.

The two circuits of fig. 6 can be combined to obtain an
8-bit adder. Such circuit is obtained by connecting the output
carry (cq) of the simplified circuit shown in fig. 6(b) to the
input carry (co) of the circuit shown in fig. 6(a). The latency
of this 8 bit converter corresponds to 3 processing levels and
requires a total of 17 multiplexers. In the general case, this
topology computes all the @ carry bits using (log, @w—1)w+1
multiplexers in a structure with log, w levels [4].

The complete circuit that computes the operation S = A+ B
is composed by three distinct blocks:

« Pre-processing input block - By taking into account the

first complement representation of the (— B) operand, the
circuit in fig. 4 can be simplified to the one in fig. 7.

| rdr
! L

3 G

CZ C]

(b) Simplified circuit, consider-
ing co = 1.

(a) Generic circuit, consisting of
[logy 4] + 1 = 3 levels.

Fig. 6. Circuit to compute the carry vector for the particular case of using
4 bit operands in a redundant number representation.

g, _Dfxf N {T
__Dofx; 4

Fig. 7. Pre-conditioning circuit.

1
2

« Computation of the carry vector c,,,...,c1 - Consider-
ing that each multiplexer that composes this block is char-
acterized by T'= 2 e A = 3, the structure of the overall
circuit that computes the carry vector will be character-
ized by T = 2log, w and A = 3[(log, w — 1) @ + 1].

« Computation of the sum output value - According to
eg. 18, each bit of the sum output value can be computed
using the circuit shown in fig. 8. Consequently, the full
circuit is characterized by T'= 2 and A = 4w.

It should be noted that neither the OR nor the INV logic
gates placed at the input ports of the multiplexer are part
of the critical path of this circuit.

G

0 0 L [T=3
% E MUX |—s A=14

Fig. 8.

Circuit for computing the sum output value.
Hence, the characteristics of the whole adder circuit are [8]:

T =2log,w+3 (23)
A =3wlogy w + 3w + 3

I1l. COMPARATIVE EVALUATION

In table | it is summarized the values obtained for the adder
architectures considered in the previous sections and by using
the model proposed in [8]. The charts presented in figs. 9 and
10 illustrate the relations between the processing time and the
circuit area for all the considered structures in function of the
number of bits of the operands (w).

The chart corresponding to the processing time (see fig. 9)
evidences the significant performance gains that can be
achieved by using the fast adder architectures towards the
simpler ripple-carry adder. This gain will be even greater when
the number of representation bits (w) increases. Moreover,
one can also conclude from this chart that, apart from the
Sklansky prefix-incrementer architecture, which shows the best
performance under certain specific circumstances, the redun-

TABLE |

COMPARISON OF THE DIFFERENT ADDER ARCHITECTURES.
Adder Topology Circuit area
Ripple-Carry (RC) 3w Jw
Carry-Lookahead (CLA) 11w — 3
Redundant Arithmetic (RA) 2log, @ + 3 31 log, W + 3 + 3
Sklansky (SA) 2log,w +5 2ilog, W + 4 + 5
Sklansky Increm.t (SI) 4 34 log, W + 8
T For this case, it is assumed that the processing of the operands is not

included in the critical path. This can be most useful in the last operation of
an addition/increment.

Processing time

4log, w +1

50

—e— Ripple-Carry Adder

—B— Carry-Look-Ahead Adder
—— Redundant Arithmetic Adder
—6— Sklansky Prefix-Adder

30 - —e— Sklansky Prefix-Incrementer

40 -

Processing Time

20

10

Fig. 9. Comparison of the processing time.

300

—e— Ripple-Carry Adder

250 -+-- —8— Carry-Look-Ahead Adder
—— Redundant Arithmetic Adder
200 - -- —6— Sklansky Prefix-Adder

—e— Sklansky Prefix-Incrementer /

150 /
100 / 3 -
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

w
Fig. 10.

Circuit Area

Comparison of the circuit area.

dant arithmetic adder and the Sklansky prefix-adder structures
have significantly low processing times.

As expected, in what concerns the circuit area, the ripple-
carry adder architecture requires the lowest area (see fig. 10).
Since all other topologies are based on binary-tree structures,
they present step variations whenever the operands width w is
an integer power of two. In these specific cases the circuit area
required to implement any fast adder architecture gets closer to
the circuit area required for a ripple-carry adder. Among the set
of analyzed structures, the redundant arithmetic architecture
is the topology that requires the greatest circuit area for its
implementation.

1V. EXPERIMENTAL RESULTS
A. StdCell library implementation

To assess the results obtained with the model, the considered
adder structures were described in VHDL and implemented
using a StdCell library based on a 0.25um CMOS process
from Virtual Silicon Technology [9] and using the set of tools
provided by Synopsys. These implementations were carried
out with w = 8 bit operands.

Table Il presents the implementation results for each consid-
ered topology, including the estimation of the power dissipated
for each architecture when a system clock corresponding to the
maximum allowed frequency for each circuit is used. Among
the considered adders, the redundant arithmetic structure is the
one that dissipates the greatest amount of power. In fig. 11(a)
and 11(b) it is presented the comparison of the propagation
time and of the required circuit area obtained, respectively,
using the Tyagi model [8] and the StdCell library. To carry
out this comparison, it was performed a normalization of
the values obtained using both the adimensional theoretical
model and the StdCell technology, so that both the processing

TABLE I
IMPLEMENTATION RESULTS OBTAINED FORw = 8 AND USING THE
STDCELL LIBRARY BASED ON A 0.25um CMOS PROCESS.

Topology Time [ns] #Cells Area [um?] Power [mW]
RC 4.68 56 2663 11.387
CLA 2.22 67 3056 13.000
RA 1.86 90 2882 15.161
SA 2.06 80 3057 13.278
Sl 0.64 94 3506 14.622
stdCell 0.25um CMOS
2 1.00 -
= M Tyagi Model
E 080 OstdCell 0.25um CMOS
E
2 060 1--
0.40
020 t-- - ﬂ —————————————————————————
CLA RA SA SI
(a) Processing time. Topelooy
stdCell 0.25um CMOS
» 175
§ W Tyagi Model] ’7
5 150 T gstdcell 0.25um CMOS
é 1.25 |
% 1.00 4
Som—M N B
E
2 050 1
0.25 1
0.00 - |
RC CLA RA SA SI
(b) Hardware resources. Toralooy
Fig. 11. Comparison of the results obtained with the theoretical model and

with the StdCell library based on a 0.25um CMOS process.

time and the implementation area of the ripple-carry circuit
are equal to 1 for these two models. This normalization was
performed by considering that the adimensional measure that
represents the circuit area in the model and the number of
gates used by each adder circuit implemented using the StdCell
library represent the same performance measure that states the
amount of hardware resources required by each circuit.

As it can be seen in fig. 11(a), the processing time ob-
tained using this library complies very closely with the values
predicted by the theoretical model. The same conclusion can
be taken from the chart presented in fig. 11(b), concerning
the number of logic cells required by each adder circuit. The
observed differences can be justified by the synthesis process
performed by the design tools to map the VHDL description
of each circuit to the logic cells of the StdCell library. Even
so, one observes that the variation of the magnitudes of
the obtained values comply very closely with the variation
predicted by the model.

B. FPGA based implementation

The methodology followed for the StdCell library was also
adopted to implement the adder circuits on a general purpose

FPGA, the XCV2000E VIRTEX-E FPGA device [10], using
the set of tools provided by Xilinx. As before, it was adopted
for the parameterization of the several architectures operand
widths of w = 8 bits.

In table Il it is presented the implementation results,
where the hardware resources were measured in terms of the
number of required CLB slices and the number of look-up
tables (LUTSs) used in each implementation. As before, it was
performed a normalization of the values obtained using the
model and the experimental results. It is important to note
that, for this specific case, where logic functions are usually
implemented using look-up tables instead of the traditional
logic cells, the results obtained from this comparison should
be taken with some care, since two completely different
implementation supports are being compared with each other.
Nevertheless, one can conclude from the charts presented in
fig. 12(a) and 12(b), relating the variations of the processing
time and of the hardware resources, that the model still
provides reasonable prediction of the performance measures

TABLE Il
IMPLEMENTATION RESULTS OBTAINED FOR w = 8 AND USING THE
XCV2000E VIRTEX FPGA [10].

Topology Time [ns] # Slices # LUTs
RC 4.427 20 16
CLA 4.029 25 26
RA 3.233 28 36
SA 3.233 27 32
Sl 2.068 32 44
Virtex-E XCV2000E FPGA
2 1.00 4
[= B Tyagi Model
E 080 4 O Virtex-E XCV2000E FPGA
£
2 060 -
0.40 +
0.20 4
0.00 -
RC CLA RA SA sl
A . Topology
(a) Processing time.
Virtex-E XCV2000E FPGA
2 175
2 M Tyagi Model
2 150 T [Virtex-E XCV2000E FPGA [
g 125 f--memmmmeeenee e]
% EEmeeeEes e s
% 075+ N B -
Zoso-S N | .
o5+ |- BN -
0.00 - L
CLA RA SA sl

Topology
(b) Hardware resources.

Fig. 12. Comparison of the results obtained for the processing time and
hardware resources (number of CLB slices) using the theoretical model and
the XCV2000E VIRTEX FPGA.

obtained with FPGA based implementations. The greatest
observed differences can be found in the variation of the
processing time and are justified by the completely different
implementation supports: logic cells versus look-up tables.

V. CONCLUSION

A detailed comparison analysis of several fast and efficient
adder architectures for high performance VLSI design was
presented in this paper. A theoretical model was applied to
assess the performance of those adders independently of the
target technology and the obtained results were then validated
by using two real and entirely different implementation tech-
nologies: a StdCell library based on a 0.25um CMOS process
and a VIRTEX-E general purpose FPGA.

The obtained results showed that the adder architecture
based on the radix-2 redundant format converter offered the
lowest processing time when implemented with any of the
considered technologies. However, this adder was also the
topology that presented the highest amount of required hard-
ware resources.

The presented theoretical and thorough analysis and its
validation using two distinct real-world implementation tech-
nologies is an invaluable resource in the selection of the most
appropriate adder topology that should be used to implement a
given arithmetic operation in a high performance VLSI design.

ACKNOWLEDGEMENTS

This work was supported by the POSI program and
the Portuguese Foundation for Science and for Technology
(FCT) under the research project Configurable and Opti-
mized Processing Structures for Motion Estimation (COSME)
POSI/CHS/40877/2001.

REFERENCES

[1] R. P.Brentand H. T. Kung, “A regular layout for parallel adders,” IEEE
Transactions on Computers, volume C-31, no. 3, pp. 260-264, March
1982, reprinted in E. E. Swartzlander, Computer Arithmetic, \Vol. 2, IEEE
Computer Society Press Tutorial, Los Alamitos, CA, 1990.

[2] T. F. Ngai, M. J. Irwin and S. Rawat, “Regular, area-time efficient
carry-lookahead adders,” Journal of Parallel and Distributed Computing,
volume 3, no. 3, pp. 92-105, 1986, reprinted in E. E. Swartzlander,
Computer Arithmetic, Vol. 2, IEEE Computer Society Press Tutorial,
Los Alamitos, CA, 1990.

[3] A. Avizienis, “Signed-digit number representations for fast parallel arith-
metic,” IRE Transactions on electronic computers, volume 10, pp. 389-
400, 1961, reprinted in E. E. Swartzlander, Computer Arithmetic, Vol.
2, IEEE Computer Society Press Tutorial, Los Alamitos, CA, 1990.

[4] Keshab K. Parhi, “Fast VLSI binary addition,” in Proc. of 1997 IEEE
Workshop on Signal Processing Systems: Design and Implementation,
Leicester, U.K., November 1997, pp. 232-241.

[5] Keshab K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation, Wiley-Interscienc, 1999.

[6] Reto Zimmermann, Binary Adder Architectures for Cell-Based VLSI
and their Synthesis, Ph.D. thesis, Swiss Federal Institute of Technology,
Zurich, 1997.

[7] J. Sklansky, “Conditional sum addition logic,” IRE Transactions on
Electronic Computers, volume EC-9, no. 6, pp. 226-231, June 1960.

[8] Akhilesh Tyagi, “A reduced-area scheme for carry-select adders,” IEEE
Transactions on Computers, volume 42, no. 10, pp. 1163-1170, October
1993.

[9] Virtual Silicon Technology Inc., Diplomat-25 Standard Cell Library -
0.25um UMC Process, December 1999.

[10] Xilinx Inc., Virtex-E 1.8V Field Programmable Gate Arrays Datasheet,
v2.3 edition, July 2002.

