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Abstract—As RISC-V ISA continues to gain traction for both
embedded and high-performance computing, the demand for
advanced monitoring tools has become critical to fine-tuning
the applications’ performance. Current RISC-V hardware per-
formance monitors already provide basic event counting but
lack sophisticated features like event-based sampling, which are
available in more established architectures such as x86 and ARM.
This paper presents the first RISC-V Event-Based Sampling
(RVEBS) system for comprehensive performance monitoring and
application profiling. The proposed system builds upon existing
RISC-V specifications, incorporating necessary modifications to
enable the desired functionality. It also presents an OpenSBI
extension to provide privileged software access to newly imple-
mented control status registers that manage the sampling process.
An implementation use case based on an OpenPiton processor
featuring a CVA6 core on 28nm CMOS technology was presented.
The results indicate that the proposed scheme is lightweight, highly
accurate, and does not impact the processor’s critical path while
maintaining minimal impact on overall application performance.

Index Terms—RISC-V, Event-Based Sampling, Hardware Per-
formance Monitors, Performance Monitoring

I. INTRODUCTION

Despite the high complexity of general-purpose processors,
the high computational demands presented by many application
domains often require the full exploitation of the architecture
capabilities to satisfy the performance requisites. This often re-
sults in an added programming effort and a significant barrier to
software developers, as it is generally not obvious what are the
sources of performance degradation. To mitigate this burden,
most Central Processing Units (CPUs) are now equipped with
Performance Monitoring Units (PMUs) to support the profiling
of software via the sampling of hardware events [1], such as
the number of instructions retired, or cache misses.

As the RISC-V Instruction Set Architecture (ISA) continues
to gain traction not only in the micro-controller and embedded
market [2] but also in High-Performance Computing (HPC)
applications [3], better and more complete support for software
profiling tools and methods is needed. RISC-V ISA already
provides the specification of a PMU to count hardware events
through both fixed and programmable counters, and some
efforts have already been made to port widely used software
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profiling tools to RISC-V machines [4]. However, the currently
available methods and tools still lag behind the x86 and ARM
CPU architectures that, on top of supporting direct counting of
hardware events, also allow operating their Hardware Perfor-
mance Monitors (HPMs) in sampling mode [5], [6], [7], where
each counter collects information about the CPU state and can
be parameterized with a specific sampling period.

To that extent, Event-Based Sampling (EBS) is a powerful
profiling technique supported by modern processors through
HPMs. It samples hardware events to identify a vast set of
performance issues such as inter-thread coherence traffic [8],
false sharing [9], long latency remote memory accesses in
NUMA multicore systems [10], data locality problems [11],
bandwidth consumption [12], and conflict cache misses [13].
This method also allows the analyses of instruction pointers
and effective memory addresses, to pinpoint the exact lines of
code (or the data objects) causing bottlenecks with minimal
overhead compared to cycle-accurate hardware simulators.

To achieve such lower overhead, EBS triggers the data
collection step only when certain events occur a predefined
amount of times, reducing traffic and capturing a broader range
of performance insights, particularly in complex and long-
running applications. This approach is less intrusive and offers
more granular and representative data without significantly
impacting the system’s performance.

Major industry players like Intel, AMD, IBM, and ARM
already support EBS through specific implementations like Intel
PEBS [5], AMD IBS [6], IBM MRK [14], and ARM SPE [7].
These implementations are supported on specialized hardware
on the HPM to enable EBS. However, a detailed RISC-V
implementation is still pending, with only brief mentions of its
potential use [15]. As a consequence, RISC-V still cannot per-
form EBS, as no specification for the hardware nor Supervisor-
and User-level software to support it exists.

In this paper, we propose a novel extension to the RISC-V
HPM that introduces EBS capabilities, enabling fine-grained
performance analysis and profiling. Its main contributions are:

1) RISC-V Performance Counter Extension: we propose a
new set of Control Status Registers (CSRs) that provides
support for EBS without requiring processor interruption
or stalling. This allows the processor to trigger samples
of specific performance event counts (e.g., cache misses,
branch mispredictions) as well as from General-Purpose
Registers (GPRs), offering improved insight into system
behaviour without the overhead of continuous monitoring.

2) OpenSBI Extension: to provide supervisor-level access to
the new EBS feature, we extend OpenSBI with new API



functions. These interfaces allow the operating system and
hypervisors to control, configure, and retrieve performance
data from the new CSRs performance counters securely.

3) Validation: we validate the proposed extension on a CVA6
core, embedded on an OpenPiton manycore framework,
ensuring that the EBS system operates as intended and
integrates smoothly in the existing RISC-V architecture.

The source code for the modified OpenPiton, CVA6,
OpenSBI and tests are available at https://github.com/hpc-
ulisboa/RVEBS.

II. BACKGROUND

Although EBS has seen significant development across major
architectures, its implementation varies in sophistication. Intel’s
PEBS, AMD’s IBS, and ARM’s SPE all provide detailed
performance data, enabling precise software optimizations [16].
Meanwhile, RISC-V still lacks native support for EBS.

A. Event-Based Sampling: Intel, AMD and ARM

Precise Event-Based Sampling (PEBS) [5], available in In-
tel processors provides detailed performance data by captur-
ing specific hardware events, with minimal overhead. Unlike
traditional performance monitoring, PEBS directly associates
performance events with specific instructions in the instruction
pipeline. This is achieved by recording the architectural state
(e.g., register contents and program counter) when an event
of interest occurs, thereby providing more fine-grained and
accurate performance data. PEBS also uses dedicated hardware
buffers to store the samples, which can be later post-processed
by insightful tools to allow the tuning of real-world workloads.
Intel PEBS has been widely adopted in tools like Intel VTune
Profiler [17] for profiling high-performance applications.

AMD, on the other hand, provides an Instruction-Based Sam-
pling (IBS) mechanism [6] that supports two sampling types:
instruction fetch sampling (IBS fetch) and micro-operation
sampling (IBS op). Control registers are programmed depend-
ing on the sampling type, with one counter monitoring in-
struction fetches and another tracking micro-operations. When
an event is sampled, information about the event is stored in
Model-Specific Registers. However, while IBS offers rich in-
sights into micro-operations, it lacks the granularity of sampling
individual hardware events, like load or branch instructions.
As a result, and despite providing valuable data, IBS is less
accurate compared to Intel’s PEBS [18]–[20].

ARM’s precise event sampling mechanism is implemented
through the Statistical Profiling Extension (SPE) [7]. Like
AMD’s IBS, SPE counts dispatched micro-operations, allowing
it to monitor and sample data from those events.

B. RISC-V Performance Monitoring

As RISC-V gets growing adoption, the ISA has kept evolv-
ing, receiving several revisions and new extensions, as well
as more sophisticated toolchains for software development and
performance analysis (e.g., [4]). In what concerns the PMU, a
minimum interface was initially defined in version 1.7 of the
privileged specification [21], but has grown until version 1.11
[22]. Presently, RISC-V allows monitoring of both fixed (cycles

and retired instructions) and up to 29 programmable counters,
with the latter being implementation-dependent. Additionally,
the specification allows inhibiting individual counters and con-
trolling supervisor access to event counters.

The evolution of the RISC-V HPM specification align it more
closely with other ISAs, showcasing a growing sophistication in
performance analysis tools. However, advanced features such as
EBS are yet to be specified on the RISC-V ecosystem, creating
a critical gap in RISC-V’s performance analysis infrastructure.

III. RVEBS
Traditional performance monitoring based on continuous

sampling often imposes a non-negligible overhead, which may
compromise the gathered system information. Accordingly, the
proposed EBS extension significantly reduces this monitoring
overhead while providing more contextually relevant perfor-
mance data. It does so by implementing an event-triggered
sampling system that captures the system state information only
when specific events occur a predetermined amount of times.

The EBS system for RISC-V proposed in this paper is more
closely related to the functionality of Intel’s PEBS than the
other implementations presented due to its low overhead, the
high accuracy it achieves and its low sensitivity to sampling
rate. However, while PEBS is highly effective, it is tightly
integrated with Intel’s proprietary architecture and uses inter-
rupts to stop normal code execution to run microcode that
captures system information. In contrast, our proposed RISC-V
performance counter extension samples system information
in parallel with normal code execution, never stalling the
processor. By leveraging a similar sampling mechanism, our
extension aims to deliver high-precision event recording and
low-overhead performance monitoring, filling a critical gap in
RISC-V’s performance analysis tools.

A. Proposed System Architecture

The proposed EBS system for RISC-V comprises three inter-
connected parts that work together to capture the performance
data with minimal overhead, as it is shown in Figure 1a:

1 the datapath of the processor under analysis, where in-
structions are fetched, executed, and committed; during
program execution, events are monitored by the perfor-
mance counters in the HPM module;

2 the HPM module is responsible for monitoring and count-
ing the hardware events; each time a specific event occurs
in the datapath, a corresponding counter in the HPM is
incremented; this process happens continuously as the
program executes; however, event counting alone is not
sufficient for detailed performance analysis, as it provides
only cumulative data without context; to address this, the
EBS system extends the HPM to trigger sampling when
certain event thresholds are reached;

3 the sample and store logic is responsible for gathering
data from multiple sources, including the HPM counters,
the processor’s datapath, and the register file; once the
sampling is triggered, this logic captures a snapshot of
the current system state, which includes key data like the
Program Counter, performance counter values, and GPRs.

https://github.com/hpc-ulisboa/RVEBS
https://github.com/hpc-ulisboa/RVEBS
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Fig. 1: Proposed: (a) sampling system architecture; (b) new RISC-V HPM CSRs.

In the considered architecture, the sampled data is first stored
in local registers before being transferred to a dedicated mem-
ory buffer. This buffer serves as an intermediate staging area
so that the final memory transfer operation is only performed
when the processor is not using the load/store system. Finally,
the sampled data is committed to main memory, where it can
be accessed by privileged software for analysis.

B. Current Missing Facilities

The existing RISC-V privileged specification version
20240411 already supports fixed and programmable event
counting but lacks some important functionalities for event-
based sampling. Specifically, it does not provide means to:

• set thresholds and compare them with counter values;
• trigger a sample when thresholds are reached;
• control the storage addresses of the samples;
• control which signals are sampled;
• request sample storage in the memory system.
To address these limitations, the proposed EBS system is

designed to operate with minimal interference in the normal
processing workflow. This system extends the RISC-V specifi-
cation by adding the necessary hardware facilities and system-
level support for effective EBS.

C. Proposed RISC-V Specification Improvement

To support EBS, the new CSRs presented in Figure 1b are
introduced:

• threshold management registers: to manage the thresh-
olds to be considered by each counter, allowing the system
to compare register values against predefined limits and
trigger the sampling when the thresholds are met;

• memory address register: to specify the physical address
where sampled data is to be stored, ensuring a proper data
management and retrieval;

• configuration control register: to select the signals to be
sampled, including various counter values and GPRs.

These new CSRs are integrated within the machine-level
address range to align with the RISC-V HPM specification.

D. OpenSBI EBS Extension

To allow secure and streamlined supervisor-level access to
the proposed new facilities of the HPM, a new OpenSBI
extension was specified. It provides a standardized interface for
privileged software to interact with the performance monitor-
ing hardware securely and efficiently. This ensures that only
authorized supervisor-level software can configure the EBS
system, preventing unintended access or manipulation of the
performance counters and configuration CSRs.

The extension introduces a set of Supervisor Binary Interface
(SBI) calls tailored to control the EBS system. These include:

• event configuration: the supervisor can configure which
hardware events will trigger sampling;

• threshold management: the supervisor can set thresholds
for event counts in the HPM;

• memory write location: after allocating a memory region,
the supervisor can configure the EBS system to store
samples in that location;

• sample configuration: the supervisor can program the
system to sample any of the information available in that
implementation.

By incorporating these functionalities, the OpenSBI exten-
sion ensures that the EBS system can be seamlessly integrated
into existing RISC-V platforms. It provides the necessary tools
for supervisor-level software to interact with the new CSRs
in a way that is both flexible and secure. Moreover, the use
of standardized SBI calls ensures portability across different
RISC-V implementations. The design of the OpenSBI exten-
sion emphasizes modularity and scalability, allowing future
enhancements or additional performance monitoring features
to be added without requiring major changes to the interface.

IV. IMPLEMENTATION

The proposed EBS system, along with the OpenSBI ex-
tension, was implemented in the OpenPiton processor [23]
[24] framework integrated with a CVA6 core [25]. Naturally,
other processor environments and architectures could equally
be considered with minor differences in the system integration.
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The considered implementation required some modifications
in the original system architecture, including changes in the
HPM and in the core’s cache subsystem to support new CSRs
and efficient memory access for storing the sampled data. The
CVA6 core already implements the mcycle and minstret fixed
counters, together with 6 programmable counters. OpenPiton
operates with three cache levels: L1 (divided into data and
instruction caches), L1.5 (serving both as glue logic for the
coherent mesh and as write buffer for the L1) and L2.

The complete RVEBS implementation, illustrated in Figure2,
can be divided into three domains:

1) system configuration: to setup the event types, threshold
values, and sampling behaviour;

2) counting and sample triggering: to monitor the events
and trigger sampling when specific thresholds are met;

3) data sampling and storing: to handle the transfer of the
sampled data into the main memory with minimal impact
on the processor’s performance;

Each of these components plays a crucial role in the system’s
ability to perform efficient and accurate event-based sampling.

A. System Configuration Domain

The configuration of the EBS system is a key element
that defines the overall system operation. Besides determining
which events to monitor through the mhpmeventX CSRs, this
part allows the selection of:

• the considered sampling rates, through the
mhpmthresholdX CSRs (see Figure 1b i));

• the memory location where samples are stored, through
the mhpmmaddr CSR (see Figure 1b ii));

• definition of which information is stored in each sample,
through the mhpmebscfg CSR (see Figure 1b iii)).

The implemented OpenSBI extension plays a critical role
in this system configuration since the provided functions al-
low a simple and secure supervisor-level interface for setting
up and managing the events, thresholds and sample options,
making the system highly configurable for different perfor-
mance monitoring scenarios. Its implementation includes sev-
eral SBI calls responsible for interacting with the HPM CSRs:
ebs_get_event and ebs_set_event functions manage

the event configuration register; ebs_get_threshold and
ebs_set_threshold interact with the threshold regis-
ters; ebs_get_maddr and ebs_set_maddr functions han-
dle the memory address register; ebs_get_ebscfg and
ebs_set_ebscfg deal with the EBS configuration register.

B. Counting and Sample Triggering Domain

This domain represents the main functionality of the pro-
posed EBS system, determining when samples are captured.

At the occurrence of each event (previously programmed to
be monitored), the corresponding counter is incremented. At
this stage, it is important to note that the triggering procedure
implemented in RVEBS is not controlled by counter overflows,
as it is in other EBS implementations like Intel’s PEBS [18].
Instead, each counter is paired with a counter_offsetX regis-
ter, that stores the value of the corresponding counter at the last
trigger occurrence. Hence, the trigger logic does not compare
the counter values with the defined threshold but to the sum of
the threshold with the count offset. This approach has a two-
fold effect: i) it allows the counter to continuously increment,
maintaining the existing HPM specification behaviour; ii) if a
sample is delayed (a possibility discussed later in this Section),
the following sampling intervals will not be affected.

Once a sample is triggered, the Sample Regfile (newly added
to the HPM, see Figure 2) is updated. This register file is
composed of 14 registers that hold all the information the
mhpmebscfg CSR can select at the cycle the trigger occurs
(i.e., the PC, all the counter values, and the GPRs indicated
by the ADDRX fields of mhpmebscfg). Although this may require
more hardware resources, it assures all the sample data is cycle-
accurate. To access all 4 GPRs in one single cycle, the core’s
register file was modified to have 4 additional read ports.

C. Data Sampling and Storing Domain

Once a sample is triggered and the Sample Regfile is
updated, the system must capture and store the relevant data
without interfering with the ongoing execution of the processor.

Starting in the cycle after the trigger, the Data Selection
Logic (see Figure 2) iterates over the Sample Regfile at 1
register per cycle and checks mhpmebscfg to determine if that
value should be stored or not (except for the PC register, which



is always stored). If the information is configured to be stored,
the register data along with the address it will be stored is
sent to the RVEBS Store Buffer (newly added to the L1.5
Cache Adapter, see Figure 2). Once the buffer acknowledges the
reception, the memory address offset register maddr_offset is
incremented by 8 bytes, the length of each sampled information.

The RVEBS Store Buffer is a small FIFO implemented in
CVA6 Cache Subsystem, at the L1.5 Cache Adapter module,
where the request queues for the L1 data and instruction caches
are already located. Following the principle of not interfering
with the core’s normal execution, the RVEBS Store Buffer only
makes its requests to transfer the information into main memory
when the L1 request queues are empty.

Naturally, in the event the L1 caches are very active, this
might cause the RVEBS Store Buffer to fill-up and prevent
the Data Selection Logic from sending more information to
memory. In such a situation, the Data Selection Logic stops
while the RVEBS Store Buffer is full, delaying new samples
(if necessary) but never stalling the processor’s execution path.

The store requested to the L1.5 cache are issued as non-
cachable writes. This, along with the requests being injected
to L1.5 through a dedicated buffer (with very little priority)
mitigates the memory overhead of the EBS system.

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the proposed EBS system
for RISC-V, we mostly follow the methodology presented in
[18], by gathering key metrics including instructions attribution,
accuracy, sensitivity to sampling rate, and time overhead. We
also measure the area overhead introduced by RVEBS.

Part of the presented results were obtained using a Verilator
(version 5.008) simulation of the OpenPiton processor [24]. As
a consequence of the long simulation time, the total number of
instructions executed in each test had to be limited. Never-
theless, the ratios between each type of instruction have been
maintained such as to guarantee accurate results.

A. Instruction Attribution

The first experiment aims to evaluate the potential bias
introduced by the sampling mechanism and how accurate it
attributes events to specific instructions that increment the same
event count.

li a0, 100000
loop:
sb a1, 0(a2) # S1
sb a1, 0(a2) # S2
sb a1, 0(a2) # S3
sb a1, 0(a2) # S4
addi a0, a0, -1
bnez a0, loop

Listing 1: Store loop benchmark.

The conducted experiment consists of running a loop of store
instructions a large number of times (see Listing 1), triggering
samples with the store access event and using a sample interval
indivisible by the number of store instructions as to prevent
the sampling rate from always being reached by the same

instruction. In this case, if the system presents no bias in the
instruction attribution, each of the 4 store instructions should
trigger 1/4 of the total samples.

The obtained results are validated by checking the PC of
the instruction that triggered each sample, and show that
RVEBS presents no bias in instruction attribution, as each store
instructions is responsible for 25% of the sample triggers.

B. Event Sampling Accuracy

To evaluate the accuracy of the presented EBS mechanism,
it was conducted an experiment that evaluates the number of
samples taken from a benchmark with a known number of
events. Similarly to the tests performed on PEBS and IBS
[18], the number of retired instructions and L1 data cache
misses were monitored while executing a RISC-V version
of the Accuracy-Bench benchmark [18] (see Listing 2). This
benchmark was slightly modified to reduce the simulation
time: reduction of loop1 iterations to 100; reduction of loop0
iterations to 1000; and replacement of the pseudo-randomized
pointer-chasing memory access pattern, by a simpler code that
increments the memory pointer by the width of the L1 data
cache line (128 bits). The considered sample rate was 10000.
Furthermore, the addi instruction is used as many times as it
is needed to fulfil the tested ratios between the number of load
instructions and the total instructions inside loop0 (the tested
ratios were 1

20 , 1
40 , 1

60 , 1
80 and 1

100 ). The evaluated accuracy
was defined as the deviation between the number of samples
captured by the EBS system and the expected ground truth (i.e.,
the known number of monitored events).

li a4, 100 // continues
loop1: ld a2, 0(a3)
li a1, 1000 addi a3, a3, 16
loop0: addi a1, a1, -1
... bnez a1, loop0
addi t0, t0, 1 addi a4, a4, -1
... bnez a4, loop1

Listing 2: Simplified Accuracy-Bench benchmark for RISC-V

On the implemented RVEBS system, the monitoring of the
two considered events (retired instructions and L1 data cache
misses) resulted in 100% accuracy for both events, when
considering all load instruction ratios. Comparing to the re-
sults of [18], RVEBS performs similarly to PEBS, which
also achieved 100%, and better than IBS, which reached its
maximum accuracy of 97.6%, while operating in fetch mode
and measuring the instructions retired with a 1

20 load instruction
ratio. This is likely due to IBS’s delay between the sample
interrupt triggering and the execution of the interrupt handler
to pause the counters. In contrast, the implemented RVEBS
system only takes 14 cycles to store an entire sample in main
memory (assuming that there is no other simultaneous L1 cache
requests to the next cache level).

The reason RVEBS attains 100% in all cases with a sampling
rate of 10000 is because the contention caused by the load
instructions is never enough to stall the Sample RegFile. In
other words, even in the least favourable scenario of 1

20 of
loads per total loop instruction, each sample has, at least, a 9500



cycles time-slot to be copied from the RVEBS Store Buffer to
main memory.

To introduce an accuracy loss in the RVEBS system, at least
one of two conditions must be met: i) the sample rate is so
low that it would require the samples to be spaced less than 14
cycles apart to remain accurate, or; ii) the memory contention
is so heavy that there are not enough cycles with no L1 cache
requests to save each sample.

This assumption is also valid by running an extra test
using the instructions retired as the monitored event with two
modified conditions: i) the ratio between load instructions and
total instructions in loop0 is increased to 1

4 ; and the sampling
rate was decreased to 16. As expected, the accuracy in this run
dropped to 88.8%, which still stands as a good performance
given the test conditions.

C. Sensitivity to Sampling Rate

Another analysis relates the variation of the accuracy with
the decrease in the sampling rate. To characterize this aspect,
the same simplified Accuracy-Bench benchmark was utilized,
this time configured to have a 1

20 ratio of load instructions in
loop0. The monitored event in this test was the L1 data cache
miss and the sampling rate varied between 10 and 100000.

The obtained results show that RVEBS achieved 100%
accuracy with all the tested sampling rates, which is better
than the results observed by [18] for PEBS and IBS. The
prior reaching 100% in all sampling intervals except for 100,
in which it got 99.3%. For IBS, data in [18] only starts at a
sampling interval of 10000, where it achieved just 41.0%; with
the sampling rate set at 100000, IBS achieved 94.3%. This
better performance can be explained by RVEBS implementation
that ensures that the processor is never stalled or interrupted.
Unlike PEBS and IBS, the samples are taken in parallel with the
normal processor execution, making this method much lighter
in terms of the total cycles needed to take and store each
sample. Furthermore, under those conditions there are at least
190 cycles between each sample where the L1 caches do not
make any request to the next cache level, which is more than
enough for a RVEBS sample to be stored in main memory.

To evaluate the RVEBS sampling rate limit, another run was
conducted with the sampling rate being set again to 10 and the
monitoring of retired instructions. This setup should saturate
the sampling system by reaching consecutive sample thresholds
less than 14 cycles apart. Such assumption was confirmed and
the resulting accuracy dropped to 18.1%. However, it should
be noted that these conditions are not regular use-cases of EBS
systems, and were not, as such, considered in [18].

D. Time Overhead

To determine the time overhead introduced by the proposed
RVEBS system, the modified Accuracy-Bench benchmark was
run once more while monitoring the retired instructions event
and with a 1

20 load instruction ratio, with and without the EBS
system being active. Given that RVEBS was designed to prevent
any stalling of the processors normal execution, it is expected
that the run time of the benchmark is not affected.

TABLE I: Added silicon area required to omplement CVA6
with RVEBS. The added area is decomposed into HPM, L1.5
Adapter and GP Regfile modules. All values in µm2 except for
the ∆/∆CVA6 column.

Module RVEBS Vanilla ∆ ∆/∆CVA6 [%]
CVA6 Core 239110.99 216568.71 22542.28 10.4

HPM 15307.05 3181.75 12125.30 53.8
GP Regfile 15065.31 9693.79 5371.52 23.8

L1.5$ Adapter 2959.41 2214.80 744.61 3.3
Others 205779.22 201478.37 4300.85 19.1

The obtained results show a 0.01% variation. This small
difference is mostly related to the spent time to setup the
sampling system. Once again, this result compare favorably
with the ones observed by [18]. PEBS and IBS were reported
to introduce 12.55% and 1.44% time overhead in similar
conditions, respectively,

E. ASIC Synthesis

To assess the amount of necessary resources to implement
the proposed RVEBS, an ASIC synthesis (with and without
modifications) was run for UMC’s 28nm technology with a
target clock frequency of 500MHz (maximum possible value),
with the existing SRAM modules of the cache memories being
black-boxed to avoid any interference with the synthesis results.
Given that all introduced modifications are located inside the
CVA6 core, that was the top module that was synthesized.

As presented in Table I, the addition of the RVEBS system
increased the total area of the CVA6 core by approximately
22542µm2 (10.4%). The HPM represents 53.8% of this area
increase, since it contains the new CSRs, a state machine to
control the sample taking and memory transfer, and the Sample
Regfile. The next most increased component was the GPRs
Regfile, which represents 23.8% of the total increase. This is
mainly due to the 4 new read ports added to the component,
which increase its complexity. Having a smaller (but still no-
ticeable) impact, the L1.5 cache adapter modification amounted
3.3% of the total area increase. This module now contains the
RVEBS Store Buffer.

It is also important to note that the synthesis reported that
none of the introduced or modified components are part of the
critical path, which remains in the fused multiply-add facilities.

VI. CONCLUSIONS

In this paper, we have introduced the first RISC-V Event-
Based Sampling (RVEBS) system designed for comprehensive
performance monitoring and application profiling. Our sys-
tem builds upon existing RISC-V specifications, incorporating
necessary modifications to enable the desired functionality.
We demonstrate an implementation use case on an OpenPiton
processor featuring a CVA6 core on 28nm CMOS technology.
The results indicate that the proposed scheme is lightweight,
highly accurate, and does not impact the processor’s critical
path, while maintaining minimal impact on overall application
performance. Moving forward, we plan to develop the RVEBS
framework further and explore its application across different
computational workloads.
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