
Neural Network Predictor for Fast Channel

Change on DVB Set-Top-Boxes

Tomás Malcata1,2,3[0000−0002−2296−9803], Nuno Sebastião4,5[0000−0001−9537−0554],
Tiago Dias1,4,5[0000−0001−7445−5823], and Nuno Roma1,2,3[0000−0003−2491−4977]

1 INESC-ID
2 Instituto Superior Técnico

3 Universidade de Lisboa
4 Instituto Superior de Engenharia de Lisboa

5 Instituto Politécnico de Lisboa
tomas.malcata@tecnico.ulisboa.pt, nuno.sebastiao@isel.pt,

tiago.dias@isel.pt, nuno.roma@inesc-id.pt

Abstract. With the generalization of digital Television (TV), keeping
the channel change delay as low as possible gradually became a di�-
cult requisite in what concerns the resulting user's Quality-of-Experience
(QoE). Frequently, this latency may be higher than 2 seconds. While
many state-of-the-art Set-top-Boxes (STBs) already include a shadow
tuner to anticipate the tuning of the next channel, they strive to pre-
dict which channel should be pre-tuned, generally opting for one of the
adjacent channels. The presented research proposes the use of a pre-
dictive system to assist the STB in the forecast of the channel(s) the
user will select next. The implemented predictor is based on a Recur-
rent Neural Network (RNN) and makes use of STB log data concerning
the user's channel changes history to train (and adjust) the model ev-
ery week. To attain this objective, the most convenient hyperparameter
combination that not only ful�lled the aimed prediction accuracy but
also suited the rather limited computational constraints of most current
STBs had to be identi�ed. The obtained experimental results, validated
using four embedded processor families commonly equipping commer-
cial STBs, showed a prediction accuracy of 50.2% for a single-channel
prediction and 67.7% when �ve channels were simultaneously predicted.
When combined with the existing dual-tuning system of current STBs,
the proposed predictor can save as much as 1000 seconds per month in
TV channel change delays, greatly improving the resulting user's QoE.

Keywords: Channel Change Delay · Set-Top-Box · Predictive System
· Recurrent Neural Network.

2 Tomás Malcata, Nuno Sebastião, Tiago Dias, and Nuno Roma

1 Introduction

Digital Video Broadcasting (DVB) systems, either DVB-C, DVB-T or DVB-
IPTV, typically su�er from a high channel change (zapping) time. This results
from the inherent limitations of transmitting the data at a constant bitrate, on
a broadcast method (in which there is no ability to request additional data) and
having only speci�c points in time where decoding can start (due to the video
compression techniques). Such limitations make the total zapping time range
from a couple of seconds to tenths of seconds, which signi�cantly reduces the
user's Quality-of-Experience (QoE) when zapping through the channels.

Operators that control their delivery networks, typically those that have
DVB-C and DVB-IPTV networks, commonly rely on custom built specialized
hardware devices installed in the customers premises, denoted as Set-top-Boxes
(STBs), to deliver their services. Operators may decide to include in these devices
additional features that allow to reduce the channel change time. Nevertheless,
due to cost reasons, such embedded devices are commonly restricted both in
terms of these additional features as well as in their computational capabilities.

Various methods have been devised to reduce the channel change time [3, 5,
8]. However, all of them have an additional cost to the operator, either because it
requires additional hardware resources or additional bandwidth in the network.
Since these resources are limited, the best QoE is achieved when the user actually
changes to the channel(s) for which the system was previously optimized.

Using prediction systems based on Neural Networks (NNs) [6] has now be-
come more feasible, which allows to more accurately predict the channels that
the user will watch next. With this additional information it becomes possible
to dynamically con�gure the STB in order to achieve the previous goal (i.e.,
provide the smallest possible delay to change to the desired channel), by con-
�guring the local system resources to preemptively get the data needed to start
playback of a new channel. Furthermore, it is preferable to have the prediction
system using only the already available computational resources of the STB, as
opposed to having a centralized solution, due to the smaller cost. However, this
means that the computational load of the predictor should be light enough so
that it is compatible with the limited computational resources that exist in the
STB.

This paper presents a method that predicts the channel change behavior of
a given user based on a Recurrent Neural Network (RNN) that suggests a list
of channels that the user will most probably watch at any given moment. Such
RNN can be trained and executed entirely in the computationally restricted
environment of a STB. In Section 2, an overview of the related work is provided
while Section 3 presents the proposed solution to predict the user's channel
change behavior. Section 4 presents the assessment of the proposed model both
in terms of its prediction accuracy and of the computational requirements on
various typical embedded platforms, similar to those used in STBs. Finally, some
conclusions are drawn in Section 5

Neural Network Predictor for Fast Channel Change on DVB Set-Top-Boxes 3

2 Related Work

The channel change time is the result of the sum of various delays that can
be divided into: i) distribution network access delay, i.e., the carrier frequency
tuning time, for DVB-C or DVB-T, or the typical multicast group join time of
DVB-IPTV; ii) synchronization delay, i.e., the time it takes until a random access
point in the transport stream is received; iii) video bu�ering delay, i.e., the time
it takes to �ll the bu�ers with the data broadcasted at a constant bitrate to a
level at which playback can start; and iv) device processing delays, i.e., key press
event handling and internal processing - typically quite small when compared
to the other delays. The sum of these delays may vary from a couple of seconds
to tenths of seconds, with the synchronization and bu�ering delays being the
largest contributors.

Some STBs possess dedicated hardware to assist in reducing the channel
change time, e.g., by having the ability to simultaneously capture multiple
streams, demultiplex various channels and even the ability to decode more than
one video stream. The channel change time when using all of these capabilities,
including simultaneous video decoding, allows the channel change time to be as
low as 20 ms. However, since these capabilities come at a cost, the actual number
of channels that can be simultaneously processed is quite limited.

Besides the use of additional dedicated hardware, it is also possible to reduce
the channel change time by having additional companion streams or an addi-
tional medium to fetch the required data to �ll in the video bu�ers in a faster
way. This additional medium is most commonly a network connection, which is
nowadays a common feature even on the STBs of the DVB-C operators.

Regardless of the technique used to reduce the channel change time, the
amount of resources is always limited and thus requires the system to select
which channel (or channels, depending on the available resources) it should pre-
pare to change to. Ideally, the system would always be prepared to change to the
channel that the user will watch next. Furthermore, when looking at solutions
that require additional bandwidth to support a faster channel change (e.g., ad-
ditional dedicated streams or a network connection), it is important to note that
these also impose an increased cost to the operator and should be minimized.

Furthermore, whether the distribution network is DVB-C, DVB-T or DVB-
IPTV, the use of prediction systems to determine the next watched channel
signi�cantly helps in making a better use of the available resources to reduce the
channel change time [1, 5, 8, 12], either by con�guring the local system resources
(e.g., demuxer or video decoder) [4] or by preemptively getting the data from
the network to provide the streams with optimal delay [3].

3 Proposed Solution

3.1 RNN Model

NNs [6, 9] present several advantages also for the development of channel change
prediction systems. Firstly, the inference procedure in NNs is very fast, which

4 Tomás Malcata, Nuno Sebastião, Tiago Dias, and Nuno Roma

is quite important to minimize the delay when choosing the next channel to be
displayed in a channel change event. Secondly, NNs provide high tolerance to
failure even if some input data is incomplete. This feature is quite relevant for
STB-oriented prediction systems, since the input data (i.e., the users' channel
changes history) is stored in logs that might not always contain all the required
data due to unexpected events, such as log corruption or lack of disk space.
The capability of a NN to adapt its behavior dynamically is another important
aspect, since it is a crucial feature when dealing with data collected in real-time.
For the channel change prediction problem, it is well known that users quite often
change not only their favorite channels list but also their viewing schedules. A
NN model can easily adapt to such changes simply by retraining the network,
i.e., adjusting the neurons weights. This makes it possible to retrain the model
periodically with some new data (e.g., weekly), without having to discard the
existing model and recreate a new one from scratch. Finally, RNNs allow having
the model output depending on sequential data, which is quite advantageous to
signi�cantly improve the accuracy of the prediction in time series problems [9],
like the channel switching sequences of a user.

For the aforementioned reasons, the channel change prediction method herein
proposed is based on a RNN model with a many-to-one con�guration, where the
channel prediction model takes into consideration not only the current date,
time and Television (TV) channel the user is watching for channel change events
but also a set of channels previously displayed to signi�cantly improve the accu-
racy of the prediction. Although other existing models consider additional user
data [2, 5, 8, 10], such as the user preferred TV genres, favourite programs, sur�ng
behaviour, demographic information, etc., we choose to adopt a simpler model
tailored for implementations on STBs, due to the tight computational perfor-
mance, Random Access Memory (RAM) and persistent storage constraints of
these platforms.

The architecture of the proposed RNN model is shown in Fig. 1, where 'Day
of the year', 'Time of the Day' and 'Week Day i ' correspond to the instant the
channel change event occurred, 'Previous channel j ' are the most recent j chan-
nels watched by the user at such instant, and 'Output Channel k ' is an ordered
list of k channels that the user is most likely to switch into, arranged from the
highest to the lowest probability. To reduce the propagation of errors, the 'Day of
the year' and 'Time of the Day' values are normalized to year days and seconds,
respectively. Conversely, the 'Week Day i ', 'Previous channel j ', and 'Output
Channel k ' values are treated as classes and one-hot encoded. Consequently, the
model has 9+C input nodes and C output nodes, where C is the number of
recent channels watched by the user that are considered for the prediction. The
number of nodes in each hidden layer is also C, as shown in Fig. 1. The proposed
RNN model considers a maximum of 50 channels (C = 50), since recent studies
show that most users do not watch more than 50 di�erent channels [12].

The amount of hidden layers, the number of nodes in each hidden layer, the
type of neurons, and the unroll length (i.e., the length of the input sequence
containing the history of the last channels watched by the user) are the model

Neural Network Predictor for Fast Channel Change on DVB Set-Top-Boxes 5

h1 h2 h50

Day of the

year

Time of the

Day

Week Day

0

Week Day

6

Previous

channel 1

Previous

channel 50

Input Layer

Hidden Layer

Output Layer

Output

Channel 1

Output

Channel 2

Output

Channel 50

Probability Vector

Input

Neuron

LSTM

Neuron

Output

Neuron

Fig. 1. Architecture of the proposed RNN.

hyperparameters in�uencing the RNN architecture, as discussed in Section 4.2.
The remaining model hyperparameters are the learning rate, the dropout rate,
the number of weeks and epochs used to train the network.

3.2 Model Implementation

The proposed RNN model was implemented using the KANN framework [7],
which is an open-source standalone and lightweight deep learning library devel-
oped using the C programming language. When compared to other state-of-the-
art frameworks, KANN is as e�cient as most of them for small NN, like the RNN
model herein proposed. Nonetheless, KANN presents important advantages for
implementations on constrained embedded platforms, such as STBs. In partic-
ular, the computational e�ciency of this framework is very high, due to being
implemented using a low-level programming language. For the same reason, its
RAM and persistent storage requirements are quite modest. For example, the
framework contains only four �les that occupy 132 KB in the �lesystem of an
embedded platform. Furthermore, KANN has no software dependencies (except
for the C standard library), which makes it highly portable and suitable for
implementations in most Unix-based computational systems, such as STBs.

Using the KANN framework, the proposed RNN model was implemented
with a specially developed C function based on the following API func-
tions: kann_layer_inputs(), to receive the model inputs; kann_layer_rnn(),
kann_layer_lstm(), and kann_layer_gru(), to implement the hidden
layer(s); kann_layer_dropout(), to perform the dropout regularization; and
kann_layer_cost(), to select the output(s). The inputs to such functions are
the RNN model hyperparameters, i.e., the number of inputs, outputs, and hid-
den layers, the amount of neurons per hidden layer, the neurons' types, and the
dropout rate.

To train the proposed RNN model another custom C function was devel-
oped, since the KANN API only provides a training function for simple Feedfor-

6 Tomás Malcata, Nuno Sebastião, Tiago Dias, and Nuno Roma

ward Neural Networks (FNNs). Such training procedure encompasses two parts:
setup and action. In the setup part, all the information necessary to conduct the
training procedure is obtained, i.e., the amount of inputs, outputs, and train-
able variables of the model. Then, a new NN model is created by unrolling the
initial RNN model through time and turning it into an equivalent FNN. The
training is conducted using this FNN model and the Backpropagation Through
Time (BPTT) algorithm [11] and the resulting parameter values are used to
con�gure the original RNN model. Finally, in the action part, the model weights
are updated as a result of the training procedure.

4 Experimental Evaluation

4.1 Considered Datasets

The datasets used in this work, from which the inputs to the model were ob-
tained, consist of channel change events, considering the day of the week and the
time at which those events occured. Such events are directly obtainable in the
STBs from the users' channel change actions (e.g., channel up button press).

For the analysis presented in this paper, two main datasets were considered:
i) a synthetic dataset, mainly used to make an initial assessment of the model
and its performance; and ii) a real user dataset, which represents the actual
behaviour of a set of STB users. From the real user dataset, a subset of 30 users
was also used to determine the hyperparameters of the model.

The synthetic dataset was synthesized to represent an arti�cial user that has
a mostly consistent and predictable zapping pattern (i.e., a user that repeatedly
watches the same channel on various days at the same time - e.g., to watch the
prime time news program that airs every night at 8 p.m.) that repeats every
week. To achieve this goal, two types of channel change events were added to
this dataset: i) recurrent channel change events and ii) random channel change
events. The recurrent channel change events are those that occur when the user is
starting to watch his routine events (e.g., the news). These occur at similar hours
and happen every week (with slight variations on the actual channel change time,
e.g., +/-30 minutes). The random channel events represent the other channels
that the user watches. For this dataset, the channel changes for a period of two
months were synthesized, which made a total of 227 events. Due to the random
channel events, the prediction accuracy when using this synthesized dataset is
not 100% but is still quite high (85%), as shown in Table 2.

The real user dataset is comprised of the actual channel change events of 300
distinct STB users throughout a two months period. This dataset was split into
two subsets: one that is used to determine the best hyperparameter values for the
RNN, which is composed of the data pertaining to 30 users, and a second that
is used to assess the performance of the proposed solution, which is composed
of the data pertaining the remaining 270 users.

The 30 users subset, which is used to determine the hyperparameters of the
RNN, is comprised of speci�cally selected users whose behaviour causes the RNN

Neural Network Predictor for Fast Channel Change on DVB Set-Top-Boxes 7

to have a higher accuracy (denoted as best 30 users dataset). The selection of the
users to be included in this dataset is based on a random and iterative process.
This process starts by creating 100 distinct RNN models by randomly varying
the hyperparameters. Then, each user from the real users dataset is randomly
assigned to one RNN model and its accuracy is determined. Afterwards, the 5
users with the lowest accuracy are discarded. This process is repeated until 30
users are left, which will comprise the best 30 users dataset.

The approach to use only a subset of the users to determine the hyperparam-
eters was preferred since not only it reduces the e�ort to �nd a good combination
of hyperparameters but also contributes to exclude users that have no clear pat-
tern from a�ecting the RNN model. Moreover, given the available dataset, it
allows testing how a model generalises to other users.

4.2 Network Parameterization

Based on the de�ned model and using the best 30 users dataset, the RNN hyper-
parameters that are best suited to generate models to predict the next channels
were determined. For each hyperparameter, various RNNs were generated (one
for each possible value of a given hyperparameter). Each of these RNNs were
then used to predict the next channels for each user in the best 30 users dataset
and its accuracy was determined. It is relevant to note that a given hyperparam-
eter may result in a higher accuracy for only a speci�c user. Hence, besides the
average accuracy of the 30 users for a given hyperparameter value, the number
of users that present a better accuracy for that hyperparameter value was also
taken into account when deciding which hyperparameter to adopt. As part of the
criteria to choose the best value for each of the hyperparameters, the training
time and the model complexity (measured as the number of trainable parame-
ters) were also considered, due to the fact that these are of particular relevance
when considering that the training phase is executed in a device with limited
computational capabilities, as is the case of a STB.

The evaluated hyperparameters were the following: dropout rate, mminimum
Root Mean Square Error (RMSE), network type, number of hidden layers, unroll
length, and number of weeks used in the training. The dropout rate is respon-
sible for freezing some neurons (a percentage equivalent to the dropout rate)
during the training phase, which counteracts the over-�tting of the RNN. The
minimum RMSE is used as one of the two stop conditions of the chosen RNN
(the other being a maximum of 1500 epochs per train); it represents the risk
level of the RNN - if it is low, then the RNN may perform worst with the test
dataset. The network type (identi�ed by its neuron type) has a signi�cant e�ect
on the training time and the number of overall parameters, with the Long Short
Term Memory (LSTM) being the most complex cell and the vanilla RNN being
the least complex cell. The number of hidden layers used in the model linearly
increases the number of parameters that require training. A higher number of
hidden layers has the consequence of increasing the training time as well as
the memory requirements of such model. Hence, it is advantageous to keep this
value to the minimum possible. The unroll length determines the length of the

8 Tomás Malcata, Nuno Sebastião, Tiago Dias, and Nuno Roma

Table 1. Hyperparameters - assessed values and chosen values (depicted in bold and
underline): # parameters - the amount of parameters to train in the model (×103);
Train time - the time it takes to train 100 samples (in seconds); Accuracy - the average
accuracy of the 30 users (in %); # users - the amount of users of the 30 user dataset
that obtain better results with the given hyperparameter value

Dropout rate
value

Minimum RMSE Neuron type Weeks used to train

0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 LSTM GRU
Vanilla
RNN

1 2 3 4 5

parameters 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 10.9 4.5 14.1 14.1 14.1 14.1 14.1
Train time (s) 145 142 148 149 278 272 245 234 235 159 204 82 17 62 106 131 153
Accuracy (%) 60.2 59.4 58.7 54.1 61.8 61.5 61.8 62.1 61.9 60.3 56.2 53.6 44.4 51.5 55.6 59.0 60.4

users 14 4 9 1 4 7 4 7 8 22 6 2 0 0 0 7 23

Unroll length Learning rate Number of layers
2 3 4 5 6 7 8 0.01 0.03 0.05 0.07 0.09 0.11 1 2 3 4

parameters 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 10.9 4.5 14.1 14.1 26.5 3.9 51.2
Train time (s) 161 147 152 204 255 304 373 159 212 228 253 273 314 159 623 935 963
Accuracy (%) 59.6 60.6 60.1 59.7 59.7 59.4 58.0 60.3 60.4 60.8 60.0 59.2 59.1 60.3 55.6 48.6 44.1

users 6 7 6 4 3 3 1 6 5 8 2 3 6 24 5 1 0

sequence of inputs that will in�uence the output. In this case, it de�nes the
number of channel changes that will in�uence the next channel to be watched
by a given user. The learning rate value a�ects how fast the model can change
and, consequently, it in�uences how fast the model converges and whether or
not it reaches the minimum RMSE risk or not. For this hyperparameter, it was
preferred to reduce the training so that it can be better �tted to the restrictions
of the embedded system for which it is targeted. The number of weeks used for
training does not in�uence the RNN model, its training mechanism or its hyper-
parameters. However, it has a critical role in de�ning the training dataset, since
it is not viable to store all channel change history in the STB from its initial set
up and use it all to train the RNN.

To determine the best value for each of the RNN hyperparameters, a set with
an initial random value for each hyperparameter was created. From this base set,
other sets with di�erent values for the hyperparameter under assessment were
created. Subsequently, for each of those sets, the corresponding model was cre-
ated and evaluated for each user in the best 30 user dataset. The hyperparameter
value that provided the best performance was selected and the process continued
with the next hyperparameter under assessment.

Table 1 shows a summary of the various hyperparameters, the used values in
the assessment phase and the ones chosen as the model's hyperparameter values.

4.3 Accuracy Results

After having settled the RNN hyperparameters, the proposed solution was as-
sessed using both the synthetic dataset - used to determine if the model behaves
as expected - and the real user dataset. For the later analysis, the 270 real users
dataset was used as well as the complete 300 users dataset. For each user, the
accuracy is calculated on a per-week basis. Initially, only the �rst week of data
is considered in the training and for the second week, the accuracy of the predic-
tion is obtained. Subsequently, in the third week, the data from the previous two

Neural Network Predictor for Fast Channel Change on DVB Set-Top-Boxes 9

Table 2. Accuracy and memory usage results for the model's execution on the used
datasets: Artif - the arti�cial user dataset; Real users - the dataset which contains the
events for 300 real users; 270 u - the subset containing 270 users of the real users dataset;
30 u - the subset of the best 30 real users used in the hyperparamter parameterization;
all - all of the real users dataset (300); best - the user with the highest accuracy in the
real users dataset; worst - the user with the lowest accuracy in the real users dataset

#Channels
Accuracy Max mem (MB)

Artif
Real users

Artif Real users
270 30 best All Best Worst

1 83.5 49.3 57.3 50.2 81.6 10.7

0.5 2.4
2 88.3 55.3 69.0 56.9 83.7 17.0
3 93.1 59.8 75.5 61.4 86.8 21.9
4 94.9 63.0 80.2 64.8 88.3 25.5
5 95.2 65.7 83.8 67.7 90.2 29.0

weeks is used to train and the accuracy is obtained for the events in the third
week. This process repeats itself until the full two months of data is considered.
At the end, the average accuracy for each user is gathered and an average of the
accuracy of all the users is presented.

Besides the average accuracy of the arti�cial user and of the real users, the ac-
curacies for the worst user and the best user are also presented. In this situation,
the worst user is the one for which the proposed solution does not improve much
the channel change time, whereas the best user shows the model's performance
with the highest prediction accuracy.

Table 2 shows the accuracy for the various datasets as well as the maximum
amount of used RAM. It is possible to observe that the proposed model achieves
a signi�cantly high prediction success for the 270 real users dataset. It is also pos-
sible to observe that for the 300 real user dataset, the accuracy is slightly higher,
however this dataset includes the users that were initially chosen to determine
the model's hyperparameters, which inherently have a higher accuracy.

As expected, the arti�cial user dataset presents the highest accuracy values
for the various channel con�gurations due to the way that this user was syn-
thesized to have a regular and predictable behaviour. For the real users, it is
worth noting that the model was able to have an average accuracy of 49.3%
when considering the prediction of just one channel for the 270 users dataset
(the most signi�cant user group) and of 65.7% when considering a prediction
of �ve channels. When considering the whole 300 real user dataset, the average
accuracy is 50.2% for one channel (ranging from 81.6% to 10.7%) up to 67.7%
for �ve channels (ranging from 90.2% to 29.0%).

4.4 Execution Performance and Required Resources

To validate and evaluate the viability of the proposed prediction mechanism, the
developed model was executed in four di�erent o�-the-shelf embedded platforms,
equipped with ARM processors commonly adopted by commercial STBs. Table 3
presents the characteristics of each considered embedded platform.

10 Tomás Malcata, Nuno Sebastião, Tiago Dias, and Nuno Roma

Table 3. Embedded platforms considered in the conducted performance evaluation.

ARM1176JZF-S Cortex-A9 Cortex-A53 Cortex-A72

Frequency 700 MHz 866 MHz 1.2 GHz 1.5 GHz
Cores 1 2 4 4
DRAM 512 MB 497 MB 1 GB 8 GB

Table 4. Average training times (in seconds) in the considered embedded platforms.

ARM1176JZF-S Cortex-A9 Cortex-A53 Cortex-A72

Arti�cial user 0.91 0.30 0.19 0.20
Best user 303 133 72 14
Best 30 users 1614 546 506 310
Worst user 4608 4501 4281 1705
All users 3888 2758 1465 627

The executable binary and required libraries occupy 401 KBytes, which can
be easily accommodated in the �lesystem of any of these platforms. Since the
training data is obtained directly from the existing log �les and related data
structures of the STB, it does not require any relevant added storage space. In
what concerns the system memory (DRAM), it was observed that all conducted
experiments did not require more than 2.4 MB. This value represents the amount
of memory needed to allocate the RNN and the training dataset. As it can be
also observed in Table 3, this (peak) memory requirement is easily satis�ed by
the considered embedded platforms and for most current STBs. It should be
noted that this value is independent of the number of channels being predicted
because the model runs only once and returns an ordered list of channels from
which it is chosen the number of channels to consider.

Table 4 presents the observed training times for each of the considered em-
bedded platforms. As it would be expected, the obtained performance is highly
dependent on the processor family and on the corresponding operating frequency.

To ensure the best user's QoE, the considered setup assumed that the training
procedure is executed weekly (thus conforming with the contents periodicity that
is usually adopted by most TV broadcasting networks) and it was scheduled to
a period of the day when the STB is less likely to be used for TV playback (i.e.,
5 a.m.). Naturally, such scheduling can be easily tuned to each particular user
pro�le based on the observation of its routine. Furthermore, and to avoid any
possible perturbation to the user's QoE, a maximum timeframe was considered
for the whole training procedure (i.e., 90 minutes). As it can be observed, all
the considered models (apart from the rather unrealistic worst user scenario) do
not saturate at this stop condition - even when executing in the most restricted
computing platform, presenting an execution time that rarely exceeds an entire
hour (3600 s). In particular, it was observed that 10 to 30 minutes is more than
enough to run this training procedure for the most regular users. Therefore,
the traning parameters and the resulting accuracy validate the feasibility of this
model in these embedded platforms and opens space to de�ne other system-
optimized criteria to balance between the desired accuracy, the resulting saved

Neural Network Predictor for Fast Channel Change on DVB Set-Top-Boxes 11

Table 5. Comparison of the proposed model with other models referred in the literature
in what concerns the obtained average accuracy [%].

#Channels Up&Down[3] J48 Default[1] Ada Boost[1] CL[12] SL[12] Proposed

1 12.2 37.4 37.4 19.3 22.2 50.2
2 23.5 � � � � 56.9
3 31.2 � � 23.8 48.0 61.4
4 � � � � � 64.8
5 � � � 54.8 63.6 67.7

time upon a channel change, and the cost of fetching the required number of
channels.

4.5 Comparison with Other Approaches

Table 5 compares the proposed model with other state-of-the-art models. For the
models presented in [1] and [12], the accuracy was calculated using the datasets
considered in the respective papers. Nevertheless, such results are expected to
be very similar to those that would be obtained if the dataset used in the pro-
posed model was used. For the Up&Down model [3], the presented results are
a summary of the results reported by the authors but only considering the best
combination of one, two, or three channels to be predicted. This last accuracy
was obtained using the same dataset as the one used to train the proposed model.

As it can be observed, the proposed RNN model, speci�cally implemented for
execution environments with low computational resources, clearly outperformed
both the Up&Down model and the other tree-based models. Also, the accuracy of
the proposed model is signi�cantly higher than the one presented in [12] for one
single channel prediction, although it is very similar to a �ve channels prediction.
This is primarily due to the similarity of these two models, since both are LSTM
based. Furthermore, it also shows that the proposed low-resource implementation
for embedded environments based on the Kann framework [7] does not impact
the resulting accuracy, since slight improvements could even be achieved when
compared with the model trained without performance restrictions.

5 Conclusions

A new predictive system based on a RNNmodel was proposed to assist the tuning
mechanism of current STBs in the forecast of the channel(s) a user will select
next, in order to reduce the involved channel change delay. The implemented
predictor makes use of log data concerning the user's channel changes history to
train (and adjust) the model. Considering the tight computational constraints
of most current STBs, the most convenient hyperparameter combination that
still ful�lls the aimed prediction accuracy had to be identi�ed. The obtained
results, validated using four embedded processor families commonly equipping
commercial STBs, showed a prediction accuracy of 50.2% for a single-channel
prediction and 67.7% when �ve channels were simultaneously predicted. When
combined with the existing dual-tuning system of current STBs, the proposed

12 Tomás Malcata, Nuno Sebastião, Tiago Dias, and Nuno Roma

predictor can save as much as 1000 seconds per month in what concerns the TV
channel change delay, greatly improving the resulting user's QoE.

Acknowledgements This work was partially supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT) under project
UIDB/50021/2020.

References

1. Basicevic, I., Kukolj, D., Ocovaj, S., Cmiljanovic, G., Fimic, N.: A fast channel
change technique based on channel prediction. IEEE Transactions on Consumer
Electronics 64(4) (2018). https://doi.org/10.1109/TCE.2018.2875271

2. Cha, M., Rodriguez, P., Crowcroft, J., Moon, S., Amatriain, X.: Watching television
over an IP network. In: Proceedings of the ACM SIGCOMM Internet Measurement
Conference, IMC (2008). https://doi.org/10.1145/1452520.1452529

3. Cho, C., Han, I., Jun, Y., Lee, H.: Improvement of channel zapping time in IPTV
services using the adjacent groups join-leave method. In: 6th International Confer-
ence on Advanced Communication Technology: Broadband Convergence Network
Infrastructure. vol. 2 (2004). https://doi.org/10.1109/icact.2004.1293012

4. Fimic, N., Basicevic, I., Teslic, N.: Reducing Channel Change Time by System
Architecture Changes in DVB-S/C/T Set Top Boxes. IEEE Transactions on Con-
sumer Electronics 65(3) (2019). https://doi.org/10.1109/TCE.2019.2913361

5. Kim, Y., Park, J.K., Choi, H.J., Lee, S., Park, H., Kim, J., Lee, Z., Ko, K.: Re-
ducing IPTV channel zapping time based on viewer's sur�ng behavior and pref-
erence. In: IEEE International Symposium on Broadband Multimedia Systems
and Broadcasting 2008, Broadband Multimedia Symposium 2008, BMSB (2008).
https://doi.org/10.1109/ISBMSB.2008.4536621

6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436�44 (05 2015).
https://doi.org/10.1038/nature14539

7. Li, H.: kann: A lightweight C library for arti�cial neural networks,
https://github.com/attractivechaos/kann

8. Ramos, F.M., Crowcroft, J., Gibbens, R.J., Rodriguez, P., White, I.H.:
Reducing channel change delay in IPTV by predictive pre-joining of
TV channels. Signal Processing: Image Communication 26(7) (2011).
https://doi.org/10.1016/j.image.2011.03.005

9. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-
term memory (LSTM) network. Physica D: Nonlinear Phenomena 404, 132306
(2020). https://doi.org/https://doi.org/10.1016/j.physd.2019.132306

10. Tongqing, Q., Zihui, G., Seungjoon, L., Jia, W., Qi, Z., Jun, X.: Mod-
eling channel popularity dynamics in a large IPTV system. In: SIGMET-
RICS/Performance'09 - Proceedings of the 11th International Joint Confer-
ence on Measurement and Modeling of Computer Systems. p. 275�286 (2009).
https://doi.org/10.1145/1555349.1555381

11. Werbos, P.J.: Backpropagation Through Time: What It Does and How to Do It.
Proceedings of the IEEE 78(10) (1990). https://doi.org/10.1109/5.58337

12. Yang, C., Ren, S., Liu, Y., Cao, H., Yuan, Q., Han, G.: Personalized Channel
Recommendation Deep Learning from a Switch Sequence. IEEE Access 6 (2018).
https://doi.org/10.1109/ACCESS.2018.2869470

