
A functional validation framework for the Unlimited Vector
Extension

Ana Beatriz Fernandes
Instituto de Telecomunicações

Dept. of Electrical and Computer Eng.
University of Coimbra, Portugal

ana.fernandes@co.it.pt

Nuno Neves
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa, Portugal

nuno.neves@inesc-id.pt

Luís Crespo
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa, Portugal

luis.miguel.crespo@tecnico.ulisboa.pt

Pedro Tomás
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa, Portugal

pedro.tomas@inesc-id.pt

Nuno Roma
INESC-ID

Instituto Superior Técnico
Universidade de Lisboa, Portugal

nuno.roma@inesc-id.pt

Gabriel Falcao
Instituto de Telecomunicações

Dept. of Electrical and Computer Eng.
University of Coimbra, Portugal

gff@co.it.pt

ABSTRACT
The Unlimited Vector Extension (UVE) was already proposed to
tackle the limitations of current state-of-the-art Vector-Length Ag-
nostic (VLA) extensions. This is a new Instruction Set Architecture
(ISA) extension that aims to reduce loop control and memory access
indexation overheads, as well as memory access latency, joining
data streaming and Single Instruction, Multiple Data (SIMD) pro-
cessing. This ISA extension has already been validated in a cycle-
accurate simulator, gem5, with a first implementation made on
an out-of-order processor model, based on the ARM Cortex-A76.
However, as compilation support is currently being developed, and
several shortcomings and improvements on the existing specifica-
tion have been identified, an increasing need to efficiently run and
validate UVE code has surged. As such, support for UVE has been
added to the Spike simulator. This is the golden reference functional
RISC-V ISA simulator, written in C++. To achieve this, the simulator
has been extended to accommodate for the necessary architecture
changes, such as new registers that hold the data streams (streaming
registers) together with a convenient Streaming Unit that emulates
the configuration and manipulation of the streams. The result is a
powerful tool that provides the possibility to validate all current
features and improvements of UVE, along with some preliminary
code obtained from the compiler currently under development.

CCS CONCEPTS
• Computer systems organization → Single instruction, mul-
tiple data; Reduced instruction set computing; Data flow architec-
tures; • Computing methodologies→ Simulation tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CAMS’23, October 2023, Toronto, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
ISA SIMD Extensions, Data Streaming, RISC-V, Unlimited Vector
Extension, Simulation Tools, Data Flow Architecture

ACM Reference Format:
Ana Beatriz Fernandes, Nuno Neves, Luís Crespo, Pedro Tomás, Nuno Roma,
and Gabriel Falcao. 2023. A functional validation framework for the Unlim-
ited Vector Extension. In Proceedings of ACM Conference (CAMS’23). ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In the last few decades, there has been an increasing need to improve
processors’ performance, as computational and memory-intensive
applications become more common (e.g. Machine Learning and
Sparse Linear Algebra). However, with the end of Dennard Scaling
and Moore’s Law, more traditional methods of improving perfor-
mance have been revealed to be insufficient, such as increasing the
clock frequency and the use of cache memory.

Several solutions have been proposed and are now widely estab-
lished, such as Instruction-Level Parallelism (ILP) and Data-Level
Parallelism (DLP), common in modern high-performance proces-
sors. The latter, hidden in Single Instruction, Multiple Data (SIMD)
units [8], allow the simultaneous processing of multiple data ele-
ments. To take advantage of this, a plethora of SIMD Instruction Set
Architectures (ISAs) has been developed, such as Arm NEON [1]
and x86 AVX [11], focused on operating on fixed-size registers.
However, because a vector’s optimal size depends on the applica-
tion, this approach presents some limitations. To overcome this,
other vector-length agnostic extensions have emerged, particularly
the RISC-V Vector Extension (RVV) [24] and the Scalable Vector
Extension (SVE) [22], which allow for the size of the vector register
to be defined at runtime. This means that different processors, with
different application requirements, can adopt distinct vector sizes,
with no need to modify the source code. However, a new problem
arises with these extensions, as predicate [2] and vector control
instructions become necessary to disable elements outside loop
bounds, which leads to more loop instructions [17], and thus more
overhead and decrease of performance.

The RISC-V Unlimited Vector Extension (UVE), proposed and
developed by Domingos et al. [8], joins two promising solutions
for improving performance: scalable SIMD extensions and data

1

https://orcid.org/0009-0003-7613-7943
https://orcid.org/0000-0003-0628-2259
https://orcid.org/0000-0002-1116-8859
https://orcid.org/0000-0001-8083-4432
https://orcid.org/0000-0003-2491-4977
https://orcid.org/0000-0001-9805-6747
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CAMS’23, October 2023, Toronto, Canada Fernandes et al.

streaming. RISC-V was chosen as the base ISA due to its open-
source nature, as well as its simple and extensible instruction set.
By relying on data streaming, this novel RISC-V ISA extension has
several improvements when compared to the onesmentioned above,
such as decoupled memory accesses, indexing-free loops, simplified
vectorisation, and implicit load/store operations [8]. The streaming
paradigm allows for the configuration of memory access patterns at
software level and the subsequent data fetching in the background,
a clear step towards improving the memory access latency and
throughput. This paradigm shift was already demonstrated in a
proof-of-concept gem5 implementation of UVE on an out-of-order
processor model, based on the ARM Cortex-A76. It showed that
it can improve the performance of a processor by up to 2.4 times
when compared to other state-of-the-art implementations [8].

In accordance, this work exploits a prominent research
trend that considers the use of unconventional architectures
to improve the attained processor’s performance. In particu-
lar, it presents a new modelling, simulation and validation
tool to support the development of UVE, by not only indepen-
dently validating the existing specification, but also introducing
streaming support on Spike [18], on which several existing instruc-
tions were added, tested and, whenever pertinent, modified. Before
this contribution, this process was very time-consuming and tight-
ened to the several constraints imposed by gem5. Hence, it now
becomes much more efficient with this new tool, as Spike offers a
simpler instruction implementation pipeline. For this to be possible,
the simulator was expanded to include a Streaming Unit (SU), simi-
lar to RVV’s Vector Unit already present in the simulator. Moreover,
a new RISC-V extension was added to the simulator, where many
of the existing UVE instructions were added.

In order to test the streaming mechanisms and validate the func-
tional behaviour of the chosen instructions, a subset from the bench-
marks that were considered in UVE’s proposal [8] was used, mainly
based on Polybench/C 1. It should be noted that for applications it
is not yet possible to automatically generate UVE code from regular
C code, which means that some benchmarks had to be manually
written. This had already been done for previous works, but the
available code was revised and compared to code generated from
the compiler currently being developed [13] whenever possible.

The developed framework and supporting documentation are
publicly available online 2. This repository contains ongoing work
and is thus subject to continual updates.

2 DATA STREAMING AND UVE
Memory access is the most time and energy-consuming operation
in modern computer architectures [5], so it is natural that this is the
main target of optimisation attempts.While cache structures greatly
improve access latencies, they are dependent on data locality, which
is not always guaranteed. Moreover, in applications with complex
access patterns, it is often not possible to efficiently make use of
these structures. Furthermore, if there is a large volume of data to be
loaded/stored, particularly in multi-core systems, instances of cache
contention (i.e. when multiple cores attempt to update the same

1https://web.cs.ucla.edu/ pouchet/software/polybench/
2https://github.com/hpc-ulisboa/UVE2

cache line) and energy consumption rise [10]. Thismeans that adapt-
ing the data communication scheme to the running application is
crucial for performance increase. One re-emerging technology aim-
ing to tackle this problem is data streaming [8, 13, 16, 20, 21, 23],
which decouples memory accesses from data processing, effectively
masking data transfers behind computation [7].

A stream is essentially a predicable vector of data elements that
are processed sequentially. Each element of a stream is subject to
the same set of operations and is discarded after the computation
is complete. These structures rely almost solely on spatial locality,
which means that the order in which the data is going to be con-
sumed can be specified beforehand [7]. This is possible through
data pattern descriptors, such as those proposed and developed
in [8, 14, 15]. Understanding this representation model is pivotal
to understanding UVE. Hence, the fundamentals of data streaming
and pattern description are described next.

Any regular n-dimensional access sequence can be represented
by the following affine function:

𝑦 (𝑋) = 𝑦𝑏𝑎𝑠𝑒 +
𝑑𝑖𝑚𝑦∑︁
𝑘=0

𝑥𝑘 × 𝑆𝑘 , (1)

with 𝑋 = 𝑥0, ..., 𝑥𝑑𝑖𝑚𝑦
and 𝑥𝑘 ∈ [𝑂𝑘 , 𝐸𝑘 +𝑂𝑘].

This means that a stream access 𝑦 (𝑋) is described as the sum
of the base address of an n-dimensional variable (𝑦𝑏𝑎𝑠𝑒) with 𝑑𝑖𝑚𝑦

pairs of indexing variables (𝑥𝑘) and their respective strides (𝑆𝑘), each
𝑘 corresponding to a dimension of the pattern. 𝐸𝑘 corresponds to
the number of elements in each 𝑘 dimension and𝑂𝑘 to the indexing
offset. Because 𝑥0 has 𝑂0 = 0, it is equal to the base address of the
variable [8]. Moreover, through a combination of affine functions
of this kind, highly complex patterns can be attained, by assigning
the base address and/or the offset of a function to the result of
another one. Lastly, indirect memory accesses can also be described
by taking the data obtained by the addresses generated by an affine
function and injecting them into the aforementioned variables of
another function.

The proposed pattern representation model results from the en-
coding of the variables associated with each pattern dimension of
the function described in Equation (1). This representation is based

d2

d1(modified by m2)
d1: {&A, 1, 1}

d2: {0, N, M}

m2: {Size, Inc, 1, M}

Legend: Descriptor: {offset, size, stride}
Static Modifier: {Target, Behaviour, Displacement, Size}

M
a

tr
ix

 A
 (

N
 x

 M
)

for (i = 0, k = 1; i < N; i++)

 for (j = 0; j < k; j++, k++)

 A[i*M+j];

Figure 1: Triangular access pattern description, where a static
modifier is applied to increment the size of the first dimen-
sion.

2

https://web.cs.ucla.edu/~pouchet/software/polybench/
https://github.com/hpc-ulisboa/UVE2

A functional validation framework for the Unlimited Vector Extension CAMS’23, October 2023, Toronto, Canada

A. C code

for (i = 0; i < NI; i++)

 for (j = 0; j < NJ; j++)

 C[i][j] = 0;

 for (k = 0; k < NK; k++)

 C[i][j] += A[i][k] * B[k][j] ;

B. Pattern description

d3

M
a

tr
ix

 A
 (

N
I x

 N
K

)

d1 (repeated J times: d2)

d1: {&A, NK, 1}

d2: {0, NJ, 0}

d3: {0, NI, NK}

M
a

tr
ix

 B
 (

N
K

 x
 N

J)

d2 (repeated I times: d3)

d1

d1: {&B, NK, NJ}

d2: {0, NJ, 1}

d3: {0, NI, 0}

M
a

tr
ix

 C
 (

N
I x

 N
J)

d2

d1

d1: {&C, NJ, 1}

d2: {0, NI, NJ}

C. UVE code

ss.sta.ld.d

ss.cfg.vec

ss.app

ss.end

u1, A, NK, 1

u1

u1, 0, NJ, 0

u1, 0, NI, NK

M
a

tr
ix

 A

ss.sta.ld.d

ss.cfg.vec

ss.app

ss.end

u2, B, NK, NJ

u2

u2, 0, NJ, 1

u2, 0, NI, 0

M
a

tr
ix

 B

ss.sta.st.d

ss.end

u3, C, NJ, 1

u3, 0, NI, NJ

M
a

tr
ix

 CSt
re

am
 C

on
fi

gu
ra

tio
n

C
om

pu
ta

tio
n

iLoop:

 so.v.dp.d

 kLoop:

 so.a.mul.fp

 so.a.add.fp

 so.b.ndc.1

 so.a.adde.fp

so.b.nc

u21, 0, p0

u22, u1, u2, p0

u21, u21, u22, p0

u2, kLoop

u3, u21, p0

u2, iLoop

Implicit loads

Duplicate
Start configuration and set d1

Set d1 vector coupling

Set d2

Implicit store

End configuration and set d3

Start configuration and set d1

End configuration and set d2

Start configuration and set d1

Set d1 vector coupling

Set d2

End configuration and set d3
Legend: Configuration: ss

Arithmetic: so.a

Branching: so.b

Vector: so.vIn
st

ru
ct

io
ns

{offset, size, stride}Descriptor:

u0-u31: streaming registers

p0: default predicate register

Registers:

Figure 2: Exemplification of two-matrix multiplication from (A) the C source code, through (B) the pattern description of each
matrix data access and (C) the resulting UVE configuration and computation kernels.

on descriptors and modifiers (see Figure 1), defined in a set of dedi-
cated instructions in UVE. Simple descriptors, that remain constant
throughout execution, are exemplified in Figure 2, which is part
of the kernel used in the trisolv benchmark (see Section 4). There
are two types of optional modifiers, which when associated with
a certain dimension of the descriptor are able to alter its param-
eters, allowing the modelling of inter-loop control dependencies
that arise when loop conditions are affected by an outer loop. On
the one hand, static modifiers are able to add or subtract a certain
displacement to any of the dimension’s parameters. On the other
hand, indirect modifiers allow for the substitution of these param-
eters with pointers to data obtained from another stream. This
makes it possible to create complex pattern descriptors, which are
common in a plethora of applications, such as Sparse Algebra and
Data Mining.

UVE adds 32 vector registers to the base ISA (named from "u0"
to "u31"). The length of each vector is unlimited, but a minimum
value is defined, equal to the width of the supported data types
(byte, half-word, word, and double-word), therefore set between 8
and 64 bytes, restricted to powers of two. Each of these vectors
can be associated with a data stream. In addition, sixteen predicate
registers are present, named "p0" to "p15", although only eight
can be used in arithmetic and regular memory instructions (p0-
p7). Register p0 is hardwired to 1, which means it can be used in
operations where predication is not necessary (i.e. non-conditional
loops), as all valid lanes of the operating streams execute. The
remaining predicate registers are used in the configuration of the
other eight.

There are currently 60 major instructions, out of which 26 corre-
spond to integer operations, 15 to floating-point operations and 19
are related to memory manipulation, totalling about 450 instruc-
tions when considering the variations of each one.

Furthermore, UVE not only lets one describe data streams through
the ISA, but it also defines the operation of the supporting microar-
chitecture to manipulate them, consisting in a dedicated Streaming
Engine, along with other minor structures that extend the processor
in order to fully support this ISA extension.

Because Spike is a functional simulator based on a somewhat
high level of abstraction from the real hardware, the added struc-
tures do not fully mimic the proposed microarchitecture, namely
the memory hierarchy, pipelining and Load/Store FIFOs, but are
implemented to respect the instruction set extension specification.

3 UVE VALIDATION FRAMEWORK
Having proven its great potential [8], UVE will benefit from an
efficient tool to validate every aspect of its specification, so that it
can be further improved and expanded to support new and more
complex applications. The developed framework is hereby described
in detail and its structure is represented in Figure 3.

3.1 Simulator
As noted by Roelke and Stan [19], there is usually a compromise
between simulation accuracy and speedwhen choosing between the
various RISC-V simulators available. As such, Spike was chosen as
the most appropriate tool to continue this development. Although
it does not allow cycle-accurate precision, it is the golden reference

3

CAMS’23, October 2023, Toronto, Canada Fernandes et al.

LLVM
Compiler

Validation
Script

Be
nc

hm
ar

ks

kernel.c

main.c
Sp

ik
e

Si
m

ul
a

to
r

RISC-V
Opcodes
Package

encoding.h decode.h

UVE
instructions

Descriptors

Modifier

Dimension

Processor

Streaming Unit

Streaming Register

Predicate Register

MMU

Results

Figure 3: Framework structure.

functional RISC-V ISA software simulator and is widely used as
the proof-of-concept target for every RISC-V extension [6, 12]. In
fact, despite QEMU appearing to be slightly more accurate [19], it
is a much bigger and more complex project, as it targets multiple
architectures, not only RISC-V, and is thus more difficult to modify,
something that is necessary in order to create UVE support. This is
pointed out by Henriques [9], who already used the Spike simulator
to implement some UVE instructions and whose work laid the
foundation for the development of the currently proposed validation
framework.

Spike is currently at Version 1.1.0 and already supports many
RISC-V ISA features, along which is the RISC-V Vector Extension,
which served as a base for the developed Streaming Unit (SU) – the
UVE’s equivalent to its Vector Unit. However, upon analysing the
implementation of several extensions on the simulator, it became
clear that UVE’s implementation structure would be very different.
This is mainly due to the way the simulator’s source code is written,
heavily dependent on macros defined in multiple files and with
little to no documentation. This resulted in code structured in a
very different way than the rest of the simulator and its supported
extensions, albeit more comprehensible.

3.1.1 Streaming simulation infrastructure. The focal component of
the developed simulator is the SU, a new class that has access to
the streaming and predicate registers. This unit mimics some parts
of the proposed Streaming Engine [8], specifically the Stream Table
and the Stream Processing Module, as well as the remaining infras-
tructure responsible for the memory accesses (see Figure 4). Each
register may or may not be associated to a stream, and this module
is responsible for the implicit loading and storing of data, as well
as the iteration of the streams (by the Address Generator). For the
desired functional evaluation, the Load/Store FIFOs and the Stream
Scheduler, represented in Figure 4, were not needed, as streams
are iterated as they are being consumed, with each computation

instruction triggering the iteration of the source streams (implicit
loading) and the destination streams (implicit storing). The result-
ing elements are immediately placed in the associated registers and
the End Of Dimension flags are updated and saved to the Stream Ta-
ble. The iteration and address generation parts work very similarly
to the proposed configuration and are implemented in a different
class, Dimension, which has access to the Modifier class, where
static modifiers are implemented. Each streaming register, when
associated to a stream, is therefore also associated to n dimensions
and respective modifiers, if such is the case.

Furthermore, predication support was developed at the instruc-
tion level, which means that the predicate values never reach the
SU, for simplicity. A predicate register has a fixed vector size of 64
bytes, and a predicate is thus evaluated according to the datatype
of the instruction’s source operands. As a result, in each predicated
instruction the predicate register is read for each active lane, and
the operation is only performed if it evaluates to 1, as stated by the
ISA specification [8].

3.1.2 Modified files. Several source files were modified to add the
necessary structures to support UVE (e.g. decoding functions for
each instruction argument), according to the ISA encoding. These
functions, divided into different types of instructions, followed
the same pattern as already existing ones, some even being direct
copies, so that there is complete flexibility in case the UVE encoding
is changed. In that case, it is not necessary to alter each instruction
if, for example, one of the source registers is differently encoded.
It is only required that the decoding function corresponding to its
type is updated accordingly.

For the simulator to recognise the new instructions, the file that
holds all the ISA encoding, encoding.h, must be updated. To obtain
the necessary code, the official RISC-V Opcodes project 3 was used,
where the encoding of each instruction was added to the standard
ISA and UVE’s predicate registers, and immediate encoding was
added to the file constants.py.

Lastly, the new extension was added to file riscv/riscv.mk.in,
identically to what is done to the native ones, so each new instruc-
tion was included in the variable riscv_insn_ext_uve. In this
file every new source and header file was also added to variables
riscv_srcs and riscv_install_hdrs, respectively, so that they
could be recognised during the compilation of the simulator.

3.1.3 New files. The various new classes priorly mentioned are
defined in files descriptors.h (dimensions and modifiers) and
streaming_unit.h (registers and SU).

Furthermore, each instruction has a corresponding header file in
the riscv/insns folder. While compiling the simulator, these files
will be used to create copies of the riscv/insn_template.cc file
for each instruction, responsible for the generation of the various
versions of the instruction (e.g. 32/64 bit). The obvious implication is
that the developed code for an instruction exists inside an external
function, therefore header file inclusion is not allowed and only
some variables are accessible, namely the processor, the executed
instruction and the process counter. It is through the processor that
each instruction can access the Main Memory Unit (MMU), as well
as the SU and its registers. The executed instruction, an insn_t

3Available at https://github.com/riscv/riscv-opcodes

4

https://github.com/riscv/riscv-opcodes

A functional validation framework for the Unlimited Vector Extension CAMS’23, October 2023, Toronto, Canada

D
es

cr
ip

to
r

Ite
ra

to
r

Address
Generator

Streaming Engine

Sorting Queue

Validation
new

stream

Stream Configuration

Memory Request
Queue

A
rb

ite
r

[Store FIFO & Load FIFO]
Occupancy

St
re

a
m

Sc
he

d
ul

er

Store FIFO

To Register
File

From
Writeback

Load FIFO Data from
Memory

Data to
Memory

Memory
Access

Requests

Configuration
Port

 descriptor state iter flags

Stream Table

#streams

Stream Load/Store
Processing Modules

Stream Scheduler

Stream
Descriptor

Stream Table

Configured Streams FIFO Occupancies

Sort OccupanciesFilter Active Only

Select DescriptorSelection Process

B. Stream Processing Module

A. Streaming Engine

Accum. Offsets 0..N

Stream Processing Module

Address Generator

Base Address

Descriptor (dim. k)

Accumulation
Offsetsk+1..N

Offset Size Stride

Accum. Offsets k..N

Iteration
of dim. k

Memory Address

Descriptor Iterator

Dim. 0

Dim. N Mod. N

Dim. 1 Mod. 1

Head

End of
Descriptor

End of
Descriptor

1 Iter. 1 Iter.

1 Iter. 1 Iter.

Full Iteration

Iteration Process

The components which were implemented on the proposed framework are represented in , while the ones in grey are
implementation specific, and thus not needed to fully describe UVE functional behaviour.

green

Figure 4: (A) Streaming Engine and (B) Stream Processor Module proposed by Domingos et al. [8], now emulated on Spike.

object, has access to the opcode decoding functions, allowing the
instruction code to access its operands. The process counter is
mainly used in branching instructions.

4 EXPERIMENTAL RESULTS
4.1 Methodology
In order to validate the UVE ISA functional simulation, various
benchmarks from a wide range of application domains, such as
memory access, linear algebra/BLAS and stencil, were chosen. These
benchmarks were either hand-coded in order to have its correspond-
ing UVE implementation, inserted in the original source code using
inline assembly, or even generated by an adaptded version of the
LLVM compiler that, while currently unavailable to the public, is
undergoing preliminary testing.

Figure 2.C shows how a simple matrix multiplication (𝐶 = 𝐴×𝐵)
can be coded with UVE. In this example, u1 and u2 are streaming
registers configured with load data streams from matrices 𝐴 and 𝐵
and u3 is associated to the store stream, corresponding to matrix
𝐶 , which holds the computation results. This example is also part
of the kernel used in benchmark 3mm, already implemented and
tested on Spike (see Section 4.2 and Figure 5).

4.2 Evaluation
The described framework is currently able of simulating most of the
UVE specification, which means that data streaming capability has
been successfully added to Spike, as well as many instructions from
the proposed ISA. It currently supports multi-dimensional pattern

descriptors, as well as static modifiers, although indirection is not
yet implemented. Stream-based branching and predication are also
supported, as well as multiple arithmetic and vector operations on
the streaming registers. In total, more than 100 instructions have
been implemented and validated on Spike, which can be categorised
as follows:

• Arithmetic (41)
• Branching (16)
• Predication (15)
• Vector (8)
• Stream Configuration (21)

With these fully functional instructions, several benchmarks can
already be ran on the simulator, as summarised in Figure 5. All these
benchmarks, which had been previously used for validation of the
UVE ISA and supporting microarchitecture on gem5, outputted the
same expected behaviour in Spike, proving the correct functioning
of the developed Streaming Unit and the added instructions on the
this simulator.

5 RELATEDWORK
The main focus of the presented work is the development of a new
simulation environment for UVE, where the major difference from
previous works is the chosen base tool. In this section, an overview
of the legacy gem5 UVE simulation framework is presented.

5

CAMS’23, October 2023, Toronto, Canada Fernandes et al.

* The number of kernels corresponds to the number of
disjunt loop statements (i.e. excluding nested loops)

Benchmarks

#
 S

tr
ea

m
s

1

8

3

3

5

12

#
 K

er
ne

ls
 *

1

2

1

3

1

2

M
ax

. L
oo

p
N

es
tin

g

1

1

1

3

2

2

2D
+Static

Modifier
M

em
or

y
A

cc
es

s
Pa

tte
rn

1D

1D

1D

3D

2D

A. Memcpy
(MEMORY)

B. SAXPY
(BLAS)

C. 3mm
(ALGEBRA)

D. Trisolv
(ALGEBRA)

E. Jacobi-1D
(STENCIL)

D. Jacobi-2D
(STENCIL)

Figure 5: Benchmarks used for testing and respective charac-
teristics.

gem5 was notoriously used in UVE’s proposal by Domingos
et al. [8], to provide a reliable performance evaluation with cycle-
accurate precision based on the adaption of an out-of-order proces-
sor model architecture, as it is extendable to support custom ISAs,
as well as microarchitecture models [3, 4, 8, 19].

Despite being an open-source project, gem5 has little documen-
tation available, similarly to Spike. However, it is a much more
complex tool, which resulted in a long and difficult process of mod-
ifications to support UVE. The source code of the simulator was
extensively changed, to support new vectorial and predicate reg-
isters, where scalability (e.g. variable vector register length, with
the element width as a part of the register) was a major obstacle to
overcome. This is due to the simulator not being prepared for this at
the ISA level, as well as requiring that the configuration of the archi-
tecture is changed at each execution. Furthermore, the instruction
set parser was modified to support the new vector registers, as well
as the width and valid index register information [8]. Lastly, UVE
instructions were added, described in a Domain-Specific Language
(DSL) based on C++ and Python, which, on the one hand, allowed
templating for multiple instructions and code reuse, but on the
other hand required many different templates to be developed, such
as for instructions with different operands, which are extremely
common.

Because this simulator relied on the implementation of the sup-
porting microarchitecture for the validation of UVE, as it depends
on a Streaming Engine, the instruction set had not been simulated
independently until now. The proposed Spike-based framework
made it possible to focus solely on the instruction’s behaviour, de-
taching the ISA development from implementation details prone to
specification errors.

Lastly, simulation platforms alternative to Spike exist, such as
QEMU4 and Chisel5. While the former is closely related to Spike,

4https://www.qemu.org/
5https://www.chisel-lang.org/

it is a more complex project, and therefore lacks the simplicity
required for an efficient and continuously changing framework.
The latter could be used to create an RTL simulation. While this
was not the goal of this work, it could be useful, as the proposed
framework exists within a bigger project on UVE currently under
development, where this type of validation is appropriate.

6 CONCLUSION
In this paper, a new validation framework for the UVE ISA extension
based on the Spike RISC-V simulator is presented. This new sim-
ulation tool provides efficient development means and functional
evaluation for this ISA extension and of its supporting microarchi-
tecture. A Streaming Unit, responsible for the management of the
streams, and most of the existing UVE instructions were added to
Spike, also including support and ensuring validation for the main
functionalities already offered by UVE, such as data streaming with
implicit loads/stores, predication, and 𝑛-dimensional pattern de-
scription with static modifiers. A representative set of benchmarks
was tested and verified, confirming the previous results that had
been obtained with a gem5 legacy UVE simulator. Furthermore,
this tool was also used to validate the preliminary results from the
UVE-LLVM compiler that is currently under development, and has
proven to be useful both in the development of UVE applications
and in the development of the UVE extension itself.

6.1 Future Work
Although the most part of the instruction set has already been
added to the framework, some instructions of the existing ISA are
yet to be implemented, namely logical and stream configuration in-
struction. The latter have to be accompanied by the implementation
of indirection, which is not yet supported.

In addition, the Spike simulator’s disassembler still has no in-
formation about the added extension, which makes the use of the
debugger less straightforward. This can be improved in the future,
making the developed tool much more useful by improving code
review and correction.

Lastly, the LLVM compiler toolchain currently under develop-
ment is to be tested on this framework. Once it is released, it will
integrate this project, removing the need to hand-code applications
where UVE is to be used. This will allow anyone to develop software
taking advantage of this new ISA extension.

ACKNOWLEDGMENTS
This work was supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT), under projects UIDB/50008/2020,
UIDB/50021/2020, EXPL/EEI-HAC/1511/2021, 2022.06780.PTDC,
2022.11626.BD, and from the European High Performance Comput-
ing Joint Undertaking (JU) under Framework Partnership Agree-
ment No 800928 and Specific Grant Agreement No 101036168 (EPI
SGA2). The JU receives support from the European Union’s Horizon
2020 research and innovation programme and from Croatia, France,
Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and
Switzerland.

6

https://www.qemu.org/
https://www.chisel-lang.org/

A functional validation framework for the Unlimited Vector Extension CAMS’23, October 2023, Toronto, Canada

REFERENCES
[1] Arm. 2011. Introducing NEON Development Article. https://developer.arm.com/

documentation/dht0002/a/
[2] Adrian Barredo, Juan M. Cebrian, Miquel Moreto, Marc Casas, and Mateo Valero.

2020. Improving Predication Efficiency through Compaction/Restoration of
SIMD Instructions. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, San Diego, CA, USA, 717–728. https:
//doi.org/10.1109/HPCA47549.2020.00064

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[4] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Reinhardt.
2006. The M5 Simulator: Modeling Networked Systems. IEEE Micro 26, 4 (2006),
52–60. https://doi.org/10.1109/MM.2006.82

[5] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. 2018. Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks. In Proceedings of the Twenty-Third In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). Association for Computing Machinery, New
York, NY, USA, 316–331. https://doi.org/10.1145/3173162.3173177

[6] Chipyard. 2019. The RISC-V ISA Simulator (Spike) - Chipyard 1.8.1 documentation.
https://chipyard.readthedocs.io/en/latest/Software/Spike.html

[7] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, KentMoat, JimNorris, Michael
Schuette, and Ali Saidi. 2003. The Reconfigurable Streaming Vector Processor
(RSVPTM). (2003).

[8] Joao Mário Domingos, Nuno Neves, Nuno Roma, and Pedro Tomás. 2021. Un-
limited Vector Extension with Data Streaming Support. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, Valencia,
Spain, 209–222. https://doi.org/10.1109/ISCA52012.2021.00025

[9] Luís Henriques. 2022. Automatic Streaming for RISC-V via Source-to-Source Com-
pilation. Master’s thesis. Universidade do Porto, Porto. https://hdl.handle.net/
10216/142750

[10] Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, and Rob Van Der Wijngaart.
2011. The Case for Message Passing on Many-Core Chips. Springer New York,
New York, NY, 115–123. https://doi.org/10.1007/978-1-4419-6460-1_5

[11] Chris Lomont. 2009. Introduction to Intel® Advanced Vector Extensions. www.
obpm.org/download/Intro_to_Intel_AVX.pdf

[12] Christoph Müllner. 2021. Emulators and Simulators - RISC-V Interna-
tional. https://wiki.riscv.org/display/HOME/Emulators+and+Simulators#
EmulatorsandSimulators-Spike/riscv-isa-sim

[13] Nuno Neves, João Mário Domingos, Nuno Roma, Pedro Tomás, and Gabriel
Falcao. 2022. Compiling for Vector Extensions With Stream-Based Specialization.
IEEE Micro 42, 5 (9 2022), 49–58. https://doi.org/10.1109/MM.2022.3173405

[14] Nuno Neves, Pedro Tomás, and Nuno Roma. 2015. Efficient data-stream man-
agement for shared-memory many-core systems. In 2015 25th International
Conference on Field Programmable Logic and Applications (FPL). 1–8. https:
//doi.org/10.1109/FPL.2015.7293960

[15] Nuno Neves, Pedro Tomás, and Nuno Roma. 2017. Adaptive In-Cache Streaming
for Efficient Data Management. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25, 7 (7 2017), 2130–143. https://doi.org/10.1109/TVLSI.2017.
2671405

[16] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Dataflow Acceleration. SIGARCH Comput. Archit. News
45, 2 (jun 2017), 416–429. https://doi.org/10.1145/3140659.3080255

[17] Angela Pohl, Mirko Greese, Biagio Cosenza, and Ben Juurlink. 2019. A Perfor-
mance Analysis of Vector Length Agnostic Code. In 2019 International Conference
on High Performance Computing & Simulation (HPCS). IEEE, Dublin, Ireland,
159–164. https://doi.org/10.1109/HPCS48598.2019.9188238

[18] RISC-V. 2021. Spike RISC-V ISA Simulator. https://github.com/riscv-software-
src/riscv-isa-sim

[19] Alec Roelke and Mircea R Stan. 2017. RISC5: Implementing the RISC-V ISA in
gem5.

[20] Paul Scheffler, Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini.
2021. Indirection Stream Semantic Register Architecture for Efficient Sparse-
Dense Linear Algebra. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1787–1792. https://doi.org/10.23919/DATE51398.2021.9474230

[21] Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini. 2021. Stream
Semantic Registers: A Lightweight RISC-V ISA ExtensionAchieving Full Compute
Utilization in Single-Issue Cores. IEEE Trans. Comput. 70, 2 (2021), 212–227.
https://doi.org/10.1109/TC.2020.2987314

[22] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael
Premillieu, Alastair Reid, Alejandro Rico, and Paul Walker. 2017. The ARM
Scalable Vector Extension. IEEE Micro 37, 2 (3 2017), 26–39. https://doi.org/10.

1109/MM.2017.35 arXiv:1803.06185 [cs].
[23] Zhengrong Wang and Tony Nowatzki. 2019. Stream-Based Memory Access

Specialization for General Purpose Processors. In Proceedings of the 46th Inter-
national Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19).
Association for Computing Machinery, New York, NY, USA, 736–749. https:
//doi.org/10.1145/3307650.3322229

[24] A. Waterman and K. Asanovic. 2021. RISC-V "V" Vector Extension. https://github.
com/riscv/riscv-v-spec/blob/master/v-spec.adoc

7

https://developer.arm.com/documentation/dht0002/a/
https://developer.arm.com/documentation/dht0002/a/
https://doi.org/10.1109/HPCA47549.2020.00064
https://doi.org/10.1109/HPCA47549.2020.00064
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/MM.2006.82
https://doi.org/10.1145/3173162.3173177
https://chipyard.readthedocs.io/en/latest/Software/Spike.html
https://doi.org/10.1109/ISCA52012.2021.00025
https://hdl.handle.net/10216/142750
https://hdl.handle.net/10216/142750
https://doi.org/10.1007/978-1-4419-6460-1_5
www.obpm.org/download/Intro_to_Intel_AVX.pdf
www.obpm.org/download/Intro_to_Intel_AVX.pdf
https://wiki.riscv.org/display/HOME/Emulators+and+Simulators#EmulatorsandSimulators-Spike/riscv-isa-sim
https://wiki.riscv.org/display/HOME/Emulators+and+Simulators#EmulatorsandSimulators-Spike/riscv-isa-sim
https://doi.org/10.1109/MM.2022.3173405
https://doi.org/10.1109/FPL.2015.7293960
https://doi.org/10.1109/FPL.2015.7293960
https://doi.org/10.1109/TVLSI.2017.2671405
https://doi.org/10.1109/TVLSI.2017.2671405
https://doi.org/10.1145/3140659.3080255
https://doi.org/10.1109/HPCS48598.2019.9188238
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://doi.org/10.23919/DATE51398.2021.9474230
https://doi.org/10.1109/TC.2020.2987314
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1145/3307650.3322229
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc

	Abstract
	1 Introduction
	2 Data Streaming and UVE
	3 UVE validation framework
	3.1 Simulator

	4 Experimental Results
	4.1 Methodology
	4.2 Evaluation

	5 Related Work
	6 Conclusion
	6.1 Future Work

	Acknowledgments
	References

