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ABSTRACT
The Unlimited Vector Extension (UVE) was already proposed to
tackle the limitations of current state-of-the-art Vector-Length Ag-
nostic (VLA) extensions. This is a new Instruction Set Architecture
(ISA) extension that aims to reduce loop control and memory access
indexation overheads, as well as memory access latency, joining
data streaming and Single Instruction, Multiple Data (SIMD) pro-
cessing. This ISA extension has already been validated in a cycle-
accurate simulator, gem5, with a first implementation made on
an out-of-order processor model, based on the ARM Cortex-A76.
However, as compilation support is currently being developed, and
several shortcomings and improvements on the existing specifica-
tion have been identified, an increasing need to efficiently run and
validate UVE code has surged. As such, support for UVE has been
added to the Spike simulator. This is the golden reference functional
RISC-V ISA simulator, written in C++. To achieve this, the simulator
has been extended to accommodate for the necessary architecture
changes, such as new registers that hold the data streams (streaming
registers) together with a convenient Streaming Unit that emulates
the configuration and manipulation of the streams. The result is a
powerful tool that provides the possibility to validate all current
features and improvements of UVE, along with some preliminary
code obtained from the compiler currently under development.

CCS CONCEPTS
• Computer systems organization → Single instruction, mul-
tiple data; Reduced instruction set computing; Data flow architec-
tures; • Computing methodologies→ Simulation tools.
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1 INTRODUCTION
In the last few decades, there has been an increasing need to improve
processors’ performance, as computational and memory-intensive
applications become more common (e.g. Machine Learning and
Sparse Linear Algebra). However, with the end of Dennard Scaling
and Moore’s Law, more traditional methods of improving perfor-
mance have been revealed to be insufficient, such as increasing the
clock frequency and the use of cache memory.

Several solutions have been proposed and are now widely estab-
lished, such as Instruction-Level Parallelism (ILP) and Data-Level
Parallelism (DLP), common in modern high-performance proces-
sors. The latter, hidden in Single Instruction, Multiple Data (SIMD)
units [8], allow the simultaneous processing of multiple data ele-
ments. To take advantage of this, a plethora of SIMD Instruction Set
Architectures (ISAs) has been developed, such as Arm NEON [1]
and x86 AVX [11], focused on operating on fixed-size registers.
However, because a vector’s optimal size depends on the applica-
tion, this approach presents some limitations. To overcome this,
other vector-length agnostic extensions have emerged, particularly
the RISC-V Vector Extension (RVV) [24] and the Scalable Vector
Extension (SVE) [22], which allow for the size of the vector register
to be defined at runtime. This means that different processors, with
different application requirements, can adopt distinct vector sizes,
with no need to modify the source code. However, a new problem
arises with these extensions, as predicate [2] and vector control
instructions become necessary to disable elements outside loop
bounds, which leads to more loop instructions [17], and thus more
overhead and decrease of performance.

The RISC-V Unlimited Vector Extension (UVE), proposed and
developed by Domingos et al. [8], joins two promising solutions
for improving performance: scalable SIMD extensions and data
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streaming. RISC-V was chosen as the base ISA due to its open-
source nature, as well as its simple and extensible instruction set.
By relying on data streaming, this novel RISC-V ISA extension has
several improvements when compared to the onesmentioned above,
such as decoupled memory accesses, indexing-free loops, simplified
vectorisation, and implicit load/store operations [8]. The streaming
paradigm allows for the configuration of memory access patterns at
software level and the subsequent data fetching in the background,
a clear step towards improving the memory access latency and
throughput. This paradigm shift was already demonstrated in a
proof-of-concept gem5 implementation of UVE on an out-of-order
processor model, based on the ARM Cortex-A76. It showed that
it can improve the performance of a processor by up to 2.4 times
when compared to other state-of-the-art implementations [8].

In accordance, this work exploits a prominent research
trend that considers the use of unconventional architectures
to improve the attained processor’s performance. In particu-
lar, it presents a new modelling, simulation and validation
tool to support the development of UVE, by not only indepen-
dently validating the existing specification, but also introducing
streaming support on Spike [18], on which several existing instruc-
tions were added, tested and, whenever pertinent, modified. Before
this contribution, this process was very time-consuming and tight-
ened to the several constraints imposed by gem5. Hence, it now
becomes much more efficient with this new tool, as Spike offers a
simpler instruction implementation pipeline. For this to be possible,
the simulator was expanded to include a Streaming Unit (SU), simi-
lar to RVV’s Vector Unit already present in the simulator. Moreover,
a new RISC-V extension was added to the simulator, where many
of the existing UVE instructions were added.

In order to test the streaming mechanisms and validate the func-
tional behaviour of the chosen instructions, a subset from the bench-
marks that were considered in UVE’s proposal [8] was used, mainly
based on Polybench/C 1. It should be noted that for applications it
is not yet possible to automatically generate UVE code from regular
C code, which means that some benchmarks had to be manually
written. This had already been done for previous works, but the
available code was revised and compared to code generated from
the compiler currently being developed [13] whenever possible.

The developed framework and supporting documentation are
publicly available online 2. This repository contains ongoing work
and is thus subject to continual updates.

2 DATA STREAMING AND UVE
Memory access is the most time and energy-consuming operation
in modern computer architectures [5], so it is natural that this is the
main target of optimisation attempts.While cache structures greatly
improve access latencies, they are dependent on data locality, which
is not always guaranteed. Moreover, in applications with complex
access patterns, it is often not possible to efficiently make use of
these structures. Furthermore, if there is a large volume of data to be
loaded/stored, particularly in multi-core systems, instances of cache
contention (i.e. when multiple cores attempt to update the same

1https://web.cs.ucla.edu/ pouchet/software/polybench/
2https://github.com/hpc-ulisboa/UVE2

cache line) and energy consumption rise [10]. Thismeans that adapt-
ing the data communication scheme to the running application is
crucial for performance increase. One re-emerging technology aim-
ing to tackle this problem is data streaming [8, 13, 16, 20, 21, 23],
which decouples memory accesses from data processing, effectively
masking data transfers behind computation [7].

A stream is essentially a predicable vector of data elements that
are processed sequentially. Each element of a stream is subject to
the same set of operations and is discarded after the computation
is complete. These structures rely almost solely on spatial locality,
which means that the order in which the data is going to be con-
sumed can be specified beforehand [7]. This is possible through
data pattern descriptors, such as those proposed and developed
in [8, 14, 15]. Understanding this representation model is pivotal
to understanding UVE. Hence, the fundamentals of data streaming
and pattern description are described next.

Any regular n-dimensional access sequence can be represented
by the following affine function:

𝑦 (𝑋 ) = 𝑦𝑏𝑎𝑠𝑒 +
𝑑𝑖𝑚𝑦∑︁
𝑘=0

𝑥𝑘 × 𝑆𝑘 , (1)

with 𝑋 = 𝑥0, ..., 𝑥𝑑𝑖𝑚𝑦
and 𝑥𝑘 ∈ [𝑂𝑘 , 𝐸𝑘 +𝑂𝑘 ].

This means that a stream access 𝑦 (𝑋 ) is described as the sum
of the base address of an n-dimensional variable (𝑦𝑏𝑎𝑠𝑒 ) with 𝑑𝑖𝑚𝑦

pairs of indexing variables (𝑥𝑘 ) and their respective strides (𝑆𝑘 ), each
𝑘 corresponding to a dimension of the pattern. 𝐸𝑘 corresponds to
the number of elements in each 𝑘 dimension and𝑂𝑘 to the indexing
offset. Because 𝑥0 has 𝑂0 = 0, it is equal to the base address of the
variable [8]. Moreover, through a combination of affine functions
of this kind, highly complex patterns can be attained, by assigning
the base address and/or the offset of a function to the result of
another one. Lastly, indirect memory accesses can also be described
by taking the data obtained by the addresses generated by an affine
function and injecting them into the aforementioned variables of
another function.

The proposed pattern representation model results from the en-
coding of the variables associated with each pattern dimension of
the function described in Equation (1). This representation is based

d2
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d1: {&A, 1, 1}

d2: {0, N, M}

m2: {Size, Inc, 1, M}

Legend: Descriptor: {offset, size, stride}
Static Modifier: {Target, Behaviour, Displacement, Size}
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for (i = 0, k = 1; i < N; i++)

    for (j = 0; j < k; j++, k++)

        A[i*M+j];

Figure 1: Triangular access pattern description, where a static
modifier is applied to increment the size of the first dimen-
sion.
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A. C code

for (i = 0; i < NI; i++)

    for (j = 0; j < NJ; j++)

        C[i][j] = 0;

        for (k = 0; k < NK; k++)

            C[i][j] += A[i][k] * B[k][j] ;

B. Pattern description
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u0-u31: streaming registers
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Figure 2: Exemplification of two-matrix multiplication from (A) the C source code, through (B) the pattern description of each
matrix data access and (C) the resulting UVE configuration and computation kernels.

on descriptors and modifiers (see Figure 1), defined in a set of dedi-
cated instructions in UVE. Simple descriptors, that remain constant
throughout execution, are exemplified in Figure 2, which is part
of the kernel used in the trisolv benchmark (see Section 4). There
are two types of optional modifiers, which when associated with
a certain dimension of the descriptor are able to alter its param-
eters, allowing the modelling of inter-loop control dependencies
that arise when loop conditions are affected by an outer loop. On
the one hand, static modifiers are able to add or subtract a certain
displacement to any of the dimension’s parameters. On the other
hand, indirect modifiers allow for the substitution of these param-
eters with pointers to data obtained from another stream. This
makes it possible to create complex pattern descriptors, which are
common in a plethora of applications, such as Sparse Algebra and
Data Mining.

UVE adds 32 vector registers to the base ISA (named from "u0"
to "u31"). The length of each vector is unlimited, but a minimum
value is defined, equal to the width of the supported data types
(byte, half-word, word, and double-word), therefore set between 8
and 64 bytes, restricted to powers of two. Each of these vectors
can be associated with a data stream. In addition, sixteen predicate
registers are present, named "p0" to "p15", although only eight
can be used in arithmetic and regular memory instructions (p0-
p7 ). Register p0 is hardwired to 1, which means it can be used in
operations where predication is not necessary (i.e. non-conditional
loops), as all valid lanes of the operating streams execute. The
remaining predicate registers are used in the configuration of the
other eight.

There are currently 60 major instructions, out of which 26 corre-
spond to integer operations, 15 to floating-point operations and 19
are related to memory manipulation, totalling about 450 instruc-
tions when considering the variations of each one.

Furthermore, UVE not only lets one describe data streams through
the ISA, but it also defines the operation of the supporting microar-
chitecture to manipulate them, consisting in a dedicated Streaming
Engine, along with other minor structures that extend the processor
in order to fully support this ISA extension.

Because Spike is a functional simulator based on a somewhat
high level of abstraction from the real hardware, the added struc-
tures do not fully mimic the proposed microarchitecture, namely
the memory hierarchy, pipelining and Load/Store FIFOs, but are
implemented to respect the instruction set extension specification.

3 UVE VALIDATION FRAMEWORK
Having proven its great potential [8], UVE will benefit from an
efficient tool to validate every aspect of its specification, so that it
can be further improved and expanded to support new and more
complex applications. The developed framework is hereby described
in detail and its structure is represented in Figure 3.

3.1 Simulator
As noted by Roelke and Stan [19], there is usually a compromise
between simulation accuracy and speedwhen choosing between the
various RISC-V simulators available. As such, Spike was chosen as
the most appropriate tool to continue this development. Although
it does not allow cycle-accurate precision, it is the golden reference

3
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functional RISC-V ISA software simulator and is widely used as
the proof-of-concept target for every RISC-V extension [6, 12]. In
fact, despite QEMU appearing to be slightly more accurate [19], it
is a much bigger and more complex project, as it targets multiple
architectures, not only RISC-V, and is thus more difficult to modify,
something that is necessary in order to create UVE support. This is
pointed out by Henriques [9], who already used the Spike simulator
to implement some UVE instructions and whose work laid the
foundation for the development of the currently proposed validation
framework.

Spike is currently at Version 1.1.0 and already supports many
RISC-V ISA features, along which is the RISC-V Vector Extension,
which served as a base for the developed Streaming Unit (SU) – the
UVE’s equivalent to its Vector Unit. However, upon analysing the
implementation of several extensions on the simulator, it became
clear that UVE’s implementation structure would be very different.
This is mainly due to the way the simulator’s source code is written,
heavily dependent on macros defined in multiple files and with
little to no documentation. This resulted in code structured in a
very different way than the rest of the simulator and its supported
extensions, albeit more comprehensible.

3.1.1 Streaming simulation infrastructure. The focal component of
the developed simulator is the SU, a new class that has access to
the streaming and predicate registers. This unit mimics some parts
of the proposed Streaming Engine [8], specifically the Stream Table
and the Stream Processing Module, as well as the remaining infras-
tructure responsible for the memory accesses (see Figure 4). Each
register may or may not be associated to a stream, and this module
is responsible for the implicit loading and storing of data, as well
as the iteration of the streams (by the Address Generator). For the
desired functional evaluation, the Load/Store FIFOs and the Stream
Scheduler, represented in Figure 4, were not needed, as streams
are iterated as they are being consumed, with each computation

instruction triggering the iteration of the source streams (implicit
loading) and the destination streams (implicit storing). The result-
ing elements are immediately placed in the associated registers and
the End Of Dimension flags are updated and saved to the Stream Ta-
ble. The iteration and address generation parts work very similarly
to the proposed configuration and are implemented in a different
class, Dimension, which has access to the Modifier class, where
static modifiers are implemented. Each streaming register, when
associated to a stream, is therefore also associated to n dimensions
and respective modifiers, if such is the case.

Furthermore, predication support was developed at the instruc-
tion level, which means that the predicate values never reach the
SU, for simplicity. A predicate register has a fixed vector size of 64
bytes, and a predicate is thus evaluated according to the datatype
of the instruction’s source operands. As a result, in each predicated
instruction the predicate register is read for each active lane, and
the operation is only performed if it evaluates to 1, as stated by the
ISA specification [8].

3.1.2 Modified files. Several source files were modified to add the
necessary structures to support UVE (e.g. decoding functions for
each instruction argument), according to the ISA encoding. These
functions, divided into different types of instructions, followed
the same pattern as already existing ones, some even being direct
copies, so that there is complete flexibility in case the UVE encoding
is changed. In that case, it is not necessary to alter each instruction
if, for example, one of the source registers is differently encoded.
It is only required that the decoding function corresponding to its
type is updated accordingly.

For the simulator to recognise the new instructions, the file that
holds all the ISA encoding, encoding.h, must be updated. To obtain
the necessary code, the official RISC-V Opcodes project 3 was used,
where the encoding of each instruction was added to the standard
ISA and UVE’s predicate registers, and immediate encoding was
added to the file constants.py.

Lastly, the new extension was added to file riscv/riscv.mk.in,
identically to what is done to the native ones, so each new instruc-
tion was included in the variable riscv_insn_ext_uve. In this
file every new source and header file was also added to variables
riscv_srcs and riscv_install_hdrs, respectively, so that they
could be recognised during the compilation of the simulator.

3.1.3 New files. The various new classes priorly mentioned are
defined in files descriptors.h (dimensions and modifiers) and
streaming_unit.h (registers and SU).

Furthermore, each instruction has a corresponding header file in
the riscv/insns folder. While compiling the simulator, these files
will be used to create copies of the riscv/insn_template.cc file
for each instruction, responsible for the generation of the various
versions of the instruction (e.g. 32/64 bit). The obvious implication is
that the developed code for an instruction exists inside an external
function, therefore header file inclusion is not allowed and only
some variables are accessible, namely the processor, the executed
instruction and the process counter. It is through the processor that
each instruction can access the Main Memory Unit (MMU), as well
as the SU and its registers. The executed instruction, an insn_t

3Available at https://github.com/riscv/riscv-opcodes
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Figure 4: (A) Streaming Engine and (B) Stream Processor Module proposed by Domingos et al. [8], now emulated on Spike.

object, has access to the opcode decoding functions, allowing the
instruction code to access its operands. The process counter is
mainly used in branching instructions.

4 EXPERIMENTAL RESULTS
4.1 Methodology
In order to validate the UVE ISA functional simulation, various
benchmarks from a wide range of application domains, such as
memory access, linear algebra/BLAS and stencil, were chosen. These
benchmarks were either hand-coded in order to have its correspond-
ing UVE implementation, inserted in the original source code using
inline assembly, or even generated by an adaptded version of the
LLVM compiler that, while currently unavailable to the public, is
undergoing preliminary testing.

Figure 2.C shows how a simple matrix multiplication (𝐶 = 𝐴×𝐵)
can be coded with UVE. In this example, u1 and u2 are streaming
registers configured with load data streams from matrices 𝐴 and 𝐵
and u3 is associated to the store stream, corresponding to matrix
𝐶 , which holds the computation results. This example is also part
of the kernel used in benchmark 3mm, already implemented and
tested on Spike (see Section 4.2 and Figure 5).

4.2 Evaluation
The described framework is currently able of simulating most of the
UVE specification, which means that data streaming capability has
been successfully added to Spike, as well as many instructions from
the proposed ISA. It currently supports multi-dimensional pattern

descriptors, as well as static modifiers, although indirection is not
yet implemented. Stream-based branching and predication are also
supported, as well as multiple arithmetic and vector operations on
the streaming registers. In total, more than 100 instructions have
been implemented and validated on Spike, which can be categorised
as follows:

• Arithmetic (41)
• Branching (16)
• Predication (15)
• Vector (8)
• Stream Configuration (21)

With these fully functional instructions, several benchmarks can
already be ran on the simulator, as summarised in Figure 5. All these
benchmarks, which had been previously used for validation of the
UVE ISA and supporting microarchitecture on gem5, outputted the
same expected behaviour in Spike, proving the correct functioning
of the developed Streaming Unit and the added instructions on the
this simulator.

5 RELATEDWORK
The main focus of the presented work is the development of a new
simulation environment for UVE, where the major difference from
previous works is the chosen base tool. In this section, an overview
of the legacy gem5 UVE simulation framework is presented.

5
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gem5 was notoriously used in UVE’s proposal by Domingos
et al. [8], to provide a reliable performance evaluation with cycle-
accurate precision based on the adaption of an out-of-order proces-
sor model architecture, as it is extendable to support custom ISAs,
as well as microarchitecture models [3, 4, 8, 19].

Despite being an open-source project, gem5 has little documen-
tation available, similarly to Spike. However, it is a much more
complex tool, which resulted in a long and difficult process of mod-
ifications to support UVE. The source code of the simulator was
extensively changed, to support new vectorial and predicate reg-
isters, where scalability (e.g. variable vector register length, with
the element width as a part of the register) was a major obstacle to
overcome. This is due to the simulator not being prepared for this at
the ISA level, as well as requiring that the configuration of the archi-
tecture is changed at each execution. Furthermore, the instruction
set parser was modified to support the new vector registers, as well
as the width and valid index register information [8]. Lastly, UVE
instructions were added, described in a Domain-Specific Language
(DSL) based on C++ and Python, which, on the one hand, allowed
templating for multiple instructions and code reuse, but on the
other hand required many different templates to be developed, such
as for instructions with different operands, which are extremely
common.

Because this simulator relied on the implementation of the sup-
porting microarchitecture for the validation of UVE, as it depends
on a Streaming Engine, the instruction set had not been simulated
independently until now. The proposed Spike-based framework
made it possible to focus solely on the instruction’s behaviour, de-
taching the ISA development from implementation details prone to
specification errors.

Lastly, simulation platforms alternative to Spike exist, such as
QEMU4 and Chisel5. While the former is closely related to Spike,

4https://www.qemu.org/
5https://www.chisel-lang.org/

it is a more complex project, and therefore lacks the simplicity
required for an efficient and continuously changing framework.
The latter could be used to create an RTL simulation. While this
was not the goal of this work, it could be useful, as the proposed
framework exists within a bigger project on UVE currently under
development, where this type of validation is appropriate.

6 CONCLUSION
In this paper, a new validation framework for the UVE ISA extension
based on the Spike RISC-V simulator is presented. This new sim-
ulation tool provides efficient development means and functional
evaluation for this ISA extension and of its supporting microarchi-
tecture. A Streaming Unit, responsible for the management of the
streams, and most of the existing UVE instructions were added to
Spike, also including support and ensuring validation for the main
functionalities already offered by UVE, such as data streaming with
implicit loads/stores, predication, and 𝑛-dimensional pattern de-
scription with static modifiers. A representative set of benchmarks
was tested and verified, confirming the previous results that had
been obtained with a gem5 legacy UVE simulator. Furthermore,
this tool was also used to validate the preliminary results from the
UVE-LLVM compiler that is currently under development, and has
proven to be useful both in the development of UVE applications
and in the development of the UVE extension itself.

6.1 Future Work
Although the most part of the instruction set has already been
added to the framework, some instructions of the existing ISA are
yet to be implemented, namely logical and stream configuration in-
struction. The latter have to be accompanied by the implementation
of indirection, which is not yet supported.

In addition, the Spike simulator’s disassembler still has no in-
formation about the added extension, which makes the use of the
debugger less straightforward. This can be improved in the future,
making the developed tool much more useful by improving code
review and correction.

Lastly, the LLVM compiler toolchain currently under develop-
ment is to be tested on this framework. Once it is released, it will
integrate this project, removing the need to hand-code applications
where UVE is to be used. This will allow anyone to develop software
taking advantage of this new ISA extension.
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