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∗INESC-ID, Instituto Superior Técnico, University of Lisbon, Portugal
†Instituto de Telecomunicações, University of Coimbra, Portugal

Abstract—Attaining the performance and efficiency levels required
by modern applications often requires the use of application-specific
accelerators. However, writing synthesizable Register-Transfer Level
code for such accelerators is a complex, expensive, and time-consuming
process, which is cumbersome for early architecture development phases.
To tackle this issue, a pre-synthesis simulation toolchain is herein
proposed that facilitates the early architectural evaluation of complex
accelerators aggregated to multi-level memory hierarchies. To demonstrate
its usefulness, the proposed gem5-accel is used to model a tensor accelerator
based on Gemmini, showing that it can successfully anticipate the results
of complex hardware accelerators executing deep Neural Network models.

Index Terms—Simulation Toolchain, Accelerator Modeling, Complete
System Emulation

I. INTRODUCTION

DURING the past decade, several contributions have been made to
tackle the challenges involved in the conception of pre-Register-

Transfer Level (RTL) development tools targeting heterogeneous high-
performance processing systems, pointing out important problems,
such as the lack of sufficiently accurate models and the scalability
of existing solutions [1]. Although relevant proposals on design
exploration and performance prediction were presented, they usually
target fairly homogeneous systems (such as conventional multi-core
Central Processing Unit (CPU) systems) [2], [3], and are hardly suited
for heterogeneous systems featuring specialized hardware accelerators.
Furthermore, they are also unsuited for early design exploration phases
(where the parameterization of the architectures is not fixed yet), as
they usually require a detailed specification of the device [4].

In contrast, this paper proposes gem5-accel, a toolchain based on
the gem5 simulator [5] and gem5-ndp [6] targeting the fast modeling
and evaluation of new heterogeneous architectures and their integration
with processing systems and memory hierarchies without resourcing
to complex and time-consuming RTL-description approaches. gem5-
accel also offers a software library to easily devise the control and
synchronization layer between the CPU and the hardware accelerators,
as well as a Load-Store Unit (LSU) specially designed to cope with
the existing CPU virtual memory system (making address translation
transparent to the developer). The proposed tool provides an accurate
simulation of the modeled accelerators (which can be tailored down
to a clock-cycle-basis) in parallel with the remaining components of
the system. In addition, it inherits the gem5 interface to McPAT [7]
and Cacti [8], allowing to parameterize the modeled hardware and
estimate area and energy metrics (not explored herein).
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To demonstrate the functionalities and benefits of gem5-accel,
a Neural Network (NN) accelerator inspired on Gemmini [9]
was modeled and evaluated by considering the execution of nine
microbenchmarks and twelve full Convolutional Neural Network
(CNN) models. The conducted experimental procedure showed that
the developed gem5-accel-based model successfully reproduced the
equivalent physical architecture of the targeted Gemmini accelerator,
by reveling performance benefits similar to those measured in [9].

II. GEM5-ACCEL TOOLCHAIN

The proposed toolchain offers three main mechanisms to support the
development and evaluation of new accelerators: (1) an architectural
model that acts as a boil-plate for new custom architectures; (2) a
software library to implement the control and synchronization layer
between the CPU and the hardware accelerators; and (3) simulation
scripts to easily connect accelerators with the remaining processing
system, while still allowing to tune the system components.

A. The architectural model

The proposed architectural model comprises three main components
(see Fig. 1): (1) a memory-mapped Programming Interface (PI) for
control and synchronization between the CPU and the hardware
accelerator; (2) an LSU to handle communication between the
hardware accelerator and memory hierarchy; and (3) a virtual memory
translation mechanism to automatically convert memory addresses
between virtual and physical domains without needing extra hardware.

The PI serves as a communication interface between the CPU
and an accelerator for control purposes. The number and size of
registers in the PI can be configured in gem5-accel, and their purpose
is determined by the developer based on the custom architecture’s
requirements. As illustrated in Fig. 2, when the CPU accesses PI
registers, the PI module automatically handles the request, using the
readPI and writePI methods to read or write the programming
registers. Importantly, the PI does not place any restrictions on the
internal architecture of the accelerators, remaining unaware of their
control flow, implementation, and Instruction Set Architecture (ISA).

The LSU features a memory port that connects the hardware accel-
erator to the memory hierarchy, and implements specific mechanisms
for easy retrieval and storage of data. When exchanging data with
memory devices, which impose request size constraints, the LSU
automatically breaks down large requests into smaller ones that comply
with such constraints (using the accessMemory method). These
smaller requests are then sent one after the other at a configurable
rate (via the sendData method). Additionally, to handle situations
where memory devices are busy and reject requests, the LSU uses a
First-In-First-Out (FIFO) request queue to retry sending the dropped
requests when the memory device becomes available again.

Another important feature of the devised LSU is its ability to
be coupled to any level of the memory hierarchy (or even multiple
levels), with the bandwidth allowed at each level being a configurable
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Fig. 1: Block-diagram of the proposed gem5-accel. BW2* and BW3*
represent configurable parameters that define the bandwidths between
the different memory hierarchy levels and the hardware accelerator.

parameter. gem5-accel also allows bypassing the memory controller,
enabling developers to freely adjust the latency of the memory devices.
This feature is particularly interesting for Near-Data Processing (NDP)
design exploration [10], [11], allowing developers to emulate memory
accesses using a custom latency. In addition, the architectural model
of gem5-accel also supports multiple hardware accelerators coupled
to the same or different CPUs and memory devices.

Due to the existence of a virtual memory subsystem, the data
pointers made visible to user applications (virtual addresses) usually
differ from those used to communicate with the memory devices
(physical addresses). To make this compatible with the use of hardware
accelerators, while avoiding the overheads of implementing explicit
address translation mechanisms at the accelerator level, gem5-accel
reserves a contiguous region within the existing physical memory and
maps it into the virtual address space such that the virtual addresses are
equal to the physical addresses within that region. Thus, that memory
region can be shared between the CPU and the hardware accelerator
without the need of explicitly translating the addresses. It is worth
noting that this does not relax any security features, which are still
enforced to guarantee process isolation, preventing other processes
to access CPU-accelerator shared memory. In addition, this shared
memory space has all the same features as the remaining memory,
including being accessible by the CPU with the same latency. Hence,
whenever required, it can also be used for other purposes.

B. Simulating hardware accelerators using gem5-accel

gem5-accel supports two simulation modes: System Emulation
(SE) and Full System (FS). In SE mode, it simulates a single
application using the accelerator without an Operating System (OS).
Hence, OS-specific features/restrictions are disabled. In contrast, FS
mode simulates a standard OS (Linux), producing results similar to
a real multitasking environment where the OS manages hardware
resources and enforces process and memory isolation. As a result,
applications can’t directly access physical resources and the communi-
cation between the user application and the hardware accelerator has
to be done through a device driver. Naturally, this introduces more
complexity and programming overhead on the application side.

Listing 1 depicts a partial SE simulation script, highlighting the
main components of the system and relevant configurations allowed by
gem5-accel. The underlying processing system in this example features
a standard CPU, a two-level cache hierarchy, and a Dynamic Random
Access Memory (DRAM) (see Part 1). In Part 2, an accelerator is
instantiated and its PI is mapped into the CPU address space. Part 3
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Fig. 2: Function diagram showing the relation between the software
routines and the corresponding physical components depicted in Fig. 1.

connects the hardware accelerator to both the CPU and the memory
hierarchy using configurable buses. By changing the width of these
buses (in class CustomL2XBar) and the parameters of the memory
components, it is possible to control the bandwidth made available to
the accelerator, allowing to simulate different levels of proximity to
the memory. Although this example shows the accelerator integrated
with the L2 cache, it can be as easily coupled to the L1 or the DRAM.

Accordingly, a C code example using a hardware accelerator is
shown in Listing 2. First, the data pointers representing both the
accelerator PI registers and the shared memory region between the
CPU and accelerator are set statically to the corresponding addresses.
Then, both the operands and the kernel (list of accelerator-specific
instructions) are loaded into memory and the CPU instructs the
accelerator to start executing the kernel. While the accelerator is
active, the CPU may execute other tasks. Finally, the CPU waits for
the accelerator to finish processing by pooling its status register.

Listing 1: gem5 SE script simulating a standard processing system and
memory hierarchy with a custom accelerator using gem5-accel. In this
example, the accelerator is connected to the L2 cache. Nevertheless,
gem5-accel allows to connect accelerators to any memory device.
# Standard processing system
system.cpu = X86MinorCPU()
system.cpu.icache = L1Cache() (Part 1)
system.cpu.dcache = L1Cache()
system.l2cache = L2Cache()
system.mem_ctrl = DDR3_1600_8x8()

# Custom accelerator
system.accel = CustomAccel(

ctrl=("0x40000000", "0x40001000"), (Part 2)
data=("0x40001000", "0x80000000"),
max_rsze=0x40, max_reqs=64)

class CustomL2XBar(L2XBar):
def __init__(self):

super(CustomL2XBar, self).__init__()
width = 32 # 256-bit bus width (BW2*)

# Connect custom accelerator to CPU
system.accel.cpu_port = system.cpu.dcache_port (Part 3)
system.cpu.dcache.cpu_side = system.accel.mem_side

# Connect custom accelerator to L2
system.l2bus = CustomL2XBar()
system.accel.dma_port = system.l2b.slave
system.l2cache.cpu_side = system.l2bus.master

# Let accelerator operate on upper 1GB of a 2GB RAM
system.cpu.workload[0].map(

0x40000000, # Host address space
0x40000000, # Accelerator address space (Part 4)
0x40000000, # Address range
cacheable=True)

exit_event = m5.simulate() # Start simulation
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Listing 2: C code example to initialize and control a hardware accelerator
using gem5-accel SE mode. The routines initData/initKernel
preload the data/kernel into the shared memory region. The accelerator is
instructed to start executing the kernel by __accelLaunchKernel, and
__accelReady checks (pooling) if the accelerator finished processing.
int main() {

// Assign accelerator memory addresses
volatile void *accel_control = ACCEL_CRTL_ADDR;
volatile DATA_TYPE *dataset = ACCEL_DATA_ADDR;
volatile void *kernel = ACCEL_KRNL_ADDR;

// Dataset and kernel are prepared
initData(dataset); initKernel(kernel);

// CPU launches kernel on accelerator
__accelLaunchKernel(accel_control);

... // CPU processes tasks in background

// CPU waits for accelerator to finish
while (!__accelReady(accel_control));

...} // CPU post-processes the results

III. CASE STUDY: A GEMMINI-BASED CNN ACCELERATOR

To validate the proposed toolchain, a Gemmini-based NN accel-
erator inspired in [9] was modeled and evaluated using gem5-accel.
This accelerator (see Fig. 3) consists of a bi-dimensional systolic
array, where each Processing Element (PE) contains a Multiply-
Accumulate (MAC) unit and communicates with its neighboring PEs
through dedicated buses. Additionally, PEs can be arranged in tiles,
which communicate with adjacent tiles through pipeline registers.
It also includes specialized units to perform matrix transposition,
rearrangement of input matrices for convolution, Rectified Linear
Unit (ReLU), accumulation, bit-shift, pooling, and matrix-scalar
multiplication, as well as dedicated input/output memories (scratchpad
and accumulator SRAM) explicitly managed by the CPU.

A. Experimental Setup

In the conducted experiments, the modeled accelerator consists of
a systolic mesh of 16-by-16 PEs with a 256 kB scratchpad memory
and a 64 kB accumulator output memory. The remaining processing
system consisted of: an in-order superscalar CPU (similarly to [9])
operating at 2GHz; a two-level cache hierarchy with a 32 kB L1I/D
cache and a 256 kB L2 cache; and a 2GB DDR3 memory.

Three sets of benchmarks were executed using the aforementioned
setup: (1) nine microbenchmarks consisting of common NN operations;
(2) twelve CNN models of the darknet framework [12] (inference
only); and (3) three hand-tuned CNN models optimized for the
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Fig. 3: Generic architecture of a Gemmini NN accelerator consisting
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NN-specific units and input and output memories.
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Fig. 4: Microbenchmarks (a, b) and CNN benchmarks (c, d). (a, c) regard
applications where the gathering of the operands is done by the CPU.
(b, d) concern applications fully executed by the Gemmini accelerator.

modeled Gemmini accelerator. Additionally, the microbenchmarks of
experiment (1) were also executed using an official Gemmini emulation
platform supported on Verilator and the results were compared with
those of gem5-accel. For simplicity, the experiments were conducted
using SE mode. Nevertheless, gem5-accel also supports to FS mode.

B. Experimental Results and Discussion

The results obtained with the first experiment are illustrated in
Fig. 4a and Fig. 4b. The nine considered microbenchmarks are divided
in two groups: (a) kernels whose operands are gathered by the CPU
and arranged in the scratchpad in the order they are required for the
operations; and (b) kernels that are fully executed by the accelerator.

In the first scenario, the CPU replaces the functionality of the
im2col and transposer blocks of the Gemmini accelerator.
Naturally, this leads to a larger memory footprint in the scratchpad (as
the convolution operands are stored in a redundant fashion), and to a
significant increase in execution time (since more data is transferred
from memory and the performed accesses are irregular). Hence, the
benchmarks of the first group attain a much lower speedup than their
counterparts of the second group, which are exclusively executed by
the Gemmini accelerator, including the gathering of the operands. It
is also worth noting that when comparing the performance results of
gem5-accel (orange bins) with those of Gemmini’s official simulation
platform (gray bins), an average error as low as 4.3% can be observed,
supporting the accuracy of gem5-accel and the developed model.

The second experiment considers twelve complete CNN models
from the darknet framework. However, due to the way darknet is
organized (which benefits execution in CPUs and GPUs), offloading
the gathering of the operands to the accelerator would require complex
modifications. Thus, only the convolution and pooling operations were
offloaded to the accelerator, while the gathering of the operands was
done by the CPU. Naturally, this limited the achievable performance
improvements, which ranged from 1.55× to 1.64×, as shown in Fig. 4c.

Nevertheless, this experiment shows the usefulness and robustness of
gem5-accel, allowing to execute a benchmark as complex as darknet in
a realistic processing system featuring a custom hardware accelerator
and a communication layer between the host code and the accelerator.

Fig. 4d shows the speedup of three hand-tuned CNNs optimized to
fully exploit the capabilities of the modeled accelerator. By offloading
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the gathering of the operands to the accelerator, speedups of more than
two orders-of-magnitude are achieved, as reported in [9]. In particular,
Fig. 5 depicts the decrease of the execution time of convolutional and
pooling layers for a small CNN targeting the CIFAR-10 dataset.

IV. RELATED WORK

Recently, two works have been proposed targeting design space
exploration of heterogeneous hardware accelerators that have gained
particular visibility in the community: gem5-Aladdin [13] and gem5-
SALAM [14]. Although they share similar goals with gem5-accel,
these approaches are crucially different in the adopted simulation
strategies (see Table I), which is reflected in their scope and scalability.

Both solutions employ a High-Level Synthesis (HLS) approach,
starting with developers describing a behavioral model of the accelera-
tors using high-level C code and structures. Then, the application code
is analyzed, and a Dynamic Data Dependence Graph (DDDG) is built,
with vertices being Low Level Virtual Machine (LLVM) Intermediate
Representation (IR) instructions and edges representing operation
dependencies. Finally, operations are automatically scheduled to the
accelerators to maximize resource utilization and performance.

Although the high-level hardware modeling enabled by these tools
makes it easier for the user to quickly develop and evaluate new
accelerators, it also limits the complexity of their internal architectures,
which is supported by the rather simple benchmarks used to validate
these works. In contrast, gem5-accel is comparatively lower-level,

TABLE I: Summary and comparison of main features offered by gem5-
accel and two previous works: gem5-Aladdin [13] and gem5-SALAM [14].

gem5-Aladdin gem5-SALAM gem5-accel
Development
tier (analogy) HLS HLS RTL description

Simulation
flow

Multi-step, analytical
analysis (requires the
use of multiple tools
and analytical models

Multi-step Single-step

Performance
simulation Trace-based Clock-cycle/

interval-based
Clock-cycle/

interval-based
Energy

estimation Custom model McPAT/Cacti
support

Possible using McPAT/
Cacti gem5 integration

Area
estimation Not supported McPAT/Cacti

support
Possible using McPAT/
Cacti gem5 integration

Requires
rebuilding

gem5

No (architecture
of accelerators

unknown to gem5)

No (architecture
of accelerators

unknown to gem5)

Partial rebuild
(accelerators are

gem5 components)
Address

translation Custom Not supported Standard (w/ particular
address mapping)

Simulation
mode SE only

FS bare-metal/
limited support
to FS with SO

SE/FS

allowing the user to describe new accelerators using a syntax closer
to the hardware, enabling to model much more complex (and even
micro-programmed) co-processors, such as Gemmini [9].

Furthermore, gem5-Aladdin and gem5-SALAM involve multi-step
simulation procedures, which can make their adoption more difficult.
gem5-Aladdin even requires analytical steps, which may introduce
significant errors to the results, compared with a pure-simulation
approach like gem5-accel. Additionally, neither of these tools produces
gem5 simulation objects, with the architecture of the simulated
accelerators being unknown to gem5. Thus, generating gem5 statistics
for the internal operations of these components is not possible.

Another advantage of gem5-accel over these two tools is its support
for both SE and FS modes. While gem5-Aladdin only supports SE
mode (with a custom virtual memory system), gem5-SALAM only
supports bare-metal FS mode and has no virtual memory support. On
the other hand, gem5-accel provides full support to virtual memory
using standard mechanisms, making it transparent to the user.

Finally, all three solutions are compatible (to some extent) with
energy and area estimation mechanisms. gem5-Aladdin provides a
custom model for energy estimation. gem5-SALAM supports energy
and area analysis through native integration with McPAT/Cacti. gem5-
accel, however, requires extra hardware information to be able to
create area and energy profiles of the modeled accelerator using
McPAT/Cacti together with traces generated by gem5.

V. CONCLUSIONS

In this paper, gem5-accel, a pre-RTL simulation toolchain allowing
to easily model, test, and estimate the performance attained by
new hardware accelerators without resourcing to complex and time-
consuming RTL-description workflows is proposed.

To demonstrate the devised toolchain, three experiments were
performed, that led to two important conclusions: (1) gem5-accel
allows to easily predict the benefits of entire processing systems with
custom accelerators executing full applications such as darknet [12];
and (2) gem5-accel provides a very accurate simulation of custom
hardware accelerators, as shown by the similarity of the results
obtained with gem5-accel and Gemmini’s official simulation platform.
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