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Seismic inversion is an established approach to model the geophysical characteristics of oil and gas
reservoirs, being one of the basis of the decision making process in the oil&gas exploration industry.
However, the required accuracy levels can only be attained by dealing and processing significant
amounts of data, often leading to consequently long execution times. To overcome this issue and to allow
the development of larger and higher resolution elastic models of the subsurface, a novel parallelization
approach is herein proposed targeting the exploitation of GPU-based heterogeneous systems based on a
unified OpenCL programming framework, to accelerate a state of art Stochastic Seismic Amplitude versus
Offset Inversion algorithm. To increase the parallelization opportunities while ensuring model fidelity,
the proposed approach is based on a careful and selective relaxation of some spatial dependencies.
Furthermore, to take into consideration the heterogeneity of modern computing systems, usually com-
posed of several and different accelerating devices, multi-device parallelization strategies are also pro-
posed. When executed in a dual-GPU system, the proposed approach allows reducing the execution time
in up to 30 times, without compromising the quality of the obtained models.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In the last few decades, high-performance computing infra-
structures have become essential tools in the oil and gas industry,
in order to satisfy the ever growing needs for oil and gas pro-
duction and exploration. However, due to the amount of data that
is generated, processed and stored, applications used in this in-
dustry are often characterized by huge execution times (up to
months), often limiting their usefulness whenever faster and high
resolution models are required. To decrease the computation time,
many solutions have been devised, including the development of
specialized processing structures and the exploitation of modern
computing devices both at the level of a single computing plat-
form or at the level of a cluster or grid.

Among the multiple application domains, stochastic algorithms
play a key role in the characterization of oil and gas reservoirs,
where accurate predictions are required even in the presence of
scarce information available. Accordingly, complex geological in-
terpretations of the subsurface properties are usually attained by
lementation is available at:

).
using approximate computational models. However, these ap-
proximations often result in subsurface models with a high level of
uncertainty, leading to a faulty understanding of the geological
structure and to subsequent drilling errors, with rather expensive
consequences not only in terms of investment costs but also in
terms of the environmental impact. The recently proposed sto-
chastic seismic Amplitude Versus Offset (AVO) inversion algorithm
(Azevedo et al., 2013), based on a Direct Sequential Simulation
(DSS) (Soares, 2001) approach represents a promising methodol-
ogy to solve geophysical inversion problems, improving the gen-
erated models at the cost of a significantly more complex pro-
cessing of the gathered data.

To reduce the execution time, a simplified version of the DSS
algorithmwas parallelized to exploit multi-core Central Processing
Units (CPUs) (Nunes and Almeida, 2010). By applying a straight-
forward functional decomposition of the algorithm, presented a
multi-core implementation by considering a straightforward
functional decomposition of the algorithm, an acceleration of up to
3.5� was observed for a quad-core CPU. However, this solution is
limited not only in scalability but also in the capacity to exploit
modern heterogeneous computing systems composed of multiple
processors.

The generic parallelization of geostatistical simulation methods
have also been studied (Mariethoz, 2010), where three distinct
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levels of parallelization were identified: realization level, path level
and node level. In such broader scope, some related stochastic al-
gorithms have already been optimized and parallelized using
multi-core CPUs (Nunes and Almeida, 2010; Mariethoz, 2010;
Stinessen, 2011; Hysing, 2010) and Graphics Processing Units
(GPUs) (Tahmasebi et al., 2012). All these implementations pre-
sented different approaches to maximize the parallelization of the
algorithm, while trying to avoid as much communication overhead
as possible. However, whenever highly parallel environments are
considered, non-fully distributed master–slave approaches are still
prominent. In these cases, the master node often becomes a per-
formance bottleneck as the number of parallel processing threads
increases, since it has to satisfy the requests of every slave node.
Furthermore, the increasing communication overhead between
the multiple slaves and the master node can only be hidden by
allowing asynchronous communications, which often prevents an
exact reproducibility of the results.

Accordingly, an efficient parallelization approach of the Sto-
chastic Seismic AVO Inversion algorithm is now proposed, by
considering highly heterogeneous platforms composed of several
devices with different computational capabilities. Such a flexible
solution is achieved by using the OpenCL API, allowing each part of
the algorithm to be easily migrated among the several coexisting
CPUs and GPUs. Namely, the OpenCL framework is not restricted to
a given vendor of GPUs neither to GPU architectures, offering more
code portability and flexibility when compared to the CUDA pro-
gramming language. It is up to the programmer to decide how
efficient and how portable its implementation is going to be.
Therefore, the proposed parallelization approach stands out from
the current state of the art in the following aspects:
�
 Improved scalability, by executing the stochastic simulation
procedure in a completely distributed processing scenario.
�
 Guaranteed reproducibility of the attained results.

�
 Efficient and scalable implementation in highly heterogeneous

processing environments.

This paper is organized as follows. A contextualization and a
brief description of the algorithm being parallelized is presented in
Section 2. The proposed parallelization approach is described in
detail in Section 3, serving as a background to the following sec-
tion where the single and multi-device implementations are de-
scribed. An experimental evaluation of the developed im-
plementations is presented in Section 5. Finally, Section 6 con-
cludes this paper, summarizing the main conclusions and
contributions.
2. Stochastic seismic AVO inversion

Seismic reflection data plays a key role in hydrocarbon re-
servoir geo-modelling workflows. Numerical three-dimensional
subsurface Earth models, built from available well-log and seismic
reflection data, are usually considered essential tools for reliable
decision making and risk analysis (Doyen, 2007). A geostatistical
(or stochastic) framework allows the integration, within the same
model, of a broad set of data with very different scale support,
namely well-log data, which is sparsely located along the study
area but has a very high vertical resolution; and seismic reflection
data, which covers a great spatial extent but has a low vertical
resolution (Bosch et al., 2010). Unfortunately, the integration of the
seismic reflection data is not straightforward within the modelling
workflow, since it is an indirect measurement of the subsurface
elastic properties of interest, such as P-wave velocity (Vp), S-wave
velocity (Vs) and density (ρ). Before this data can be integrated,
the so-called seismic inverse problem needs to be solved (Bosch
et al., 2010). However, due to measurement errors and approx-
imations in the physical models that are often used to solve the
seismic inverse problem, this is an ill-posed and highly nonlinear
problem with a non-unique solution (Tarantola, 2005; Bosch et al.,
2010).

High quality pre-stack seismic data with high signal-to-noise
ratio and with a considerably high fold number is becoming the
standard in exploration and characterization projects. For this
reason, there has been an increase on the number of available
inverse techniques for pre-stack seismic reflection data (e.g.,
Mallick, 1995; Buland and Omre, 2003). At the same time, due to
the advantages on uncertainty assessment and data integration,
geostatistical inverse procedures are increasing its popularity in
seismic reservoir characterization studies. Accordingly, a state of
art geostatistical pre-stack seismic inversion methodology
(Azevedo et al., 2013, 2014) that allows the inversion of pre-stack
seismic data directly for ρ, Vp and Vs models is herein adopted.
Contrary to most inversion procedures that simply invert the
seismic reflection data for acoustic and elastic impedance, this
particular inversion methodology is able to individually invert
each of the elastic properties of interest.

The adopted methodology consists of an iterative geostatistical
inverse procedure based on two main parts: a genetic algorithm
that acts as a global optimizer to ensure the convergence of the
solution from iteration to iteration; and a stochastic sequential
simulation (Direct Sequential Simulation (DSS), co-DSS (Soares,
2001) and co-DSS with joint probabilities distribution (Horta and
Soares, 2010). This stochastic sequential simulation algorithm al-
lows the calculation of a set of subsurface Earth models, each
called a realization, that honour the experimental data (available
well-log data); the prior probability distribution (or a target one)
estimated from the well-log data; and a spatial continuity pattern,
as revealed by a covariance model (e.g., in two-point geostatistics a
variogram). The iterative geostatistical pre-stack seismic inversion
methodology is summarized in the following modules (see Fig. 1):
�
 Joint simulation of density, P-wave and S-wave velocities:
1. Stochastic simulation of r density models conditioned to the

available well-log data with DSS (Soares, 2001).
2. Stochastic co-simulation of r Vp models given the r pre-

viously simulated density models with co-DSS with joint-
distributions (Horta and Soares, 2010).

3. Stochastic co-simulation of r Vs models given the r pre-
viously simulated Vp models with co-DSS with joint-dis-
tributions (Horta and Soares, 2010).
�
 Optimization for the iterative convergence:
1. From the triplet of elastic models computed in the previous

stage, calculation of r angle-dependent synthetic pre-stack
seismic volumes using Shueys linear approximation (Shuey,
1985).

2. Comparison between each synthetic angle gather with the
corresponding real angle gather on a trace-by-trace basis;
and calculation of r local correlation gathers for each loca-
tion within the seismic grid.

3. Selection of the areas with the highest correlation coeffi-
cient, by simultaneously considering all angles to build the
best density, P-wave and S-wave models; these best models
are then used as secondary variables for the co-simulation
of the elastic models generated during the next iteration.

4. Iterate from (1) until the matching criteria (i.e., global cor-
relation between the original and the synthetic pre-stack
seismic) are reached.
Each stochastic simulation procedure (blocks 1, 2 and 3 in
Fig. 1) can be summarized with the flowchart presented in Fig. 2,
composed of the following processing blocks:



Fig. 1. Stochastic seismic AVO inversion algorithm flowchart.
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(A)
Fig. 2
parts
Randomly selection of a node from a regular grid.

(B)
 Construction and solution of a kriging system for the selected

node.

(C)
 Estimation of a Local Cumulative Distribution Function (LCDF)

at the selected node, by linear interpolating both the experi-
mental data and previously simulated nodes available in the
. DSS algorithm flowchart. The most computational demanding procedure is highlighted
.

neighbourhood (kriging estimate).

(D)
 Drawing of a value from the estimated LCDF, by using a Monte

Carlo method.

(E)
 Repeat from A, until all nodes have been visited by the random

path.
, together with the percentage of the execution time on each of the composing
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The co-simulation variant of this algorithm enables the simu-
lated variable Z x( )2 to be conditioned by other previously simu-
lated variable Z x( )1 , without any prior transformation of the sec-
ondary variable. In fact, the conditional cumulative distribution
function F Z x Z x[ ( ) ( )]2 1| is computed from the bi-distribution
F Z x Z x[ ( ), ( )]1 2 , by using moving classes (Horta and Soares, 2010).
When compared with the other sequential simulation algorithms,
such as the Sequential Indicator Simulation (SIS) and the Se-
quential Gaussian Simulation (SGS) algorithms, this is one of the
main advantages of the adopted DSS algorithm. Since the node
visiting path is random, different runs will produce different
models and consequently each conditioning data at a specific grid
node may slightly differ from each other (Doyen, 2007).

Altogether, this iterative procedure ensures an accurate re-
production of the individual marginal distributions of each elastic
property, as estimated from the well-log data, as well as the joint
distributions between density and P-wave velocity and P-wave
and S-wave velocities. All the simulated and co-simulated models
generated during this iterative procedure also match the well-log
data (at the wells locations) and the spatial continuity pattern, as
revealed by a variogram model. At the end of this iterative and
convergent methodology, synthetic pre-stack seismic data can be
retrieved, with an accurate match in terms of reflectors position
and amplitude variations with regard to recorded pre-stack seis-
mic data. In addition, the corresponding ρ, Vp and Vs models can
also be retrieved. This methodology was already successfully tes-
ted and implemented in a synthetic seismic dataset (Azevedo
et al., 2013) and it is herein applied to the same challenging syn-
thetic deep-offshore reservoir.
3. Algorithm parallelization

Aiming an efficient parallelization of the algorithm, an ex-
tensive analysis of its processing modules was conducted and is
herein briefly described. Such analysis supports the subsequently
proposed partitioning of the problem and the corresponding par-
allelization approach.

3.1. Problem analysis

In order to ensure an efficient partitioning and mapping of the
algorithm into the considered parallelization platforms, a com-
prehensive analysis of its execution and of its implicit de-
pendencies had to be made. For this purpose, a preliminary
quantitative profiling analysis was conducted, in order to identify
the most time consuming phases. Two distinct datasets were
considered for this characterization: a small one, composed of a
grid with 101� 101� 90 nodes; and a larger and more realistic
one, with 237� 197� 350 nodes. As presented in Ferreirinha
a b

Fig. 3. Data dependencies on the stochastic simulation of the ρ, Vp and Vs models. (a) Con
et al. (2014), the execution time of the different parts of the al-
gorithm was carefully evaluated, being identified that the gen-
eration of the ρ/Vp/Vs models using the DSS algorithm corres-
ponds to the most time consuming part (see blocks 1, 2 and 3 in
Fig. 1). Furthermore, by relying on SchedMon (Taniça et al., 2014)
to carefully monitor the algorithm execution on an Intel Core i7
3770K CPU, it was concluded that the application is mainly limited
by bandwidth of the memory subsystem (see the Cache-Aware
Roofline Model, Ilic et al., 2014, on the right side of Fig. 2).

The subsequent study considered an analysis of the several
existing data dependencies of the DSS algorithm. At each step of
the simulation procedure (processing sequence from parts A to D),
conditioning data is selected by finding the k-nearest neighbour-
ing nodes with available data (being the k value defined as a si-
mulation parameter). Therefore, since the simulation procedure
follows a random-path, conditioning data is selected from a not
strictly defined neighbourhood of the node being simulated (see
Fig. 3(a)). Accordingly, the estimation of the local conditional
distribution function (part C) at each node makes use of values
obtained from previously simulated nodes (part D), imposing a
strict commitment of a set of data dependencies within the pro-
cessing grid (see Fig. 3).

3.2. Parallelization approach

Taking into account the characteristics of the DSS algorithm
(the most computationally demanding part of the inversion pro-
cedure), three distinct parallelization approaches can be con-
sidered: functional-level, by simultaneously executing multiple
independent parts of the algorithm; data-level, where each part of
the algorithm is individually accelerated by simultaneously pro-
cessing independent data; path-level, where multiple nodes from
the random path are simulated at the same time by different
parallel processing threads.

Accordingly, by observing the set of existing dependencies
between multiple parts of the algorithm (see Fig. 3(b)), it can be
easily concluded that a functional-level parallelization would
hardly provide good acceleration results. In fact, although parts A
and B can be fully performed in parallel, the algorithm acceleration
is limited by the sequential execution of the random path through
every node (parts C and D), which still represents most of the si-
mulation execution time. In particular, by applying Amdhal's Law
to the acceleration of only parts A and B, a maximum speed-up of
1.4� is attained. Furthermore, an individual acceleration of each
part of the algorithm would also hardly give good results, not only
because the multiple parts present few parallelization opportu-
nities, but also because their sequential processing time is not
enough to be worth the overhead of transferring data to other
devices. In fact, the complexity of the algorithm lies in the several
millions of nodes that have to be simulated and not in the
ditioning data locations and (b) functional parallelization, by considering 3 threads.



Fig. 4. Spatial division of the original simulation grid in multiple sub-grids.
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simulation of a single node. Finally, in order to guarantee the same
results as the original sequential version of the algorithm, a path-
level parallelization has to ensure that no conflicts are observed
between the nodes being simulated in parallel (neighbourhoods
must not overlap), which introduces serious limitations in terms of
scalability.

To circumvent these limitations, the proposed approach is
based on a relaxation of the algorithm definition in order to enable
an efficient (but still accurate) path-level parallelization. Such a
parallel implementation was achieved by: (i) dividing the simu-
lation grid in multiple sub-grids; and (ii) randomly selecting a
node within each individual sub-grid at each step of the simula-
tion procedure. At the end of each step, the whole set of nodes
being simultaneously simulated is updated at once in the simu-
lation grid, conditioning the subsequent simulation steps (see
Fig. 4). At this respect, it is worth noting that the considered sub-
divisions of the simulation grid are not required to be cubic. In fact,
the anisotropic nature of the seismic data being processed sug-
gests that there are significantly less dependencies in the vertical
direction, which allows for a greater vertical division of the si-
mulation grid.

Regarding the generation of the random path, two distinct
criteria can be considered to select the simulation nodes, namely:
(i) by following the same relative sub-path in each sub-grid; or (ii)
by allowing each sub-grid to have its own random sub-path.
Taking into account that as long as the nodes being simulated are
sufficiently apart from each other (being kept outside of the search
ranges), no data conflicts should occur (Vargas et al., 2007), it can
be observed that one of the main advantages of the first mode is
that it grants a constant and equidistant distance between the
nodes being simulated in parallel. In addition, such regularity in
the set of nodes being simulated in parallel can also present some
advantages in terms of the GPU's implementation efficiency. On
the other hand, the second alternative presents less restrictions to
the considered random path, increasing the number of possible
paths and consequently the number of possible solutions (which is
significant, considering the stochastic exploration-based nature of
this algorithm). In this case, since no significant differences in
terms of performance and of quality of the generated models were
observed, the second alternative was chosen in order to provide a
greater flexibility to the random path generation.
4. Exploiting GPU-based heterogeneous platforms

Taking into account the presented parallelization approach, the
devised methodology to efficiently exploit heterogeneous
platforms composed both of CPUs and GPUs is herein described.
For such purpose, a brief introduction to GPU programming is
presented, together with a detailed description of a single-device
and multi-device approaches that allow exploiting both path-level
and realization-level parallelism.

4.1. General-purpose GPUs programming

The GPU is a computer component originally designed to pro-
vide real-time 3D graphics rendering. In accordance, its archi-
tecture is significantly different from a CPU, such as to efficiently
exploit data-level parallelism. Due to their highly parallel archi-
tecture, GPUs are nowadays widely used as general-purpose ac-
celerators, for highly parallel computational demanding
applications.

Despite being able to execute thousands of threads in parallel,
modern GPU architectures have several constraints that may limit
their performance. In particular, when an application is mapped
into a GPU, the corresponding threads are grouped in warps, with
all threads performing the same instruction at the same time (over
different data). Furthermore, memory accesses may only occur in
parallel provided that the memory positions that are accessed by
the multiple threads of a given work-group obey to some specific
restrictions in terms of the access patterns. As a consequence,
since each computational GPU core is simpler than a CPU one,
significant performance improvements are only verified when an
application efficiently uses the GPU parallel architecture, de-
manding a specific optimization effort that frequently leads to a
redesign of the algorithms being accelerated.

4.2. Single-device implementation

By taking into account the general constraints imposed by GPU
architectures, allied with the adopted OpenCL programming fra-
mework, there are at least two different ways to map the proposed
approach: (i) each sub-grid is simulated by a distinct OpenCL
work-group, being the inherent parallelism of the algorithm
exploited by the OpenCL work-items within each work-group; (ii)
each sub-grid is simulated by a distinct work-item. However, since
the simulation of a single node presents few parallelization op-
portunities, the former approach is not able to efficiently exploit
the whole GPU architecture, which conducted to the selection of
the second approach. Nevertheless, despite the greater amount of
nodes that can be simulated in parallel with this approach, it is
more memory demanding than the former, since intermediate
buffers need to be replicated for every node under simulation.
Hence, in the event that the available device memory is not



Fig. 5. Execution flowchart of the algorithm. The DSS algorithm being executed in the GPU (represented by blocks A, B, C and D, on the right) is the most computational
demanding part.
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enough, the simulation procedure can still be performed by si-
mulating the grid layer by layer, keeping a complete copy of the
grid being simulated only in the host device. These layers must
contemplate not only the specific sub-grids that will be simulated,
but also the neighbouring sub-grids that condition the simulation.
Nevertheless, some performance losses may still occur, due to the
different execution paths and memory accesses from threads of
the same work-group to different regions of the memory, since
each thread is simulating its own node.

It must be noted that only tasks related to the simulation
procedure are actually performed by the GPU devices, being the
host device responsible not only by the generation and transfer of
the data required in the simulation procedure (overlapped with
the computations), but also by the execution of all the other not so
significant parts of the inversion algorithm (see Fig. 5).

4.3. Multi-device single-realization approach

Another important aspect that should also be considered is the
possibility of using multiple devices, in order to ensure another
level of scalability. Accordingly, the proposed approach takes ad-
vantage of the previously described spatial division of the simu-
lation grid, and divides the obtained sub-grids between the several
OpenCL enabled accelerators. For such purpose, the original si-
mulation grid is initially divided into sub-grids, being the number
of sub-divisions proportional to the number of available devices, in
order to exploit the increased computational capabilities. The sub-
grids are then distributed to the available accelerators according to
its computational capabilities.

In order to efficiently take advantage of eventually different
computational capabilities delivered by different devices, the load
is balanced by dynamically distributing the nodes to be simulated
between the multiple devices, according to real-time performance
measurements obtained by OpenCL profiling events. At each step
of the simulation procedure the sub-grids are re-distributed ac-
cording to an iterative load balancing routine.

Since the simulation grid is stored in the device memory (one
copy per device), it must be updated with the information being
computed in the other devices after the parallel simulation of
every bundle of nodes. This implies an all-to-all communication
scheme and a consequent synchronization point (see Fig. 6). After
receiving the whole set of new simulated values, each device up-
dates (in parallel) its simulation grid, together with the mean and
variance values of the already simulated nodes, by using parallel
reductions. At the end of the simulation procedure, the resulting
model may be read from any device, since every device has an
updated copy of the simulation grid.

4.4. Multi-device multi-realization approach

Although significant improvements can be obtained by using
multiple GPUs to accelerate a single realization, the attained
scalability of such approach is limited by the intrinsic demand to
communicate the simulated values upon each simulation step and
by only parallelizing the execution of the simulation procedure.
Accordingly, greater performance levels are expected by con-
sidering a parallelization scheme at the realization level, where
several independent simulations are performed at the same time
by multiple devices, thus minimizing the need for communica-
tions. In this approach, each device computes a different realiza-
tion (set of ρ, Vp and Vs simulations), together with the corre-
sponding forward model and the correlation related computations
regarding those realizations (see Fig. 7).

Nevertheless, the construction of the best model still needs to



Fig. 6. Multi-device single-realization approach, by considering two devices with different computational capabilities.
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be sequentially performed, since it selects the best regions from
each generated model by comparing with the current best model.
Accordingly, after executing a given realization, the synthetic
seismic model must be processed by a CPU thread responsible for
the best model construction. Hence, beyond the CPU thread
dedicated to writing the output files, an extra host thread is used
to build and select the best realization, and to build the local
correlation cubes (main thread, in Fig. 7).

To maximize the performance, all devices iteratively simulate
one realization without any midpoint synchronization. However,
when a set of r realizations of the inversion algorithm have been
performed, the local correlation cubes regarding the best models
that were built have to be created, in order to condition the next
generation of simulations. Hence, as soon as the last simulation of
the current iteration is completed, all devices still under execution
are interrupted (indicated with a cross, in Fig. 7), resuming the
simulation of realizations once the best local correlation cube is
constructed.

Accordingly, the multi-device multi-realization approach is
only limited by the sequential execution of the best model con-
struction procedure, which may only become a bottleneck if the
number of devices significantly increases, and by the number of
realizations per iteration, that limits the number of devices that
Fig. 7. Temporal diagram of the multi-device multi-realization approach, considering
iteration.
can execute in parallel. Nevertheless, the first problem can be
minimized by accelerating that specific part of the algorithm if
deemed worthwhile, and the latter by considering the use of both
the multi-device approaches (which may coexist), in order to
provide another level of scalability to the algorithm execution.

4.5. Specific algorithmic optimizations

To improve the performance of the heterogeneous computing,
several optimization procedures were implemented, as described
in the following paragraphs.

Postponing of nodes with scarce pre-conditioning data: A sig-
nificant part of the simulation execution time lies in the pre-
conditioning search of the input data, during the first steps of the
simulation procedure. The main reason for this overhead arises
from scarceness and uneven distribution throughout the simula-
tion grid of the input data, leading to significantly larger execution
times when processing nodes from regions with few available
data. To overcome this problem, the processing of nodes located in
sub-grids where there is few available data (both in the sub-grid
being simulated and in the neighbouring sub-grids) is postponed.
This pre-conditioning can be performed during the definition of
the random path, since, for each step of the simulation procedure,
two devices with different computational capabilities and four realizations per



Table 1
Considered systems specification details.

Component System 1 System 2 System 3

CPU Intel i7 3820 Intel Xeon E5-2609 Intel i7 4770K
RAM 16 GB 32 GB 32 GB
GPU 1 AMD Hawaii R9

290X
NVIDIA
GeForce GTX 680

NVIDIA GeForce
GTX780 Ti

GPU 2 AMD Pitcairn R7
265

NVIDIA GeForce GTX
680

NVIDIA GeForce
GTX 660 Ti
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it is only required to know the number of nodes that will be
available in each sub-grid, but not their exact positions. As a result,
the execution time of the first steps can be significantly reduced at
the cost of some extra steps at the end of the simulation proce-
dure, when there is already a significant amount of available data,
thus reducing the global execution time. A collateral benefit of this
postponing method also arises in terms of the quality of the ob-
tained results, since it avoids the simulation of nodes from regions
with few data in a close neighbourhood (see Section 5.2).

Optimization of the sorting procedures: One of such optimiza-
tions refers to the usage of the bitonic sorting algorithm, in order
to optimize the sorting of the array that stores the nearest relative
positions to a given reference, according to the non-Euclidean
distances between nodes (used to support the data pre-con-
ditioning search procedure).

Efficient use of GPU local memory: A significant improvement
comes from an efficient usage of the GPU local memory, not only
to optimize parallel reductions, often required to compute the
mean and variance of the previously simulated nodes, but also to
reduce the mean access time to the frequently accessed global
memory buffers.

Minimization of the OpenCL overheads: The reduction of the
inherent parallelization overheads was tackled by performing the
data transfers with a minimum number of OpenCL enqueue buffer
calls. To attain this objective, a compromise was achieved between
the granularity of the kernels, which influences the number of
registers being used and consequently the occupation of the GPU,
and the number of kernel calls, which is related both with the
number of different kernels and with the number of divisions of
the simulation grid. The inherent data structures, as well as its
corresponding indexing, were also optimized in order to increase
the coalescence of memory accesses and thus reduce overall ex-
ecution overheads.

Overlapping of computation with the writing the results to file. In
order to provide access to the set of best models at each iteration,
these have to be written to a file at the end of each iteration.
However, without careful considerations, this procedure can easily
become a performance bottleneck. To avoid increasing the critical
execution path, the writing of results to file is made in parallel
with the GPU computations by relying on a different CPU thread.
5. Experimental results

The proposed parallelization was evaluated in terms of the
attained performance of the algorithm execution and in terms of
the quality of the inversion results, considering the adopted re-
laxation of the original algorithm. In the first case, the algorithm
was evaluated by computing the experimental speed-up regarding
an optimized serial implementation of the original algorithm. As
for the analysis of the quality of the inversion results, the algo-
rithm is herein evaluated not only in terms of its convergent be-
haviour, but also by comparing the obtained spatial distributions
of the generated models.

5.1. Performance improvements

In order to measure the performance of the proposed paralle-
lization approaches, the execution times using multiple hetero-
geneous environments (see Table 1) were compared with the ex-
ecution of an optimized serial implementation of the algorithm in
an Intel i7-3820 processor, by considering the -O3 compiler opti-
mization flag, when executing 3 iterations, each composed of 10
realizations over the dataset with 237� 197� 350 nodes.

Fig. 8 shows the obtained performance results when con-
sidering several single device mappings (programmed with the
same OpenCL source code). From the obtained results, it was ob-
served that the execution time was significantly reduced in all the
considered mappings. In particular, it was obtained a speed-up of
20.6� , when considering the execution of the whole algorithm
using a GTX 780 Ti GPU, and a performance improvement of 5.9�
when the algorithm was mapped into the CPU. In the latter case,
the obtained speed-up is even greater than 4 (number of CPU
cores), due to the exploitation of the hyper-threading technology.
It is also worth noticing that the multiple considered systems use
different CPU devices, which justifies the full-algorithm speed-up
discrepancies between systems.

When analysing the obtained results from the perspective of
the multi-device approaches (see Fig. 9(a)), it can be observed that
significantly higher throughputs were effectively attained when
considering the multi-device multi-realization approach. Such al-
ready expected acceleration rate arises because: (i) a greater part
of the algorithm is actually being executed in parallel; (ii) there is
no penalization from communication and synchronization re-
quirements during the whole simulation procedure; and (iii) the
best model construction (computed in a host device dedicated
thread) is being overlapped with computation of new realizations.
Nevertheless, by evaluating the implementation from the point of
view of the multiple device efficiency when accelerating the node
simulation procedure (multi-device single-realization im-
plementation), it was verified that the communication overhead
corresponded to approximately 0.99%, 2.5% and 0.43% of the ex-
ecution time for the ρ, Vp and Vs simulations, respectively. In
addition, by analysing the efficiency of the implemented load
balancing, it was observed global efficiencies of approximately
87%, 93% and 97% for the three types of simulations (ρ, Vp and Vs,
respectively) when considering the execution over the two GPU
devices of System 1. Similar load balancing efficiencies have also
been verified when considering the remaining systems.

In what concerns the execution over distinct datasets, it has
been verified that considerable accelerations were achieved in all
cases, ranging from 9� to 31� for the multi-device multi-reali-
zation approach, as shown in Fig. 9(b). The observed differences in
performance are related not only with the GPU device intrinsic
characteristics (memory bandwidth, occasional warp-divergence
and infrequent non-coalesced memory accesses), but also with
dataset related parameters, such as the simulation grid size (N),
the amount of experimental data available (Nr), the number of
classes of the bi-distribution function used during the co-simula-
tion procedure (Nc), and simulation specific parameters, such as
the number neighbouring data used to build the kriging system
(k), which was herein kept constant with a value of 12. Accord-
ingly, the time complexity of the algorithm implementation is
given by:
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In what concerns the device memory occupation, it was verified
that the memory complexity of the proposed implementation is lin-
early dependent with the simulation grid size (N) and with the



Fig. 8. Single-device execution speed-up results considering the dataset with 237�197�350 nodes.

a b

Fig. 9. Execution speed-up results compared to the sequential CPU implementation (executed in system 1). (a) Multi-device results for the dataset with 237� 197� 350
nodes and (b) obtained performance results when processing multiple datasets.

a b

Fig. 10. Graphical analysis of the obtained results comparing the parallel with the sequential implementations of the algorithm, composed of 6 iterations each with 32 sets of
simulations. The dataset size is 101� 101� 90 nodes. (a) Convergence analysis over time and (b) convergence analysis when varying the number of grid divisions.
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number of classes (Nc) of the bi-distribution function used during the
co-simulation procedure: N N( )c+ . Accordingly, in a worst case
perspective (when all layers are simultaneously allocated in the GPU)
the multi-device multi-realization implementation required 1080MB
of device memory for the largest dataset (composed of approximately
58 million nodes), in contrast with the 510MB required for the dataset
with 237�197�350 nodes.

5.2. Quality of the results

The quality of the retrieved inversion models regarding the
attained convergence is depicted in Fig. 10. The assumptions
related with the spatial continuity pattern and prior distributions
were kept constant for both cases. In particular, by analysing the
chart in Fig. 10(a), it can be verified that despite the significantly
faster convergence rate of the parallel implementation, similar
global correlation coefficients (computed by comparing the syn-
thetic with the real seismic models) were obtained for 6 iterations
(each composed of 32 sets of simulations) both in the parallel and
in the sequential implementations. In fact, as it can be observed in
Fig. 10(b), where 10 independent runs are considered for each
number of grid divisions (which corresponds to the nodes being
simulated in parallel), satisfactory results in terms of convergence
were obtained even when large amounts of grid divisions were



Fig. 11. Comparison of the spatial distribution of the simulated physical properties in a given realization of the inversion procedure, using the 101�101�90 dataset.
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considered, demonstrating that the adopted relaxation aiming an
efficient parallelization do not significantly affect the quality of the
results. This can be justified with the considered postponing op-
timization that avoids the simulation of nodes that have few or no
conditioning data in the neighbour blocks. As a result, when the
block size becomes smaller (as a result of increasing the number of
grid divisions), a consistent spatial distribution of the physical
property being simulated is granted during the first steps of the
simulation, thus ensuring the algorithm convergence.

Fig. 11 illustrates the mean model computed with all the
models generated during the last iteration for the proposed par-
allelization approach, together with the corresponding sequential
approach, for the considered physical properties (ρ, Vp and Vs). By
the interpretation of these vertical sections, it can be observed that
the original spatial distributions of the physical properties being
simulated are guaranteed, despite the relaxation that was in-
troduced to improve the parallelization. In addition, both ap-
proaches are able to reproduce the main features as observed in
the real elastic models. As in the sequential approach, the paral-
lelized methodology is able to better reproduce Vp and density
while struggles to reproduce correctly Vs. This effect is a con-
sequence of the cascade approach for generating the set of elastic
models. Nevertheless, it should be recalled that the inverted and
the real models are not expected to be exactly the same, given the
stochastic nature of the DSS algorithm.
6. Conclusions

Accurate characterization of oil and gas reservoirs is a fundamental
procedure to support the decision making process in oil and gas in-
dustry. However, improving the accuracy of the earth subsurface
models often results in long (sometimes unfeasible) computational
times. To circumvent such an issue, this paper proposes novel
algorithm parallelization approaches that allow to efficiently take ad-
vantage of GPU-based systems. This is achieved by adopting a careful
and selective spatial relaxation of the simulation grid dependencies,
such as to increase the available parallelism opportunities and to im-
prove the utilization of the GPU computational resources.

To efficiently exploit multi-GPU heterogeneous systems, two
multi-device parallelization approaches were proposed. One of the
approaches exploits fine-grain path-level parallelism, by strictly
distributing the nodes of the simulation grid to the available de-
vices, according to their computational capabilities. The other
approach exploits realization-level parallelism, in order to effi-
ciently distribute the parallel computation across the available
processing devices. Although the two approaches are not mutually
exclusive, the second approach allows a better distribution of the
workload and helps minimizing the computation overheads. Ac-
cordingly, a significant reduction of the execution time is achieved
by effectively exploiting the computational capabilities (leading to
speed-ups as high as 31� in a dual-GPU system) without com-
promising the quality of the obtained inversion results.
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