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Abstract—Increased attention to RISC-V open Instruction
Set Architecture (ISA), a base ISA with a variety of optional
extensions, has fueled its move from embedded devices to the
high-performance computing arena, with the proliferation of
RISC-V-based accelerators. However, the absence of powerful
performance monitoring tools often results in poorly optimized
applications and, consequently, limited computing performance.
While the RISC-V ISA already defines a hardware perfor-
mance monitor (HPM), research and development on RISC-
V-based devices have been more focused on architectures and
compilers rather than tools to support monitoring performance.
To overcome this limitation, a comprehensive set of extensions
and modifications to the Performance analysis tools for Linux
(perf/perf events) are proposed in this paper, and a PAPI library
interface is presented. These new extensions comprise not only
the Linux kernel but also the OpenSBI interface, and aim to
achieve full support for the RISC-V performance monitoring
specification. The conducted testing and evaluation were carried
out on a HiFive Unmatched board and on a CVA6 core, but the
proposed extensions, and the corresponding implementation, are
easily portable to other systems.

Index Terms—RISC-V Processors, RISC-V-Based Accelera-
tors, Performance Monitoring, Perf, PAPI

I. INTRODUCTION

The introduction of RISC-V as a royalty-free Instruction Set
Architecture (ISA) has significantly changed the landscape of
microprocessor development. While there was a rapid adoption
of RISC-V-based micro-controllers, the use of RISC-V-based
systems is now becoming widespread, with multiple recent
initiatives trying to develop high-performance processors.

However, naively porting prominent workloads to new com-
puting platforms often results in limited computing perfor-
mance. Naturally, many factors have to be taken into account
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when justifying such performance limitations, including poor
software implementations that result in high computational
complexities or inefficient data structures, ineffective or poor
cache usage, or processor stalls due to front-end or back-end
bottlenecks. This is a particular problem when considering the
use of emerging technologies based on RISC-V, for which
most mainstream performance monitoring tools only offer
limited or no support.

When tackling application optimization, one must first
monitor its execution, identify the main performance bot-
tlenecks, and tailor the software to best fit the underlying
hardware. Naturally, this procedure can hardly be performed
by solely using performance metrics (e.g., execution time
or clock cycles), as multiple factors come into play when
mapping the software to a modern computing system (e.g., in-
vs out-of-order execution engines, pipeline stages, execution
ports and corresponding latencies, re-order buffers, load/store
queues, cache organization, etc). Consequently, the capture and
analysis of detailed performance metrics to allow in-depth
architecture modeling and optimization procedures (e.g. [1],
[2]) becomes a fundamental requirement.

While Intel and ARM provide proprietary performance
monitoring solutions [3]–[6], which allow software developers
to take the ultimate advantage of their hardware, RISC-V
is still dependent on custom/vendor-specific solutions, with
no complete support for common performance monitoring
software tools, such as Performance Application Programming
Interface (PAPI) [7] or the Linux kernel monitoring tool Perf
[8]. Currently, only fixed counters are supported without event
configuration, and no control over the counters is provided
(e.g., pausing, enabling, disabling).

To improve and extend the performance analysis tools
for RISC-V in Linux, the following software additions and
modifications are herein presented:

• An OpenSBI extension for privileged interaction with the
RISC-V performance monitoring hardware;

• Support for the latest RISC-V HPM specification in the
Linux Kernel through perf events;



• Support for configurable RISC-V events in Perf and in
the PAPI library;

• Support for multiple platforms with distinct sets of events.
Considering the multiple available RISC-V implementa-

tions, and their dissociated performance monitoring hardware
implementations, we consider coping strategies such as back-
ward compatibility and implementation features discovery.
Even so, it is not possible to encompass all the details and spe-
cializations of all the available implementations and RISC-V
specifications at once. Therefore, we set specification version
1.11 [9] as our primarily supported target, and try to make the
software flexible to support the majority of implementations.
We note that although RISC-V previleged ISA is currently
on version 1.13, no changes to the performance monitoring
specifications have been made since version 1.11.

II. RISC-V PERFORMANCE MONITORING

RISC-V ISA has received continuous interest and devel-
opment, from wider software compatibility to an increasing
number of hardware implementations [10]–[14]. Alongside the
software and hardware, the RISC-V specification also shows
a persistent evolution, driven by the growing requirements of
the RISC-V ecosystem. Since RISC-V privileged specification
version 1.7 [15], a minimal performance monitoring interface
was defined. From then, the specification has introduced
additional counters and other necessary features for access
control and event multiplexing.

A. Early specifications

The first RISC-V privileged specification, version 1.7, intro-
duced the first attempt at monitoring the core’s performance.
Its implementation, supporting three fixed counters (Cycle,
Time and Retired Instructions (CTI)), allowed for baseline
performance monitoring of a RISC-V processor, enough for
calculating the Instructions per Clock (IPC) metric. With v1.7,
the Performance Monitoring Unit (PMU) had all the counters
accessible at user and supervisor privilege levels, lacking
control over non-privileged access.

Version 1.9 [16] introduced control over the privileged
counter accesses. A counter-enable mask was introduced by
means of three registers accessible only at machine-level, and
imposing read control over the CTI counters at the hypervisor,
supervisor, and user levels. In addition, v1.9 introduced a
set of delta counters: a counter which keeps the difference
between each of the lower privilege counters and the respec-
tive machine-level counter (e.g., mstime delta=stime-mtime).
These delta counters were removed after version 1.9. At the
time, RISC-V performance monitoring was still limited to the
set of three fixed registers, without support for general-purpose
or fixed-event performance monitoring registers.

B. Configurable events and counters

Support for 29 additional performance monitor registers
was introduced with version 1.10. The Hardware Perfor-
mance Monitor (HPM) counters, ranging from hpmcounter3

to hpmcounter31, can be individually configured by setting

an event identifier in the corresponding hpmevent registers,
a set of XLEN-bits registers (e.g., XLEN = 64 in a 64-bit
implementation). This amounts to, virtually, 264 selectable
events for a single register, a value that surpasses any re-
alistic implementation and provides an overly large design
flexibility. The RISC-V specification states that the number,
width, and supported events of each hpmcounter is platform-
/implementation-specific. Even so, HPM counters are limited
to a maximum width of 64 bits.

When setting the hpmevent registers, event 0 is considered
as the null event, and both the event configuration and the
counter registers can be hardwired to 0, indicating that no
event counting can occur. Each event counter (hpmcounter#) is
writable in a WARL (write any, read logical) scheme, allowing
for each counter to be individually reset/set [17].

C. Additional Features and Future Objectives

In version 1.11 [9], individual counter inhibition (i.e., stop
counting) was introduced, allowing the software to atomically
sample events. This is accomplished through the introduction
of the mcountinhibit register, where each of the 32 bits can
be set to inhibit the respective HPM counter.

Current specifications suggest that future versions could
include support for common event standardization, to count
ISA-level metrics, such as executed floating-point or integer
instructions. Similarly, some common and widely supported
micro-architectural metrics could be standardized (e.g, L1
instruction cache misses). Another feature that may appear
in future specifications is the support for counter overflow
interrupts, allowing the software to accurately count events
that overflow the respective counters at a faster pace than the
event sampling occurs. Nevertheless, the occurrence of such
continuous overflowing is unlikely, considering implementa-
tions with 64-bit counters.

D. Discussion

Currently, the RISC-V HPM is still significantly less com-
plex than the x86 counterpart [18] and not comparable to the
dedicated performance analysis tools like ARM’s coresight
and Intel’s PCM-based monitoring solutions [3]–[6]. Even
so, the RISC-V HPM specification is a flexible generic per-
formance monitoring solution. Furthermore, by being open-
source, it allows any degree of implementation freedom.
Considering the current state of the RISC-V privileged speci-
fication, section III proposes an approach to monitor the per-
formance counters in RISC-V through the widely established
Linux Perf software framework and details extensions to the
PAPI Library.

III. PROPOSED APPROACH AND NEW EXTENSIONS

The ground for the proposed approach is the current Linux
Perf implementation, developed after the RISC-V privileged
specification version 1.10. This Perf implementation provides
basic support for adding, deleting, starting, and stopping



Fig. 1. Overview of the system software structure.

software-side events. However, a significant limitation still ex-
ists concerning its inability to write to counters and event con-
figuration registers, In particular, such writes require machine-
level privilege, not available without a dedicated OpenSBI
extension. Due to this limitation, currently, it is not possible
to configure events in a specific counter, significantly limiting
Perf to the fixed set of CTI counters [19].

Considering these limitations, our proposal starts by provid-
ing a mechanism to write and read on machine-level privileged
counters and registers, through the introduction of a new
OpenSBI extension. Additionally, since the Linux performance
monitoring system is divided into the kernel driver and the
Perf application, the kernel Perf driver and the Perf tool were
also modified. These two modules are connected through the
perf_event_open system call, where the kernel driver
samples the events from the HPM counters.

Finally, to complement the offered performance monitoring
extensions, we also extend the PAPI library to allow users to
access performance measurements more easily. When consid-
ering the profiling of microprocessors for performance studies,
this means offering a higher-level API to access hardware
performance counters. An overview of the whole system,
alongside the proposed modifications, is depicted in Figure 1.

A. OpenSBI HPM Extension
To define a new software-hardware interface and provide the

required privileged access to machine-level registers, the HPM
OpenSBI extension is herein adopted. The newly included
OpenSBI functions are detailed in Table I, providing support
for reading and writing operations over all the privileged
registers defined in version 1.11 of the specification, namely:

• Generic Performance counters: mcycle, mtime, minstret
• Performance counters: mhpmcounter#
• Event configuration registers: mhpmevent#
• Lower privilege counter access enabler/disabler:
mcounteren

• Inhibiting counter increment, mcountinhibit
Moreover, we also add support for reading and writing

directly to the supervisor privilege scounteren register and to
the user-level hpmcounter performance counters. While this is
not a mandatory feature, considering that the Linux Kernel will
have a sufficient privilege level, it allows the code to access
the counters through a unified interface.

Considering the return structure of the OpenSBI handler for
the RISC-V environmental call (ecall):

struct sbi_ret {
long value;
long error;

}

it was determined that each counter/register read could be
executed in a single environment call. Taking into account
that the return variable value is of type long, the variable size
will be the same as the scalar registers implementation (i.e.,
64 bits in a 64-bit implementation, and 32 bits in a 32-bits
implementation). As such, for a 32-bit system, the process of
reading any HPM counter must be unfolded in, at least, two
calls, separately reading the lower and higher 32-bit portions of
mhpmcounter#. Additional calls may eventually be necessary
to compensate for the lower 32-bit counter overflow.

The proposed OpenSBI extension was named HPM, after
the RISC-V Hardware Performance Monitor specification, and
is identified by the value 0x48504d (as the direct conversion
of ”HPM” from ASCII to hexadecimal). Currently, the HPM
is experimental and is thus included in the experimental
extension space with the corresponding ID (0x0848504d).

B. Linux Kernel Driver Modifications

The proposed software-level changes do not impact the
majority of the Linux kernel source code. In particular, they
are limited to specific parts, such as the Perf tool code and
the Perf-related RISC-V kernel portion (arch/riscv/kernel).

As mentioned in the beginning of this section, the current
RISC-V Perf kernel implementation only provides basic sup-
port for the RISC-V HPM specification, being restricted to
fixed-event counters, i.e., each event can only be counted from
a continuously running, non-stoppable, and non-changeable
counter. Moreover, the only supported events are the cycle and
instret counters, having no means to read other HPM counters.
Hence, it is not compatible with the current RISC-V HPM
specification, which allows for event configuration, counter
inhibition and to control counter access. However, it does
provide a basic structure to work on, which we extend in this
work. We also built upon a Request for Comments kernel patch
suggested by Zong Li [20], which introduced some support for
the HPM counters through raw events, and device-tree bind-
ings to support platform-specific hardware events (although



TABLE I
OPENSBI HPM EXTENSION FUNCTION CALLS DEFINITION.

HPM Function Output Arguments Errors
hpm get mevent event id mHPM event id (3 - 31) SBI ERR NOT SUPPORTED: if register not implemented
hpm set mevent mHPM event id, event id SBI ERR NOT SUPPORTED: if register not implemented
hpm get [m/u]counter value mHPM counter id (0 - 31) SBI ERR NOT SUPPORTED: if counter not implemented
hpm set [m/u] mHPM counter id, value SBI ERR NOT SUPPORTED: if counter not implemented
hpm get [m/s]counteren 32-bits bitmask SBI ERR NOT SUPPORTED: if not implemented
hpm set [m/s]counteren 32-bits bitmask SBI ERR NOT SUPPORTED: if not implemented
hpm get mcountinhibit 32-bits bitmask SBI ERR NOT SUPPORTED: if not implemented

hpm set mcountinhibit 32-bits bitmask SBI ERR NOT SUPPORTED: if not implemented
SBI ERR DENIED: on trying to inhibit time counter

such patch was not merged into the kernel). The introduced
support for raw events allows the kernel driver to configure
raw, not general, performance monitoring events, providing
the necessary interfaces for adding, enabling, disabling, and
removing events that are related to the HPM counters. In
addition, the support for device-tree bindings allows for each
platform to specify its own features, such as:

• Width of Base Counters (cycle, time, instret)
• Width of Event Counters (mhpmevent#)
• Number of Event Counters
• Hardware Event Map
• Hardware Cache Event Map

The Hardware Event Map is provided as a list of key-value
pairs, where each pair matches a hardware event generic to
Perf (key) to an implementation raw hardware event (value).
An example is to use a key-value pair of branch_misses:
0x05, where the hardware event 0x05 matches the Perf
branch misses event. The Hardware Cache Event Map is a
similar structure to Hardware Event Map. However, it maps
events related to cache structures, such as L1 Read Misses or
L2 Write Accesses.

The kernel Perf implementation is responsible for two
independent procedures: event sampling (in a general way)
and interaction with the CPU Performance Monitoring Unit
(through OpenSBI, or directly). While any event is being sam-
pled, the kernel driver will enable and start an event, proceed to
take samples, and then, stop and disable the respective event.
The interaction with the CPU PMU is handled at each of
the mentioned steps. The introduced modifications include the
interaction between the driver and the configuration registers
(mhpmevent#, mcounteren), which are accomplished through
OpenSBI, to provide machine-level access. Furthermore, and
to decrease performance monitoring overheads, we also con-
figure mcounteren to allow for supervisor-level read access, to
get direct read access from the kernel to the HPM counters.

Additionally, some other changes had to be introduced
in the internal procedure that matches the events to each
counter. While an event could be matched to any counter
(where an implementation would provide from 0 to 29 com-
pletely generic HPM counters), we alternatively propose that
the mapping of each event is constrained to a specific set
of counters (providing native support for hardware-friendly
implementations where counters and associated events are
constrained to specific pipeline stages). To achieve this, any
raw event identifier contains two parameters: the event itself
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Fig. 2. Counter Map for event to HPM counter matching.

and the counter map. The event identifier is a numeric value
to be interpreted by the CPU PMU through the mhpmevent#

registers, not constrained to any particular logic (e.g., event
classes and sub-classes). In contrast, the counter map is
proposed as a 32-bit value. Each event has one and only one
associated counter map, where each active bit indicates that
the corresponding HPM counter is unable to count the event,
as depicted in Figure 2. This parameter allows any event to
be matched to any number and selection of HPM counters.

C. Perf Tool Modifications

While the kernel driver is responsible for the actual sam-
pling, the Perf tool acts as the front-end for event counting
and provides a user interface for event listing (perf list),
performance analysis (perf stat, monitor, record, report), and
a set of simple benchmarks (perf bench). The modifications
introduced by this work attempt to give support for raw events
in a flexible and platform-specific way. In particular, they can
be divided in CPU identification and events mapping.

To map the set of events that are available in a specific
processor, system, or platform, we need to identify which
CPU is executing Perf. According to the RISC-V ISA and
OpenSBI specifications, each RISC-V implementation has a
publicly available architecture ID [21], that is readable through
an OpenSBI read of the RISC-V CSR marchid. Considering
that specific implementations can be under the same archi-
tecture ID, it is possible to get an additional identification of
the implemented CPU through another OpenSBI read to the
CSR mimpid, getting the specific implementation identifier.
Taking into account both the architecture and implementation
identifiers, we consider that an absolute identification can be
made by merging together the lower 24 bits of the architecture
identifier and the lower 8 bits of the implementation identifier
(see Figure 3). Since such bit-width choice can provide up
to 224 ≈ 17 million different architectures and 28 = 256
implementations of each architecture, it is expected that these
values will not be a future constraint.

Each CPU Identifier can be mapped to a set of files
containing fully described events. This is achieved through
a mapping file (in CSV format) with the following structure:
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CPU Identifier, File Version, Events Filename, Events Type
0x300 , 0 , CVA6 , core
0x500 , 0 , SPIKE , core
0x200 , 0 , BOOM , core
...

Although the File Version field is currently unused, the Events
Filename is set to the name of the directory containing the
events description, and the Events Type describes the type
of events the PMU specifies. Each directory specified by the
Events Filename column can contain multiple files in the
Java Script Object Notation (JSON) format. Usually, each file
describes an event group from one specific category (e.g.,
pipeline, memory, instructions, etc.), and each of the JSON
files will contain one to multiple events, with the following
structure:
{

"Public Description": "This is an example event,
for demonstration purposes.",

"Brief Description" : "This is an example event."
"Event Code" : "0x11",
"Counter Mask" : "0xF8FF",
"Event Name" : "EXAMPLE_EVENT",

}

In this example, the Event Code 0x11 will be used to
configure the mhpmevent# registers of the available counters
selected by the Counter Mask value, where 0xF8FF specifies
that counters 8, 9, and 10 can be used to sample the event.

When monitoring the processor performance, the selected
events will be forwarded to the kernel driver which, in turn,
will handle the event-to-counter mapping and HPM event con-
figuration. The kernel driver will, in turn, schedule each event
or, alternatively, multiplex a set of events in the respective
register, allowing for multiple events to be sampled in one
workload execution, at the cost of the samples’ accuracy. This
process is depicted in Figure 1.

D. PAPI Library Modifications

Within the underlying structure of the PAPI library (often
known as substrate), the communication with the HPM has to
be done through another program or subsystem that has lower-
level access to the hardware. Although PAPI was released
before Perf events, this subsystem of the Linux kernel has
been adopted as the main mechanism (used by PAPI library) to
access the processor hardware performance counters. This ar-
chitecture is shown in Figure 4. In its current form, PAPI uses
the libpfm4 [22] library to translate event names (in human-
readable string form) to event encodings (determined by the
hardware vendor) and build the control structure necessary to
use the Perf events library (as illustrated in Figure 5).

Accordingly, to create the aimed support for RISC-V ar-
chitectures in the PAPI library, it is first necessary to define
a machine-specific substrate (see Figure 4). To do so, we
defined all supporting functions with inline assembly calls
(to make direct use of RISC-V-specific instructions) and all
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Fig. 5. Basic structure for hardware performance counting using PAPI.

necessary system parameters. These include i) the program
counter context location in the operating system filesystem; ii)
a dummy function to read the Cycles control register (which,
due to the RISC-V specification, is not accessible in user-
level applications and, as such, returns 0); and iii) a function
to allow PAPI to create a memory fence.

With such baseline for RISC-V compatibility, the PMU
of any RISC-V processor can be described. To do so, it is
necessary to create a new pfmlib pmu t type structure instance
to hold the processor information. It includes the name and
number of programmable hardware event counters and the
list that maintains all available events and the corresponding
pointers to functions that allow PAPI to manipulate the events
(e.g., encoding an event or iterating over event lists). The
list of countable events from the processor’s HPM is stored
on a riscv entry t structure list, which holds the name, short
description, and event code. The stored code matches the word
that is passed to Perf events to program the event.

Currently, the PAPI library maintains a pre-defined list of
more than one hundred events that are commonly available in
processors’ HPMs, named PAPI preset events. The mapping
of these preset events to the events countable by the processor
is done through a papi events file (in CSV format). Additional
events available in the HPM (that do not match preset events)
are automatically included from libpfm4 listing as native
events specific to each architecture. The event mapping itself
can either be done through direct 1-to-1 mapping or by
combining multiple events. The latter allows counting multiple
events in parallel and calculating a derived metric from these
counted events. Naturally, the complexity of these metrics is



limited by the number of physically available programmable
counters, although this can be sometimes overcome by the
multiplexing facilities of PAPI.

IV. PERFORMANCE MONITORING VALIDATION

With the goal of validating our Linux Perf and PAPI library
extension, we implemented the developed tools in different
platforms. In particular, to allow a complete validation of the
toolchain on an off-the-shelf RISC-V system, we implement
Perf and PAPI on a HiFive Unmatched board. Then, to
take a first step towards providing performance monitoring
capabilities to RISC-V-based accelerators, we devise a Perf
implementation in a QEMU simulation environment and then
we implement a basic HPM unit on the CVA6 RISC-V
core (often used as base architecture for the development of
accelerators) and prototype it on an FPGA device.

A. Methodology

As previously referred, to evaluate our implementation of
the perf and PAPI libraries we first used a SiFive Unmatched
board running Linux 5.12.19. The corresponding U74-MC
processor supports the Cycles and Instructions Retired fixed-
event counters (counters mcycle and minstret, respec-
tively) required by the RISC-V privileged specification [15].
Additionally, it supports two programmable-event counters
(mhpmcounter3 and mhpmcounter4), which selection
is performed by configuring CSR registers mhpmevent3
and mhpmevent4. Events are divided into 3 groups, each
focused on a different architectural component, namely: in-
struction commit (mhpmeventX[7:0]=0x0), microarchi-
tecture (mhpmeventX[7:0]=0x1) and memory system
(mhpmeventX[7:0]=0x2). Selection of the actual event
within each group is made by setting upper bits of the
mhpmeventX[7:0] registers as specified in Table II [24].

Hence, we extended our perf and PAPI implementation to
fully describe the U74-MC processor PMU and interface it
with Perf events to map it to the corresponding HPM events.
With the preset and native events implemented and matched
to the Perf events HPM events, we support the counting of
every event listed by SiFive on the U74-MC manual [24]. 1

To assess the developed framework, specific micro-
benchmarks were first developed and executed to measure
the execution overheads for Perf and PAPI calls. Then an
evaluation of both Perf and PAPI was conducted using a
general matrix multiplication kernel (GEMM) with dataset
(matrices A, B, and C) dimensions scaled so that the kernel
duration is close to 10 (A: 450 × 550, B: 550 × 500, and
C: 450 × 500), 30 (A: 650 × 750, B: 750 × 700, and C:
650 × 700), and 60 (A: 850 × 950, B: 950 × 900, and C:
850× 900) seconds, on the HiFive Unmatched system.

Finally, to validate the use of the devised performance tools
for RISC-V-based accelerator facilities, we demonstrate the
Perf tool running on a CVA6 [13] core (previously named

1The Perf events source code is available at https://github.com/hpc-ulisboa/
RISC-V-Perf-Events-Unmatched and the PAPI is available at https://github.
com/hpc-ulisboa/RISC-V-PAPI

TABLE II
PERFORMANCE EVENTS FOR THE SIFIVE U74-MC PLATFORM.

mhpmeventX
[7:0] Bit Event description
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0
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0
)

8 Exception taken
9 Integer load instruction
10 Integer store instruction
11 Atomic memory operation
12 System instruction
13 Integer arithmetic instruction
14 Conditional branch
15 JAL instruction
16 JALR instruction
17 Integer multiplication instruction
18 Integer division instruction
19 Floating-point load instruction
20 Floating-point store instruction
21 Floating-point addition
22 Floating-point multiplication
23 Floating-point fused multiply-add
24 Floating-point division or square-root
25 Other floating-point instruction
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e
(
0
x
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)

8 Address-generation interlock
9 Long-latency interlock
10 CSR read interlock
11 Instruction cache/ITIM busy
12 Data cache/DTIM busy
13 Branch direction misprediction
14 Branch/jump target misprediction
15 Pipeline flush from CSR write
16 Pipeline flush from other event
17 Integer multiplication interlock
18 Floating-point interlock

M
em

or
y

(
0
x
2
)

8 Instruction cache miss
9 Data cache miss / memory-mapped I/O access
10 Data cache write-back
11 Instruction TLB miss
12 Data TLB miss
13 UTLB miss

TABLE III
AVAILABLE FIXED PERFORMANCE EVENTS FOR THE CVA6 PLATFORM.

Event Counter
Cycles mcycle
Instructions Retired minstret
ICache Misses mhpmcounter3
DCache Misses mhpmcounter4
ITLB Misses mhpmcounter5
DTLB Misses mhpmcounter6
Loads mhpmcounter7
Stores mhpmcounter8
Taken Exceptions mhpmcounter9
Exceptions Returned mhpmcounter10
Branches and Jumps mhpmcounter11
Calls mhpmcounter12
Returns mhpmcounter13
Mispredicted Branches mhpmcounter14
Scoreboard Full mhpmcounter15
Instruction Fetch Empty mhpmcounter16

Ariane), deployed on a Xilinx VCU128 FPGA, targeting an
operating frequency of 100 MHz, running Linux 5.7.0 with
BusyBox 1.31.1. To do so, we implement version 1.11 of the
privileged HPM specification with sole support for the fixed-
event counters detailed in Table III.

The validation of the Perf tool running the CVA6 core is
conducted by running the CoreMark v1.0 [25] benchmark.

https://github.com/hpc-ulisboa/RISC-V-Perf-Events-Unmatched
https://github.com/hpc-ulisboa/RISC-V-Perf-Events-Unmatched
https://github.com/hpc-ulisboa/RISC-V-PAPI
https://github.com/hpc-ulisboa/RISC-V-PAPI


TABLE IV
MEASURED EXECUTION TIME OVERHEADS (AVERAGE) OF PAPI LIBRARY

CALLS IN RELATION TO PERF EVENTS CALLS.

Function Call Perf events PAPI Library
Initialization 57.98µs 81200µs
Start count 11.67µs 947.11µs
Read count 7.76µs 13.95µs

Stop count and read 15.89µs 19.41µs
Termination 15.79µs 1190µs

Total 100.24µs 83360µs

TABLE V
PAPI LIBRARY AND PERF EVENTS EVENT MONITORING COMPARISON

WITH GEMM BENCHMARK.

Exec. Event Perf events PAPI Library Abs. error
Time ID (a) (b) ((b) i.r.t (a))

10s

FP LOAD 495450012 495450012 0.00%
FP STORE 124722512 124722512 0.00%
FP MADD 372222502 372222502 0.00%
D$ BUSY 1639038926 1610686782 1.73%

BR TARGET MISS 1659736 1665510 0.35%
FP INTERLOCK 1397108171 1409479181 0.89%

I$ MISS 193767 203070 4.80%
D$ MISS 18586915 18567696 0.10%
D$ WB 77905 83298 6.92%

CYCLES 12928115705 12622306130 2.37%
30s CYCLES 38883173173 38121784778 1.96%
60s CYCLES 84688102810 83346239838 1.58%

B. Toolchain Validation - HiFiVe Unmatched

To fully validate and profile the implemented Perf events
and PAPI library extensions, we first measure and compare
the average total overhead for initialization, termination, and
events start, read, and stop on both tools. To do so, we
measure the total time elapsed while running each step with the
time.h library clock_gettime() function. As detailed
in Table IV, the observed overheads for PAPI are higher than
for Perf events, with the typical case accounting for 13.95µs
for a PAPI event read (vs 7.76µs on Perf events) and 947µs for
event start (vs 11.67µs on Perf events). The initial PAPI start
overhead is due to the underlying mechanism of base PAPI
code, which requires creating an event structure (including
memory allocation and structure initialization), calling the
libpfm4 library to translate event names to event codes, and
then issuing a system call for perf, which makes a kernel call
to configure the corresponding CSR registers via OpenSBI.
Therefore, when considering the typical cumulative use case
of event count plus event stop and read, an average overhead of
966.52µs is observed for PAPI, which compares with 27.56µs
for Perf events. Finally, there is also an initial overhead for
library initialization and termination which (on average) takes
81.2ms and 1.19ms for PAPI, respectively, which compare
with the 57.98µs and 15.79µs for Perf events.

Although the observed overheads are consistent with previ-
ous research [26], a second analysis was performed by using
Strace to count the system calls invoked by each library during
program profiling. Strace showed 7716 system calls for PAPI
and 43 calls for Perf events, with most calls being associated
with the initialization step, particularly to allocate initial
memory structures, read the configuration files for the current
architecture and initialize and test Perf events functionalities.

We further validate the measurements obtained by using
PAPI and Perf events by performing a detailed profiling of

the GEMM kernel (configured for 10s). This is done by
measuring average counts for multiple events across 100 runs
of the kernel. The obtained results (presented in Table V)
show that the counts for deterministic events (e.g., floating-
point stores, fused-multiply-add operations, etc.) present the
same measured count using Perf events and PAPI. However,
other events such as cache operations and cycles, show slight
variations due to OS-related interference during the execution.
By increasing the execution time of the GEMM kernel to 30s
and 60s, we observe that the OS interference is mitigated,
decreasing variations from 2.37% to 1.58% (see Table V).

C. Performance Monitoring for RISC-V-based Accelerators

To validate Perf in the CVA6-based system we first verify
the integrity of our extensions and modifications. This is done
by successfully running Perf list, outputting the following list
of available events (shortened for conciseness):

Listing 1. Output (abbreviated) of Perf list in CVA6.

branch-instructions OR branches [Hardware event]
branch-misses [Hardware event]
cache-misses [Hardware event]
...
alignment-faults [Software event]
...
iTLB-load-misses [Hardware cache event]

branch:
ariane_branch_jump

[Branches/jumps count]
...
ariane_ret

[Returns count]

cache:
ariane_dtlb_miss

[Data TLB miss]
...
ariane_store

[Data loads]

pipeline:
ariane_exception

[Exceptions count]
...
riscv_cycles

[CPU cycles]

Finally, CoreMark was executed in the CVA6 core and
monitored with Perf, achieving a performance of 174.59 points
at 100 MHz. The Perf stat command reported the following
monitored events during execution:

Listing 2. CoreMark event counter measurements from Perf stat in CVA6.

Performance counter stats for ’/bin/coremark’:
236011286 ariane_branch_jump
5312578 ariane_call
44038701 ariane_mis_predict
1406812 ariane_ret

1118 ariane_dtlb_miss
6869722 ariane_itlb_miss
2786559 ariane_l1_dcache_miss
8443755 ariane_l1_icache_miss

229104327 ariane_load
64628214 ariane_store

22486 ariane_exception
22486 ariane_exception_ret

239773306 ariane_if_empty
9094173 ariane_sb_full

2368685119 riscv_cycles
1467339227 riscv_instret



TABLE VI
COMPUTED METRICS FROM PERFORMANCE MONITORING OF THE

COREMARK BENCHMARK.

Metric Events
Branch MissRate 18.14% Mispred. / Branches, Calls, Returns
L1D MissRate 0.95% L1D Misses / Loads, Stores
L1I MissRate 0.58% L1I Misses / Instructions
ScoreBoard Full (cycles) 0.38% ScoreBoard Full Cycles / Cycles
Inst. Fetch Empty (cycles) 10.12% IF Empty Cycles / Cycles
Inst. Per Cycle 0.6195 Inst. / Cycles
Transl. MissRate (Data) 0.00% Data TLB Misses / Loads, Stores
Transl. MissRate (Inst.) 0.47% Inst. TLB Misses / Inst.

23.779291520 seconds time elapsed

23.578690000 seconds user
0.139518000 seconds sys

By adding metrics support in Perf, the values in Table VI
can be automatically computed after monitoring application
performance. Through multiple executions of the CoreMark
benchmark, with and without Perf monitoring, it was deter-
mined a performance penalty of 0.283% from using Perf.

V. CONCLUSIONS

This paper proposes a RISC-V-compatible performance
monitoring and analysis framework that allows developers to
optimize platform-specific code for RISC-V-based processors
and accelerators. The presented tool makes use of some exist-
ing (but somewhat limited) support for RISC-V performance
monitoring (using perf/perf events), but introduces a set of
new extensions and modifications, together with a new PAPI
library interface, that confer RISC-V software developers with
similar monitoring and analysis tools already available for
other architectures (e.g., Intel, AMD, and ARM). Besides the
required modifications to the kernel Perf driver and the Perf
tool, the implemented extensions comprise especially devised
mechanisms to read/write on machine-level privileged counters
and registers through the introduction of a new OpenSBI
extension. A machine-specific substrate was also developed
to give support for RISC-V architectures in the PAPI library.

The validation of the proposed tool was conducted on an
off-the-shelf SiFive U74-MC processor equipping a HiFive
Unmatched board. It was shown not only full support for
the set of counters provided by this RISC-V computing
platform, but the obtained values (using the several coexisting
monitoring tools) demonstrated to be closely coherent, with
insignificant deviations that did not exceed 1.5%. The devised
performance tools were also validated with a RISC-V-based
accelerator platform, by using the modified Perf tool on a
CVA6 core when executing the CoreMark benchmark.
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RISC-V Instruction Set Manual, Volume II: Privileged Architecture,
Document Version 1.9,” EECS Department, UC Berkeley, Tech. Rep.
UCB/EECS-2016-129, vol. 129, 2016.

[17] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V
Instruction Set Manual, Volume I: User-Level ISA Version 2.1,” EECS
Department, UC Berkeley, Tech. Rep. UCB/EECS-2016-118, vol. 118,
2016.

[18] Intel, “Intel® 64 and IA-32 Architectures Developer’s Manual: Vol. 3B,”
tech. rep., 2016.

[19] A. Kao and The kernel development community, “Supporting PMUs on
RISC-V platforms — The Linux Kernel documentation,” Mar. 2018.

[20] Z. Li, “LKML: Zong Li: [RFC PATCH 0/6] Support raw event and DT
for perf on RISC-V,” June 2020.

[21] RISC-V Foundation, “Open-Source RISC-V Architecture IDs,” 2021.
[22] S. Eranian, “libpfm4.”
[23] S. Browne et al., “A portable programming interface for performance

evaluation on modern processors,” The international journal of high
performance computing applications, vol. 14, no. 3, pp. 189–204, 2000.

[24] SiFive, Inc., SiFive U74-MC Core Complex Manual.
[25] S. Gal-On and M. Levy, “Exploring coremark a benchmark maximizing

simplicity and efficacy,” The Embedded Microprocessor Benchmark
Consortium, 2012.

[26] V. M. Weaver, “Self-monitoring overhead of the linux perf event
performance counter interface,” in 2015 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 102–
111, IEEE, 2015.


	Introduction
	RISC-V Performance Monitoring
	Early specifications
	Configurable events and counters
	Additional Features and Future Objectives
	Discussion

	Proposed Approach and new extensions
	OpenSBI HPM Extension
	Linux Kernel Driver Modifications
	Perf Tool Modifications
	PAPI Library Modifications

	Performance Monitoring Validation
	Methodology
	Toolchain Validation - HiFiVe Unmatched
	Performance Monitoring for RISC-V-based Accelerators

	Conclusions
	References

