
Reconfigurable Stream-based Tensor Unit with
Variable-Precision Posit Arithmetic

Nuno Neves
INESC-ID

Lisbon, Portugal

nuno.neves@inesc-id.pt

Pedro Tomás
INESC-ID, Instituto Superior Técnico

Universidade de Lisboa

Lisbon, Portugal

pedro.tomas@inesc-id.pt

Nuno Roma
INESC-ID, Instituto Superior Técnico

Universidade de Lisboa

Lisbon, Portugal

nuno.roma@inesc-id.pt

Abstract—The increased adoption of DNN applications drove
the emergence of dedicated tensor computing units to accelerate
multi-dimensional matrix multiplication operations. Although
they deploy highly efficient computing architectures, they often
lack support for more general-purpose application domains. Such
a limitation occurs both due to their consolidated computa-
tion scheme (restricted to matrix multiplication) and due to
their frequent adoption of low-precision/custom floating-point
formats (unsuited for general application domains). In contrast,
this paper proposes a new Reconfigurable Tensor Unit (RTU)
which deploys an array of variable-precision Vector Multiply-
Accumulate (VMA) units. Furthermore, each VMA unit leverages
the new Posit floating-point format and supports the full range of
standardized posit precisions in a single SIMD unit, with variable
vector-element width. Moreover, the proposed RTU explores
the Posit format features for fused operations, together with
spatial and time-multiplexing reconfiguration mechanisms to fuse
and combine multiple VMAs to map high-level and complex
operations. The RTU is also supported by an automatic data
streaming infrastructure and a pipelined data movement scheme,
allowing it to accelerate the computation of most data-parallel
patterns commonly present in vectorizable applications. The
proposed RTU showed to outperform state-of-the-art tensor and
SIMD units, present in off-the-shelf platforms, in turn resulting
in significant energy-efficiency improvements.

Index Terms—Tensor Computation, Posit Number System,
Variable-Precision SIMD, Spatial and Temporal Reconfiguration,
Data Stream Computing

I. INTRODUCTION

New algorithmic advances, allied with the ever-increasing
availability of data, led the industrial and academic research to
shift to domain-specific and reconfigurable architectures [1],
[2]. In particular, the growing adoption of Deep Neural
Networks (DNNs) drove the research on dedicated hardware
to boost the performance of tensor (𝑛-dimensional matrices)
multiplication [3]–[8]. Accordingly, tensor computing units
are usually designed as arrays of fused multiply-accumulate
(FMA) elements, supported by dedicated data communication
schemes (e.g., data streaming) to maximize throughput.

Tensor units are also often based on custom floating-
point formats with reduced precision, as an alternative to the
IEEE-754 standard. This may not only provide straightfor-
ward computing accelerations [8]–[10], but also significant
reductions in chip area. As a result, less memory storage
is required per operand and higher computing bandwidths

This work was partially supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) under projects UIDB/50021/2020 and
PTDC/EEI-HAC/30485/2017, and by funds from the European Union Horizon
2020 research and innovation programme under grant agreement No. 826647.

can be achieved, while reaching lower power and energy
consumptions. Hence, major computing market players, such
as Intel [9], Google [10], NVIDIA [8], Xilinx [6], and Mi-
crosoft [5], have already proposed or adopted such alternative
formats in their off-the-shelf platforms and accelerators.

Despite their success, tensor units are often overspecial-
ized, constraining their usage on operations other than tensor
multiplication. For example, the tensor cores equiping recent
NVIDIA Graphics Processing Units (GPUs) [8] are restricted
to multiply-accumulate operations, with strict rules on the
shape of input tensors [11]. Moreover, tensor units often
adopt very-low precision floating-point formats [10], imposing
accuracy losses in higher-precision applications, or are limited
to the IEEE-754 format [8], hence not supporting lower
precision arithmetic.

To that end, the Posit number system [12] has been gaining
a growing attention as a possible alternative (or complement)
to the IEEE-754 standard, by consistently attaining similar
accuracies to IEEE-754, with significant fewer bits [13], [14].
Posits offer an intrinsic trade-off between a wider dynamic
range and an increased decimal precision, effectively allow-
ing a higher decimal accuracy, while lowering the operand
precision. Additionally, the posit format is particularly suited
for fused operations (such as multiply-accumulate), since it
avoids overflow and accuracy losses by i) adopting an exact
accumulator structure (named quire) and ii) not requiring re-
normalization of intermediate results [15].

From the dataflow perspective, there is also an opportunity
to further exploit the resources of a tensor unit, in order
to deploy higher-level and more complex operations. This
can be done by introducing spatial and time-multiplexing
reconfiguration mechanisms at the level of the tensor unit,
as it is typically deployed in Coarse-Grain Reconfigurable
Architectures (CGRAs) and Field-Programmable Gate Arrays
(FPGAs) at an accelerator level [16], [17]. These mechanisms
would allow the tensor unit to combine multiple FMA blocks
and map operations with diverse complexity, by switching be-
tween several configurations to accommodate the deployment
of multiple execution phases in a single hardware structure.

Although the range of supported application domains broad-
ens with such a solution, the increase in operation complexity
does not change the data-parallel and control-free nature of
the supported computations (mostly still matrix-based). As
such, data streaming [16]–[19] remains the most suited
approach to support a reconfigurable tensor unit. Besides their
natural support for spatial computing schemes [16], stream-

149

2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP)

2160-052X/20/$31.00 ©2020 IEEE
DOI 10.1109/ASAP49362.2020.00033

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 06,2020 at 06:27:23 UTC from IEEE Xplore. Restrictions apply.

based execution models allow a complete detachment between
data indexation and computation, allowing independent data
acquisition. This removes memory address calculation from
the critical path, in turn accelerating execution.

Accordingly, this paper proposes a new Reconfigurable
Tensor Unit (RTU) architecture that deploys a data-stream
computing model in a 2D array of Posit-based Processing
Elements (PEs). The proposed RTU introduces the following
contributions and features:

• A new Vector Multiply-Accumulate (VMA) unit (in-
cluded in each PE) that deploys a variable-precision
Single-Instruction Multiple-Data (SIMD) computing
scheme with a fully vectorized datapath. It also exploits
the Posit format to increase data and computing through-
put, by lowering vector element width whenever possible.

• A combined spatial and time-multiplexing reconfiguration
mechanism, allowing each PE to instantly reconfigure
to switch between different vector precisions and inter-
connection schemes with neighbour PEs. Additionally, a
novel PE fusing technique is proposed that leverages Posit
fused operations to combine multiple VMAs and deploy
more complex operations.

• An efficient data streaming infrastructure, capable of
autonomously generating the most common data patterns
susceptible to streaming. It is also combined with a
banked memory organization, maximizing the exploita-
tion of data-locality and data reutilization.

The proposed RTU was fully implemented in RTL and
synthesized with a 45nm technology. The obtained results
show that the combination of the RTU data streaming and
reconfigurable execution models, paired with its Posit-enabled
variable-precision SIMD capabilities, allow to efficiently exe-
cute a broader range of applications than those supported by
standard tensor units. In particular, it was capable of attaining
SIMD speedups up to 346x, 14x, and 31x when compared with
SIMD/tensor units equiping an ARM Cortex-A9, an Intel i7-
8700K and an NVIDIA GV100, respectively. Such gains also
resulted in significant energy efficiency improvements.

II. BACKGROUND AND RELATED WORK

A. Posit Number System and Implementations

The posit number system [12] is defined as posit<n,es>,
where 𝑛 is the total number of bits (precision) and 𝑒𝑠 is the
maximum exponent size, and is represented as:

𝑠𝑖𝑔𝑛

︷︸︸︷
𝑠

𝑟𝑒𝑔𝑖𝑚𝑒

︷��������︸︸��������︷
𝑟0 𝑟1...𝑟𝑚+1

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

︷���������︸︸���������︷
𝑒0 𝑒1...𝑒𝑒𝑠−1

𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛

︷������︸︸������︷
𝑓0 𝑓1 𝑓2...

︸��︷︷��︸
𝑝𝑜𝑠𝑖𝑡 (𝑛 𝑏𝑖𝑡𝑠)

(1)

Similarly to the IEEE-754, the structure of the posit format
(depicted in Fig. 1) includes a sign bit field, an exponent field,
and a fraction (or mantissa) field. The posit also comprises a
variable-sized regime field (with the bit format 𝑟𝑟𝑟...𝑟) that
encodes a signed value 𝑘 . Together with the exponent field,
the regime 𝑘 represents the working range of the represented
real value (or scale factor). The numerical value of 𝑘 is
determined by the run length of 1s or 0s in the regime bits.
As a result, the exponent and fraction contents are unknown
before decoding the regime (see Fig. 1). Depending on the

Fig. 1. IEEE-754 standard (left) and Posit (right) formats.

run length, they can be partly (or fully) left out of the binary
encoding. Accordingly, the posit value is given by:

(−1)𝑠 × 2
exp+𝑘2

𝑒𝑠

× 1.fraction (2)

Despite the precision and exponent parameters of a posit
format being arbitrary, there are 4 standardized configurations
(𝑛 = 64/32/16/8, 𝑒𝑠 = 3/2/1/0) that correspond to the most
commonly adopted precisions and dynamic ranges used in
IEEE-754 floating-point arithmetic [15].

Finally, for fused operations (such as fused multiply-
accumulate), the posit format makes use of a quire [15]. This
quire is a fixed-point 2’s complement value, of length 𝑛2/2,
with enough precision to avoid overflow and cancellations.
Accordingly, for the standard 64/32/16/8-bit posit precisions,
the quire maintains a length of 2048/512/128/32 bits.

Some hardware implementations have already been pro-
posed that seek the adoption of the Posit format. Jaiswal et
al. [20] and Chaurasiya et al. [14] proposed the first param-
eterized posit arithmetic architecture implementations. They
observed the area and energy of each operator is similar to
their IEEE-754 counterparts. Recently, Charmichael et al. [13]
applied the posit format to DNNs, showing that the 8-bit Posit
precision achieves an inference accuracy that is comparable to
that obtained with a 32-bit IEEE-754 implementation.

B. Data Streaming Schemes

Data streaming follows the general principle that regular
applications are characterized by complex memory access
patterns that can be represented by an n-dimensional affine
function [21]. The memory address (𝑦) is calculated by
considering an initial offset, and pairs (one per dimension)
of increment variables 𝑥𝑘 and stride𝑘 multiplication factors:

𝑦(𝑋) = offset +
∑𝑛

𝑘=1
𝑥𝑘×stride𝑘 , 𝑥𝑘∈{0, · · · , dim𝑘 } (3)

Such a representation allows indexing a significant amount
of regular access patterns. Nonetheless, several approaches
have been proposed that rely on dedicated ISAs [16] and
descriptor-based mechanisms [19] to represent patterns with
higher complexity (by combining of multiple functions). For
instance, Neves et al. [19] proposed a dynamic descriptor
specification to encode arbitrarily complex (regular) data-
patterns. Also, Nowatzki et al. [16] proposed a stream-dataflow
ISA capable of generating streams with 2D affine patterns.

C. Domain-Specific Accelerators

An outstanding emergence of Domain-Specific Architec-
tures (DSAs) as been observed in recent years. The particular
requirements of DNN applications drove the development
of new tensor-based architectures. Being Google’s Tensor
Processing Unit [10] one of the current flagships in this class
of processors, it is solely focused on accelerating DNNs.
While still focused on tensor multiplication, NVIDIA’s tensor
cores [8] provide an slightly increased level of usability

150

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 06,2020 at 06:27:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Proposed RTU block diagram, depicting (A) the PE array and data streaming structures, and (B) the PE module, its components and functionality.

through their integration in general-purpose GPUs. Other
accelerators have also been proposed to tackle this application
domain. As an example, Chen et al. [18] an accelerator capable
of reconfiguring itself to support different DNN filter shapes.

To provide a more general-purpose support, new recon-
figurable accelerators have also been proposed in recent
years [16], [17]. In particular, CGRAs have been deployed
by combining spatial and temporal computation schemes to
achieve energy-efficient acceleration. As an example, Prab-
hakar et al. [17] proposed the Plasticine, designed to efficiently
execute parallel patterns, through a 2D array of reconfigurable
units. Nowatzki et al. [16] proposed a stream-dataflow CGRA
capable of reconfiguring its datapath and memory streams.

III. PROPOSED RECONFIGURABLE TENSOR UNIT

The proposed Reconfigurable Tensor Unit (RTU) architec-
ture (depicted in Fig. 2) is composed of a dense processing
structure, comprising a 2D array of reconfigurable PEs (de-
scribed in Section IV), each implementing a 64-bit posit Vector
Multiply-Accumulate (VMA) unit (see Fig. 2.B). Its execution
model is based on a data streaming operation, supported
by autonomous stream generators connected to a banked
scratchpad/buffering memory structure (see Section V). The
proposed unit is programmed i) by providing the sequence
of configurations for each individual PE (locally managed
by dedicated low-footprint controllers); and ii) by defining
a memory access pattern descriptor for each data stream
generator. Although the definition of pattern descriptions is
out of the scope of this paper, this information can be
easily obtained by modern compilation tools [22] or derived
from existing Domain-Specific Languages (DSLs), making the
proposed RTU suitable for deployment both in CPUs (as a
functional unit) or dedicated accelerators.

A. RTU Reconfiguration and Execution Models

The proposed RTU takes a step further from existing tensor
units by adopting a combination of data-streaming and of
spatial and temporal computation mechanisms, deployed by
a high-throughput reconfigurable processing architecture.

Fig. 3. Examples illustrating (A) the computation of the column average of a
matrix and (B) a dot-product operation with a reduction tree. In example (A),
the left half of the RTU is accumulating the column vectors, while the right
half PE array is initially configured to perform a division pre-computation and
it is later reconfigured to calculate the final average result for each column.
Example (B) shows a reduction tree implemented via VMA fusing.

Stream-based Computation: Its execution model was de-
vised by observing that the most common data patterns and
computation schemes present in matrix-based applications are
susceptible to data streaming. This is mainly because those
applications typically present data-parallel and control-free
computing characteristics, allied with compile-time determin-
istic memory accesses. While the first allow a straightforward
exploitation of spatial computing schemes (e.g., vectorization),
the latter effectively allows an explicit detachment of mem-
ory address calculation and computation. Such characteristics
provide the opportunity to explore a two-fold acceleration, by
deploying a stream-based execution model.

151

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 06,2020 at 06:27:23 UTC from IEEE Xplore. Restrictions apply.

Time-Multiplexing Reconfiguration: When mapping com-
puting kernels other than tensor multiplication, it is possible
that part of the RTU’s resources become underutilized and
they can be turned off. This can occur when the computing
scheme is too computationally intensive and does not present
enough data parallelism, or when the required data throughput
saturates the available bandwidth. To maximize the resource
utilization, the proposed RTU adopts a time-multiplexing
reconfiguration scheme. This allows each individual PE to
modify its own configuration (at runtime), enabling a simul-
taneous mapping and switching of multiple operations with
different levels of complexity, in distinct areas of the PE array.
A reconfigurable execution scenario is shown in Fig. 3.A to
obtain the average of a matrix columns.

Posit-based Fused Arithmetic and SIMD: The proposed
RTU adopts the Posit floating-point format in each PE’s
VMA. This design choice allows the deployment of a floating-
point format that supports standardized precisions ranging
from 8 to 64 bits, contrasting with the IEEE-754 (which
does not support precisions lower than 16 bits) and with
custom very-low precisions (that are unsuited for general-
purpose computation). Furthermore, since the Posit format
does not require intermediate normalization and rounding in
fused operations [15], it is possible to fuse multiple VMAs - at
the quire level (see Fig. 2.B) - to map more complex operations
(such as reduction trees - illustrated in Fig. 3.B). However, the
main benefit of the Posit format is its capability of attaining
similar accuracy with half the precision (or even lower) of the
IEEE-754 standard [13], [14], [23]. Although such a scenario
is dependent on the dataset’s dynamic range, it still provides
an opportunity to increase the SIMD vectorization, allowing a
decrease in the effective memory bandwidth requirement per
data element and, in turn, increasing the unit’s throughput.

B. Data Communication Schemes

To support the proposed reconfiguration and execution mod-
els, the RTU’s PE array implements a number of data-parallel
communication mechanisms, including i) data streaming; ii)

2D pipelined execution; and iii) VMA fusing.

Data Streaming: Data stream acquisition and storage is
assured by an autonomous data streaming infrastructure (see
Section V), by deploying a dedicated pattern generator for
each input operand of the PEs located in the first column of the
array, and for each PE output in the last column (see Fig. 2.A).
Each pattern generator leverages a descriptor-based approach
to generate the most commonly adopted regular data patterns.

2D Pipelined Execution: Intercommunication between PEs
is supported by a 2D pipelined register transfer grid (imple-
mented by the R modules in Fig. 2.A). This is done by placing
a pipeline register bank attached to each PE (see Fig. 2.B and
Section IV), allowing data forwarding to three adjacent PEs
(right, bottom, and bottom-right), as it is depicted in Fig. 3.A.

VMA Fusing: By leveraging the Posit fused-operations,
each VMA is capable of forwarding its quire to one of the three
adjacent PEs. This allows the configuration of more complex
fused operations than the 𝑦 = 𝑎 × 𝑏 + 𝑐 format, as well as
high-level constructs such as parallel reductions (through the
mapping of a reduction tree within the PE array - see Fig. 3.B).

Fig. 4. Vector Multiply-Accumulate (VMA) unit architecture.

IV. VARIABLE-PRECISION PROCESSING ELEMENT

As it was referred before, each PE of the RTU is composed
of a variable-precision Vector Multiply-Accumulate (VMA)
unit (see Figs. 2 and 4). Its architecture comprises a pipelined
64-bit posit SIMD datapath, supporting vector arithmetic for
1×64, 2×32, 4×16, and 8×8-bit posit vectors. This is achieved
by reconfiguring the datapath, allowing it to support different
vectors configurations using the same hardware resources as
it would need for a 64-bit scalar operation. Each PE is also
paired with i) a set of pipeline registers, to support the RTU’s
pipelined execution scheme; and ii) a dedicated controller
module that manages the configuration of the PE.

As a design decision to reduce the hardware footprint and
latency of each PE, the required posit decoding and encoding
logic was moved to the data streaming infrastructure of the
RTU (see Section V), due to their high hardware complexity.
As such, each streamed posit operand is decoded before
entering the PE array and the output results are encoded only
after leaving the array. Accordingly, each PE accepts and
outputs data already decoded in sign, exponent and fraction
vectors. The following sections detail each PE component.

A. Variable-Precision VMA unit

The VMA architecture (depicted in Fig. 4) implements a
4-stage pipeline FMA compute unit with three input operands
(V𝑎,V𝑏 and V𝑐). It is composed of the following modules: i)

1-stage floating-point multiply (M); ii) 1-stage quire arithmetic

unit (Q); and iii) 2-stage fraction and exponent extraction

(EF). Each unit accepts 3 input decoded posit vectors and
outputs 1 result vector. It supports: i) common vector addition,
subtraction, and multiplication operations; ii) fused multiply-
add and multiply-accumulate operations; and iii) a vector-to-
scalar reduction operation. To implement the VMA fusing
within the RTU, each unit also accepts and forwards the quire
values from/to other VMAs in adjacent PEs.

Vector Data Formats: To support the variable-precision
hardware that implements the VMA, 64-bit posit vectors (see
Fig. 5.A) are decoded (during streaming) into three unified
vector formats that gather the posit sign, exponent and fraction

152

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 06,2020 at 06:27:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Vector data formats for (A) posit vectors, (B) VMA input/output
vectors, and (C) quire vectors. Grey areas represent unused bits (set to ’0’).

components, for each supported vector element precision (see
Fig. 5.B). Hence, each operand of the VMA corresponds to a
104-bit vector format, comprising an 8-bit sign vector, a 32-
bit exponent vector, and a 64-bit fraction vector. The same
scheme is used for the quire vector, by adopting a 2048-bit
vector format that gathers the quire for each vector precision
(see Fig. 5.C). In the adopted formats, bits that are unnecessary
to represent vector element values are set to ’0’.

Floating-Point Multiplier: The first VMA stage (see Fig. 4)
performs the multiplication of the V𝑎 and V𝑏 vectors (and
propagates V𝑐 to the next stage). To provide variable-precision
functionality, exponent vectors are added with a specialized
carry-lookahead adder. This module is capable of breaking its
carry-chain (through single-bit multiplexers) to perform the
addition of either 1×32-, 2×16-, 4×8-, or 8×4-bit vectors.
Similarly, the fraction components are multiplied with the aid
of a dedicated module implementing a 8×8 structure of 8-bit
radix-4 Booth multipliers, generating 64 partial products in
carry-save format. These partial results are gathered and added
through a carry-save accumulator tree, resulting in a 128-bit
carry-save value. Finally, the resulting sign vector is calculated
by performing a bitwise XOR to the input sign vectors.

Quire Arithmetic Unit: The second stage of the VMA (see
Fig. 4) implements an arithmetic unit for the quire vector. In
the first step, it obtains the two’s complement of the fraction
vectors computed by the M stage and form the V𝑐 operand.
This is done by complementing each vector element and
incrementing the value depending on the corresponding sign
bit with a carry-save adder. Next, both fraction vectors are
converted to the quire fixed-point format, by sign-extending
the fraction vector elements and shifting them according to the
corresponding exponent value. This is done with a specialized
left barrel shifter that performs partial shifts within a 2048-bit
word and unifies them by OR’ing the results between shifting
levels, depending on the considered precision. At this point,
two operands for the quire arithmetic unit are selected from
i) the product quire; ii) the V𝑐 quire; iii) a forwarded quire
value (from an adjacent PE); or iv) a registered quire value (for
accumulation). Upon selecting the two operands, they are sent
to a 4:2 carry-save adder/subtractor module and the output is
accumulated with a chain of 64 32-bit carry-select adders.

Fraction and Exponent Extraction: The final two stages
of the VMA (see Fig. 4) are responsible for re-normalizing the
quire and extracting the sign, exponent, and fraction vectors.
Accordingly, the quire vector is first converted to unsigned
(via two’s complement with another carry-select module) and
the sign vector is obtained. Next, the unsigned quire is sent
to a vectorized leading-zero counter, which obtains partial

counts for each vector element and generates a final zero-count
vector. The final stage of the VMA takes the unsigned quire
vector and the computed zero-count vector (which corresponds
to the exponent vector) and generates a normalized fraction
vector with the aid of a vectorized right barrel shifter, that
also performs rounding by OR’ing shifted-out bits.

Quire Forwarding and Vector-to-Scalar Reduction: The
quire vector values registered in the Q stage are also forwarded
to adjacent PEs, in order to support the RTU’s VMA fusing
scheme. Moreover, to support vector-to-scalar reduction op-
erations, the VMA offers an optional module that is capable
of splitting a quire vector in half and generating two quire
vector values to be fed back to the Q stage (see Fig. 4). By
successfully performing this operation, it is possible to reduce
a vector to a single scalar value (of the same precision).

Input Pre-Processing for Non-Restoring Arithmetic: The
execution model of the proposed RTU allows the mapping
of several FMA-based algorithms typically deployed in Digi-
tal Signal Processors (DSPs). Examples comprise the New-
ton–Raphson and/or Goldschmidt algorithms [24] for non-
restoring division (and square-root). These algorithms perform
a predefined number of FMA iterations to find the reciprocal
of the divisor, and then multiplying it by the dividend [24].
To do so, it is first necessary to scale the divisor to the [0.5,
1] numerical interval and apply the same scaling factor to the
dividend. This is done by a dedicated pre-processing module
(PRE - see Fig. 2.B) placed at the input of the PE, to scales
an input value and generates the corresponding scaling factor.

B. Pipeline Registers

Each VMA unit is paired with a local 8x106-bit register file
with a dual functionality. These 106-bit registers can be used
both for local vector storage (e.g., for intermediate results or
constant storage) or as pipeline registers (for data forwarding
between adjacent PEs). Dedicated input and output masks are
used to select which registers are used to accept input data
and which are forwarded to adjacent PEs.

C. Configuration Controller

Each PE is managed by a dedicated configuration controller
(see Fig. 2.B). It deploys a low-profile sequencer module com-
posed of a 32-bit counter and a local configuration memory.
To configure the PE, the controller makes use of a 64-bit
control word that generates all the necessary control signals
(depicted in Fig. 2.B) for: i) register control, pipeline masks,
operand storage and input selection; ii) pre-processing module
activation; iii) vector configuration; iv) VMA stage activations;
v) quire operation and operand selection; and vi) quire splitting
logic activation. Accordingly, the sequencer operates by first
reading a configuration word from the local configuration
memory, which comprises a tuple formed by the control word
and a count value. Then, it uses the control word to assign
the control signals and configure the PE. After a number of
clock cycles (defined by the tuple count value), the controller
obtains a new configuration word and re-configures the PE
accordingly. Finally, each controller also keeps an interface to
the load sequences of configurations to the local memory1.

1Although it is out of the scope of this work, to deploy a VMA (or the RTU)
as a CPU functional unit or in an accelerator, it is only required to connect
each controller to a centralized mechanism to facilitate its programming.

153

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 06,2020 at 06:27:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Overview of the proposed RTU’s data streaming infrastructure.

V. DATA STREAMING MECHANISM

The proposed RTU deploys an autonomous data streaming
infrastructure, composed of: i) a set of stream generators and
storage controllers; and ii) a set of banked SRAM modules.
Each stream generator/storage controller is composed of a set
of descriptor-based pattern generation units, paired with Posit
vector decoding/encoding logic (see Fig. 6).

Accordingly, the RTU’s stream-based computation models
are supported by a dedicated pattern generation unit per
input (output) of each PE in the left (right) column of the
array. Moreover, a 3-bank SRAM memory module is deployed
per row of the PE array, ensuring maximum data locality
exploitation and parallelism (see Figs. 2 and 6.A). These serve
both as scratchpad memories (local to the RTU) and stream
buffers, allowing streams to flow in and out of the PE array
and promoting data reutilization.

Each data streaming pattern generation unit (see Fig. 6.B)
adopts a descriptor format based on the affine function
from Eq. 3. The descriptor format is capable of gener-
ating linear and tiled accesses by generating incremental
stride factors (stride and count control modules - see
Fig. 6.B), and adding them to a base address offset (address
generation module - see Fig. 6.B and C). Combinations
of multiple descriptors allow the generation of patterns with
higher levels of complexity (such as sliding window or banded
patterns). To do so, the set of descriptors that are used
to generate a given pattern are stored in a local descriptor
memory and iterated over in the aimed sequence. Finally,
each unit is paired with a Posit decode or encode module to
perform the translation from in-memory Posit vectors to the
input vector unified format, and vice-versa. Each module is
fully vectorized and performs the translation according to the
schemes described in [12]–[14], [20].

VI. EXPERIMENTAL RESULTS

This section evaluates the performance and energy effi-
ciency of the proposed RTU when compared with alternative
SIMD units deployed in off-the-shelf platforms.

A. Hardware Implementation

The proposed RTU architecture was fully designed for an
Application-Specific Integrated Circuit (ASIC) implementa-
tion by considering the Nangate 45nm PDK. Although other
configurations can be considered, the RTU was implemented
by assuming a 4×4 PE array to facilitate the comparison
with alternative computing topologies, such as the NVIDIA
tensor cores [8]. The supporting data-streaming infrastructure
comprises 4 banked scratchpad memories (one per row of
the array) each composed of three 8kB SRAM memories.

TABLE I
AREA BREAKDOWN FOR THE RTU AND ITS COMPONENTS.

Component Area (𝑚𝑚2) Power (𝑊)
PE 0.782 0.684

Stream Pattern Generator 0.019 0.024
Posit Decode 0.008 0.008
Posit Encode 0.009 0.010

SRAM Bank (8kB) 0.094 0.007
Streaming 12 PGs + Decode 0.324 0.397

Infrastructure 8 PGs + Encode 0.224 0.279
12 SRAM Banks 1.128 0.095

RTU 4x4 PE Array 12.528 10.936
Streaming Infr. 1.676 0.772

Total RTU 14.204 11.708

TABLE II
REFERENCE SIMD-ENABLED PLATFORMS.

Intel ARM Nvidia
i7-8700K Cortex-A9 GV100

Technology 14 nm 28 nm 12 nm
Freq. (MHz) 3700 667 1200

TDP (W) 95 1.9 250
Est. Power/Core 15.8 0.8 3.125

SIMD Tech. AVX-512 Neon GPU SM
DP Vector-width 8 2 8 / SM Block
SP Vector-width 16 4 16 / SM Block
HP Vector-width - - 32 / SM Block

Tensor Cores - - 2 / SM Block
L1 Data Cache 32kB 32kB 128kB

TABLE III
EVALUATION BENCHMARKS.

Benchmark Description Characteristics

VDOT Vector Dot-Product
FMA, Parallel Reduction,
Linear Streaming

OUTER Matrix Outer Product
Massively-Parallel, Bandwidth
Saturation, Linear Streaming

GEMM
General Matrix-Mult. Tensor-optimized FMA,
(C=𝛼AB + 𝛽C) Tiled Streaming

CONV2D
2D Convolution Resource Underuse, FMA
3x3 Filter Sliding Window Streaming

COVAR Covariance Kernel
Multi-phase, Division
Linear+Tiled Streaming

SGD
Mini-Batch Stochastic Multi-phase, Reduction
Gradient Descent Data Reuse, Linear Streaming

Hardware resources and power estimation results were ob-
tained with Cadence Genus 19.11 and the SRAM banks were
generated with the OpenRAM [25] memory compiler.

The RTU was successfully synthesized with an operating
frequency of 800 MHz. An area breakdown of each RTU
component is presented in Table I, amounting to a total area
of 14.204 𝑚𝑚2 and an estimated peak power dissipation of
about 11.7 W. As it could be expected, most of the area
footprint is occupied by the PEs (782 𝜇𝑚2), with the array
occupying 91% of the RTU’s area. This is mainly due to the
VMA’s 2048-bit quire arithmetic logic required for the 64-
bit precision. Nonetheless, this area was kept to a minimum
by sharing resources to implement all the supported vector
precisions, by relying on the adopted data unified formats. On
the other hand, it can be ascertained that the area overhead of
the whole streaming infrastructure only amounts to a total of
9% of the RTU’s area, as a result of the low-profile architecture
of the pattern generator units. Such a low footprint leaves
room for the deployment of more complex and robust data
communication schemes in future implementations.

B. Reference Setups and Workloads

To evaluate the RTU performance, it was compared with
several off-the-shelf platforms featuring advanced SIMD units

154

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 06,2020 at 06:27:23 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
CLOCK CYCLE IMPROVEMENT (NORMALIZED TO NEON-DP).

Bench. NEON-DP NEON-SP AVX-DP AVX-SP SM-DP SM-SP SM-HP SM-HP(*) RTU-P64 RTU-P32 RTU-P16 RTU-P8

VDOT 1.00 1.25 0.96 1.29 1.87 2.11 2.33 - 16.87 32.75 61.01 106.05
OUTER 1.00 1.31 4.86 6.05 6.51 7.66 8.48 - 57.01 111.07 211.18 384.46
GEMM 1.00 1.07 5.09 5.34 5.07 5.52 10.09 56.66 53.02 105.69 209.80 413.02

CONV2D 1.00 1.09 4.50 5.08 11.23 12.13 16.53 - 63.76 84.95 168.91 164.11
COVAR 1.00 1.27 2.82 3.14 3.37 3.80 5.62 - 30.99 61.62 121.84 238.06

SGD 1.00 1.15 4.09 4.26 2.92 3.50 4.36 - 41.44 60.15 74.59 81.07
(*)SM-HP benchmarks mapped to Tensor Cores when supported.

Fig. 7. Performance comparison results, including (A) execution time speedup and (B) average energy savings, both normalized to NEON-DP, and (C)
overall energy efficiency (in the form of an EDP metric).

(see Table II), including: i) an Intel i7-8700K out-of-order
processor (with the AVX-512 vector extension); ii) an ARM
Cortex-A9 embedded processor (with the Neon vector exten-
sion); iii) a NVIDIA GV100 GPU (with tensor cores and native
SIMD in each simultaneous multiprocessor (SM)). Several
setups were devised for each platform, by considering floating-
point double, single, and half (only in the GPU) precisions,
resulting in 7 different setups, AVX-DP, AVX-SP, NEON-
DP, NEON-SP, SM-DP, SM-SP, SM-HP. For the proposed
RTU, setups with 64-, 32-, 16-, and 8-bit Posit precisions were
considered: RTU-P64, RTU-P32, RTU-P32, RTU-P8.

A set of benchmarks (characterized in Table III) was
selected based on real-word applications, with the goal of
evaluating different properties of the proposed RTU. They are
divided into three categories: vdot and outer implement
highly-parallel algebra operations; gemm and conv2d rep-
resent matrix-multiplication kernels that usually target tensor
cores; covar and sgd represent multi-phase applications
composed of multiple kernels and with complex arithmetic.

The presented evaluation aims at solely comparing the
proposed RTU architecture with the off-the-shelf SIMD units.
As such, all applications were parameterized to target a single
core of each platform (see Table II), with data sets that fit in the
first level of the cache hierarchy (minimizing memory access
delays). In the particular case of the GPU implementations,
all benchmarks were dimensioned to target a single SM
block and by allowing it to use its tensor cores (through the
cuBLAS library) whenever possible (in the SM-HP setup).
The execution times and clock cycles measurements for the
RTU were obtained through cycle-accurate simulations in
Cadence Incisive 19.03. For the Intel i7 and ARM processors,
the applications were timed and analyzed by accessing internal
performance counters with the PAPI library. For the GPU,
measurements were obtained with the NVIDIA profiling tools.

C. Performance evaluation

Table IV and Fig. 7.A present the measured clock cycles
and performance speedup for each benchmark and setup.
The obtained clock cycle measurements clearly demonstrate
the architectural efficiency of the proposed RTU, showing

average clock cycle gains of 44x/12x/9x (in 64-bit precision),
64x/19x/15x (in 32-bit precision), and 20x (in 16-bit preci-
sion) when compared to the NEON-DP/AVX-DP/SM-DP,
NEON-SP/AVX-SP/SM-SP, and SM-HP setups, respec-
tively. Such gains are a result of the three-fold combination
of: i) the parallel nature of the RTU PE array, allowing a two-
level parallelization both across the PEs and within the SIMD
architecture of the VMAs; ii) the versatility introduced by
the reconfiguration mechanisms, allowing an efficient resource
utilization and code-free mapping of complex operations,
which requires the utilization of different compute units in
the reference setups; and iii) the supporting data streaming in-
frastructure, by detaching memory accesses from computation,
reducing the execution critical path, and by autonomously and
efficiently generating streams in parallel with computation.

Such architectural benefits are further highlighted when
comparing the RTU execution time to the other setups, as it can
be observed in Fig. 7.A. When considering the vdot bench-
mark, for example, it is possible to ascertain the benefit of
the VMA fusing characteristics to deploy a parallel reduction
tree. In fact, while all reference setups perform this operation
with successive shuffling instructions, the RTU is capable of
reconfiguring unused PEs to perform the reduction in parallel
with the dot-product partial accumulations (see Fig. 3.B), in
turn achieving 16x/3x/4x speedups over NEON-DP/AVX-
DP/SM-DP. On the other hand, the spatial computation
characteristics of the RTU become evident when considering
the outer benchmark, where the combination of the PE array
topology and the vectorization of the VMAs allows exploiting
massively parallel computation. This results in a performance
speedup as high as 346x, when comparing the most extreme
RTU-P8 and the NEON-DP setups.

Given its base tensor-like computing architecture, the RTU
was also compared with the tensor cores present in the
NVIDIA GPU. By taking into account the restrictions imposed
by NVIDIA tensor cores for the type and shape of matrix
multiplications [11], it was only possible to map the gemm

benchmark, denoting the lack of flexibility presented by these
types of units. In fact, although the conv2d benchmark is also

155

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 06,2020 at 06:27:23 UTC from IEEE Xplore. Restrictions apply.

based on tensor multiplication, it adopts the most common 3x3
filter shape, which is not supported by the NVIDIA cores, in
turn not allowing its mapping. Nevertheless, when comparing
the execution of gemm, the proposed RTU using a 16-bit posit
precision format is capable of matching and outperforming the
NVIDIA tensor cores by 1.8x.

The RTU introduces an increased level of processing ef-
ficiency over the other setups by applying time-multiplexing
reconfiguration to maximize its resource utilization. This is
emphasized when mapping full kernels with multiple phases
and/or complex operations, as it is shown by the gains ob-
tained in the covar and sgd benchmarks (see Fig. 7.A).
In particular, covar takes advantage of the RTU support to
map high-latency arithmetic functions (in this case, a division).
This is done by reconfiguring unused resources in the PE
array, allowing the operation to be performed in parallel with
other computations. When combined with a runtime array-
wide reconfiguration between kernel phases and with the data
reutilization offered by data streaming, the RTU achieves aver-
age speedups of 2.4x/7.8x and 1.9x/8.1x for covar and sgd,
when compared to AVX/SM (with equivalent precisions). The
streaming of patterns with high complexity (such as sliding
windows) is also evidenced by the 2.5x/3.1x speedups obtained
for conv2d, when comparing the same setups.

By acknowledging that the Posit format allows reducing
the precision at the minimal expense of data accuracy (de-
pending on the dataset) [12]–[14], it is possible to observe
the maximum performance gains attainable by the RTU.
Accordingly, by halving the vector precision, it is possible to
attain average speedups of 89x/5x/13x, when compared to the
NEON/AVX/SM setups. On the other hand, by fully reducing
the precision to 8-bit Posit vectors, the RTU is capable of
attaining gains as high as 372x/14x/40x, when compared to
the NEON-DP/AVX-DP/SM-DP setups. Finally, it is also
important to note that the observed gains were obtained by
comparing a 45𝑛𝑚 process (RTU) with much smaller tech-
nologies (28𝑛𝑚, 14𝑛𝑚, and 12𝑛𝑚 - see Table II). Accordingly,
it is safe to assume that the operating frequency of the RTU
would scale to the range observed in the reference setups
if implemented in similar technologies. Naturally, such an
increase would allow the RTU to attain further levels of
acceleration when compared to the reference setups.

D. Energy Efficiency

The observed performance gains have a significant impact in
the total energy consumption of the proposed RTU, as shown
in Fig. 7.B. In this graph, it can be observed that the RTU
consumes a much lower amount of energy when compared
to the reference platforms. As an example, the RTU-P64
consumes 2.5x less energy than the NEON-DP setup. This
is a direct result of the data streaming, spatial, and temporal
execution models of the RTU. When operating the RTU with
an 8-bit Posit precision, it is capable of attaining further
reductions, by up to 7.46x.

To gather all the observed results in a single metric, an
additional energy efficiency study was performed. In this case,
it was used an energy-delay product (EDP) metric, calculated
by multiplying the total energy consumption by the average
execution time, in all benchmarks. By keeping in mind that
lower values represent a higher efficiency, the measured results

not only reflect the lower energy consumption of the RTU but
also highlight the efficiency of its combined execution model.
Accordingly, it is possible to observe an overall performance-
energy efficiency improvement of 87x (on average).

VII. CONCLUSIONS

This paper proposed a new RTU architecture that leverages
the new Posit floating-point format to deploy a 2D computing
array of variable-precision SIMD units. The proposed unit
was designed by recognizing the opportunity to explore the
resources of existing tensor units for more general-purpose
computing contexts. To do so, the proposed RTU deploys
a combined data streaming, spatial and temporal execution
model, to deploy a reconfigurable compute unit, capable of
fusing multiple PEs to map high-level operations, through
time-multiplexing reconfiguration mechanisms. The obtained
results for a 45nm ASIC implementation show that the pro-
posed RTU provides an increased performance over existing
state-of-the-art tensor and SIMD units present in off-the-shelf
platforms, resulting in significant energy efficiency gains.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture.” Comms. of the ACM, vol. 62, no. 2, pp. 48–60, 2019.

[2] J. Dean et al., “A new golden age in computer architecture: Empowering
the machine-learning revolution,” IEEE Micro, vol. 38, no. 2, pp. 21–29,
2018.

[3] N. P. Jouppi et al., “A domain-specific architecture for deep neural
networks,” Communications of the ACM, vol. 61, no. 9, pp. 50–59, 2018.

[4] J. Fowers et al., “A configurable cloud-scale DNN processor for real-
time AI,” in ISCA, 2018, pp. 1–14.

[5] E. Chung et al., “Serving dnns in real time at datacenter scale with
project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[6] E. Delaye et al., “Deep learning challenges and solutions with xilinx
fpgas,” in ICCAD, 2017, pp. 908–913.

[7] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep
neural network accelerators,” in ISCA, 2016, pp. 267–278.

[8] NVIDIA, “Nvidia tesla v100 gpu architecture.” White paper., 2017.
[9] U. Köster et al., “Flexpoint: An adaptive numerical format for efficient

training of deep neural networks,” in NIPS, 2017, pp. 1742–1752.
[10] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit,” in ISCA, 2017, pp. 1–12.
[11] S. Markidis et al., “Nvidia tensor core programmability, performance &

precision,” in IPDPSW, 2018, pp. 522–531.
[12] J. L. Gustafson et al., “Beating floating point at its own game: Posit

arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, no. 2,
pp. 71–86, 2017.

[13] Z. Carmichael et al., “Deep positron: A deep neural network using the
posit number system,” in DATE, 2019, pp. 1421–1426.

[14] R. Chaurasiya et al., “Parameterized posit arithmetic hardware genera-
tor,” in ICCD, 2018, pp. 334–341.

[15] P. W. Group, “Posit standard documentation,” Release 3.2, Jun. 2018.
[16] T. Nowatzki et al., “Stream-dataflow acceleration,” in ISCA, 2017, pp.

416–429.
[17] R. Prabhakar et al., “Plasticine: A reconfigurable architecture for parallel

patterns,” in ISCA, 2017, pp. 389–402.
[18] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelera-

tor for deep convolutional neural networks,” IEEE JSSC, vol. 52, no. 1,
pp. 127–138, 2016.

[19] N. Neves et al., “Adaptive in-cache streaming for efficient data manage-
ment,” IEEE TVLSI, vol. PP, no. 99, pp. 1–14, 2017.

[20] M. K. Jaiswal et al., “Architecture generator for type-3 unum posit
adder/subtractor,” in ISCAS, 2018, pp. 1–5.

[21] S. Ghosh et al., “Cache miss equations: An analytical representation of
cache misses,” in ICS, 1997, pp. 317–324.

[22] T. Grosser et al., “Polly-polyhedral optimization in llvm,” in IMPACT,
vol. 2011, 2011.

[23] F. De Dinechin et al., “Posits: the good, the bad and the ugly,” in
CoNGA, 2019, p. 6.

[24] T. Viitanen et al., “Simplified floating-point division and square root,”
in ICASSP, 2013, pp. 2707–2711.

[25] M. R. Guthaus et al., “Openram: An open-source memory compiler,” in
ICCAD, 2016, pp. 1–6.

156

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 06,2020 at 06:27:23 UTC from IEEE Xplore. Restrictions apply.

