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ABSTRACT The accurate simulation and performance assessment of Near-Data Accelerators (NDAccs)
is a complex challenge as it must consider the operation of the entire processing system, the impact of the
Operating System (OS) overheads, and the memory contention caused by concurrent processes. While recent
proposals have attempted to repurpose and extend existing tools, the offered support for the development and
evaluation of NDAccs is limited and full-system simulation is rarely provided. To mitigate this problem, the
NDPmulator simulation framework, based on the widely established gem5 architectural simulator, is herein
proposed. NDPmulator provides System Emulation (SE) and Full System (FS) support for the development
and evaluation of novel NDAccs deployed at multiple levels of the memory hierarchy. To demonstrate its
versatility and performance-efficiency, the proposed NDPmulator is used to model three existing NDAccs,
showing that it can accurately estimate and anticipate the results of the evaluation performed by the original
authors while requiring a significantly smaller implementation effort and a fraction of the simulation time.
Furthermore, NDPmulator offers the possibility to conduct complex experiments where the NDAcc is coupled
to a real system featuring an OS. Hence it allows modeling all overheads related to the NDAcc device driver,
the OS, and the contention caused by concurrent and background processes.

INDEX TERMS Near-data processing, multi-level memory hierarchies, hardware development framework,
full system simulation.

I. INTRODUCTION
The observed emergence of new data-intensive algorithms
in multiple application domains (e.g., image processing,
bio-informatics, physics, finance, and artificial intelligence)
has widened the performance gap between modern multi-
core high-performance Central Processing Units (CPUs)
and their corresponding memory hierarchies. Due to the
increased complexity of memory subsystems (in an attempt
to keep up with the performance delivered by the CPUs as
well as the large data transfers required by data-intensive
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algorithms), a significant amount of energy is spent across
interconnection wires, representing losses as high as 64% [1].
This contrasts with the 1% fraction of energy used for
the actual computation [2]. Furthermore, despite the efforts
made, current memory subsystems still cannot keep up with
the performance of CPUs whenever large amounts of data
are involved, resulting in performance degradation and low
utilization of the CPUs [3].

As result, an opportunity was created for specialized accel-
erators, which offer significant performance improvements
over CPUs [4], [5], [6] for two distinct reasons: (1) they
are specifically optimized for a given application (or small
set of applications), taking full advantage of its underlying
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characteristics, such as data access patterns and parallelization
opportunities; and (2) theymay be installed close to where data
is stored (i.e., memory devices [7], [8], [9], [10]), becoming
Near-Data Processing (NDP) devices, henceforth designated
by Near-Data Accelerators (NDAccs), which grants them a
much higher bandwidth and lower latency to memory than
the CPU.

A. BACKGROUND ON NEAR-DATA PROCESSING
Throughout the years, several NDAccs have been proposed,
with initial designs focused on Processing in Memory (PIM).
PIM devices make use of the already existing Dynamic
Random Access Memory (DRAM) resources to implement
elementary bit-line operations, which consist of reading the
combined charges of multiple DRAM cells and interpreting
the voltage level at the sense amplifiers as the result of a
digital operation. By applying this technique simultaneously
in multiple DRAM banks, a massive level of parallelism can
be achieved. However, only elementary digital operations can
be implemented at this level [11], often requiring hundreds
of these operations to implement more complex arithmetic
instructions [12]. Furthermore, since these circuits operate
in the analog domain, PIM techniques are often error-prone,
and only a small number of bits within one column can be
combined successfully [13]. This particular limitation was
later mitigated by extending the PIM paradigm to Static
Random Access Memory (SRAM) [2], [14], which is more
resilient to non-recoverable errors when combining large
amounts of bits. In addition, recent proposals also make use of
3D-stacked NAND-memory (a technology frequently used to
fabricate non-volatile memory devices) to implement active
computation [15].
More recently, Resistive Random Access Memory

(RRAM)-based PIM [16], [17], [18], [19], [20], [21], [22]
techniques have gained significant popularity. One of its
most relevant features is supporting the implementation of
analog multiplication [23], which is the core operation of
Convolutional Neural Networks (CNNs). By manipulating
the impedance of the memristors, as well as the reading
voltage, the result of a read operation can be interpreted
as the product of both. However, analog RRAM-PIM is
also error-prone since the behavior of the memristors varies
with temperature during operation. Furthermore, RRAM
fabrication suffers from significant process variations, making
the memristors uneven within the same device and between
devices [24]. Therefore, reported results indicate that analog
RRAM-PIM devices are more than error-prone: they are
unstable and produce untrustworthy results. Nevertheless,
digital bit-wise RRAM-PIM is also possible by combining
several memristors [25], highly increasing the error tolerance.
Despite the important advances that have been made,

PIM remains limited to bit-wise operations, is often error-
prone, is constrained by the existing memory hardware, and
requires very specific data placements. Moreover, the required
awareness of how the data is stored in the memory devices

is hardly compatible with the security mechanisms used by
modern Operating Systems (OSs) and makes it difficult to
create a standard programming paradigm. Hence, the adoption
of PIM solutions for general-purpose computation is not
common, and these devices are mostly used in specialized
systems targeting a single algorithm [14], [26] or a very
restricted group of applications.
Nevertheless, there is also a class of NDAccs that reside

outside the memory devices, allowing for much higher design
freedom including the adoption of fully-digital architectures
capable of atomically executing complex operations that
would otherwise take hundreds of cycles to be implemented
using bit-line computations [27], [28], [29], [30]. Such
NDAccs are more independent of the underlying memory
architecture and simplify data placement comparing with PIM
devices, which provides for easier integration with modern
processing systems and mitigates security issues. Although
these devices are characterized by a lower bandwidth to
memory (when compared with PIM devices), they still benefit
from much higher data rates than the CPU. Furthermore,
since they are physically closer to memory, the energy spent
transferring data across wires is also reduced. As a result, this
paradigm allows for the implementation of general-purpose
solutions.
However, the design of novel NDAccs is a complex

task. Moreover, directly prototyping such accelerators by
developing Register-Transfer Level (RTL) code is generally
complex, expensive, and time-consuming, in particular when
the intended goal is to simply evaluate the potential of an
idea, or to adjust the parameters of an architecture still under
consideration. In addition, without properly integrating the
accelerator with the remaining system, particularly with the
main CPU and the memory hierarchy, such methodologies
may lead to inaccurate results. These are due to control
and synchronization overheads or the contention generated
at memory level attributed to the co-existence of several
processing devices simultaneously accessing the memory
hierarchy.

B. MOTIVATION
During the past decade, several contributions have been made
to tackle the challenges involved in the conception of pre-RTL
development tools, targeting heterogeneous high-performance
processing systems. They point out important problems, such
as the lack of sufficiently accurate models and the scalability
of existing solutions [31], [32], [33], [34], [35], [36].Although
relevant proposals on design exploration and performance
prediction were presented, they usually target fairly
homogeneous systems (such as conventional multi-core
CPU systems [37], [38], [39]), and are hardly suited for
heterogeneous systems featuring specialized hardware
accelerators. Furthermore, they are also unsuited for early
design exploration phases (where the parameterization of the
architectures is not fixed yet), as a detailed specification of
the device is usually required [40].
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In addition, most artifacts used in the literature are
either not optimized to evaluate NDAccs (e.g., in [41], the
authors use a Graphics Processing Unit (GPU) simulator
to evaluate their NDP architecture), are limited to few
architectures [42], or depend on post-simulation steps to
combine the performance metrics of the NDAccs with the
remaining system (resulting in the inability to simulate the
simultaneous operation of the CPU and the NDAcc). This not
only makes it difficult to establish comparisons between such
evaluation methodologies but may also bring into question the
validity of the obtained results.

Hence, it is fundamental to develop rigorous mecha-
nisms dedicated to the evaluation of the benefits of new
NDAccs without undergoing the expensive development
steps required by traditional full-scale methods, while still
allowing to obtain accurate and trustworthy results.

C. CONTRIBUTIONS
To answer this need, this paper proposes a new pre-RTL
simulation framework specifically aimed at evaluating
NDAccs, allowing to emulate their operation at different
levels of proximity to memory devices. The presented
framework, denominated NDPmulator, is based on the widely
established gem5 architectural simulator [43] and gem5-
accel [44], [45], offering a full-stack development and
evaluation solution for new NDAccs. However, contrasting
with [44], NDPmulator not only supports the simulation
of individual applications using an NDAcc (System Emu-
lation (SE) mode), but also provides the ability to execute
several applications in parallel on top of an OS (Full
System (FS) mode), allowing for a comprehensive evaluation
of NDAccs under realistic circumstances, with accurate
results. Furthermore, it natively supports all Instruction Set
Architectures (ISAs) allowed by gem5 in SE mode and
x86, ARM, and RISC-V in FS mode (in contrast with [44],
which only supported the ARM ISA). It also includes Linux
device drivers to easily establish communication between
a CPU application and the NDAcc under evaluation. In
addition, this work presents a comprehensive analysis of the
development flow of NDAccs using FS mode (which was not
included in [45]), together with a rich set of use cases, and a
detailed analysis of the different components of NDPmulator’s
architectural model.
To our knowledge, NDPmulator is the first cycle-

accurate simulation tool providing a full-stack solution
specifically aimed at the development of NDAccs, covering
not only the conception of the accelerator architecture but also
its integration with the processing system and the co-execution
of real NDP-enabled applications that make use of NDAccs.
To validate our framework, we modeled three NDAccs

recently proposed in the literature [46], [47], [48], [49]
(together with the respective underlying processing systems)
and evaluated them using NDPmulator, comparing the
obtained results with those of the original papers. Our
results show that NDPmulator allows to successfully estimate

the performance of said NDAccs at the cost of a small
fraction of the implementation time and without the need
to actually synthesize their architectures, thus adopting a pure
simulation approach. Furthermore, we further complemented
the validation of the devised toolchain by exposing features of
NDPmulator that were not explored (or available) in [45].
Namely, we evaluated the NDAcc proposed by Das and
Kapoor [46], by considering its integration with a realistic
processing environment featuring the coexistence with an OS.
In addition, to better demonstrate the versatility and efficacy of
NDPmulator, we conducted two additional tests regarding the
NDAcc inspired in [49]: (1) we compared the simulation time
of a Verilator-based official simulation platform with that of
NDPmulator, showing that NDPmulator allows to obtain the
same results in a fraction of the time; and (2) we simulated two
scenarios considering the NDAcc connected to the Last-Level
Cache (LLC) (L2 cache) when parameterized with different
bandwidths, demonstrating that NDPmulator allows changing
core features of the system by simply adjusting parameters in
the simulation file.
All in all, this paper presents the following contributions:
• An open-source gem5-based simulation framework
targeting the development and an early evaluation of
NDAccs, providing support for the development of
their architectures and integration with the remaining
processing system;

• Full support for simulating the simultaneous operation
of the CPU and the NDAcc on a clock-cycle basis;

• Support for both SE and FS simulation, allowing to
accurately evaluate NDAccs with a single application
using an NDAcc or multiple processes on top of an OS;

• Native support for all ISAs supported by gem5 in SE
mode, and support for x86, ARM, and RISC-V in FS
mode;

• Simulation scripts targeting both SE and FS modes;
• NDAcc Linux device drivers to be used in FS mode;
• Extensive validation of NDPmulator, considering three
distinct NDAccs from the literature, showing its
versatility, accuracy, and simulation efficiency when
compared with other state-of-the-art platforms.

The remainder of this paper is organized as follows.
Section II details the proposed framework. Section III explains
the simulation flow of NDPmulator for both SE and FS
modes, providing examples of its operation. Section IV briefly
describes the NDAccs proposed by Das and Kapoor [46],
Wang et al. [47], [48], and Genc et al. [49] whose architectures
were used to validate NDPmulator, and presents as discusses
the obtained experimental results. Section V summarizes
relevant related work. Finally, Section VI concludes this paper.

II. NDPMULATOR ARCHITECTURAL FRAMEWORK
NDPmulator is based on the widely established gem5
architectural simulator [43], an event-driven simulator that
delivers cycle-accurate results and capable of emulating the
latency associated to each block in the processing system,
as well as the inherent data contention. While an extensive list
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FIGURE 1. Physical representation of the proposed NDPmulator. BW2* and
BW3* represent configurable parameters that define the bandwidths
between the different levels of the memory hierarchy and the NDAcc. The
L1I and L1D blocks represent L1 instruction and data caches, respectively,
while the L2/LLC block represents the L2 unified cache, which corresponds
to the Last-Level Cache of the depicted system.

ofmodules can be simulated out of the box in gem5, simulating
custom hardware architectures requires the implementation of
the corresponding models. This task is particularly complex
for NDAccs due to the need of coupling them to an existing
CPU and memory hierarchy, which requires to implement the
packet communication protocol needed to exchange data with
the CPU (for control purposes) and the memory hierarchy (for
obtaining operands and storing results).

The architectural model of NDPmulator provides two main
mechanisms to simplify the integration of custom NDAccs
with standard processing systems, as depicted in Fig. 1. The
first mechanism is a Programming Interface (PI), which
implements programming registers to provide a direct interface
between the CPU and the NDAcc for control purposes. The
size and total amount of registers are configurable parameters
of NDPmulator, and it is up to the developer to define the
purpose of each register, as these parameters depend on
the implemented architecture. The second mechanism is a
load/store unit that retrieves the operands from memory and
stores the results by breaking down the high-level memory
requests performed by the NDAcc into simpler requests that
are sent to memory. By doing so, the load/store unit conceals
the complex communication protocols used to transfer data
between the memory devices and the processing elements,
automatically dealing with failed request attempts (e.g., due
to contention) and granting the delivery of the requested data
to the NDAcc/memory.
It is also worth mentioning that NDPmulator does not

impose any fixed operation flow between the CPU and the
NDAcc, i.e., the user may choose to implement a fine-grained
control over the NDAcc (e.g., issue atomic instructions by
reading or writing to the PI), or a more decentralized control
where the NDAcc acts similarly to a co-processor (e.g., order
the NDAcc to execute an entire pre-compiled kernel fetched
from memory), as illustrated in Fig. 2.

FIGURE 2. Example operation of an NDAcc and its interaction with the
surrounding system: (1) the CPU stores the NDAcc kernel in memory;
(2) the CPU triggers the NDAcc to start operating; (3) the NDAcc exchanges
operands and results with the memory hierarchy; (4) CPU polls the NDAcc.

Furthermore, by being based on gem5, NDPmulator is
modular and can be extended to support specific evaluation
requirements of custom NDAcc architectures. For example,
specific metrics can be obtained regarding the operation
of certain modules within the custom NDAcc architecture.
Also, specific hardware and power models can be created for
posterior processing using McPAT [50] and/or Cacti [51].

A. CPU-NDAcc PROGRAMMING INTERFACE
The proposed architectural model, built on top of gem5,
addresses the complex architecture of the entire processing
system, making it easier for users to integrate their NDAcc
architectures. One of the provided features is the generation
of a PI, which is responsible for implementing direct
communication channels between the CPU and the NDAcc
for control purposes. The number and size of the registers
within the PI are configurable parameters of NDPmulator, and
their purpose is defined by the developer, according to the
requirements of the implemented custom NDAcc architecture.
As illustrated in Fig. 3, whenever the CPU accesses the PI
registers for reading or writing, the corresponding request is
automatically processed by the offered framework module,
and the methods readPI and writePI are executed to read
or write the accessed programming register.
It is worth emphasizing that the PI module offered

by NDPmulator architectural model does not impose any
restrictions on the internal architecture of the NDAccs.
Specifically, it is unaware of their control flow and
corresponding implementation, as well as the implemented
operations and ISA. Furthermore, while actual data can be
exchanged between the CPU and the NDAcc through the
PI, it is only effective for small (scalar) operands and/or
results. For retrieving large amounts of data to be processed
and storing the corresponding results, NDPmulator provides
a high-performance communication lane that connects the
NDAcc with the underlying memory hierarchy.

B. LOAD/STORE UNIT
The load/store unit features a memory port that enables
the direct connection between the NDAcc and the memory
hierarchy, for direct data access. Furthermore, it implements
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FIGURE 3. NDPmulator diagram relating the framework software routines
to its main architectural blocks illustrated in the bottom right section of
Fig. 1, namely the Prog. Interface and the Load/Store Unit. It also shows
the connections between the NDAcc and the main devices of the
processing system depicted in Fig. 2.

mechanisms that allow for the effortless retrieval of operands
and storage of results produced by the NDAcc. Since
memory models in gem5 have the same limitations as their
corresponding physical devices, which impose a maximum
request size, if a request for a burst of data to or from a
memory device exceeds this maximum size, it must be broken
down into smaller requests. To address this, NDPmulator
load/store unit automatically partitions large memory requests
into smaller ones, each with a size that is pursuant to the
constraints of the memory device (e.g., cache line size). These
requests are then sent sequentially and at a pace that can be
configured. Furthermore, since memory devices may be busy
and reject requests, the load/store unit implements a First-
In-First-Out (FIFO) request queue that retries sending the
dropped requests when the memory device becomes available
again. For example, if the NDAcc model needs to obtain an
entire vector from memory, it can do so by simply providing
a descriptor via the accessMemory method, specifying the
base address and the number of bytes required. Subsequently,
the load/store unit schedules the necessary memory requests
through the sendData method, ensuring that the data is
retrieved as quickly as possible.
Fig. 4 illustrates the operation of NDPmulator load/store

unit. First, the load/store unit verifies if the NDAcc request
can be fulfilled in a single memory request. If that is the
case, it creates a memory request of that size. Otherwise,
it creates multiple requests with a size equal to or smaller
than the maximum allowed size. Then, an attempt is made
to send a single request to the memory device. If it succeeds
and more memory requests are required to fulfill the original
request made by the NDAcc, another attempt to send another
request is scheduled. Otherwise, if it fails, the load/store
unit waits until the memory device is ready again to retry
sending the dropped request. This process is repeated until the
original NDAcc request is fulfilled. When the memory returns
a request response, the load/store unit matches the response
with a previously issued request and stores the retrieved data

FIGURE 4. Diagram showing how NDPmulator Load/Store Unit unfolds
large requests into smaller ones suitable to be sent to the memory devices.

in the corresponding slot on a Re-Order Buffer (ROB). When
the received memory response concludes a request made by
the NDAcc, the corresponding data stored in the ROB is
transferred to the NDAcc and the memory transaction finishes.
Another important feature of the load/store unit offered

by NDPmulator is that it can be coupled to any level of
the memory hierarchy (or even multiple levels), with the
corresponding bandwidths allowed at the different levels being
configurable parameters. In addition, since when NDAccs are
coupled with a cache and communicate through the same
ports used by the CPU cores, all the usual cache coherence
protocols are still supported. Thus, NDAccs modeled using
NDPmulator are independent of the used cache coherence
protocol. NDPmulator also offers the option of bypassing
the memory controller, which lets developers adjust the
latency and behavior of the memory devices. This feature
is particularly interesting for NDP design exploration, as it
allows developers to emulate memory accesses using a custom
latency. Additionally, NDPmulator is also compatible with
having multiple NDAccs coupled to the same or different
CPUs and memory devices.
An important aspect that has to be taken into account

occurs when virtual memory mechanisms are considered since
the data pointers made visible to user applications (virtual
addresses) usually differ from those used to communicate with
the memory hierarchy (physical addresses). Thus, in order
to make this compatible with NDP, there needs to be an
interfacing mechanism guaranteeing that, while the CPU
application operates over virtual addresses, the NDAcc has
access to the corresponding physical addresses to fetch the
operands and store the results at physical level.

C. VIRTUAL MEMORY TRANSLATION AND MANAGEMENT
In order to translate the virtual addresses used by the user
application into their corresponding physical addresses (and
vice-versa), two options are available. On the one hand, one
can consider that the NDAcc receives the virtual addresses
of the data to process and has to convert those addresses to
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the physical domain. This requires the NDAcc to implement
a secondary Translation Lookaside Buffer (TLB), working
as a subordinate of the core issuing the executing kernel,
complemented by a hardware page walker to perform the
translation. Naturally, this approach poses a significant
overhead in terms of required hardware and execution time,
considering that multiple accesses to the TLB will most likely
be needed during the execution of a kernel, and page faults
may occur, requiring to fetch page tables from memory.

On the other hand, there is a more efficient approach, where
the NDAcc directly receives the physical addresses of the data
(which is stored in contiguous memory segments), leaving
the responsibility for the translation to the corresponding
device driver. This scheme is commonly used by many
other accelerators (including NVIDIA CUDA-enabled GPUs),
where it is not convenient to work with page tables
scattered across memory, as this imposes significant execution
overheads. Hence, we emulate such a scheme by selecting a
contiguous region within the existing physical memory and
explicitly mapping it into an equally contiguous region in the
virtual addressing space (to mimic a large page table), such
that the virtual and physical addresses in that region are equal.
As a consequence, the translation of addresses from the virtual
to the physical domains becomes unnecessary, and the NDAcc
is capable of accessing data within this region without explicit
address translation.
It should be noted that such mechanisms do not relax any

security aspects, which are still enforced to guarantee process
isolation, preventing other processes from accessing CPU-
NDAcc shared memory. In addition, the shared memory space
between the CPU and the NDAcc has all the same features as
the remaining addressing space, including being accessible
by the CPU with the same latency as regular memory (since
it exists in the same physical hardware). Hence, whenever
required, this memory region can be used for purposes other
than NDP, not being specialized for that single purpose
(although NDPmulator would allow for that).

III. SIMULATING NDP DEVICES WITH NDPMULATOR
NDPmulator supports simulating NDAccs based on the
previously described architectural framework using two
different modes: System Emulation (SE) and Full System (FS).
In SEmode, a single application using the NDAcc is simulated
alone, without OS. Consequently, no OS-specific mechanisms
and/or restrictions are considered. Naturally, this simulation
mode tends to be optimistic, since all OS-related overheads
that would otherwise exist are not considered, or reduced to
the minimum. Also, there is virtually no contention on the
use of resources (besides the bandwidth limit), which leads to
a scenario where the NDAcc has nearly-exclusive access to
the memory hierarchy. Nevertheless, since process isolation
mechanisms are light in SE mode, it is still possible to read
and write the PI registers of the NDAcc by simply accessing
the physical addresses where they are mapped into the CPU
addressing space.

FIGURE 5. The device driver interfaces an application with the physical
NDAcc by accessing its PI registers at privileged kernel level.

In contrast, FS mode simulates the execution under the
premises of a conventional OS (Linux), leading to results
more similar to those that would be obtained in a real
multi-tasking system, where the OS plays a crucial part in
managing hardware resources and provides important security
enhancements such as process and memory isolation. As
a consequence, non-privileged applications cannot directly
access the system physical resources (due to security reasons).
Thus, in order to establish communication between the user
application and the NDAcc, the access to the NDAcc PI
registers has to be delegated to the OS kernel through an
appropriate device driver (see Fig. 5). However, this requires
a more complex control flow on the application side, thus
leading to extra programming overhead.
The following subsections describe the parameterization

and simulation procedures corresponding to these two
simulation modes (SE and FS).

A. SE MODE SIMULATION
NDPmulator provides two important mechanisms to simulate
NDAccs using SE mode: (1) gem5 SE scripts that connect
the several system components; and (2) a programming
paradigm/libraries that implement the routines required to
control the NDAcc by reading and writing in its PI registers.
Listing 1 illustrates a partial SE script that simulates anNDAcc
connected to a standard processing system.
The underlying processing system considered in this

example is composed of a standard CPU, a two-level cache
hierarchy, and a DRAM (see Part 1). In Part 2, the considered
NDAcc is instantiated and its PI registers are mapped into the
CPU address space (in this example, in addresses ranging
from 1GiB to 1GiB + 4KiB). Part 3 of the simulation
script connects the NDAcc to both the CPU and the memory
hierarchy using configurable buses. By changing the width of
these buses and the parameters of the memory components,
it is possible to control the bandwidth made available to the
NDAcc, allowing to simulate NDAccs with different levels of
proximity to thememory. Although in this example theNDAcc
is coupled to the L2 cache, it can be as easily integrated with
the L1 cache or the DRAMmemory. Full scripts exemplifying
how to achieve this are available at https://github.com/hpc-
ulisboa/NDPmulator. It is worth noting that, although SE
mode does not simulate the OS layer, it still emulates some
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Listing 1. Partial gem5 SE script simulating a standard processing system
and a memory hierarchy with an NDAcc by making use of NDPmulator. In
this example, the NDAcc is connected to the L2 cache. Nevertheless,
NDPmulator allows to connect one or more NDAccs to any level of the
memory hierarchy (or even multiple levels).

# Standard processing system
system.cpu = TimingSimpleCPU()
system.cpu.icache = L1Cache() (Part 1)
system.cpu.dcache = L1Cache()
system.l2cache = L2Cache()
system.mem_ctrl = DDR3_1600_8x8()

# NDAcc
system.ndacc = NDAcc( (Part 2)

ndacc_rnge=(’0x40000000’, ’0x40001000’))

class CustomL2XBar(L2XBar):
def __init__(self):

super(CustomL2XBar, self).__init__()
width = 32 # 256-bit bus width (BW2*)

# Connect NDAcc to CPU
system.ndacc.cpu_port = system.cpu.dcache_port (Part
3)
system.cpu.dcache.cpu_side = system.ndacc.mem_side

# Connect NDAcc to L2
system.l2bus = CustomL2XBar()
system.ndacc.dma_port = system.l2b.subordinate
system.l2cache.cpu_side = system.l2bus.master

# Let NDAcc operate on upper 1GB of a 2GB RAM
system.cpu.workload[0].map(

0x40000000, # Host address space (Part 4)
0x40000000, # NDAcc address space
0x40000000 # Address range)

# Start simulation
exit_event = m5.simulate()

of its features for compatibility purposes such as handling
system calls or the existence of a virtual memory system.
Therefore, it still requires translating virtual addresses to
physical addresses and vice-versa. To tackle this, NDPmulator
directly maps a section of the physical memory device into
a specific virtual address range, allowing access to the data
without the need for explicit translation, as shown in Part 4.

A simple C code example using an NDAcc whose operation
flow is compatible with the one illustrated in Fig. 2 targeting
the SE mode is illustrated in Listing 2. First, the data pointers
representing both the NDAcc PI registers and the shared
memory region between the CPU and NDAcc are set statically
to the corresponding (physical) addresses, since there is no OS.
Then, both the operands and the kernel are loaded into memory
and the CPU instructs the NDAcc to start executing the kernel.
During the operation of the NDAcc, the CPU is free to execute
other tasks. Finally, the CPU reaches the synchronization point
where the results produced by the NDAcc are required for post-
processing.

B. FS MODE SIMULATION
While SE mode is useful for validating and obtaining
preliminary results of customNDAcc architectures, it does not

Listing 2. C code example to initialize and control an NDAcc using
NDPmulator SE mode. The routines initData and initKernel preload
the data and the kernel into the memory region shared with the NDAcc.
__ndaccLaunchKernel instructs the NDAcc to execute the kernel and
__ndaccReady checks (pooling) if the NDAcc finished processing. Both
these routines are implemented by the user who also defines the
programming interface of the NDAcc.

int main() {
// Assign NDAcc memory addresses
volatile void *ndacc_control = NDACC_CRTL_ADDR;
volatile DATA_TYPE *dataset = NDACC_DATA_ADDR;
volatile void *kernel = NDACC_KRNL_ADDR;

// Dataset and kernel are prepared
initData(dataset);
initKernel(kernel);

// CPU launches kernel on NDAcc
__ndaccLaunchKernel(ndacc_control);

\ldots // CPU processes tasks in background

// CPU waits for NDAcc to finish
while (!__ndaccReady(ndacc_control));

\ldots // CPU post-processes the results

necessarily simulate the conditions of a realistic system due
to the previously discussed limitations. On the other hand, FS
mode provides a simulation scenario identical to a real system,
allowing for a more thorough evaluation. Listing 3 illustrates
relevant parts of an FS simulation script which describes a
system identical to the one used in SE mode except that it also
simulates a full-featured OS environment instead of simulating
a single application in isolation. The complete FS simulation
scripts can be found in the NDPmulator online repository
(https://github.com/hpc-ulisboa/NDPmulator).

Similarly to the previously referred SE simulation script,
Part 1 and Part 2 instantiate and connect the components
of a system featuring an NDAcc, a CPU, a two-level cache
hierarchy, and a DRAM. A crucial difference between SE
and FS simulation scripts is that the latest is ISA specific,
i.e., the components of the simulated system vary depending
on the ISA. In this example, an x86 CPU is used. Nevertheless,
NDPmulator also supports ARM and RISC-V ISAs for FS
mode simulation.

Due to the presence of the OS security mechanisms, process
isolation is enforced in FS mode. As a consequence, a user
application cannot directly access the physical hardware and
has to do so using the implemented device drivers, which act as
bridges between the applications and the simulated hardware
devices, translating commands issued by the user applications
into instructions that the NDAccs can understand (and vice-
versa). First, the user application requests access to an NDAcc
by sending a request to the OS. Then, the OS assigns that
device to the requesting application and prevents any other
process of acquiring its lock. The device driver initializes
the NDAcc and prepares it for communication. Finally, the
application can send commands to the device driver, which
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Listing 3. Partial gem5 FS script integrating a standard processing system
and memory hierarchy with an NDAcc.

ndacc = NDAcc(ndacc_rnge = (
’0x40000000’, # Lower PI address (Part 1)
’0x40001000’)) # Upper PI address

processor = SimpleProcessor(
cpu_type=CPUTypes.TIMING, isa=ISA.X86,
num_cores=1)

cache_hierarchy = NDAccCompatibleCacheHierarchy(
l1d_size = "32kB", l1i_size = "32kB",
l2_size = "256kB", ndacc = ndacc) (Part 2)

memory = SingleChannelDDR3_1600(size="2GB")

board = X86Board(
clk_freq = "2GHz", processor = processor,
cache_hierarchy = cache_hierarchy,
memory = memory)

board.set_kernel_disk_workload(
kernel = CustomResource("vmlinux"),
kernel_args=[

"earlyprintk=ttyS0", "console=ttyS0",
"lpj=7999923", "root=/dev/sda1", (Part 3)
# Reserve 1GB shared memory with NDAcc
"mem=1G", "memmap=1G@0", "memmap=1G$1G"],

disk_image =
CustomDiskImageResource("root_fs.img"))

simulator = Simulator(board=board)
simulator.run()

will be translated (at kernel level) into low-level instructions
that can be interpreted by the physical device (in this example,
read and write accesses to the NDAcc PI registers). In addition,
the device driver is responsible for handling errors that may
occur during the communication between user applications
and the physical devices, acting as an extra layer of security
and preventing one or more components of the system to
undergo a non-recoverable undefined state.

Listing 4 illustrates an example of a C application that uses
an NDAcc in FS mode (equivalent to that of Listing 2). As it
can be observed, this code already incorporates functionalities
provided by the OS, such as the use of the file system. It
should be noted that it is no longer allowed to statically set
the pointers to the NDAcc PI registers nor the NDAcc shared
memory region to the corresponding physical addresses due to
process isolation mechanisms implemented by the OS. Instead,
the control of the NDAcc is implemented through a device
driver (encapsulated by routines __ndaccLaunchKernel
and __ndaccReady), and the memory regions to
store the data to be processed and the kernel are
also allocated (inside the CPU/NDAcc shared memory
region) using OS mechanisms (wrapped by the method
ndaccAlloc).
Next Section summarizes the NDAcc architectures pro-

posed in [46], [47], [48], and [49], which were used to validate
NDPmulator.

Listing 4. C code example to initialize and control an NDAcc using
NDPmulator FS mode. Similarly to the SE mode, the routines initData
and initKernel preload the data and the kernel into the memory region
shared with the NDAcc. __ndaccLaunchKernel instructs the NDAcc to
execute the kernel and __ndaccReady checks if the NDAcc finished
processing. Both these routines are implemented by the user who is also
responsible for implementing a device driver suitable for the NDAcc
custom programming interface, for which NDPmulator provides templates
and documentation.

int main() {
// Allocate memory in CPU/NDAcc shared region
DATA_TYPE *dataset = ndaccAlloc(\ldots);
void *kernel = ndaccAlloc(\ldots);

// Open file descriptor (device driver)
int *fd_ndacc =

open("/dev/ndacc", O_RDWR | O_SYNC);

// Dataset and kernel are prepared
initData(dataset); initKernel(kernel);

// CPU launches kernel on NDAcc
__ndaccLaunchKernel(fd_ndacc, dataset, kernel);

\ldots // CPU processes tasks in background

// CPU waits for NDAcc to finish
while (!__ndaccReady(fd_ndacc));

\ldots // CPU post-processes the results

IV. EXPERIMENTAL EVALUATION
To validate and demonstrate the benefits of NDPmulator, three
NDAcc architectures recently proposed in the literature were
modeled using the information provided in the corresponding
manuscripts. Then, a subset of the benchmarks originally
used to evaluate those NDAccs were executed and the results
compared with those reported by their authors.

A. NEAR-DATA DATABASE PROCESSING
The first modeled NDAcc was proposed by Das and
Kapoor [46] consisting in a Near-Data Compare Unit (NDCU)
targeting the execution of common operations in Database
(DB) applications. This NDAcc architecture is illustrated in
Fig. 6. Specifically, the proposed NDCU has the capability of
scanning column-store DBs (the values of the same attribute
are stored sequentially in memory rows) and row-store DBs
(the attributes of an entry are stored sequentially in memory
rows), and implements the DB operations compare-n-hit,
compare-n-count, and compare-n-max. The compare-n-hit
operation scans the values of an attribute and sets the hit
register only if a specified value is found; compare-n-count
counts the number of occurrences of a value among all values
of a given attribute; and compare-n-max scans the values of
an attribute and determines its maximum value. Depending
on the operation code sent by the CPU, the NDCU executes
one of the three operations described above.
The authors placed their NDAcc in the logic layer of one

or more vaults of an Hybrid Memory Cube (HMC), allowing
to (1) directly fetch the operands from the stacked DRAM
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FIGURE 6. NDCU architecture proposed by Das and Kapoor [46].

layers of each vault, (2) process the data, and (3) store back
the results in the HMC.
Since the goal of this experiment is to demonstrate that

NDPmulator allows to simulate NDAccs attached to any
level of the memory hierarchy, it was decided to evaluate
the devised NDCU when coupled to the L2 data cache. In
addition, to facilitate the comparison between the results
presented by Das and Kapoor [46] and those obtained using
NDPmulator, the conducted evaluation focus on the column-
store DB benchmarks using a single NDCU.

To evaluate this NDAcc using NDPmulator, a total of four
evaluation scenarios were considered and, for each scenario,
five benchmarks extracted from the original paper [46] were
executed. In the first evaluation scenario, the SE mode was
used with the NDCU connected to the L2 data cache. The
remaining three evaluation scenarios used FS mode with
the NDCU also coupled with the L2 data cache. These
benchmarks were executed (1) with no other process running,
(2) with another data-intensive workload being simultaneously
executed in the CPU, and (3) using a device driver to
intermediate the control of the NDCU via the OS kernel, while
no other process was being executed. The five benchmarks
used to evaluate the NDCU are summarized in Table 1 and all
represent their data with 64-bit unsigned integers. It is also
worth mentioning that the baseline used for both the SE and
FS scenarios was the same used by Das and Kapoor [46] in
their original work, as shown in Table 1. Furthermore, all tests
were made using the x86 ISA. For the FS mode setup, a recent

TABLE 1. Parameters used to configure the baseline system for the
evaluation of the NDCU proposed in [46] and executed benchmarks.

FIGURE 7. Performance benefits of the NDCU presented in [46]. The
second bar represents the results obtained by Das and Kapoor [46] in their
original evaluation. The third bar illustrates the estimated performance
benefits of the NDCU modeled using NDPmulator when coupled to the L2
data cache in SE mode. Finally, the last bar depicts the performance
benefits estimated using the FS mode of NDPmulator with the NDCU also
coupled with the L2 cache. The results are presented in the same format as
in the original paper [46].

Linux kernel (5.4.0-105) was used, together with the Ubuntu
18.04 root file system.

For convenience, it is assumed that all datasets used by
the performed tests have 64 kB. Although this might result
in small benchmarks, it is worth noting that it is not the goal
of this paper to validate the NDAcc proposed in [46], but
to demonstrate the potential or capability of the proposed
framework to reproduce and anticipate the results of such
NDAccs. In particular, the use of smaller benchmarks is herein
more interesting for highlighting the OS-related overheads,
which are only observable when simulating in FS mode.

To facilitate the analysis of the results, Figs. 7 and 8 consider
scenarios where the benchmarks executed in FS mode did not
include any intermediary device driver. The communication
between the CPU and the NDAccwas implemented by directly
mapping the PI registers into the application addressing
space (requiring superuser privileges) using the Linux system
call mmap. Therefore, these scenarios do not consider the
communication overhead introduced by the device driver. On
the other hand, the results shown in Fig. 9 specifically target
the quantification of the overhead introduced by the existence
of the provided device driver.
Fig. 7 presents the NDPmulator performance when

simulating the same benchmarks used by Das and Kapoor [46].
In particular, the third bar in each set (green) was obtained
using SE mode with the NDAcc coupled to the L2 cache. As
it can be observed, the results obtained using the SE mode
are very similar to those obtained in the original evaluation of
the circuit presented by Das and Kapoor [46], but requiring
a rather smaller development cost to attain such estimation
of performance. Moreover, the author’s original results were
obtained considering NDP on an HMC, whereas we assess
the performance of an equivalent system implemented near an
L2 cache.
The last bar (red) considers a similar scenario except that

FS mode is used. While significant performance benefits are
still achieved (when compared with the baseline), the overall
performance of the NDAcc is smaller. This can be explained
by the overhead introduced by the OS. In particular, the OS
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FIGURE 8. Execution time of the five benchmarks used to evaluate the
NDCU proposed by Das and Kapoor [46] obtained with NDPmulator FS
mode. In (a), no other workload is being executed in parallel with the
considered benchmarks. (b) illustrates a scenario where another
data-intensive workload is being executed in parallel with the benchmarks.
Due to its much smaller execution time, hit best results were
represented using a different scale in the vertical axis.

overheads are lower for the hit best benchmark due to the
reduced influence of the scheduler preemption mechanisms
as the execution time is substantially lower. On the other
hand, for the other benchmarks, the preemption mechanisms
and the sparse and irregular memory accesses made by other
background applications may introduce contention on shared
resources, increasing the overall entropy at memory level and
influencing the maximum data rate that can be achieved by
the NDAcc. It is also worth noting that this effect is even
more evident due to the rather short execution time of the
benchmarks (∼10ms).
The performance variations due to simultaneous accesses

to the memory hierarchy are yet more visible in Fig. 8,
where (a) shows the execution time of the CPU and the
NDAcc when no other process is being executed in the CPU
and (b) illustrates a scenario where another data-intensive
workload is concurrently executing in the CPU, leading to
simultaneous memory accesses that cause contention in the
access to the shared resources and also pollutes data caches. It
is worth mentioning that this scenario can only be evaluated by
simulating the entire processing system, including the NDAcc
and an OS running on top of the hardware infrastructure, in a
real multi-tasking environment. To our knowledge, this is an
exclusive feature of the FS mode provided by NDPmulator.

To conclude this evaluation, a device driver was developed
to intermediate the communication between the CPU and
the NDAcc using the provided OS security and isolation
mechanisms. The corresponding results are illustrated in
Fig. 9.
Although interfacing an application with the NDAcc

through a device driver brings significant benefits in terms
of security, it also has important implications in terms of
performance. In this experiment, the synchronization points
where the user application communicated with the NDAcc by
directly accessing its PI registers were replaced by calls to the
device driver, without modifying the structure of the code. The
presented results show that the use of the device driver results
in an overhead of up to 7ms, which impact on the overall

FIGURE 9. Execution time of the five benchmarks used to evaluate the
NDCU proposed in [46] considering: only the CPU; the CPU plus the NDAcc
being controlled by simply and directly reading and writing from/to its
programming registers; the CPU and the NDAcc being controlled through a
proper device driver (bars 3–5, each corresponding to a different run). Due
to its much smaller execution time, hit best results were represented
using a different scale in the vertical axis.

FIGURE 10. NDAcc architecture proposed by Wang et al. [47], [48].

system performance, depending on the execution time of each
issued NDAcc kernel. Naturally, since the execution time of
thehit best benchmark is lower, the driver communication
overhead leads to a higher relative increase in execution time.

Furthermore, the device-driver-based communication imple-
mented between the CPU and the NDAcc is highly dependent
on the underlying OS mechanisms, leading to significant
performance variations even when executing the same
workload several times. This effect can be seen in the last
three bars of Fig. 9, which correspond to the exact same
workloads (using the device driver) and yet produce results
with a maximum difference of 6.4ms.

B. NEAR-STREAM COMPUTING
The second use case that was used to further corroborate the
functionality of the proposed NDPmulator framework was the
NDAcc presented by Wang et al. [47], [48]. Their architecture
consists of Processing Element (PE) arrays installed close to
the cache to perform arithmetic and logic vector operations,
as depicted in Fig. 10. Their processing structure not only
allows to take greater advantage of the memory devices
bandwidth at that level of the hierarchy to increase the
exploited parallelism but also allows the processing of data in
a streamed manner, reducing the overall latency of operations.
Furthermore, it includes a compiler solution to automatically
make use of the considered hardware infrastructure, thus
taking full advantage of its performance benefits.
In [47], the authors attached their NDAcc close to the L3

data cache and assessed its performance benefits using a set
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FIGURE 11. Performance benefits of the NDAcc proposed by Wang
et al. [47], [48] compared with those estimated using NDPmulator.

of eight benchmarks. These same benchmarks were also used
to evaluate this NDAcc architecture with the NDPmulator
framework (see Table 2). Due to the unavailability of the
compiler tool-chain used by Wang et al. (as well as the
used implementation of the executed benchmarks), other
common reference implementations of the said applications
were used and modified to include explicit calls to the
NDAcc. Furthermore, due to the unavailability of the same
exact components used in the gem5 evaluation presented
by Wang et al., the authors attempted to approximate (as
much as possible) the original evaluation system using
existing gem5 modules, as described in Table 2. Nevertheless,
even with these restrictions, NDPmulator still allowed to
approximate the original testing setup and obtain fairly
accurate performance results, with three out of the eight
tested benchmarks presenting an error below 5%, as shown
in Fig. 11. All results regarding this use case were obtained
using the SE mode. The data type used with this NDAcc
was single-precision floating point (contrasting with 64-bit
unsigned integers used with the architecture of Das and
Kapoor [46]), showing that NDPmulator supports any data
type used by the NDAcc.

TABLE 2. Parameters used to configure the baseline system for the
evaluation of the NDAcc proposed in [47] and [48] and executed
benchmarks.

FIGURE 12. Generic architecture of a Gemmini NN accelerator consisting
of a configurable systolic mesh of PEs grouped into tiles, as well as
NN-specific units and input and output memories.

C. GEMMINI ACCELERATOR
The third and final NDAcc used to validate NDPmulator
was inspired in Gemmini [49], an architectural framework to
create accelerators targeting the execution of Neural Networks
(NNs). The considered NDAcc (see Fig. 12) consists of a
bi-dimensional systolic array of PEs, with each PE containing
a Multiply-Accumulate (MAC) unit and communicating with
its neighboring PEs through dedicated buses. Additionally,
PEs can be arranged into tiles, which communicate with
adjacent tiles through pipeline registers.
Gemmini accelerators may also include a specialized unit

to perform matrix transposition, an engine to rearrange
the entries of input matrices for convolution, a Rectified
Linear Unit (ReLU), an accumulator, a bit-shift unit,
a pooling engine, and a matrix-scalar multiplier. In addition,
an input memory (scratchpad) and an output memory
(accumulator SRAM) are also included. Both these memories
are explicitly managed, i.e., the CPU is responsible for
explicitly transferring the operands to the input memory and
retrieving the results from the output memory.
In the conducted experiments, the modeled Gemmini

NDAcc consists of a systolic mesh of 16-by-16 PEs with a
256 kB scratchpad memory and a 64 kB accumulator output
memory, with the remaining processing system being as
described in Table 3.
Three experiments were performed using the aforemen-

tioned setup (see Table 3): (1) five microbenchmarks
consisting of common NN operations, to be executed using the
Gemmini accelerator; (2) twelve CNN models to be run using
a modified version of the Darknet [52] framework executed on
the Gemmini accelerator (inference only); and (3) three hand-
tuned CNNs to be executed using the described hardware
configuration to fully exploit the benefits of the modeled
Gemmini accelerator. In addition, the nine microbenchmarks
of experiment (1) were also executed using an official
Gemmini emulation platform supported on Verilator and the
results were compared with those obtained with NDPmulator.
For simplicity, the experiments were conducted using SE
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TABLE 3. Parameters used to configure the baseline system for the
evaluation of the NDAcc proposed in [49] and executed benchmarks.

mode. Nevertheless, NDPmulator also offers full support to
FS mode.

Fig. 13a and Fig. 13b illustrate the results obtained for the
first experiment. The considered microbenchmarks are divided
into two groups: (a) kernels whose operands are first gathered
by the CPU and stored in the scratchpad, in the order they
are required for the operations; and (b) kernels that are fully
executed by the NDAcc. In the first scenario, the CPU replaces
the functionality of the im2col and transposer blocks
of the Gemmini NDAcc. Naturally, this may lead to a larger
memory footprint in the scratchpad (because the convolution
operands are stored in a redundant form), and to a significant
increase in execution time (since not only more data may
be transferred from the memory hierarchy to the scratchpad
but the performed accesses are also irregular). Hence, the
benchmarks belonging to the first group attain a much lower
speedup than their counterparts of the second group, which
are exclusively executed by the Gemmini NDAcc, including
the gathering of the operands.
Nevertheless, existing applications meant to be executed

by the CPU/GPU often gather the operands beforehand,
organizing them in memory in a computation-friendly manner
(similarly to the kernels of Fig. 13a). However, offloading that
process to the implemented NDAcc would require complex
structural modifications to the applications. On the other hand,
the computation itself can still be moved from the CPU/GPU
to the NDAcc with simple changes to the code. Therefore,
Fig. 13a essentially illustrates the speedup attainable by legacy
kernels optimized for execution in CPU/GPU that were later
adapted to be executed in the NDAcc apart from the gathering
of the operands.
When comparing the performance results of NDPmulator

(orange bins) with those of Gemmini’s official simulation
platform (gray bins), an average error as low as 4.3% can be
observed, supporting the accuracy of the devised model.

A second experiment using the Gemmini NDAcc considers
an evaluation using complete CNN models (through the
Darknet framework). However, due to the way Darknet is
organized (which benefits the execution in CPUs and GPUs),

FIGURE 13. Microbenchmarks (a, b) and full CNN benchmarks (c, d).
(a) and (c) show the results for applications where the gathering of the
operands is done by the CPU. (b) and (d) correspond to applications fully
executed by the Gemmini NDAcc.

offloading the gathering of the operands to the NDAcc
would require rather complex structural modifications. Thus,
in the second experiment, only the convolution and pooling
operations were completely offloaded to the Gemmini NDAcc,
while the gathering of the operands remained being executed
by the processor. Not surprisingly, this led to much lower
performance benefits, with speedups ranging from 1.55×
to 1.64× across the twelve tested CNNs (inference only),
as shown in Fig. 13c.
Nevertheless, this experiment shows the robustness of

NDPmulator, allowing to execute a benchmark as complex as
Darknet in a realistic processing system featuring a custom
NDAcc together with a communication layer between the host
code and the NDAcc.

Fig. 13d shows the speedup obtained when executing three
hand-tuned CNNs to evaluate the use of the full capabilities
of the modeled NDAcc, particularly its capability to directly
process the data in memory. By offloading the gathering of the
data to the NDAcc, i.e., using theim2col andtransposer
blocks, speedups of more than two orders-of-magnitude
are achieved, similarly to the results presented in [49]. In
particular, Fig. 14 depicts the decrease of the execution time
of convolutional and pooling layers for a small CNN targeting
the CIFAR-10 dataset.

Finally, two additional tests were performed to demonstrate
the simulation performance benefits and the versatility
of NDPmulator. Fig. 15a depicts the simulation speedup
of NDPmulator over an official Verilator-based Gemmini
simulation platform. As it can be observed, NDPmulator
allows for simulation speedups as high as 81.75×, while still
being able to accurately execute the considered benchmarks.
On the other hand, NDPmulator allows to easily study

the impact of changing the parameters of the system. For
example, Fig. 15b illustrates the performance benefits of a
system featuring the Gemmini NDAcc connected to the L2
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FIGURE 14. Execution time of each layer of a small CNN optimized for the
CIFAR-10 dataset when executed only by the CPU (blue bars) and the CPU
equipped with the NDAcc (orange bars).

FIGURE 15. (a) Simulation speedup of NDPmulator over an official
Gemmini simulation platform. (b) Performance benefits obtained when
increasing the width of the bus connecting the Gemmini NDAcc with the L2
cache, which can be determined by simply changing a parameter in the
simulation file.

data cache through a 32B bus over a similar system where the
Gemmini NDAcc is connected to a 16B crossbar. These results
are quite expected, with the performance almost doubling
in the case of the matrix multiplication benchmark due to
the increased bandwidth to the memory device. The benefits
observed for the remaining benchmarks are quite lower, which
is explained by their stridden memory access patterns (which
reduces the usable bandwidth as only a few words of a cache
line are used).

V. RELATED WORK
Previous proposals regarding design exploration mechanisms
targeting hardware accelerators (and particularly NDAccs)
have largely relied on two distinct approaches: (1) hybrid
emulation using both hardware platforms (such as Field Pro-
grammable Gate Arrays (FPGAs)) and software simulation,
and (2) pure software simulation. However, most hybrid
solutions target specific accelerator designs, and can hardly be
used to evaluate architectures different from those they were
built around.

For example, Lockerman et al. [53] have recently proposed
a versatile NDP system that can perform computations
at multiple levels of the memory hierarchy, resulting in
moderate reductions in execution time and dynamic energy
consumption while keeping the area overhead under 3% for
challenging irregular workloads. However, their system is

limited to existing NDP solutions and specific ISAs, making
it incapable of accommodating different NDAccs. In addition,
their evaluation method, which consists of implementing
the whole system in an FPGA, can hardly include either
a high-performance Out-of-Order (OoO) CPU or NDP-
enabled memory devices, which indicates that the evaluation
was based on an incomplete system implementation. As a
consequence, their evaluation methodology fails to account
for the interactions between different system components that
affect the performance of the NDAccs, leading to a potentially
inaccurate conclusion. In contrast, the new simulation-based
approach that is herein proposed, provides a significant
advantage in terms of reliability, since it employs accurate
simulation models of each component to predict the overall
system performance. Furthermore, our solution only requires
modeling the NDAcc under development, which can be done
much faster than describing the entire system in any Hardware
Description Language (HDL). Additionally, NDPmulator
allows the adoption of a wide range of CPU architectures
(all those natively supported by gem5), while other solutions
are often limited to a fixed CPU architecture.
Similarly, PiMulator [54] also proposes an FPGA-based

approach where the authors provide a soft-hardware infras-
tructure, including a soft-CPU core, making it easier to
implement custom circuitry that emulates PIM. Their tool is
compatible with the LiteX System on Chip (SoC) framework
and supports a representative set of PIM architectures.
However, PiMulator has severe limitations imposed by the
resources available in FPGA devices, which do not allow
to accurately emulate complex hardware structures, such
as superscalar OoO CPUs or the internal architecture of a
DRAM array. Furthermore, developing new NDAccs still
poses a significant implementation effort, since the devices
have to be described at RTL level, which is a tedious
and cumbersome process, and not compatible with the
evaluation of a preliminary idea. In contrast, simulation-
based solutions, such as NDPmulator, enable much faster
development and, arguably, produce more system-level
accurate results than FPGA-based implementations, which
are frequently only partial descriptions of the actual
system.
Qureshi et al. [42] proposed a simulation tool titled

gem5-X where they modified an L1 cache to enable in-cache
processing, based on the computing architecture presented in
[55]. They validated their simulation model by implementing
it using hardware synthesis tools, which accurately predicted
the operation of the hardware equivalent. However, their NDP
capabilities are limited to a single architecture that performs
computation in cache, and they only support computation
in the L1 data cache. Additionally, gem5-X is based on an
outdated version of gem5, making it incompatible with most
recent versions. In contrast, NDPmulator supports NDP at
all levels of the memory hierarchy and is based on a recent
version of gem5.

Singh et al. [40] also developed a simulation-based
approach for NDP-enabled systems using the ZSim archi-
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tectural simulator [56] and Ramulator [57]. Their method
involves executing a characterizing workload to generate
performance statistics and memory traces, which are then
used in a post-simulation step to predict the performance of
an NDP-enabled system. However, this approach does not
support the simultaneous operation of the CPU and NDAcc,
and the performance benefits of the NDP component are
only predicted after the simulation. In contrast, NDPmulator
enables the parallel operation of the CPU and the NDAcc
without requiring any post-simulation steps.

Yu et al. [58] addressed this significant limitation in the
work of Singh et al. by proposing a solution that, while still
relying on memory traces generated by Ramulator to predict
the performance benefits of NDAccs, assumes the existence of
multiple threads, which allows for the simultaneous operation
of both the CPU and the NDAccs. Despite this improvement,
their artifact is still constrained to DRAM-based PIM, the
only memory technology supported by Ramulator, and the
same ISA is used for both the CPU and the NDP devices,
potentially leading to sub-optimal NDP solutions. In contrast,
NDPmulator is ISA independent and supports a broad range
of memory devices, providing ample opportunities to optimize
the architecture of NDAccs in terms of performance, hardware
resources, and energy.

Besides these, two other works have been recently proposed
targeting design space exploration of heterogeneous hardware
accelerators that have gained particular visibility in the
community: gem5-Aladdin [59] and gem5-SALAM [60].
Although they share similar goals with NDPmulator, these
approaches are crucially different in the adopted simulation
strategies (see Table 4), which is reflected in their scope and
scalability.
Both these solutions adopt an High-Level Synthesis

(HLS) approach, where the developer specifies a behavioral
model of the accelerators using high-level C code and
structures. Then, the application code is analyzed and a
Dynamic Data Dependence Graph (DDDG) is built (where the

TABLE 4. Summary and comparison of main features offered by
NDPmulator and two previous works: gem5-Aladdin [59] and
gem5-SALAM [60].

vertices are Low Level Virtual Machine (LLVM) Intermediate
Representation (IR) instructions and the edges represent
dependencies between operations). Finally, operations are
automatically scheduled to the accelerators to achieve optimal
resource occupancy.
Although the high-level hardware modeling enabled by

these tools facilitates the quick development and evaluation
of new accelerators, it also limits the complexity of their
internal architectures, which is supported by the rather simple
benchmarks that were used by their authors to validate these
works. On the other hand, NDPmulator is comparatively lower-
level, allowing the user to describe new accelerators using a
syntax closer to the hardware, enabling to model much more
complex (and even micro-programmed) co-processors.
Furthermore, gem5-Aladdin and gem5-SALAM involve

multi-step simulation procedures, which can make their use
and adoption more difficult. gem5-Aladdin even requires
analytical steps, which may introduce significant errors to
the results, compared with a pure-simulation approach, like
the one used by NDPmulator. In addition, these two tools
do not actually produce gem5 simulation objects, indicating
that the actual architecture of the simulated accelerators is
unknown to gem5. Hence, the production of gem5 statistics
regarding the internal operation of such components is not
possible.
Another advantage of NDPmulator over gem5-Aladdin

and gem5-SALAM is its extensive support for both SE and
FS modes. While gem5-Aladdin only supports SE mode
(with a custom virtual memory scheme to enable address
translation between the virtual and the physical domains),
gem5-SALAM only supports bare-metal FS mode and has no
virtual memory support. The authors claim that this limitation
can be solved using pure-software solutions (device drivers),
but they provide no pointers on how that can be actually
achieved. On the other hand, NDPmulator provides full
support to virtual memory using standardmechanisms, making
it transparent to the user.

Finally, all three solutions are compatible (to some extent)
with energy and area estimation mechanisms. gem5-Aladdin
includes a custom energy model, allowing to estimate the
energy requirements of the accelerators under evaluation.
gem5-SALAM supports energy and area analysis through
native integration with McPAT/Cacti. NDPmulator, however,
requires extra hardware information to make it able to create
an area and energy profile of the modeled accelerator using
McPAT/Cacti together with traces generated by gem5.

VI. CONCLUSION
This paper introduces NDPmulator: a gem5-based full-system
solution to develop, test, integrate, and validate new hardware
accelerators and, in particular, NDAccs, without resourcing
to complex RTL development approaches. The proposed
framework not only allows to simulate the simultaneous
operation of CPU and NDAccs but also supports the
integration of (multiple) NDAccs at any level of the memory
hierarchy or even multiple levels. In addition, NDPmulator
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provides custom simulation scripts, allowing to evaluate
NDAccs by executing a single NDP-enabled application
in isolation (SE mode) or by simulating a fully-featured
operating system running on top of the hardware infrastructure
(FS mode).

NDPmulator is compatible with all ISAs supported by
gem5 in SE mode, and with x86, ARM, and RISC-V ISAs
in FS mode. To our knowledge, NDPmulator is the first
proposal consisting of an integrated full-system development
and simulation environment for NDAccs. All other known
solutions require the use of multiple tools, post-simulation
steps, repurpose tools not tuned for NDP evaluation, are
limited to a few NDAcc architectures, and do not provide
OS support.

As a simulation framework, NDPmulator naturally operates
over models that have some degree of abstraction when
compared with the actual physical hardware they represent.
Therefore, it is not capable of producing RTL code nor
guaranteeing that the simulated model has a physical
equivalent. In other words, while NDPmulator is capable of
great rigor when provided with a detailed well-parameterized
model of an NDAcc, if the supplied model is not realistic,
the produced results will not be accurate. Hence, it becomes
the responsibility of the programmer to correctly model and
parameterize the NDAcc under development.
Nevertheless, NDPmulator still allows to correlate the

high-level model of the accelerator and the corresponding
physical hardware (electronic components). That specification
can then be delivered to McPAT [50] and CACTI [51] together
with simulation traces to estimate the circuit’s area and
energy requirements (taking advantage of the already existing
hardware and energy profiles of the gem5 components).

The obtained experimental results show that NDPmulator is
capable of accurately modeling NDAccs, by reproducing the
evaluation results of existing NDAccs. In addition, by allowing
to simulate an entire processing system featuring NDAccs
and even an OS being executed on top of the simulated
hardware, accurate results that would otherwise be impossible
to obtain can be extracted. Furthermore, NDPmulator
offers significant simulation performance improvements over
alternative evaluation platforms, being capable of estimating
the performance of NDAccs in a fraction of the time.Moreover,
NDPmulator allows to easily evaluate the impact of changing
core features of a system by simply changing few parameters,
while classic evaluation strategies would require significantly
more effort if not a partial redesign of the system.

Finally, NDPmulator is an open-source tool publicly avail-
able at https://github.com/hpc-ulisboa/NDPmulator. Instruc-
tions on how to obtain the FS file system images and kernels
are also available at this location.
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