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ABSTRACT In the quest for exascale computing, energy-efficiency is a fundamental goal in high-
performance computing systems, typically achieved via dynamic voltage and frequency scaling (DVES).
However, this type of mechanism relies on having accurate methods of predicting the performance and
power/energy consumption of such systems. Unlike previous works in the literature, this research focuses
on creating novel GPU predictive models that do not require run-time information from the applications.
The proposed models, implemented using recurrent neural networks, take into account the sequence of
GPU assembly instructions (PTX) and can accurately predict changes in the execution time, power and
energy consumption of applications when the frequencies of different GPU domains (core and memory)
are scaled. Validated with 24 applications on GPUs from different NVIDIA microarchitectures (Turing,
Volta, Pascal and Maxwell), the proposed models attain a significant accuracy. Particularly, the obtained
power consumption scaling model provides an average error rate of 7.9% (Tesla T4), 6.7% (Titan V), 5.9%
(Titan Xp) and 5.4% (GTX Titan X), which is comparable to state-of-the-art run-time counter-based models.
When using the models to select the minimum-energy frequency configuration, significant energy savings

can be attained: 8.0% (Tesla T4), 6.0% (Titan V), 29.0% (Titan Xp) and 11.5% (GTX Titan X).

INDEX TERMS GPU, DVFS, modeling, scaling-factors, energy savings.

I. INTRODUCTION

Over the past decade, the high-performance comput-
ing (HPC) area has observed a noticeable upsurge in the
utilization of accelerators, more specifically graphics pro-
cessing units (GPUs). The energy efficiency of these devices
can have a large impact on the total cost of large-scale com-
puter clusters. As an example, the Summit supercomputer
(number one system of June’2019 Top500 list [1]), uses
a total of 27648 NVIDIA Volta GPUs to achieve a peak
performance of almost 200 petaflops. For that, it requires
a power supply of 13 million watts, which corresponds to
an estimated cost of 17 million dollars per year (on power
supply alone) [2]. The magnitude of such values highlights
the importance of effective mechanisms to maximize the
energy efficiency of these systems, as a mere 5% decrease
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in the energy consumption could generate savings of around
1 million dollars.

One example of such mechanisms is the dynamic voltage
and frequency scaling (DVFES), which allows placing devices
into lower performance/power states. When carefully applied
to match the needs of the executing applications, DVFS can
lead to significant power and energy savings, sometimes with
minimum impact on performance [3], [4]. A recent study
showed that using DVFS techniques in GPUs executing deep
neural networks applications can provide energy savings up
to 23% during training and 26% during inference phases [5].

However, an efficient use of energy management tech-
niques, such as DVFS, requires accurate models that can
predict how the energy consumption changes with the GPU
operating frequencies (and voltages). This type of modeling is
often done by separately modeling the performance and the
power consumption of the GPU, focusing on how each one
separately scales with DVFES [6], [7]. On the other hand, sev-
eral previous works have shown that the performance/power
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behavior of GPU applications considerably vary with the
application characteristics [8], [9], which makes these predic-
tive models to require some information from the application
to provide accurate predictions.

When performing DVFS management, the run-time uti-
lization of the GPU components' can be used in the imple-
mentation of predictive models, significantly reducing the
overall search space of available voltage-frequency (V-F)
configurations. However, to obtain those utilizations levels,
most of the existing GPU modeling approaches require (at
least) one execution of the application. An alternative and
highly promising approach consists in providing predictions
of the DVES impact on the application behavior, prior to its
execution. This alternative relies on using the GPU assembly
of the kernels? [10]-[12] (described in the NVIDIA PTX
ISA [13]), which can be obtained at compile-time. Although
this approach is expected to yield less accurate results (when
compared with state-of-the-art run-time models), it allows
the first execution of an application to be done at a close to the
optimal V-F configuration. Additionally, new usage scenarios
occur from this type of static modeling, such as allowing
programmers to easily evaluate how changes in the source
code can affect the DVFS behavior of applications.

Accordingly, the goal of the herein proposed work is to
provide accurate predictions on how the GPU execution
time, power and energy consumptions of applications scale
when DVFS is applied, without requiring their execution. To
that end, the proposed methodology uses the PTX assem-
bly code given by the compiler. However, unlike previous
works that simply rely on general code statistics, such as
the histogram of instructions in the PTX code [12], [14],
the proposed approach takes a step further and considers
the specific sequence of kernel instructions, to improve the
prediction accuracy. To model how the pattern of instructions
stresses the GPU components, thus contributing to different
performance, power and energy scalings, a deep neural net-
work is used. In particular, the proposed research leverages
the recent advances in deep neural networks, particularly in
the field of natural language processing (NLP), by using a
recurrent encoder architecture, based on Long Short-Term
Memory (LSTM) blocks.

The proposed models were extensively validated on four
different GPU devices (Tesla T4, Titan V, Titan Xp and GTX
Titan X) from the four most recent NVIDIA GPU microar-
chitectures (Turing, Volta, Pascal and Maxwell). To assess
the accuracy of the trained models, a collection of 24 bench-
marks (not used in model training) was considered. These
benchmarks were selected from five commonly used suites
(CUDA SDK [15], Parboil [16], Polybench [17], Rodinia [18]
and SHOC [19]). The obtained results show that the pro-
posed models are able to provide accurate predictions. In
particular, the power consumption scaling model provides

1 Utilization: the ratio of the amount of time the unit is active over the total
kernel execution time.

2Kernel: routine to be executed in a massively parallel fashion on a GPU,
by multiple threads.
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average errors of 7.9% (Tesla T4), 6.7% (Titan V), 5.9%
(Titan Xp) and 5.4% (GTX Titan X), which is comparable
to the accuracy achieved by run-time counter-based models.
Furthermore, when the proposed energy scaling model is used
to select the minimum-energy V-F, it allows achieving con-
siderable energy savings of 8.0% (Tesla T4), 6.0% (Titan V),
29.0% (Titan Xp) and 11.5% (GTX Titan X).

Accordingly, the most significant contributions of this

paper are the following:
« Novel deep learning network, implemented using recur-

rent neural blocks (LSTMs), which takes the sequence
of PTX assembly code of a GPU kernel and encodes it
into a latent space representation that characterizes how
the kernel utilizes de GPU components.

o Three new GPU predictive models: i) performance scal-
ing, ii) power consumption scaling, and iii) energy
consumption scaling, which can predict how the exe-
cuting time, power consumption and energy con-
sumption of an application changes for different V-F
configurations, based solely on the application PTX
assembly code (i.e., no execution of the application
is required).

o Validation of the proposed models with 24 appli-
cations (not used during training), by comparing
the predicted performance/power/energy scaling-factors
with the measured values on four different GPU
devices (including one from the most recent NVIDIA
Turing microarchitecture). The models can be used
in different ways, out of which two are analysed,
namely, for finding the minimum energy V-F con-
figuration and for finding the set of Pareto-optimal
configurations.

The complete source code of this framework is

publicly available online at https://github.com/
hpc-ulisboa/gpuPTXModel.

Il. BACKGROUND AND MOTIVATION

A. PARALLEL THREAD EXECUTION (PTX) LANGUAGE

The NVIDIA Parallel Thread Execution (PTX) [13] is an
intermediate assembly language for NVIDIA GPUs, where
the program has not yet been fully assembled into the
device-specific code. NVIDIA provides the PTX instruction
set architecture (ISA) for the different generations of GPU
devices [13] and the nvce compiler can be used to obtain the
PTX code (in plain-text) from CUDA programs.

This work leverages the PTX code as an effective way
of characterizing a given GPU application. Its adoption
(in favor of higher level CUDA code) was decided because
it is more specific to the GPU hardware, allowing a better
modeling of the device. From the PTX code of an applica-
tion, it is generally possible to make the connection between
each instruction and the GPU resource that is exercised
during its execution. Hence, the proposed approach uses
the PTX code to infer a information similar to the one
obtained from hardware counters (as used in previous GPU
modeling works).
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FIGURE 1. DVFS impact on the energy scaling and speedup of four applications executed on the GTX Titan X. Each point corresponds to a specific V-F.
Values are normalized to the values obtained at the highest V-F (maximum performance).

B. DVFS IMPACT ON APPLICATION BEHAVIOR

Modern GPU devices have two independent frequency
domains: the core (or graphics) domain, clocked at f.ore, and
the memory domain, clocked at fier,. Each frequency domain
is associated with a specific voltage level. The existence
of these independent domains allows adapting their voltage
and frequency to the specific requirements of the executing
application — this is called DVFS. Depending on how a
given application exercises the GPU resources, DVFS can
have vastly different effects its performance/power consump-
tion, which can in some cases result in considerable energy
savings [3], [4], [20]-[22]. However, finding the best voltage-
frequency (V-F) levels for a given application is not a trivial
task [4], [9], [23]. To properly apply DVFS without harming
the execution of an application, one must be able to accurately
predict how the changes to V-F can affect the application
behavior (execution time, power and energy consumption).

Fig. 1 presents an example of the execution of four
applications on the GTX Titan X GPU (NVIDIA Maxwell
microarchitecture). Each subplot presents the variation of
the application energy and performance normalized to the
values at the highest V-F configuration, which in this case
iS Fmax = (fmem = 3505 MHz, f.ore = 1164 MHz). Each
point corresponds to a different V-F, out of the considered
32 (2 memory levels, 3505 MHz and 810 MHz, and 16 core
levels in the range [595, 1164] MHz).

From this figure, it can be seen that the unique applica-
tion characteristics (used algorithm, data types, operations,
size of the input data, dimensions of the grid of threads,
etc.), lead to vastly different behaviors. For example, in the
MD5Hash benchmark, decreasing the memory frequency
from 3505 MHz to 810 MHz has a negligible impact on
performance (speedup does not change between the different
fmem levels), indicating that this application is not memory-
intensive. On the other hand, the BlackScholes benchmark has
a significant drop in speedup when the memory frequency is
changed to the lowest level, indicating that this application is
very memory-intensive. In fact, for the BlackScholes, once the
memory is set to the lowest frequency, any changes in fcore,
within the range allowed by the device, does not lead to any
further changes in speedup.

These examples also confirm that it is not trivial to
find the best V-F configuration. On one hand, the V-F
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that leads to the minimum energy significantly differs from
application to application. On the other hand, the perfor-
mance degradation associated with that V-F level can also be
highly application dependent. When considering the BlackSc-
holes and MD5Hash benchmarks, it can be seen that the
minimum-energy configurations (Foracle) are (3505,975) and
(810,709), for the two applications respectively. In the case
of the BlackScholes benchmark, this leads to energy savings
of 13.5% (vs. Fumax) at a cost of only 2.2% drop in per-
formance. However, for the MD5Hash benchmark, using its
corresponding Foracle leads to much higher energy savings
(34.2%), at a much higher performance cost (37% perfor-
mance drop-off).

Considering that sometimes such performance drop-offs
cannot be tolerated, looking for the minimum-energy V-F
may not always be the best option. An alternative approach,
as suggested by Fan et. al. [12], is to consider a multi-
objective optimization problem, with a set of Pareto-optimal
solutions. In other words, one could search for the V-F con-
figurations that maximize the speedup and minimize the nor-
malized energy, i.e., the configurations that are not dominated
by any other configuration. In this case, not being dominated
in performance means that for the same energy, there are no
frequencies that lead to higher performance levels (higher
speedup). On the other hand, not being dominated in energy
means that for the same speedup, there are no frequencies that
lead to a lower normalized energy. The set of Pareto-optimal
V-Fs for a given application can be found by iterating between
all available configurations and seeing if it is dominated by
any other configuration.

Fig. 1 shows the Pareto-optimal set for the four consid-
ered example applications. As one might expect, not only
do the configurations in each Pareto-optimal set depend on
the application, but also the size of the set can vastly differ.
The most memory intensive benchmark (BlackScholes) has
five V-F configurations in the Pareto-optimal set (all with
fmem = 3505 MHz), while the most compute intensive one
(MD5Hash) has 10 Pareto-optimal V-Fs (all with fpen =
810 MHz). Between these two extremes are the Backprop
and 3MM benchmarks, with 15 and 16 Pareto-optimal V-Fs,
respectively (split across the two available memory levels).

These observations highlight the importance of accurate
DVFS-aware performance/power/energy models, since no
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matter the goal (e.g., finding minimum-energy V-F vs. Pareto-
optimal V-F set), it is imperative to be able to characterize
how these three metrics (performance/power/energy) change
with the V-F of the GPU domains.

C. RELATED WORK

There have been many research works that have addressed the
goal of improving the energy efficiency of GPU devices [21],
[24]-[32]. In particular, the work of Hong and Kim [33] was
one of the first to accurately characterize the performance
of GPU applications. They also proposed a power model
for a GTX280 GPU (Tesla microarchitecture) based on an
analysis of both the binary PTX and the device pipeline at
run-time [34], attaining highly accurate predictions. How-
ever, the trained model could not be replicated at different
core or memory configurations. Leng et al. [35] integrated
Hong’s power model inside the GPGPU-Sim [36] simulator,
creating the GPUWattch tool, which can estimate the cycle-
level GPU power consumption during application execution
(with support for the Tesla and Fermi microarchitectures).
Furthermore, cycle-level simulators are too slow to be applied
in run-time and predict the optimal V-Fs.

Nath and Tullsen [37] developed a run-time analytical per-
formance model able to predict the performance changes with
GPU DVFS, with an average prediction error of 4%. How-
ever, the proposed approach requires the addition of extra
logic to the GPU scoreboard, making it infeasible to be repli-
cated on real hardware. Alternatively, statistical models can
be developed using performance counters already available
on the GPUs, as it was done in the work by Wu et al. [38],
which studied how the performance and power consumption
of AMD GPUs scale with the core and memory frequencies.
The proposed approach groups applications based on their
performance/power scaling-factors. Properly trained neural
network classifiers are used to characterize new applications,
by predicting which scaling-factor better represents an appli-
cation. The proposed approach achieves average prediction
errors of 15% (performance) and 10% (power) on the consid-
ered AMD Radeon HD 7970 GPU.

Guerreiro et al. [7] proposed a DVFS-aware GPU power
consumption model, which predicts the GPU power con-
sumption for any V-F configuration, by using performance
counters gathered at a single configuration. To estimate the
model of each GPU device, the authors devised a suite of pub-
licly available microbenchmarks. The model was validated on
three GPUs, achieving average errors of 7% (Titan Xp), 6%
(GTX Titan X) and 12% (Tesla K40c). This model was later
extended, by focusing on its different use-cases [39] (e.g.,
using the proposed model to predict only the scaling-factors
of the GPU power). This largely improved the predictions
accuracy, leading to average errors of 3.5% (Titan Xp), 4.5%
(GTX Titan X) and 2.4% (Tesla K40c).

By following a similar approach Wang et al. [6] proposed
a DVFS-aware GPU performance model. The authors esti-
mated the GPU architecture parameters using a collection
of microbenchmarks and a group a performance counters,
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measured during their execution. Validated across a wide
range of core and memory frequencies, on a Maxwell GPU,
the model attains an average prediction error of 4.83%.

More recently, some works have started to tackle the topic
of GPU static analysis, specifically regarding modeling based
on the PTX code of a kernel. Arafa et al. [11] presented a
static GPU performance model. The authors converted the
PTX code to a list of tasks with known modeled behavior
(through microbenchmarking done by Andersch ef al. [40]),
achieving prediction errors within 10% of the measured per-
formance. However, the work does not consider DVFS.

Other static models have been proposed that consider
DVEFS. In particular, Alavani et al. [10] presented a way
to predict the execution time of an application prior to its
execution, with an average prediction error of 26.9% on a
Tesla K20 GPU (Kepler). On the other hand, Fan ef al. [12]
developed DVFS-aware static models for performance and
energy of GPU devices. The two models are trained based
on a static vector of 10 features, where each component
represents the count of a type of instructions. As previously
mentioned, these authors suggest that the best V-F configu-
ration for a given application, should not be looked for in the
minimum-energy points, but in a set of Pareto-optimal V-Fs.
Validated on a GTX Titan X (Maxwell), with 12 benchmarks,
the proposed models can predict most of the frequencies in
the Pareto-optimal sets, and are able to predict the minimum-
energy V-F for two applications (out of 12).

Arunkumar et al. [14] addressed the topic of multi-module
GPUs. In their work, the authors propose an instruction-based
energy estimation framework, which is able to modulate its
corresponding energy-per-instruction value, for the different
types of PTX instructions. Similarly to what is herein done,
the authors also have to instrument the CUDA code of consid-
ered applications, in order to obtain PTX code that represents
the number of executed instructions.

As it can be seen, the majority of the research that has been
performed on GPU modeling requires at least one execution
of the application to obtain predictions. On the other hand,
the works that adopt static modeling techniques only consider
the count of each type of instructions, without any considera-
tion to the sequence/order they are executed in. Furthermore,
these works have not been properly validated on recent GPU
architectures (the work targeting the most recent GPU focuses
on a NVIDIA Maxwell GPU, which is from early 2015).
In contrast, the herein presented work proposes a different
approach to predict the scaling behavior of the performance,
power and energy consumption of an application before its
execution. Using a recurrent neural network (with LSTM
blocks), this new approach considers the sequence of PTX
instructions. This approach is validated on multiple GPUs
across four different NVIDIA microarchitectures, including
the most recent Turing generation.

IIl. PTX-BASED MODELING
The proposed model is based on the rationale that both the
GPU performance and power consumption depend on which
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FIGURE 2. Diagram of the proposed PTX-based characterization models.

GPU components are utilized during the execution of appli-
cations [9]. The utilization of a specific component is not only
dependent on the total number of instructions executed by the
component and its ratio over the other types of instructions,
but also on the order these instructions are executed on.
Hence, the proposed modeling framework takes into account
not only the different types of instructions of a given applica-
tion, but also their corresponding sequence. The goal of this
framework is to output simultaneously the scaling-factors for
three different metrics (execution time, power and energy)
at the different V-F configurations (vs. the selected reference
configuration).

A. DEEP STRUCTURED STATIC MODELING

The modeling methodology proposed in this work, presented
in Fig. 2, can be divided into two main learning blocks:
i) a recurrent neural network (RNN), and ii) three out-
put fully connected feedforward neural networks (FNNs).
To represent each instruction, an embedding step is used,
which encodes not only the PTX instruction, but also the
PTX instruction modifiers, the number of operands used,
the existence of operand dependencies and the type of depen-
dency, namely if the operand was produced by a previous
memory or compute instruction. Hence, the RNN works
as an LSTM-based encoder, taking as input the sequence
of embeddings (x) of a kernel and providing as output a
latent space vector that encodes that kernel (z) and, partic-
ularly, the way it utilizes the GPU components. The sec-
ond learning block is comprised of three separate, fully
connected, FNNs. These networks take as input the latent
space representation and are trained to provide, at their
outputs, the scaling-factors of the execution time, power
consumption or energy consumption for the different V-F
configurations.

Formally, a kernel code is represented as a sequence of N
instruction embeddings x = {x1,x2,...,xy} € XV, where
x; € X, with X denoting the space of possible instruction
embeddings. This sequence is given as input to an LSTM-
based encoder Es : XV — Z, where Z = RE is the
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latent space and L denotes its dimensionality, extracting a
representation z = E4(x). The latent space representation is
then appended with the considered frequency configuration
F = (fiem, feore), such that zz = [z, F], where zp € Zp
(Z, = RET?). Finally, the frequency latent space represen-
tation is used by the three separate fully connected FNNs
Wir.p.gy : REF?2 — R to predict the scaling factors of the
execution time, power consumption and energy consumption.
As an example, and looking at the prediction given by the first
output FNN, i.e., the execution time scaling-factor, the whole
network is given by:

AT = Wr(zr) = Wr(Eg(x)). ey
B. EMBEDDINGS

In order to feed the RNN layer with the sequence of PTX
instructions, first they have to be encoded into an appropriate
format. To that end, an embeddings stage is proposed, which
takes into account not only each specific instruction, but also
the context of past instructions. In particular, the embeddings
takes into account the following information from each spe-
cific instruction:

« instruction name, from the known list of instructions
defined in the PTX ISA (e.g., 1d, add, fma, bra, etc.).
state space specifier, also defined in the PTX ISA,
usually associated with memory instructions and cor-
responding to a specific storage area (e.g., .local,
.global, .shared, etc.).
data type specifier, which specifies both the consid-
ered basic type and the size of the destination operand
(e.g., .u8, .£32, . £64, etc.).
number of operands, corresponding to the num-
ber of register operands used by the instruction
(input + destination).

All this relevant information allows the model to clearly
identify the GPU components that are used during the execu-
tion of each instruction. Additionally, the embedding of each
instruction also takes into account the following information
based on past instructions, which are relevant to identify
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CUDA Code PTX Code:

with DATA_TYPE = float

..................

DATA_TYPE r@, r1, r2, r3; ! |1d.global.f32 %f1,[%rdl];

H vormov. 32 %F2,%f1; Vi mov.f64  %F2,%f1;

| re=A[threadId]; v omov.f32  %f3,%f1; vimov.fe4  %f3,%f1;

| rl=r2=r3=ro; v amov.f32  %f4,%f1; ' mov.f64  %fa,%f1;

v for (int i=@;i<LIM;i++) {, , BAl: ' BAL1:

I re=re *re+rl; v fma.rn.f32  %f5,%f1,%f1,%f2; | fma.rn.f64 %f5,%f1,%f1,%f2;
'orl=rl *rl o+ r2; v fma.rn.f32  %f6,%f2,%f2,%f3; ! fma.rn.f64 %f6,%f2,%f2,%f3;
'r2 =r2*r2+r3; v fma.rn.f32 %7 ,%F3,%F3,%F4;
' r3=r3*r3+ro; v fma.rn.f32 %F8,%F4,%F4,%F1; fma.rn.f64 %f8,%f4,%f4,%f1;

' bra BA1;

» st.global.f32

:
add.s32  %r5,%r5,32; ;
setp.1t.s32 %pl,%r5,512; '

'

[%rd1],%fd5;

%F7.%F3%E3,%F45 1 fma.rn.fed

PTX Code:
with DATA_TYPE = double

1d.global.f64 %f1,[%rdl];

add.s32 %r5,%r5,32;
setp.1t.s32 %pl,%r5,512;
bra BA1;

st.global.f64 [%rdl],%fd5;

FIGURE 3. CUDA source code example and the corresponding PTX codes depending on the data type.

dependencies scenarios that can impact both kernel perfor-
mance and the average power consumption:

« closest input operand dependency, corresponding to
the closest previous instruction that had as a destination
register one of the registers used as input (0O if there are
no dependencies).

« dependency type, corresponding to the type of depen-
dency (if there is any), namely if it is a dependency to a
memory access or computational instruction.

C. TRAINING METHODOLOGY

To train the whole network, a specific procedure is pro-
posed that allows training the three output FNNs at the
same time. To this end, the set of training applications is
first separated into different batches, organized by kernel
length (e.g., batches of 8 applications). At each training
epoch, each batch is used to train only one of the output
networks. For example, the first batch is propagated forward
only through the execution time network (Encoder + FNN1
in Fig. 2). The considered optimization loss is the mean
absolute error (MAE) between the predicted values and the
measured ones. Then, based on the obtained errors, backprop-
agation is used to update the weights of both the Encoder
and FNNI1. Afterwards, the next batch is propagated forward
only through the power consumption network (Encoder +
FNN2), followed again by backpropagation of the errors.
This process is repeated for all batches (in each training
epoch), interleaving them between the three output FNN,
which are therefore being updated one at a time, while
the encoder is always being updated. Finally, the training
procedure implements a mechanism that ensures that, across
different epochs, the same batch of applications is not always
propagated forward to the same FNN.

One particular feature of the proposed training procedure
is the fact that, by allowing the three output FNNs to be
trained semi-simultaneously, it allows the encoder LSTM to
have information on the three target metrics (execution time,
power consumption and energy consumption). An alternative
approach would be to fully train an encoder + FNN for each
of the output metrics or even focus on a single output FNN
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at each epoch. However, by interleaving the training of the
FNNs to each smaller batch of applications, the proposed
training procedure tries to ensure that the LSTM encoder
is able to learn and generate a more robust latent space,
capable of describing how the different GPU components
are stressed. Experimental validation confirmed that the pro-
posed approach provides better accuracy than if each network
was fully trained separately.

D. MICROBENCHMARKING THE GPU

To model the usage of the different GPU components, a group
of publicly available microbenchmarks was used, namely the
ones proposed by Guerreiro ef al. in [7]® and Arunkumar
in [14]*. The considered benchmarks were carefully selected
not only to contain most of the PTX instructions defined in the
PTX ISA, but also to include a wide variety of code patterns
(different instruction mixes, GPU components utilizations,
arithmetic intensities, memory access patterns, efc.). Overall,
145 microbenchmarks were used.

Fig. 3 presents an example of a considered bench-
mark, illustrating its CUDA source and two corresponding
PTX codes depending on the defined data type. Specifi-
cally, it presents two examples, corresponding to the cases
when DATA_TYPE is single precision (float) and dou-
ble precision (double). It can be seen that the same
CUDA instruction rO = rO « rO + rl can be con-
verted into different PTX instructions. If r0 and rl are
of type float, the corresponding PTX instruction is
fma.rn.£32 %£5,%f1,%fl,%$£2, while if they are of
type double the corresponding instructionis fma.rn. f64
$f5,%f1,%f1l, $£2. Hence, depending on the data type,
the same instruction is issued to different computational units
(32-bit floating-point or 64-bit floating-point, respectively).

Similarly, load (or store) instructions (e.g. r0 =
A[threadId]) can also map to different PTX instructions
depending on the data source (or destination). In Fig. 3,
data is loaded and stored back to global memory, hence

3https://github.com/hpcfulisboa/gpupowermodel
4https://github.com/akhilarunkumar/GPUJoule_
release
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the .global modifier in the PTX 1d and st instructions.
However, if, for example, the data had been written to shared
memory, they would use instead the .shared modifier.
Since the shared and DRAM memories have very distinct
characteristics (different latencies and peak power consump-
tions) and are even clocked at different operating frequencies,
this modifier is crucial to the proposed model and is therefore
taken into account in the proposed embeddings.

As an example of how the proposed embeddings can
be extracted from a PTX instruction, looking at the
fma.rn.f32 %£5,%f1l,%$fl, $£2 instruction (from the
float example presented in Fig. 3). The information con-
sidered in the embeddings is: i) instruction name (fma);
ii) state space specifier (none); ii) instruction type speci-
fier (. £32); iii) number of operands (3 input and 1 des-
tination); iv) closest input operand dependency ($f£2 was
written 3 instructions before); v) dependency type (% £2 was
changed by a memory instruction).

As it can be seen it is generally possible to infer from the
PTX code of an application which GPU resources will be
exercised during its execution. However, it is important to
stress that, unlike previous approaches, the proposed strategy
does not rely on any information obtained from the applica-
tions execution. Nevertheless, it is also important to mention
that there are some inherent limitations to using the PTX
code. For example, the nvcc compiler performs several code
optimizations before creating the lower-level code. One of
such optimizations is the unrolling of for loops a specific
number of times (usually 32, provided that the size of the
loop is greater than 32). After those 32 repetitions of the main
loop instructions, a branch instruction is placed to redirect the
program execution back to the beginning of the loop (bra
BA1 in Fig. 3). The number of times that this jump is taken
depends on the limit of the for loop (the value of LIM
in Fig. 3). This means that two applications with the same ker-
nel code, but different values of LIM, for example, LIM=64
and LIM=2048, can have the same optimized PTX code,
despite the actual number of executed instructions being
rather different. To further complicate matters, the number
of times the loop is cycled through can be dependent on the
data size, which can even be defined only at run-time. For
this reason, all the considered microbenchmark kernels (and
the applications later used to test the trained models) have
their loops manually unrolled, ensuring that the sequence of
instructions in the PTX code is the same as the sequence of
executed instructions.

Another potential limitation inherent to any static analysis
approach regards the global memory accesses. For example,
even though load (or store) operations can have the . global
modifier, it is unknown where exactly the data is coming
from. Depending on the data access pattern, the same instruc-
tion can result in data transfers from different hierarchy lev-
els (e.g., L1 cache, L2 cache or main DRAM). Since these
memory elements have very different characteristics, they
can have completely distinct impacts on both performance
and power consumption, despite the initial PTX instruction
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TABLE 1. Summarized description of the used GPUs.

Tesla Titan V Titan Xp GIX
T4 Titan X
Base architecture Turing Volta Pascal Maxwell
Compute capability 7.5 7.0 6.1 5.2
Memory frequencies (MHz) 5001 850 {4705, 5705} | {810, 3505}
Core freq. range (MHz) [300:1590] | [135:1402] [582:1911] [595:1164]
Default mem. frequency 5001 850 5705 3505
Default core frequency 585 1200 1404 975
Number of SMs 40 80 30 24
CUDA cores 64 64 128 128
(SP/INT units)
Per SM DP units 2 32 4 4
SF units 32 32 32 32
Shared memory
up to 96K up to 96K 96K 96K
(bytes)
L2-cache size (bytes) 4M 4.5M 3M 3M
Global memory size (bytes) 16G 12G 12G 12G
Memory bus width (bits) 256 3072 384 384
Memory bus type GDDR6 HMB2 GDDR5X GDDRS
TDP (W) 70 250 250 250

being the same. It is left for future work to infer more infor-
mation on the access patterns of the PTX kernel, in order
to improve the kernel characterization and the resulting per-
formance/power/energy prediction accuracy. A compromis-
ing approach could be to combine application information
obtained statically (PTX) and dynamically (hardware coun-
ters, e.g., cache miss ratios), to further improve modeling
accuracy. As an example, this could be achieved by com-
bining the latent-space representation with the counter-based
characteristics (in a similar way to what is herein done to
obtain zr), which could then be provided to the output FNNs.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

The proposed models were validated on four GPUs from
the most recent NVIDIA microarchitectures, namely the
Turing, Volta, Pascal and Maxwell family of GPUs (sum-
marized in Table 1). Experiments with the Volta, Pascal
and Maxwell GPUs were performed on a Linux CentOS
7.5 server, with CUDA 10.0 and NVIDIA driver v410, while
the most recent Turing GPU was tested using Google’s Cloud
Platform [41], using a Debian GNU/Linux 9 server, also with
CUDA 10.0 and NVIDIA driver v410.

In order to obtain the PTX source code of each application,
the nvce compiler was used with the —pt x flag. Additionally,
to adjust the version of the PTX ISA to the different genera-
tions of the devices, the flag ~-gencode=arch=compute_
70, code=compute_ 70 was also used (in this case for the
Titan V, which has a compute capability of 7.0). NVIDIA’s
NVML [42] library was used to change the GPU operating
frequencies, as well as to measure the GPU power consump-
tion. The power consumption of each kernel was computed
as the average of all samples gathered during the applica-
tion execution. Each kernel execution was repeated whenever
necessary, in order to achieve an execution time of at least
1 second at the fastest GPU configuration (Fpax, i.e., highest

VOLUME 7, 2019



J. Guerreiro et al.: GPU Static Modeling Using PTX and Deep Structured Learning

IEEE Access

core and memory frequencies), given that some GPU power
sensors have a low sampling frequency [7].

To obtain all the required data points to train the proposed
models, the set of microbenchmarks (see Section III-D)
was executed on each GPU device at the available V-F
configurations. During the execution of each application,
the execution time and average power consumption were
measured. The proposed models predict the scaling-factors of
the time/power/energy in relation to a reference level, which
was defined as the maximum allowed frequency (Fmax)
of each GPU device (see Table 1). In order to guarantee
the accuracy of the presented results, all applications were
executed multiple times and the median value was recorded.

Finally, the accuracy of the estimated models was con-
firmed using 24 benchmarks from a set of widely used bench-
mark suites, as presented in Table 2. The testing benchmarks
were not used to train the models. Fig. 4 presents the mixture
of instructions of the considered testing applications (as read
from the PTX code), from which the variety of instructions
across the different benchmarks can be confirmed.

TABLE 2. Standard benchmarks used for model validation.

Suite Application Name
CUDA SDK [15] Blackscholes
Parboil [16] MRI-Gridding

2MM, 2DCONV, 3MM, ATAX, BICG,
CORR, COVAR, FDTD-2D, GEMM,
GESUMMYV, GRAMSCHM, MVT, SYRK
Backprop, Hotspot
FFT, MD5Hash, S3D, S3D_double,
Sort, Stencil2D, Stencil2D_double

Polybench [17]

Rodinia [18]

SHOC [19]
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FIGURE 4. Different types of instructions for the testing benchmarks,
on the GTX Titan X.

B. MACHINE LEARNING SETUP

The implemented tool, used to obtain the results herein
presented, is provided online and is open-source.’ The
machine learning models were implemented using PyTorch
(v1.2.0), namely using the torch.nn.Linear and
torch.nn.LSTM functions. To find the best network topol-
ogy, i.e. during the hyperparameter optimization, 90% of the
microbenchmark set was used for training and the remaining
10% for validation of each obtained model. The accuracy

5https://github.com/hpcfulisboa/gpuPTXModel
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of each model was determined by the MAE between the
predicted value and the measured one (oracle), by using
the PyTorch SmoothLlLoss function. To maximize the
usefulness/ease-of-use of the models, the network topology
was optimized for one GPU device (GTX Titan X) and then
used for the other GPUs.

The best found hyperparameter configuration for the RNN
encoder results in LSTM blocks with 2 layers (unidirectional)
of size 50, with a learning rate of 0.005 and using the Adam
optimization algorithm. The considered batch size comprises
8 applications. The output FNNs have 2 hidden layers (with
sizes 100 and 70), with a learning rate of 0.01 and also using
the Adam optimization algorithm. After each hidden layer,
an activation function is applied (ReLU).

C. STATIC MODELS ACCURACY

The obtained results show that the accuracy of the predictions
obtained using the proposed static models is comparable to
the accuracy achieved by the best state-of-the-art run-time
models. Specifically, the power scaling model predictions,
which can be compared with state-of-the-art models such as
the ones presented in [28], [38], [39], are presented in Fig. 5,
across the four considered GPU devices. Each point corre-
sponds to a value of the predicted scaling-factor vs. its mea-
sured value (oracle), and different points represent different
applications and/or V-F configurations. For example, in the
GTX Titan X plot, the testing set is composed of 24 appli-
cations X 2 fipem levels x 16 feore levels = 768 datapoints.
In this case, the model is capable of accurately predicting the
power consumption scaling-factors, on a frequency range of
up to 4.3x in memory frequency and 2x in core frequency,
with a mean absolute error (MAE) of 5.35%. It is important
to restate that these DVFES predictions are made prior to any
execution of benchmarks, and are based solely on the PTX
kernel code, i.e. without using any run-time information. The
power scaling model results in similarly accurate results in
the three other GPU devices, with MAE of 7.85% (Tesla T4),
6.68% (Titan V) and 5.86% (Titan Xp).

When compared with other state-of-the-art power mod-
els, in particular with the approach presented in [39], it is
observed that the GPU power scaling-factors model of such
proposal, based on performance counters, achieves a MAE
of 3.54% and 4.55% for the Titan Xp and GTX Titan X,
respectively. Even though the approach herein proposed can
be slightly less accurate than state-of-the-art power consump-
tion counter-based models, it should be stressed that very
accurate results can still be obtained based only on infor-
mation obtained at compile-time (without any application
execution).

Fig. 6 presents the overall accuracy of the three output
models for all considered GPU devices, by displaying the
cumulative error distribution of each model across the testing
benchmarks for all V-F configurations. The obtained results
show that the power models are (on average) the ones that
produce the best predictions, while the execution time mod-
els are the less accurate ones. Still, across the four GPUs,
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FIGURE 5. Results of the DVFS-aware power scaling model on different GPUs (Number of benchmarks: 130 for training, 15 for validation, 24 for testing).
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FIGURE 6. Cumulative distribution of the prediction errors on the testing benchmarks, across all V-F configurations.

54% (Tesla T4), 70% (Titan V), 68% (Titan Xp) and 63%
(GTX Titan X) of the predicted time scaling-factors have
an absolute error below 10%. The percentage of predicted
values with an error below 10% for the power model are 74%
(Tesla T4), 78% (Titan V), 85% (Titan Xp) and 84% (GTX
Titan X), while for the energy model are 77% (Tesla T4), 78%
(Titan V), 68% (Titan Xp) and 60% (GTX Titan X).

The accuracy of the 12 estimated models are summarized
in Table 3, where it can be seen that the MAE of the energy
scaling models are 19.3% (Tesla T4), 13.0% (Titan V), 9.9%
(Titan Xp) and 13.0 % (GTX Titan X).

D. PARETO-OPTIMAL SOLUTIONS

The main use-case of predictive models, such as the ones
herein proposed, is to perform the DVFS management to
maximize the energy efficiency of the computing system.
Considering a multi-objective optimization problem with a
set of Pareto-optimal solutions, similar to the one that was
proposed in [12], this technique can be a useful approach
to find the best V-F configurations for different applications.
Fig. 7 shows the measured and predicted values of the normal-
ized energy and speedup for 14 different testing applications
(not used in training), when considering the GTX Titan X
GPU. Each plot not only presents the values of the normalized
energy in function of the speedup (measured and predicted),
but also which V-F configurations are in the Pareto-optimal
sets (measured and predicted) and their respective sizes. Here,
it is important to note that not all the considered GPU devices
allow a similar flexibility in choosing the V-F configuration.
Since the GTX Titan X is the GPU device that allows the
larger variation of the memory frequency, it is an interesting
situation to analyze.
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In Fig. 7, applications were organized from the
most memory-intensive (eg., BlackScholes, FDTD-2D,
S3D_double) to the most compute-intensive (eg., ATAX,
MRI-Gridding, MD5Hash). The obtained results show that
the estimated models for the GTX Titan X can predict how
the decrease in Fyem, from 3505 MHz to 810 MHz, affects the
speedup of the more memory-intensive applications. How-
ever, as the DRAM intensity starts decreasing, resulting
in more transactions coming directly from the L2-cache
(eg., FFT_double, 2DConvolution, Backprop), the model is
gradually not as accurate in describing how the decrease in
Fmem affects the energy and speedup of applications. This
relates to the previously mentioned fact that there is no way to
infer from a PTX instruction where a data transaction is com-
ing from (see Section III-D). Finally, for the more compute-
intensive applications, the model successfully predicts that
decreasing Finem has a small impact on speedup, leading to
large benefits in energy consumption.

E. ATTAINED ENERGY SAVINGS

The energy scaling predictions can also be evaluated based on
how well they can predict the minimum-energy V-F config-
uration. Fig. 8 shows the results of using the energy scaling
model to find the minimum V-F configuration on the GTX
Titan X GPU. On the top of Fig. 8 are presented, for each
testing application, the values of the frequency levels asso-
ciated with the measured minimum energy (Foracle) and the
predicted minimum energy (Fpreq.). It can be seen that Fpeq.
does not always match Foracle, Which means the proposed
model does not guarantee optimal energy savings. However,
the results presented at the bottom of Fig. 8 show that, for
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FIGURE 7. Measured and predicted DVFS impact on the energy scaling and speedup of 14 testing applications, on the GTX Titan X. Each point corresponds
to a specific V-F configuration. Values are normalized to the values at the highest V-F.
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FIGURE 8. Results of the proposed models to predict the minimum energy configuration on the GTX Titan X.

many applications, the difference between using Fpreq. and
Foracle (horizontal line at 1.0, representing the lowest energy
consumption) is negligible. In reality, across the 24 testing
benchmarks, the usage of Fpyeq. results in an average energy
consumption only 8% higher than the optimal, while using
the maximum performance configuration (Fpax) leads to (on
average) an energy consumption of 24% higher than the
optimal. Looking at the energy savings obtained at Fppeq.
(see Table 3), when compared to the energy at Fyax,
the proposed energy model allows achieving average savings
of 8.0% (Tesla T4), 6.0% (Titan V), 29.0% (Titan Xp) and
11.5% (GTX Titan X).

Overall, the presented research, whose results are summa-
rized in Table 3, represents an important step forward in the
field of GPU modeling, by allowing very accurate compile-
time predictions of the scaling behavior of the execution time,
power consumption and energy consumption. This is a signif-
icant improvement over previous DVFS-aware static models,
like the one presented in [10], where the performance model
had a MAE of 26.9%. Furthermore, this novel approach
can be useful in other scenarios than the most commonly
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TABLE 3. Summary of the obtained results for the proposed models on
the testing benchmarks.

\ |  Model Type [ TeslaT4 | TitanV | Titan Xp | GTX Titan X |

Time DVES 19.2% 16.7% 9.9% 15.8%

MAE Power DVFS 7.9% 6.7% 5.9% 5.4%
Energy DVFS 19.3% 13.0% 9.9% 13.0%

Time DVFS 8.6% 4.5% 5.3% 53%

Median Power DVFS 4.5% 37% 5.4% 3.5%

Energy DVFS 5.8% 3.3% 6.5% 6.9%

Energy Best (at Foracie) | 16.8% 9.1% 32.6% 18.1%
Savings Model (at Fprea) | 8.0% 6.0% 29.0% 11.5%
(vs. Fgax) (% of Oracle) (47.6%) | (65.9%) | (89.0%) (63.3%)

considered case of DVFS management, such as in allowing
programmers to easily evaluate how changes in the source
code can affect the DVFS behavior of applications.

V. CONCLUSION

This work presented a novel approach to model the GPU
performance, power and energy. In particular, the proposed
approach can be used to predict how the frequency of GPU
domains will affect the execution time, power and energy
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of applications, before they are actually executed, i.e. at
compile-time. To model the GPU, a suite of 145 microbench-
marks was used, carefully selected to exercise the different
GPU components. The proposed procedure results in three
output models that take into account the sequence of low-
level assembly (PTX) instructions of any unseen kernel to
predict its corresponding scaling behavior. Validated on four
different GPU devices from distinct microarchitectures (Tur-
ing, Volta, Pascal and Maxwell), the models achieve rather
accurate results. In particular, the power scaling one, which
is able to accurately predict the DVFS impact on the power
consumption of applications prior to their execution, offers
a mean absolute error of 10.2% (Tesla T4), 6.7% (Titan V),
5.9% (Titan Xp) and 5.4% (GTX Titan X). Using the obtained
models to select the minimum-energy frequency configura-
tion allows achieving (on average) energy savings of 8.0%
(Tesla T4), 6.0% (Titan V), 29.0% (Titan Xp) and 11.5%
(GTX Titan X).
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