IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

459

GHEVC: An Efficient HEVC Decoder
for Graphics Processing Units

Diego F. de Souza, Student Member, IEEE, Aleksandar Ilic, Member, IEEE, Nuno Roma, Senior Member, IEEE,
and Leonel Sousa, Senior Member, IEEE

Abstract—The high compression efficiency that is provided by
the high efficiency video coding (HEVC) standard comes at the cost
of a significant increase of the computational load at the decoder.
Such an increased burden is a limiting factor to accomplish real-
time decoding, specially for high definition video sequences (e.g.,
Ultra HD 4K). In this scenario, a highly parallel HEVC decoder for
the state-of-the-art graphics processor units (GPUs) is presented,
i.e., GHEVC. Contrasting to our previous contributions, the data-
parallel GHEVC decoder integrates the whole decompression
pipeline (except for the entropy decoding), both for intra- and
interframes. Furthermore, its processing efficiency was highly
optimized by keeping the decompressed frames in the GPU
memory for subsequent inter frame prediction. The proposed
GHEVC decoder is fully compliant with the HEVC standard,
where explicit synchronization points ensure the correct HEVC
module execution order. Moreover, the GPU-based HEVC decoder
is experimentally evaluated for different GPU devices, an extensive
range of recommended HEVC configurations and video sequences,
where an average frame rate of 145, 318, and 605 frames per
second for Ultra HD 4K, WQXGA, and Full HD, respectively, was
obtained in the Random Access configuration with the NVIDIA
GeForce GTX TITAN X GPU.

Index Terms—Graphics processor units (GPUs), high efficiency
video coding (HEVC), parallel processing, real-time, video
decoding.

I. INTRODUCTION

HEN compared with previous standards, the High Ef-

ficiency Video Coding standard [1], developed by the
Joint Collaborative Team on Video Coding, has shown to reduce
by half the bitrate required to compress a video sequence with
the same visual quality [2]. However, to achieve this HEVC
compression efficiency, the computational load is increased in
both the encoder and the decoder [3]. In order to achieve the best
compromise between distortion, compression rate and computa-
tional complexity, a set of HEVC features and parameters, e.g.,

Manuscript received March 7, 2016; revised July 19, 2016; accepted October
18, 2016. Date of publication November 3, 2016; date of current version Febru-
ary 14, 2017. This work was supported by the National Funds through Fundacao
para a Ciéncia e a Tecnologia (FCT) under Project PTDC/EEI-ELC/3152/2012
and Project UID/CEC/50021/2013. The work of D. F. de Souza was supported
by the FCT under the Ph.D. scholarship SFRH/BD/76285/2011. The associate
editor coordinating the review of this manuscript and approving it for publication
was Dr. Yonggang Wen.

The authors are with the INESC-ID, Instituto Superior Técnico, Univer-
sidade de Lisboa, Lisboa 1000-029, Portugal (e-mail: difs@sips.inesc-id.pt;
ilic@sips.inesc-id.pt; nuno.roma@inesc-id.pt; las@inesc-id.pt).

Digital Object Identifier 10.1109/TMM.2016.2625261

motion vectors, block partitioning and quantization step, can be
carefully selected and configured at the encoder side. On the
other hand, a HEVC decoder has to decompress any compliant
bitstream, for a set of profiles, levels and tiers, regardless of
the involved computational complexity in the decoding proce-
dure. This requirement often leads to arduous challenges, when
implementing real-time HEVC decoders.

In order to achieve high compression rates, the encoded bit-
stream is usually generated by taking advantage of the main
HEVC compression features, such as: i) several partitioning
modes, including asymmetric partitioning, to adapt to the video
content; i) 35 intra prediction modes, quarter-pel motion vec-
tors and interpolation filters, to exploit spatial and temporal
correlation; iii) different transform types and block sizes, from
32 x 32 to 4 x 4, to reduce the residual data redundancy;
and iv) in-loop filtering, to remove block artifacts and sample
distortion. Moreover, besides the ability to comply with these
computationally complex and highly data dependent operations,
areal-time decoder has also to fulfill the strict frame rate require-
ments, which is difficult to be achieved when processing high
resolution frames.

In this scenario, to provide real-time capabilities by accel-
erating the HEVC decoder procedures, several implementa-
tions have been proposed for: Field-Programmable Gate Ar-
ray(FPGAs) [4], multicore Central Processing Unit(CPUs) [5],
Digital Signal Processor(DSPs) [6] and Graphics Processing
Unit(GPUs) [7]. Among those implementations, the multicore
CPU and GPU are the most common setup for nowadays het-
erogeneous systems, e.g., desktops, laptops and smartphones,
where the GPU is optimized for highly data parallel applications.
However, to fully exploit the GPU architecture, the targeted ap-
plication usually must be redesigned, in order to maximize the
degree of parallelism and to take advantage of the GPU memory
hierarchy and high execution concurrency.

Herein, a comprehensive GPU-based HEVC decoder is pro-
posed, that allows both intra and inter frame processing, which
are only partially or individually tackled in our previous con-
tributions [7]-[9]. In this way, to offer a complete GPU-based
solution, the contributions that are presented in this paper can
be summarized as follows:

1) A comprehensive redesign of all HEVC decoder proce-
dures in order to decode a video sequence in the GPU
device, which means to maximize the parallelism level,
optimize the memory accesses and increase the instruction
throughput.

1520-9210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

460

TABLE I
LIST OF ACRONYMS

Acronym Full name
BF Bypass Flag

BS Boundary filtering Strength
CBF Coded Block Flag

CPU Central Processing Unit
CTU Coding Tree Unit

CuU Coding Unit

CUDA Compute Unified Device Architecture
DBF Deblocking Filter

DIT De-quantization and Inverse Transform
DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

FPS frames per second

GHEVC GPU-based HEVC

GPU Graphics Processing Unit

HEVC High Efficiency Video Coding

1P Intra Prediction

JCT-VC Joint Collaborative Team on Video Coding
Mbps megabit per second

MC Motion Compensation

PB Prediction Block

PU Prediction Unit

QP Quantization Parameter

SAO Sample Adaptive Offset

SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Thread
SM Streaming Multiprocessor

TB Transform Block

TBF Transquant Bypass Flag

ThB Thread Block

TSF Transform Skip Flag

TU Transform Unit

WPP Wavefront Parallel Processing

2) A unified design of GHEVC features, which reinforces
data sharing among different HEVC procedures by taking
advantage of the GPU memory hierarchy.

3) A frame-level GPU parallel processing, where different
parts of the frame are processed in parallel, while ensuring
the HEVC standard compliancy.

According to the conducted experimental evaluation in the
state-of-the-art GPU devices, the GHEVC decoder can handle
Ultra HD 4K video sequences by delivering up to 200 frames
per second for low bitrate and around 80 FPS for high bitrate in
the Random Access configuration.

This paper is organized as follows. The background and re-
lated work are presented in the Section II. The GHEVC decoder
designs are described in Section III, while modules integration
are comprehensively explained in Section I'V. The profiling and
evaluation of the GHEVC decoder are discussed in Section V.
Finally, Section VI addresses the most important conclusions
and future work.

To facilitate the readability of the paper, Table I presents the
list of acronyms used in the rest of the paper.

II. BACKGROUND AND RELATED WORK

In HEVC, a video frame is decoded from the received bit-
stream in data elements corresponding to square pixel blocks.
These pixel blocks are denoted as Coding Tree Unit(CTUs) [10],
whose size (N x N) is decoded from the received bitstream.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

Video ;)utput

Sample
Adaptive
Offset (SAQ)

~ Picture
Buffer

Encoded
Bitstream

py
Decoder

Deblocking
Filter (DBF)

Motion
Compensation)2 ",
(MC)

De-quantization &

R
Transform (DIT)

Fig. 1. High-level HEVC decoder framework.

Possible values for IV are 64, 32 and 16 pixels [1]. Each CTU
is further split in square blocks, named Coding Unit(CUs), by
following a quadtree structure [10].

A. HEVC CU Decoding

Each CU encloses a Prediction Unit and a Transform Unit,
responsible for generating the prediction pixel block and corre-
sponding residual data, respectively. The prediction pixel block
can either be obtained by using data from the same frame (intra
prediction) or from previous decoded frames (inter prediction).
In a HEVC decoder, each CTU and the corresponding Coding
Units (CUs) are processed by the following modules:

1) entropy decoder: decodes the input bitstream and collects

the required data to decompress the video sequence.

2) de-quantization and inverse transform: recovers the resid-
ual data from each TU of the frame.

3) motion compensation: obtains the PU inter prediction, by
considering the previously decoded frames in the Decoded
Picture Buffer as reference frames.

4) intra prediction: executes the PU intra prediction.

5) deblocking filter: reduces the block artifacts from the
block-based hybrid video coding.

6) sample adaptive offset: improves the overall image qual-
ity, by reducing the CTU sample distortion.

A general framework of a HEVC decoding structure, to-
gether with the corresponding module integration, is presented
in Fig. 1. First, the Encoded Bitstream is decoded by the
Entropy Decoder module in order to acquire the compressed
data from its input bitstream and to distribute the decoded data
to the other modules. Then, the pixel blocks are reconstructed,
by adding the residual block from the DIT module and the con-
tents of the prediction block, computed either in the IP or in
the MC modules. When the reconstructed frame is obtained,
the in-loop filters (i.e., DBF and SAO) are applied, in order to
obtain the final video frame, which is later stored in the De-
coded Picture Buffer. Finally, the Video Output is obtained from
the Decoded Picture Buffer, which is also used for storing the
references frames for the MC module.

In the herein proposed GHEVC decoder, all the modules
presented with dark gray (see Fig. 1) are executed by the GPU,
while the Entropy Decoder is performed by the CPU due to its
sequential and irregular nature.

B. Related Work

When considering CPU-based decoders, the HEVC reference
software HM [11] is still the most used decoder for research

DE SOUZA et al.: GHEVC: AN EFFICIENT HEVC DECODER FOR GPUs

purposes. However, it is not optimized for practical applica-
tions neither it targets real-time performance. As a consequence,
the open-source OpenHEVC [12] decoder, heavily optimized
for Single Instruction, Multiple Data vectorization, is usually
regarded as a more suitable benchmark and it will be herein
adopted for the performance evaluation.

In [5], SIMD instructions were also exploited to speed up
the HEVC decoder, where 40-75 FPS were obtained for Ultra
HD 4K HEVC videos on an Intel i7-2600 3.4GHz quad-core
processor with four decoding threads. In the same direction, Chi
et al., evaluated the performance of several recent SIMD ISAs
for all HEVC decoder modules, where 133 FPS was achieved
when decoding Full-HD video sequences using only one CPU
core [13].

In what concerns hardware implementations of the HEVC
decoder, the authors in [14] applied a set of optimizations to de-
signing and implement an application specific integrated circuit
in 40nm CMOS technology. The developed architecture is able
to decode 30 FPS of Ultra HD 4K video sequences at 200 MHz.
In [15], Ultra HD 4K video sequences can be decoded at 60 FPS
in a 28 nm CMOS chip running at 350 MHz. Regarding FPGA
implementations, in [16] it is presented a decoder architecture
that is able to decode an Ultra HD 4 K video at 30 FPS in a
Xilinx Zynq 7045 FPGA, running at 150 MHz.

When considering GPU devices to accelerate the video codec,
most of the presented works in the literature tackle only the en-
coder side, due to its higher computational load and optimization
challenges (e.g., how to efficiently cope with a Lagrangian cost
function used in the mode decision or motion estimation). Some
examples are presented in [17] for the H.264/MPEG-4 AVC and
in [18] for the HEVC.

Besides these contributions at the encoder side, our pre-
vious research relied on GPU devices to accelerate some
HEVC decoder modules. In accordance, the main differences
with the new contributions that are herein presented are the
following:

1) DIT: In [19], multiple GPU kernels are assigned to imple-
ment the DIT module, one for each TU size. Moreover,
the DIT implementations presented in [7] and [8] do not
support 4 x 4 inverse transform of inter predicted CUs,
since only intra frames (i.e., intra predicted blocks) are
considered. In contrast, the herein proposed DIT kernel is
an unified single kernel implementation, where both inter
predicted CUs and all TU sizes are supported.

2) MC: In [9], the whole Decoded Picture Buffer is trans-
ferred to the GPU memory at the beginning of the de-
coding of each frame. Furthermore, the predicted frame
has to be sent back to the CPU, in order to perform the
remaining modules. In contrast, in the GHEVC decoder,
the frame is entirely decoded in the GPU and it is kept
in the GPU memory as long as it is needed as a ref-
erence frame. In this way, the herein proposed decoder
allows a significant reduction of the superfluous memory
transfers between CPU and GPU of the reference frames
and predicted frame. Additionally, a complete GPU-based
Decoded Picture Buffer is provided.

461

3) IP:In [7] and [8], the decoding of intra predicted CUs in-
side an inter frame is not implemented in the GPU, since
both works only support intra frames. In contrast, the
GHEVC decoder already supports intra predicted blocks
in inter frames. This capability is achieved by coupling the
IP GPU kernel after the MC GPU kernel execution and
by explicitly considering if the neighboring blocks are in-
tra or inter predicted. In accordance, the intrinsic IP data
dependency checking procedure had to be updated too.
Furthermore, the GPU thread assignment of the IP kernel
has been improved, in order to ensure a better load balanc-
ing across the available Streaming Multiprocessor(SMs).

4) DBF': In [20], the filtering decisions are calculated in the
CPU side and subsequently sent to the GPU. In [8], the
boundary filtering strength is always set to two, since all
blocks are intra predicted. In contrast, in the herein pro-
posed DBF, the boundary strength is directly calculated
in the GPU and no additional data needs to be received
from the CPU, since all required input data (from the other
modules) is already present in the GPU memory. In this
way, the proposed DBF kernel provides the full support
for both inter and intra predicted blocks (while [8] only
supports the intra blocks).

Moreover, since only intra frames are considered in [8],
the execution order of the kernels from different parts of the
frame is imposed by the data dependencies intrinsic to the IP
module, when processing different parts of the frame in paral-
lel. Nonetheless, explicit synchronization points are proposed
herein, in order to guarantee the correct execution order of the
in-loop filters for different parts of the frame, since both intra
and inter predictions are considered.

When considering other GPU accelerated HEVC decoders, it
is observed that most commercial applications take advantage
of the dedicated hardware structures inside the GPU to per-
form video decoding. However, most hardware-based HEVC
decoders in current GPU devices are only available on cer-
tain types of architectures and they are also limited to certain
HEVC profiles (e.g., in the NVIDIA GM206 architecture, it is
only possible to decode the Main profile up to Level 5.1 [21]).
In this scenario, the dedicated hardware is usually accessed
through a specific API (such as the Microsoft DirectX Video
Acceleration') and implemented in the wrapping software (e.g.,
LAV Filters?).

Regarding software decoding on Graphics Processing Units
(GPUs), OpenCL has been also used to provide HEVC de-
coding capabilities in several commercial decoders. For exam-
ple, the Ittiam’s i265° family of products includes OpenCL-
based HEVC decoders for Intel HD Graphics, Iris and Iris Pro
GPUs, AMD GPUs, among others. Another OpenCL-based
HEVC decoder for AMD GPUs is provided by the Stron-

![Online] Available: https:/msdn.microsoft.com/en-us/library/aa965263.
aspx

2[Online] Available: https://github.com/Nevcairiel/LAVFilters

3[Online] Available: http://www.ittiam.com/products/software-ips/video/
h265-hevc/

462

gene OpenCL H.265/HEVC Decoder for Windows.* Cyber-
Link PowerDVD also provides OpenCL-based HEVC decoder
capabilities.” However, a direct comparison with these commer-
cial applications is difficult to provide, due to the impossibility
to decouple the segments that strictly deal with the GPU-based
decoding. In fact, most of these commercial solutions provide a
very deep integration of these routines in a more general appli-
cation and the implementation details are either not disclosed or
the source codes are not publicly available. Hence, to the best of
our knowledge, the herein presented work is the first academic
GPU-based solution to implement the complete HEVC decom-
pression in the GPU. In fact, most state-of-the-art approaches
only deal with a GPU parallelization of a single HEVC module,
while the remaining modules are usually not taken into con-
sideration, e.g., the GPU-based DBF in [22] and [23], and the
GPU-based DIT in [24]. In the following sections, the proposed
implementations for each GHEVC module are briefly presented,
as well as the proposed GHEVC decoder.

III. HEVC DECODER MODULES: GPU PARALLELIZATION

To fully exploit the GPU capabilities, the commonly used
Compute Unified Device Architecture [25] programming model
was employed to develop the proposed GHEVC decoder mod-
ules, in particular: DIT, MC, IP, DBF and SAO. In order to
maximize the GPU performance for each HEVC module, three
main requirements should be specifically considered [25], this
is:

1) fine-grain parallelism: each HEVC module should be im-
plemented in a way that it exposes as much data paral-
lelism as possible, which allows a large number of simul-
taneously active threads.

2) memory optimizations: the data accesses for each module
should be carefully managed, in order to efficiently take
advantage of the complex GPU memory hierarchy, i.e.,
global, cache, shared, register, constant and texture mem-
ories. Moreover, memory access latency, coalesced ac-
cesses, bank conflicts, register spilling and memory band-
width utilization should also be taken into account.

3) instruction throughput: the GPU execution is organized
in groups of 32 parallel threads called warps, by following
the parallel execution model Single Instruction, Multiple
Thread, where all threads in a warp perform the same op-
eration from the GPU code (kernel). In this case, a diver-
gence control flow instructions between threads in a warp
(warp divergence) should be avoided, since the different
executions paths have to be serialized, thus decreasing the
overall performance of the GPU kernel.

Moreover, the warps are grouped in several Thread
Block(ThBs) and the proposed algorithms maximize the number
of active Thread Blocks (ThBs) in order to achieve the highest
performance.

4[Online] Available: http://www.strongene.com/en/downloads/download-
Center.jsp

3[Online] Available: http://www.cyberlink.com/products/powerdvd-ultra/fe-
atures_en_EU.html

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

DIT Control Data /B Coefficients/ | 1
bits: (7,6 -~ 2[1.0 @
Prediction| [Binary-coded| TB 0
type flags size
O:Inter 27 combinations 00:4 x 4
DIT Control Data

Tintra of BETSF) for 01:8x8
Control data and flowchart of the GPU-based HEVC DIT module.

iy Parallel .
@ Inverse Dat
p Transform
TSF

Scaling
onelumaand 10:16x 16

two chroma TBs {132 32 /7 GPU Global Memory

Fig. 2.

As follows, each GHEVC decoder module is briefly pre-
sented to explain how the three main requirements, denoted as
Fine-grain Parallelism, Memory Optimizations and Instruction
Throughput, are fulfilled.

A. Dequantization and Inverse Transform

To decompress the residual data of each Transform Block
from luma and two chroma components in a TU, the DIT module
starts by acquiring a set of input data from the Entropy Decoder:
i) the TB coefficients and ii) the transform flags, i.e., Coded
Block Flag, Transform Skip Flag and Transquant Bypass Flag.

1) Fine-Grain Parallelism: The proposed GPU-based DIT
module has high degree of fine-grain parallelism, since all the
Transform Blocks (TBs) in the frame can be processed in par-
allel. However, since the frame TB partitioning is unknown a
priori, each warp in a ThB is assigned to a 4 x 4 block of the
CTU. Then, the warps are assigned according to the respective
TB size, e.g., eight warps perform the DIT for a 32 x 32 TB,
while only one warp processes a4 x 4 TB, as in [8].

2) Memory Optimizations: The required data to perform the
DIT module is packed in such a way that only one memory
transaction to the high latency GPU global memory is neces-
sary to obtain the prediction type, TB size and transform flags.
For this purpose, the CBF and TBF are merged in a new flag
denoted as Bypass Flag [19], and the TB coefficients are stored
as Residual Data whenever the BF is set. In this case, there
are three possible flag combinations per component (luma or
chroma), i.e., (BETSF)€{(0,0); (0,1); (1,-)}, which leads to
27 flag combinations per TU.

As it can be observed in Fig. 2, the DIT Control Data con-
tains all the information required to perform the DIT, which are
packed in a single 1-byte word per 4 x 4 luma pixel block of
the frame. The DIT Control Data includes:

1) TB size (bits 0 and 1): indicates one of the four possible

TB sizes, i.e.,4 x 4,8 x 8,16 x 16 and 32 x 32.

2) binary-coded flags (bits 2 to 6): represent 27 possible flags
combinations of BF and TSF for all TBs in a TU, which
can be recovered with bitwise operations.

3) prediction type (bit 7): signals if the TB belongs to an
intra or an inter predicted CU, in order to select which
Transform Coefficient Array is used for 4 x 4 TBs.

Since the Transform Coefficient Arrays are constants, they are
stored in the GPU texture memory to take advantage of the 2D
GPU texture cache in the matrix multiplication of the inverse
transform procedure [8]. Moreover, the intermediate values of
the DIT procedure are stored in the low latency GPU shared
memory, which provides faster accesses and single memory
transactions to access block rows or columns, since there are
no bank conflicts. Finally, the DIT Control Data for all 4 x 4

DE SOUZA et al.: GHEVC: AN EFFICIENT HEVC DECODER FOR GPUs

blocks of the frame, the TB coefficients and the residual data
output are stored in the GPU global memory.

3) Instruction Throughput: In the proposed GPU DIT ker-
nel, the warp divergence is avoided since each warp performs
the DIT procedure for a TU or a partition of the TU. As a result,
all threads in a warp always follow the same execution path.

The flowchart of the proposed DIT module is presented in
Fig. 2. At the beginning of DIT processing, in Warp Assign-
ment, the warps are designated to a specific TU (or a part of
the TU), according to the 7B size. If the BF is unset, a Parallel
De-quantization procedure is performed on the 7B Coefficients
(one coefficient per GPU thread), where the de-quantized coef-
ficients are stored in the GPU shared memory for subsequently
accesses.

Afterwards, if the TSF is set, the inverse transform is skipped
and the final scaling (i.e. TSF Scaling) is performed before the
de-quantized coefficients are considered as Residual Data. If
not (i.e. TSF=0), the Parallel Inverse Transform is performed
within two parallel matrix multiplications with multiple warps
that access the Transform Coefficient Array in the GPU texture
memory and the TB in the GPU shared memory without bank
conflicts. Moreover, synchronization points are used in the Par-
allel Inverse Transform to ensure the memory coherency on the
GPU shared memory. The final result is stored in the GPU global
memory as a residual data block from each TB, as also referred
in [8].

B. Motion Compensation

Each PU is composed of Prediction Block(PBs) of luma and
chroma components in both intra and inter prediction modes. In
an inter predicted CU, the PB partition belongs to one of four
symmetric or four asymmetric partitioning modes [26]. Herein,
the proposed MC module performs both the inter prediction
and the reconstruction of inter coded CUs. The required data to
generate the reconstructed block are: i) the motion data, i.e., mo-
tion vectors, reference indexes, reference frames and prediction
direction; ii) PB partitioning mode; and iii) residual data.

1) Fine-Grain Parallelism: Although the prediction of each
inter PB can be performed in parallel, the shape and size of
smaller Prediction Blocks (PBs) are limiting factors for the
GPU performance, due to the irregular memory accesses on
the reference frames. Nevertheless, the warp can perform more
than one PB and store the prediction values in the GPU shared
memory, in order to maximize the utilization of the GPU global
memory bandwidth for the subsequent decoding procedures,
i.e., reconstruction.

Since the GPU global memory is accessed, at minimum, via
32-byte memory transactions, the block reconstruction proce-
dure is performed with blocks of 32 pixel width. This require-
ment guarantees that the residual block row is fetched in a sin-
gle memory transaction, and that the reconstructed block row
is stored with a single memory transaction to the GPU global
memory. Since the worst case scenario is for the chroma com-
ponent with chroma subsampling 4:2:0, in the proposed MC
module the warp operates at a luma block of 64 x N, which
leads to a 32 x N/2 chroma block.

463

Weight

1 Predlctlon

Rechnstructed

Block _
Reconstruction

Acquire motion
information

MC Control Data
bits: [63 -~ 52[51 -:- 40[39 -:- 28[27 - 16\15 e 1211 -

8\7\6\5\4

X L1 V LI) X oY Refldx L1 Refldx LO BlDCk size
Mot Prediction direction Prediction type
12 bits per componem at quaner pixel resolution 01:List0 10:List1 11:Both O:Inter 1:Intra D ﬁ;',’“ﬁl‘}h”'
Fig. 3. Flowchart and control data of the GHEVC MC module.

Due to the lower latency memory accesses in comparison with
the GPU global memory, the GPU shared memory is also used
as temporary storage for the interpolation procedure. Herein, a
pixel block from the reference frame is fetched from the GPU
global memory to the shared memory. However, the GPU shared
memory is a very limited resource, which can reduce the num-
ber of simultaneously active warps if a high amount of shared
memory per warp is requested by the kernel, i.e., the size of the
64 x N block.

In the proposed GPU-based MC module, the best perfor-
mance is achieved when a warp operates a 64 x 8 luma block,
which is a trade-off between: parallelism degree, amount of
requested shared memory, number of active warps and global
memory bandwidth. In this way, eight warps are assigned per
ThB, which performs the GPU-based MC module in a 64 x
64 pixel block of the frame. Furthermore, each warp performs
the prediction of each PB or sub-PB, which relies in its 64 x
8 pixel block, e.g., for a 64 x 64 PB, eight warps perform the
inter prediction and reconstruction of a 64 x 8§ sub-part of PB.

2) Memory Optimizations: The motion data, to perform the
proposed inter prediction of a PU, is packed into a 64-bit word,
as presented in Fig. 3 (MC Control Data). Since the smallest
PB partitions are 8§ x 4 and 4 x 8 pixels in the HEVC inter
prediction, two MC Control Data words are assigned to each
8 x 8 luma pixel block of the frame, in order to perform the
motion compensation for each smaller block (i.e., two 4 x 8
or two 8 x 4 blocks). Moreover, the MC Control Data for the
whole frame is stored in the GPU global memory, which can
be retrieved with a single memory transaction to perform the
motion compensation of a single PU. In this way, the 64-bit
word of the MC Control Data is structured as:

1) block size (bits 0 to 4): encodes all possible 24 PU par-
titions, i.e. 64 x 64, 64 x 48, 64 x 32, 64 x 16 and so
on.

2) prediction type (bit 5): signals if the CU is intra (1) or
inter predicted (0).

3) prediction direction (bits 6 and 7): indicates if List O (bit
6) and List 1 (bit 7) reference frames are used.

4) ref Idx LO (bits 8 to 11): index of the chosen reference
frame from a set of 16 possible values from List O (LO).

5) ref Idx LI (bits 12 to 15): index of the chosen reference
frame from a set of 16 possible values from List 1 (L1).

6) LO Y, LO X, L1 Y and LI X (bits 16 to 63): store the
vertical (Y) and horizontal (X) motion vectors at quarter-
pel resolution of List O (L0O) and List 1 (L1).

464

Furthermore, the whole frame is decompressed in the GPU,
which means that the reference frames are already stored in
the GPU global memory. In this case, the List 0 and List 1 are
arrays of pointers (to the reference frames) stored in the GPU
constant memory, which are updated for each new frame. The
constant memory is also used to store the interpolation filter
coefficients. Finally, the residual data is retrieved from the GPU
global memory (the output of the GPU-based DIT module).

3) Instruction Throughput: Fig. 3 presents a simplified
flowchart of the overall inter prediction procedure executed by
the proposed GPU MC kernel. At the beginning, each warp is
assigned to its own 64 x 8 pixel block of the frame (see Warp As-
signment). Then, the information required to process one block
(MC Control Datay) is transferred from the GPU global memory
(see Acquire motion information).

Upon the fetch of the MC Control Data, bit 5 is checked
to verify if the block belongs to an intra predicted CU. In this
case, the overall MC procedure is bypassed (see “Is Intra?” de-
cision in Fig. 3). Otherwise, the block is inter predicted and bit
6 signals if the reference frame belongs to List O (see “List 07”
decision in Fig. 3). If bit 6 is set, the Parallel Interpolation [9] is
performed on the selected reference frame from List 0, accord-
ing to its motion information (L0 X, LO Y and Ref Idx L0), and
the predicted block is stored in the GPU Shared Memory.

Later, bit 7 (see “List 1?7 decision in Fig. 3) is inspected in
order to decide if the inter prediction of List 1 should be per-
formed. If bit 7 is set, the Parallel Interpolation is executed, by
applying the motion vectors and the reference frame of List 1
(L1 X, L1 Y and Ref Idx LI). Then, bit 6 (List 0) is verified to
check if the bi-prediction has to be performed (see “Bi-pred?”
decision). If bit 6 is unset, the predicted block is stored in the
GPU Shared Memory, since the bi-prediction is not performed.
Otherwise, if bits 6 and 7 are set, the bi-prediction is imple-
mented by the Weight Prediction procedure, i.e., by averaging
both predicted blocks from List 1 (in GPU registers) and from
List O (previously stored in the GPU Shared Memory), where the
output bi-predicted block is stored in the GPU Shared Memory.

Afterwards, the warp checks if all PBs or part of PBs inside
its 64 x 8 pixel block have been predicted (see “Last block?”
decision). If there are pending blocks to be processed, the overall
process is repeated, where the warp position in the frame is
updated for the next block (see Update Warp Position in Fig. 3).

When all blocks of the 64 x 8 pixel block assigned to a
single warp are predicted (i.e., “Last block?” decision returns
one), the reconstructed block is generated by adding the 64
x 8 predicted blocks from the GPU Shared Memory and the
64 x 8 residual block of Residual Data from the GPU global
memory (see Block Reconstruction in Fig. 3). It is important
to notice that 32 pixels from luma or chroma components are
simultaneously reconstructed and the accesses to both GPU
memory spaces (shared and global) are performed with a single
memory instruction, to improve the performance.

Moreover, the overall procedure avoids warp divergence,
since all threads in a warp always follow the same execution
path in both prediction and reconstruction steps, where the
GPU shared memory accesses were carefully designed in or-
der to avoid bank conflicts [9]. The final reconstructed 64 x 8

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

luma pixel block is stored in the GPU global memory, as part of
the Reconstructed Frame for the subsequent GHEVC decoder
modules.

C. Intra Prediction

Like in the MC module, the proposed IP module performs
the prediction and the reconstruction. However, while the re-
constructed block in the MC module is not reused, it is used
in the IP module as an input when predicting the neighboring
blocks.

Since the size of the TB can only be equal or smaller than
the PB in an intra predicted CU, the IP is performed at the TB
level, instead of PB [27]. In this way, by following the z-scan
order, the IP module carries out the prediction for each TB in a
PB, for each PB in a CU and for each CU in a CTU.

1) Coarse-Grain Parallelism: To perform the intra predic-
tion, the pixels from the reconstructed neighboring blocks are
used as reference samples. These intrinsic data dependencies be-
tween intra predicted pixel blocks limit the level of parallelism
within the IP module. Nevertheless, a coarse-grain parallelism
can be obtained by executing the intra prediction in a wavefront
approach for the whole frame [7], instead of processing a single
CTU row at a time. In this way, the intra prediction of a frame
pixel block can be carried out when the needed neighboring
blocks are reconstructed, regardless of the remaining blocks in
the frame.

In the proposed GPU implementation, a single warp is re-
sponsible to perform the intra prediction of any PB or PB part
inside a set of NV pixel rows of the frame. Since multiple warps
can simultaneously progress with the IP of the next blocks,
as soon as the data dependencies are satisfied, it is necessary
to keep track of the position of the currently processed block
within the frame. This warp “position” value assumes the block
enumeration scheme from the left to the right side of the frame,
by strictly taking into account the block dependencies [7]. This
approach provides two main advantages:

1) The data dependencies for the current block are checked
by verifying the “positions” of the neighboring warps in
the frame, which means that all pixel blocks with a lower
value than the warp “position” are already reconstructed.

2) The GPU cache pollution is reduced, since only the de-
pendencies of the pixel blocks in the warp “position” of
the frame are checked.

In particular, it was adopted, the value of N = 8, since it
provides the best compromise between the granularity of the
wavefront processing (parallelism degree) and the amount of
GPU global memory accesses to check dependencies. When
compared to [8], one of the contributions of the herein proposed
IP kernel is a better load balancing across the Streaming Mul-
tiprocessors (SMs), where the neighboring 8 pixel rows of the
frame are processed by different thread blocks. In this case, the
workload of the wavefront approach is efficiently distributed
according to the existing GPU resources.

2) Memory Optimizations: Since the intra prediction is per-
formed at a TB level, the necessary data to perform the IP
module are: 7) the TB size and prediction type, which are pro-

DE SOUZA et al.: GHEVC: AN EFFICIENT HEVC DECODER FOR GPUs

Update
Warp
Position

/7 GPU Global Memory

Acquire TB size
Assignment [l and Prediction type

DIT Control Data

Fig. 4.

Luma IP Control Data
I E—
TBE| |CBF [Prediction mode

Flowchart and control data of the GHEVC IP module.

IP Control Data

vided by the DIT Control Data; ii) the intra prediction mode;
and iii) the reconstructed frame. In Fig. 4, the luma /P Control
Data is presented, which is contained in a single byte structure,
as follows:

1) prediction mode (bits 0 to 5): encodes 35 intra prediction
modes (Planar, DC and 33 Angular modes) and an extra
mode for the PCM.

2) CBF and TBF (bit 6 and 7): reserved for the further use
in the DBF and SAO modules.

Since the smallest luma PB size is 4 x 4, the luma IP Control
Data is stored in the GPU global memory as an 1-byte word
per each 4 x 4 pixel block of the frame, while the chroma /P
Control Data is stored for an 8 x 8 pixel block of the frame,
when considering the 4:2:0 chroma subsampling format.

In order to support inter prediction blocks and to better dis-
tribute the load between the SMs, the GPU global memory is
used to gather the information regarding the “position” of all
warps, which allows dependency checks between warps from
different ThBs. In contrast, the implementations presented in [7]
and [8], perform the dependency checks in the GPU shared
memory between warps inside the same ThB and in the GPU
global memory between warps across ThBs. Furthermore, the
memory coherency for these dependency checks is ensured by
using the volatile keyword and CUDA memory fence func-
tions [25].

3) Instruction Throughput: The flowchart of the IP module
is presented in Fig. 4, where each warp is firstly assigned by the
Warp Assignment to its own 8 pixel row of the frame. Starting
from the first pixel block (on the left of the 8 pixel row) until
the end of the pixel row, the following procedure is applied.

The DIT Control Data is fetched from the GPU global mem-
ory with a single memory transaction (see Acquire TB size and
Prediction type in Fig. 4) to obtain the Prediction type (bit 7)
and TB size (bits 0 and 1). Bit 7 is checked in the “Is Intra?”
decision (see Fig. 4), in order to verify if the TB belongs to an
intra or inter predicted CU. If the TU is part of an inter predicted
CU (bit 7 is unset), the warp updates its “position” to the next
TB (Update Warp Position) and the procedure is repeated by
fetching the DIT Control Data for the next TB (see Fig. 4). Oth-
erwise (bit 7 is set), the intra prediction and the reconstruction
procedures are performed for the selected TB.

The TB size (bits 0 and 1) is used to address the threads inside
the pixel block and to determine the needed neighboring blocks.
Then, the warp “positions” of the corresponding neighboring
blocks are verified, in order to check if the dependencies are
solved (see Fig. 4). When the dependencies are satisfied, the
reference samples from the neighboring blocks are stored in
the GPU shared memory from the Reconstructed Frame for
faster accesses. Moreover, the IP Control Data is fetched from
the GPU global memory, to specify which intra prediction mode

465

will be performed. Then, the Parallel Intra Prediction procedure
(see Fig. 4) is performed, where each thread is responsible for
one or more pixels of the block, as presented in [7].

In the Block Reconstruction procedure depicted in Fig. 4, the
predicted block is added to the residual data, where the final
reconstructed block is stored in the GPU global memory to be
used as reference for the next neighboring blocks. Finally, the
warp “position” in the 8 pixel row of the frame is updated to the
next TB by the Update Warp Position procedure and the overall
process is repeated until the warp “position” reaches the end of
the 8 pixel row.

D. Deblocking Filter

The HEVC deblocking filter is applied for each PU or TU
boundaries, which belong to an 8 x 8 grid of the frame, accord-
ing to specific conditions defined in the standard [28]. In the
first condition, the edge is filtered only if the Boundary filtering
Strength is higher than 0, which is calculated according to the
decoded data of the blocks on each side of the boundary. The
possible BS values are equal to: i) 2, if at least one of the blocks
at the boundary is intra predicted; ii) 1, depending on specific
conditions of the motion information of both blocks; or iii) 0,
otherwise [1], [28].

1) Fine-Grain Parallelism: Consecutive boundaries in the
DBF module can be processed in parallel, since only up to 3
pixels are filtered and up to 4 pixels are read on each boundary
side, where the vertical boundaries are filtered before the hor-
izontal ones. To extract the fine-grain parallelism of the DBF
module, as referred in [20], the independent 8 x 8 pixel blocks
of the frame are processed in parallel, by shifting the pixel
block by four pixels in the horizontal and vertical component in
comparison with the 8 x 8 grid of the frame.

These 8 x 8 pixels blocks are completely independent and
a set of eight blocks are assigned for each warp. In this way,
similarly to the MC module, each warp operates on a 64 x 8
pixel block of the frame, which provides the efficient memory
bandwidth utilization of the GPU global memory for luma and
chroma components. Moreover, two boundaries can be simulta-
neously processed inside the 8 x 8 pixel block, i.e., two vertical
(8 x 4) or horizontal (4 x 8) boundaries.

2) Memory Optimizations: The benefits of the proposed
memory schematic of the GHEVC decoder can be evidenced
in the availability of the input data when performing the DBF
module. In particular, the data required for the evaluation of the
BS value is already available in the GPU global memory, since
it is used when performing previous modules, i.e., DIT, MC and
IP. The BS values are calculated by checking:

1) TU or PU boundary: the TU and PU sizes are acquired
from the DIT Control Data and MC Control Data, which
indicates TU or PU boundary according to the edge posi-
tion in the frame.

2) intra prediction: the Prediction type (bit 7) of the DIT
Control Data of both boundary blocks are checked.

3) non-zero coefficients and a TU edge: the luma CBF is
obtained from bit 6 of the IP Control Data.

466

CBF in the IP
Control Data

CBF in the IP
Control Data

Reconstructed
Frame

Deblocked
Frame

IP Control
Data
U Vertical
Filtering

IP Control
Data

Store 648
pixel block

Horizontal BS
Evaluation

Memory

%Inhal GPU Shared DIT and MC GPU Shared DIT and MC
Memory Memory Control Data Memory Control Data

GPU Shared \

Fig. 5. Flowchart of the GHEVC DBF module (luma component).

4) motion discrepancy: the MC Control Data of both bound-
ary blocks are used to check if they have different refer-
ence frames, a different number of motion vectors or the
absolute differences between the motion vector compo-
nents is greater than one pixel.

Moreover, the TBF and the PCM mode are obtained from
the IP Control Data, where if TBF is set or the PCM is used
as prediction and the pcm_loop_filter_disabled_flag is set, the
pixel samples that belong to those blocks are not filtered.

The GPU shared memory is used to store temporary values
during the filtering, where the whole 64 x 8 pixel block is
fetched from the reconstructed frame, filtered and stored back
in the GPU global memory as part of the deblocked frame.

3) Instruction Throughput: A general diagram of the pro-
posed DBF module is presented in Fig. 5. First, the warps are
assigned to distinct 64 x 8 regions of the frame by the Warp As-
signment procedure. Then, the assigned 64 x 8 pixel block of the
Reconstructed Frame is fetched from the GPU global memory
to the GPU Shared Memory, to be processed with subsequently
faster accesses in the filtering process (see Fetch 64 x 8 pixel
block in Fig. 5). The BS values of each vertical edge in the 64
x 8 pixel block are simultaneously evaluated (see Vertical BS
Evaluation in Fig. 5), where IP, DIT and MC Control Data are
obtained from the GPU global memory.

If the BS value is greater than 0, the Horizontal Filtering
procedure is performed on the data stored in the GPU shared
memory, as in [8]. After the Horizontal Filtering or if the BS is
equal to zero for a vertical boundary, the Horizontal BS Evalu-
ation is performed for the horizontal edges (see Fig. 5).

Similarly to the Vertical BS Evaluation, the BS values of all
horizontal edges are calculated according to IP, DIT and MC
Control Data (see Horizontal BS Evaluation in Fig. 5). If the BS
value is greater than zero, the Vertical Filtering is executed [8].
Finally, the filtered 64 x 8 pixel block is stored in the GPU
global memory as part of the Deblocked Frame.

E. Sample Adaptive Offset

In the SAO filtering, two procedures are specified, i.e., the
SAO Edge Offset and the SAO Band Offset, in order to fil-
ter all pixels in the frame, where the parameters are defined
per each component of the CTU [29]. After the SAO fil-
tering, which reduces the pixel distortion, the final frame is
obtained.

1) Fine-Grain Parallelism: In the SAO filtering procedure,
all pixels of the deblocked frame can be filtered in parallel.
However, in the proposed GPU-based SAO module, each warp
processes a CTU pixel block, since the SAO filtering is applied in
a CTU basis, as referred in [8]. This approach avoids multiple
requests of the SAO parameters in the GPU global memory.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

SAO Control Data 0 IP and SAO //Deblocked 0 IP and SAO //Deblocked
Control Data// _Frame 1 Control Data// _Frame Copy Pixel
1

Block
Edge Offset Filtering Band Offset Filtering

Warp Fetch
Assignment Jjg SAO Type
[SAO Control Data]

bits: [,31 --- 27 [26[25 --- 21 [20[19 - 15[14,[13 == 9[8[7 == 2]

[Value Sign| [Value Sign| [Value Sign| [Value Sign| Band/t:|ass1"T(i'p‘e

Offset 4 Offset 3 Offset 2 Offset 1

Final
Frame

/] GPU Global Memory

Fig. 6. Flowchart and control data of the GHEVC SAO module (luma or
chroma component).

Hence, 32 pixels of a CTU are filtered in parallel, for both luma
and chroma components.

2) Memory Optimizations: The SAO parameters are packed
into a 32-bit word for each frame component of the CTU, lead-
ing to 12 bytes per CTU, which are stored in the GPU global
memory. The chosen data structure of the SAO Control Data is
presented in Fig. 6 and it comprises the following fields:

1) type (bit 0 and 1): indicates if it is filtered as Edge Offset

(Type = 2), Band Offset (Type = 1) or neither (Type = 0).

2) band/class (bits 2 to 7): signals which class is used for the
Edge Offset filtering, or which initial band is used for the
Band Offset filtering [8].

3) offsets (bits 8 to 31): stores the four offset values used for
the SAO filtering, where 6 bits are used for each offset
separated by their sign and absolute value.

3) instruction throughput: The overall procedure of the im-
plemented SAO module (luma or chroma component) is pre-
sented in Fig. 6. After the Warp Assignment procedure, the SAO
Control Data is fetched from the GPU global memory and the
respective Type is used to select which filtering is applied (see
Fetch SAO Type in Fig. 6). Accordingly, if Type is equal to 2,
the Edge Offset Filtering is performed on the Deblocked Frame,
where each pixel is processed by a single thread. The class of
the Edge Offset (horizontal, vertical, 135° diagonal or 45° diag-
onal), as well as its offset values are obtained from bits 2 to 31
in the SAO Control Data.

If Type is equal to 1, the Band Offset Filtering is executed,
where bits 2 to 7 indicate the first band of pixel values to be
filtered. Then, the four offsets are added to the pixels whose
values belong to one of the four consecutive bands. After the
execution of these filtering procedures, the filtered component
part of the frame is stored in the GPU global memory (see Final
Frame in Fig. 6). Finally, if Type is equal to O, the corresponding
component part of the Deblocked Frame is directly copied to
the Final Frame by the Copy Pixel Block procedure.

In both filtering procedures, the IP Control Data is used to
check if the pixels belong to a PCM predicted block (when the
pem_loop_filter_disabled_flag is set) and if the TBF is set. In
either case, the pixels from those blocks are not filtered.

IV. GPU-BASED HEVC DECODER IMPLEMENTATION

The proposed GHEVC decoder is supported by a heteroge-
neous system composed by a CPU and the GPU as an accel-
erator. The CPU is responsible for the entropy decoder and for
ensuring the correct execution order of the GPU kernels, as
well as for the memory transfers to the GPU memory spaces.
The GPU constant and texture memory spaces are mostly used
to store information that does not change along the video se-

DE SOUZA et al.: GHEVC: AN EFFICIENT HEVC DECODER FOR GPUs

Next frame (f+1)
cPU | Entropy Decoder |

Current frame (f)
GPU GG o | e P | DBF [sA0 JCTEN]

Time

(a)

| 1P1__| DBF1 | SA01 [N Frame

62=C[| _ division_ _

Stream 1

Stream 2

Stream 3 [C= 63 [CIFIIITENN

Time to t1 ta t3 tq DBF

4 pixels E
4 pixels E

ot mct
=N 02 i mc2 [P2 I Der2 I SAo2]
[P3| D3 I sno3 N

ts tg t7 ts to

SAO
E 10 pixels
Stream 2 5
B:: 10 pixels

per stream

Processing region where the module:

[Finished
[About to start
[Executing

(b)

Fig. 7. Proposed processing order of an inter frame with multiple CUDA
Stream configurations and frame division per stream. (a) Only one CUDA
Stream. (b) Three CUDA Streams.

quence decoding process. In particular, the GPU texture memory
is used to save the Transform Coefficient Arrays [8], whereas
the constant memory is used to store:

1) frame height and width: the frame size is employed mainly
in the thread and warp positioning of each frame;

2) HEVC tables: including table specification for the in-
traPredAngle and invAngle;

3) HEVC filter coefficients: the interpolation filter coeffi-
cients of the luma 8-tap and the chroma 4-tap filters;

4) HEVCf{lags: the HEVC control flags that specify the mod-
ules behavior, like pcm_loop_filter_disabled_flag and
strong_intra_smoothing_enabled_flag;

5) list O and 1: the reference frames, used in the Motion
Compensation kernel, are stored in the GPU global mem-
ory. However, since the same reference frame can be in
both lists at the same time, List 0 and I are created in the
constant memory as arrays of pointers to the GPU global
memory to avoid data replication.

It is worth to note that although some information is sent only
once at the beginning of the decoding process, other parameters
are updated more frequently, e.g., List O and /. The remaining
data, e.g., DIT, MC, IP and SAO Control Data, are transferred to
the GPU global memory before the execution of the respective
GPU kernels.

A. Module Execution Order

As referred in [25], at the global CPU+GPU level, the GPU
execution is organized in CUDA Streams, which represent a
sequence of operations which are executed sequentially (issue-
order) in the GPU. To process a given frame by using a single
CUDA Stream, the proposed module execution order is pre-
sented in Fig. 7(a). Hence, it is important to notice that while
the GPU is processing a given frame f, the CPU can start the en-
tropy decoding procedure for the next frame f + 1, in a pipeline
way. In accordance, the first command to be processed is the
memory transfer operation of all the required input data to the
GPU global memory (see Fig. 7(a), CPU=-GPU).

As presented in Fig. 7(a), the first kernel to be executed corre-
sponds to the DIT module, in order to compute the residual data
for the prediction kernels (MC and IP). Afterwards, the MC
module is executed before the IP kernel, in order to produce

467

the reconstructed blocks of the inter predicted CUs. After the
IP module, the whole reconstructed frame is in the GPU global
memory and it is used as an input for the DBF module. Although
the DBF is performed “in place” over the reconstructed frame
(to produce the deblocked frame), the SAO module is not a “in
place” algorithm. In this way, to ensure compliancy with the
HEVC standard, all warps from the SAO module can only read
the deblocked frame and write the final frame into a separated
memory space. The final frame is then transferred back to the
CPU side (see Fig. 7(a), GPU=-CPU).

It is worth noticing that while the deblocked frame memory
space is reused to store the reconstructed frame of the next
frame, the final frame is kept in the GPU global memory to be
used as a reference frame for the next frames. The final frame
memory space is allocated in the Decoded Picture Buffer, which
is rewritten whenever the final frame is not used as a reference
frame.

B. Concurrency Control

When multiple CUDA Streams are applied, commands of
different streams (kernels and CPU<GPU memory transfers)
may run concurrently, according to the GPU capabilities [25]. In
Fig. 7(b), an example of a frame processing with three CUDA
Streams is presented. Since each stream is executed indepen-
dently, the frame is horizontally divided in sets of CTU rows
(due to the IP module dependencies), as presented in [7].

Although the operations within a single Stream are launched
in order by the CPU, they may be scheduled out of order across
different Streams. This situation is illustrated in Fig. 7(b), where
the C=G3 memory transfer of Stream 3 starts before Stream 1
and Stream 2 (at time t). Between ¢ and to, the DIT3 and part
of the MC3 GPU kernels of Stream 3 are completely overlapped
with the memory transfer of Stream 1, which leads to an overall
processing time reduction.

Besides the overlapping of CPU<GPU memory transfers
with GPU kernel executions, even the GPU kernels from differ-
ent Streams can be overlapped. However, the number of over-
lapped GPU kernels is limited by the amount of available GPU
resources (i.e., the resources that are not occupied by the ker-
nels that are already executing in the GPU). As illustrated in
Fig. 7(b), although the DIT] kernel from Stream I can start at
to, it only starts at t3, because the GPU is still occupied with
the MC3 kernel of Stream 3. In this case, only at t3 there are
enough GPU resources to start the DIT1 kernel from Stream 1.
A similar behavior can be observed along the time for the other
modules of each stream in Fig. 7(b).

In general, the IP kernel of a Stream i can not finish before
the IP kernel of the Stream i—1, due to the intrinsic data de-
pendencies among them. Nevertheless, it may happen that the
first 8-pixel row of a Stream’s CTU set contains only inter pre-
dicted blocks. In this case, the IP kernel is independent from the
IP kernels of other streams, as presented for the IP3 kernel in
Fig. 7(b), which finishes its execution at 4.

Since the DBF module operates on 8 x 8 blocks, which are
shifted by four pixels in the vertical and horizontal components
(as explained in Section III-D), the processing region per Stream

468

TABLE II
SELECTED SETUP AND VIDEO SEQUENCES

HEVC Profile ~ Main (8-bit depth with 4:2:0 chroma subsampling)
Video Class S (Ultra HD 4K), A (WQXGA) and B (Full HD)
Class S [31] CrowdRun, ParkJoy, DucksTakeOff,

(500 frames) IntoTree and OldTownCross

Configuration All Intra, Random Access and Low Delay
QP 22,27,32,37

is also shifted up by four pixels. It is important to notice that
even for the 4:2:0 chroma subsampling, the chroma processing
region is also shifted by four pixels, because the HEVC standard
specifies its filtering procedure in the 8 x 8 grid of the chroma
frames as well [28]. This implies that the DBFi kernel of Stream i
has to wait for the processing completion of the reconstructed
frame part from Stream i—1. In Fig. 7(b), this effect is observed
in DBF3, which does not start between ¢, and t5, until /P2 has
finished. At the bottom of Fig. 7(b), the processing region per
Stream is also shown (at tg) for the Deblocked frame, where
the DBF?2 is about to start, DBF3 is executing and DBF] is
already finished. To ensure the correct GPU kernel execution
order, explicit synchronization points are set, where the DBF
from the Stream 1 starts after the IP from the Stream i—1.

In the SAO kernel, the processing region is shifted by one
pixel, in order to guarantee the correctness of the procedure if
the SAO Edge Offset is selected in the border of the process-
ing region. However, in order to ensure the coherency between
the luma and chroma processing regions, an overall shift of 5
pixels is applied in the chroma (4 for DBF + 1 for SAO), cor-
responding to a shift of 10 pixels in luma for the 4:2:0 chroma
subsampling. In this way, a similar procedure is performed for
the SAO module, where the SAO7 kernel of Stream i waits until
the deblocked frame part of Stream i—1 is available. For exam-
ple, in Fig. 7(b), the SAO3 kernel is put on hold from t; to tg
until DBF?2 is done, where explicit synchronization points are
used between the SAO from the Stream i and the DBF from the
Stream i—1. Moreover, at the bottom of Fig. 7(b), the processing
regions of the luma component in the Final frame are shown at
tg, where SAO?2 is about to start, SAO3 is executing and SAO/
has already finished. Herein, it is possible to observe how the
processing regions have been shifted up over the Final frame
in comparison with the original Frame division per stream (in
dashed lines).

Finally, to support the explicit synchronization between
streams for the IP, DBF and SAO kernels, CUDA events are
used in addition to the cudaStreamWaitEvent function. Hence,
kernels from one stream can be halted until a certain event re-
ports its completion (in this case, a kernel of another stream).

V. EXPERIMENTAL RESULTS AND EVALUATION

To evaluate the performance of the proposed GHEVC de-
coder, the JCT-VC recommended test conditions and configura-
tions [30] were adopted, by considering the setup summarized
in Table II. For such purpose, it was considered the HEVC Main
profile, which can handle 8-bit depth pixel values sampled with
the 4:2:0 chroma subsampling format. From the recommended

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

test video sequence set [30], the sequences with the highest
frame resolution were adopted, which includes Class A (2560
x 1600) and Class B (1920 x 1080) resolutions. A new set of
video sequences (Class S) was also used, in order to include the
Ultra HD 4K (3840 x 2160) frame resolution, from the SVT
High Definition Multi Format Test Set [31].

All frames of the selected video sequences were encoded with
three different configurations: i) All Intra, only intra frames; if)
Random Access, a pyramidal structure with I and B frames; and
iii) Low Delay, only the first frame is an intra frame, while the
remaining are B frames. Although the Low Delay configuration
is not recommended for Class A resolutions, it was included for
all tested sequences for validation purposes. Furthermore, the
several considered video sequences were encoded by setting the
Quantization Parameter value from 22 to 37 (see Table II).

To encode the input video sequences, the HM 15.0 reference
software [11] was used according to [30], without any Tiles and
Wavefront Parallel Processing features, in order to simulate the
worst case scenario. The resulting bitstreams were then used in
the decoding procedure, to evaluate all the GHEVC modules.
Finally, the conceived integration was aggregated to the HM 15.0
decoder in order to evaluate:

1) kernel-level thread block configuration: to determine
the best thread block configuration for each proposed
module;

2) preliminary profiling analysis: to show the contribution
of each proposed module to the overall processing time,
when only one CUDA stream is employed;

3) CUDA streams scalability: to evaluate the achieved per-
formance, by overlapping GPU kernels and memory trans-
fers (CPU<GPU) with multiple streams;

4) comparison with previous work: to present the perfor-
mance improvement over previous implementations;

5) HEVC decoding performance: to evaluate the best perfor-
mance obtained with the selected hardware.

The presented evaluation considered the whole decoding
structure except the entropy decoder, which was kept at the
CPU side because of its highly irregular execution pattern and
weak adequacy to be efficiently executed at the GPU acceler-
ator. In fact, since the entropy decoder corresponds to the first
module of the decoding pipeline, representing less than half of
the overall decoding time [3], [5], [13], it was decided to exe-
cute it in parallel with the the remaining decoding modules, i.e.,
frame (f + 1) was entropy decoded at the same time that the
previous frame (f) was processed by the remaining decoding
structure (see Section IV-A).

In what concerns the hardware platforms that were used in
this experimental evaluation, six different computing setups
were adopted using GPUs from two NVIDIA architectures
(i.e., Maxwell and Kepler) and an Intel Core i7-6700K CPU
@ 4.00GHz with four cores. The six considered GPU devices
are presented in Table III, which represent a rather represen-
tative range from low-end to high performance GPUs. Finally,
the obtained results are presented for each configuration, QP
and frame resolution (class), where the obtained performance
in a given class represents the computed average for all tested
sequences with the same frame resolution.

DE SOUZA et al.: GHEVC: AN EFFICIENT HEVC DECODER FOR GPUs

469

TABLE III
AVAILABLE NVIDIA GPU DEVICES FROM MAXWELL AND KEPLER ARCHITECTURES

Architecture Name (Compute Capability) Short Name Cores (SMs) Clock Bandwidth L2 Cache Year
Maxwell GeForce GTX TITAN X (5.2) Titan 3072 (24) 1000 MHz ~ 336.5 GBps 3.14 MB 2015
GeForce GTX 980 (5.2) G980 2048 (16) 1177 MHz 224.0 GBps 2.10 MB 2015

GeForce GTX 960 (5.2) G960 1024 (08) 1215 MHz 112.0 GBps 1.05 MB 2015

Kepler Tesla K40c (3.5) K40c 2880 (15) 745 MHz 288.0 GBps 1.57 MB 2013
GeForce GTX 780 Ti (3.5) G780 2880 (15) 980 MHz 336.0 GBps 1.57 MB 2013

GeForce GTX 680 (3.0) G680 1536 (08) 1006 MHz 192.0 GBps 0.52 MB 2012

TABLE IV C=6 ——

GPU KERNEL EXECUTION TIME (IN MS/FRAME) WHEN
VARYING THE NUMBER OF WARPS IN A THB

Kernel execution time [ms/frame]

Number of warps per ThB MC 1P DBF SAO
01 331 1603 0.62 0.52
02 248 1612 0.74 0.77
03 - 15.82 0.60 0.89
04 226 1587 054 0.41
05 - 1592 0.54 0.41
06 - 15.81 0.53 0.42
07 - 1596 0.53 0.45
08 237 1570 0.51 0.44
09 - 16.01 0.52 0.47
10 - 16.02 0.58 0.42

A. Kernel-Level Thread Block Configuration

In this subsection, the several proposed GPU kernels were
evaluated by considering different ThB configurations. The only
exception was the DIT kernel, because the number of warps
can not be changed without explicitly changing the proposed
approach. As explained in Section III-A, in the DIT kernel,
the warps are assigned according to the size of the TB and
they jointly execute the inverse transform by using the GPU
shared memory and synchronization points. In this case, a higher
number of warps would force synchronization between differ-
ent TBs, which are asynchronously performed in the herein
proposed DIT, while a smaller number of warps would force
changes in the algorithm implementation (with a possible per-
formance loss). However, this restrictions is not applicable to
the remaining GPU kernels, which are thus considered in the
following analysis.

Due to the huge amount of memory accesses in the MC
kernel, the reference frame block position calculations heavily
exploit bitwise operations, in order to avoid integer divisions
and multiplications. For this reason, the MC kernel requires a
number of warps given by a power of 2. Finally, the maximum
number of warps per thread block is device-dependent for the IP
and the MC kernels, due to the GPU resource demands within
each warp. Hence, the maximum number of warps obtained in
the Titan GPU for the IP kernel and for the MC kernel is 20 and
8, respectively.

The average execution time that is spent by each GPU kernel
is presented in Table IV by considering the following configura-
tion: i) one CUDA Stream; ii) QP value equal to 27; iii) all video
sequences from Class S (3840 x 2160); and iv) All Intra config-

DIT =X MC ==X IPCZ] DBF =0 SAQ BN G=C N
T T

08
06
0.4
02 b ot 4Py

Normalized time for QP 22

22 27 32 37

32
Random Access Low Delay

(a)

All Intra

C=G6C—1 DITEXX MCE—X IPCZ] DBF =0 SAQ B G=C W
T

—_— —
2GRN < ‘
02 A 4 B S 1
1] KR %%%% revee|
0 37 77 32 37 7 @ @ %

2 27 3
All Intra Low Delay

Normalized time for QP 22
o
o

Random Access

(b)

C=G6C— DITEXX MCEE N IPCZJ DBF =0 SAO0 BN G=C W

2R

7
Low Delay

08
06 -
04 -
02

Normalized time for QP 22

22 2
Random Access

©

27 32
All Intra

Fig. 8. Normalized frame processing time of the QP = 22 for All Intra,
Random Access, and Low Delay configurations of a) Class S, b) Class A, and c¢)
Class B.

uration for the IP kernel and Random Access configuration for
the remaining kernels. The number of registers per kernel was
kept fixed, while the amount of shared memory is a function of
the number of warps per thread block. Although the difference
between the maximum and the minimum obtained performance
is less than 1 ms/frame, the number of warps per kernel that pro-
vide the lowest time is: i) 4 warps per ThB for the MC kernel; i7)
8 warps per ThB for the IP kernel; iii) 8 warps per ThB for the
DBF kernel; and iv) 4 warps per ThB for the SAO kernel. All
these results confirm the considerations previously presented in
the Section III.

B. Preliminary Profiling Analysis

The evaluation of each individual module performance was
conducted in a preliminary profiling analysis, by running one
CUDA Stream in the Titan GPU. The obtained profiling results
are presented in Fig. 8, by using a normalized scale to repre-
sent each individual module processing time (including memory
transfers) over the overall frame processing time. For such pur-
pose, it was considered the QP = 22 configuration, because it
represents the most time consuming setup. Although the nor-

470

malized memory transfers time, to and from the GPU (C=G
and G=-C), increases with the QP value for all classes and con-
figurations, this overhead is always constant in a class, since it
only depends on the amount of data to be processed.

Regarding the All Intra configuration, the IP module is the
most time consuming one, as it can be observed in Fig. 8 for
Class S, Class A and Class B. However, for all the tested classes,
the IP processing time is reduced with the increase of the QP
value. In fact, for higher QP values, the HEVC encoder prior-
itizes the frame rate over distortion, which leads to the selec-
tion of greater block sizes per CTU. Consequently, the GPU IP
module on the decoder side can take advantage of these blocks
with more coalesced memory accesses and less dependencies to
check. This effect can be better observed for frames with higher
resolutions (e.g. Class S), as a result of the increased parallelism
that is obtained with a large wavefront.

The processing time of the remaining modules slightly varies
with the considered QP values, on account to the obtained paral-
lelism level, where the second most time demanding module in
All Intra configuration is the DIT. Even though higher QP values
imply larger TB sizes and, consequently, a smaller DIT process-
ing time, the execution time of this kernel is mainly constrained
by the amount of “bypassed” TBs. In fact, due to the limited
prediction efficiency exploited by the All Intra configuration, a
great amount of residual data is obtained, where TBs are rarely
encoded as “skipped” nor “bypassed”. The same is not observed
for the Random Access and Low Delay configurations, where
the inter prediction can provide smaller residual data and more
“bypassed” TBs.

In what concerns the Random Access and Low Delay configu-
rations, both presented a similar behavior in all classes. Here, the
IP module is also the most time consuming when considering
lower QP values. Nevertheless, the IP processing time decreases
when the QP value increases, due to the encoder algorithm ten-
dency to exploit inter prediction rather than intra prediction in
high QP values scenarios for bitrate saving purposes (see Fig. 8).
Furthermore, when compared with the Random Access config-
uration, the normalized IP processing time is even lower for the
Low Delay configuration, since it has less intra predicted CUs
and only one intra frame.

For all classes in the Random Access and Low Delay con-
figurations, the processing time of the MC module marginally
decreases with the increase of the QP values. In this case, the
overall processing time is also reduced for higher QP values
due to the larger PB sizes. However, this reduction is dimin-
ished because of the increased amount of inter predicted PBs,
which were intra predicted for lower QP values.

In what concerns the in-loop filters (i.e. DBF and SAO), it was
observed that the overall processing time is almost constant over
the tested QP values, for all configurations and classes. This is
mainly due to the fact that the DBF and SAO kernels are strongly
memory-bounded, which leads to an overall performance that
is dominated by the frame resolution.

C. CUDA Streams Scalability

In order to evaluate the performance gains that can be obtained
by overlapping the GPU kernels and memory transfers, the input

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

22 —— 271 A 32 O 31 -

All Intra Random Access

BT T 16
26 - . 14
gl pets| 12
£ 10
E 20
8 Goscce0eeeP| ¢|8
B | |
140 4 6 8 10 12 14 4

2
Number of CUDA Streams

Number of CUDA Streams

(2)

Number of CUDA Streams

2 —— 21 A 32 O 3 -

Random Access Low Delay
55 T T T T T T 55 T T T T T T

e e
St

All Intra
T

ms/frame

3 3

Py} S — L 25 L1 I T
0 2 4 6 8 101214 0 2 4 6 8 10 12 14
Number of CUDA Streams Number of CUDA Streams

(b)

Number of CUDA Streams

2 —+— 271 A 32 O 31

Random Access Low Delay

All Intra
T

ms/frame

e ar

10 12 14 '60 2 4 6 81012141'40 2 4 6 8 10 12 14
umber of CUDA Streams Number of CUDA Streams

(©)

70246

=
£
3
3
-]
=X
o
e
S
2
2
8
3
@
=

Fig. 9. Evaluation of the performance scalability with the number of CUDA
Streams for All Intra, Random Access, and Low Delay configurations of (a)
Class S, (b) Class A, and (c) Class B. (a) Class S — 3840x2160, (b) Class A —
2560 x 1600, (c) Class A — 1920 x 1080.

bitstreams were decoded by employing up to 13 CUDA Streams
in the Titan GPU. The obtained results, shown in Fig. 9, are
presented as an average processing time per frame (measured in
ms/frame), obtained for each class and configuration (i.e., All
Intra, Random Access and Low Delay). Moreover, the achieved
performance with each tested QP value is presented as a set of
points per each configuration.

As expected, for all classes and configurations, the pro-
cessing time per frame decreases when the number of CUDA
Streams increases, until the minimum processing time per frame
is achieved. In particular, it is possible to observe in the All
Intra configuration that the achieved maximum performance
corresponds to the usage of 8 CUDA Streams. Since the pro-
posed GHEVC decoder bottleneck is the IP module (due to
strict data dependencies between the blocks), the optimal num-
ber of CUDA Streams corresponds to the minimum processing
time observed for the IP module. When more than eight CUDA
Streams are employed, a consequent increase of the processing
time is observed mainly due to the following three factors:

1) used bandwidth: when multiple streams are executed, the
amount of data to be processed has to be split accord-
ingly, in order to support independent memory transfers
and kernel executions in different streams. However, a
large number of small memory transfers may result in an
inefficient use of the PCle bandwidth.

2) kernel overheads: when launching a high number of ker-
nels, the contribution of the time overhead associated with
each kernel launch may decrease the overall performance.

3) occupancy: whenever the multiple kernels consume more
resources than the GPU can provide, the amount of

DE SOUZA et al.: GHEVC: AN EFFICIENT HEVC DECODER FOR GPUs

Class S - 3840x2160
70, T T 110

Class A - 2560x1600

471

Class B - 1920x1080

X

60 100

FPS

50 90

i

40 L L 80,
63.11 11894 ypps 32347 708.08 33.75

Fig. 10.

simultaneously running kernels is limited, resulting in a
serialized execution among the kernels.

When the Random Access and Low Delay configurations are
considered, the best performance is also achieved for § CUDA
Streams. This is easily observed for Class A and Class B, de-
picted in Fig. 9(b) and Fig. 9(c), respectively. For Class S bit-
streams, the IP module is not dominant for high QP values, as
it can be observed in Fig. 8(a). In this case, the minimum pro-
cessing time is achieved for a number of streams higher than
eight (for QP 32 and 37), since the MC module is the most
time consuming in the proposed GHEVC decoder [see Fig. 8(a)
and Fig. 9(a)]. Hence, since the processing times per frame in
those specific cases are very similar, 8§ CUDA Streams will be
considered for the subsequent experimental evaluation.

D. Comparison With Previous Work

Fig. 10 presents the performance improvement of the herein
proposed GHEVC decoder over [8]. Since the implementation
proposed in [8] refers to a HEVC intra decoder, only the All
Intra configuration was considered in this evaluation. The ex-
perimental values were obtained with the NVIDIA Titan GPU
by using 8 CUDA Streams, since this is the best setup for both
HEVC decoders. The presented frame rate (FPS) measures were
computed by averaging the obtained performance for all con-
sidered tested sequences for each class and QP configuration
(from 22 to 37). Likewise, the obtained bitrate (corresponding
to each QP) is also an average of the obtained bitrate for each
sequence within a class, which is obtained by multiplying the
encoded bits/frame (for a specific QP and configuration) and the
original frame rate (in FPS).

As it can be observed, the performance of the herein pro-
posed GHEVC decoder is superior to the one that was obtained
in [8] for all considered resolutions. When comparing the perfor-
mance across different classes, the performance improvement
of the proposed GHEVC decoder is higher for Class B (see
Fig. 10). In this case, the obtained improvement is the result of
a more efficient load balancing across the SMs, which becomes
apparent due to the low parallelism level (i.e., wavefront size).
In [8], a ThB with eight warps is responsible for performing
the intra prediction of a 64-pixel row of the frame, which, in a
smaller wavefront size, implies that most of the SMs are idle
during the IP kernel execution. In contrast, the newly proposed
GHEVC decoder distributes a 64-pixel row of the frame across
eight different ThBs. At the end, the execution time of the pro-
posed GHEVC decoder is 6% faster than [8] in the Class B
video sequences. For Class S and Class A, a larger wavefront
size (when compared to the one in Class B) reduces the effect
of the proposed load balancing in GHEVC, since there are less
idle SMs in [8] during the IP kernel execution. Nevertheless, the

6194 ppps 10325

110
17747 1115 20.75 39.61 86.34

Mbps

Overall performance of the herein proposed GHEVC and [8] on the Titan GPU for All Intra configuration in Class S, A, and B.

proposed GHEVC decoder still provides slightly higher perfor-
mance than [8].

Within a single class, the performance improvement provided
by the GHEVC decoder is greater for higher bitrates. This can be
explained by the fact that, at lower bitrates, the input bitstream
mostly includes larger prediction blocks (i.e., larger PU sizes),
which implies less block dependencies to check and less idle
SMs in both decoders.

E. HEVC Decoding Performance

Fig. 11 presents the experimentally obtained performance
of the herein proposed GHEVC decoder, when compared with
the OpenHEVC [12] CPU-based decoder executed with four
threads of the 17-6700K CPU (represented as OHEVC). The
OpenHEVC was chosen for the baseline comparison reference,
although it is not a GPU-based HEVC decoder. Nevertheless,
when considering real-time capability, it is the most commonly
used open-source implementation in the literature. Moreover, as
stated in Section II, it was not possible to provide a fair and direct
comparison with some existing GPU-based HEVC decoders,
since they are either exploiting a dedicated GPU decoding hard-
ware or they are closed source. The presented performance in
Fig. 11 was obtained with three different GPUs from NVIDIA
Maxwell architecture (Titan, G980 and G960) and corresponds
to the resulting average frame rate (FPS) across all tested se-
quences, for each class and QP configuration (from 22 to 37).
Furthermore, the presented bitrate is an average bitrate for all
video sequences within a class for each QP value.

In all presented configurations and decoders (GHEVC and
OHEVC), the resulting frame rate decreases when the frame
resolution is increased, on account to the greater amount of data
to be processed. Even though, the proposed GHEVC decoder
achieves greater frame rates, up to 69, 200 e 210 FPS of Class
S in the Titan GPU for the All Intra, Random Access and Low
Delay configurations, respectively. In fact, it can be observed
that the proposed GHEVC decoder outperforms the OHEVC
for the majority of setups. The only exceptions are observed
for the All Intra configuration for lower bitrates. In those cases,
the strict data dependencies in the IP module do not allow fully
exploiting the GPU capabilities.

When looking at the GHEVC results, it can be observed that
G980 GPU performance is slightly higher than the Titan GPU
performance, in All Intra configuration, although the latter one
owns 50% more CUDA cores than the G980 GPU. In fact,
both GPU devices share the same architecture, with 128 CUDA
cores per SM. However, while the Titan GPU has 24 SMs, the
G980 GPU has 16 SMs (see Table III). On the other hand, the
G980 GPU has a higher core clock frequency (1177 MHz) than
the Titan GPU (1000 MHz). As a result, a greater number of

472

All Intra

Random Access

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

Low Delay

250 T T
20
150 G980 —S—

100
50 G960 ——

Titan —A—

0 0
63.11 11894 ypps 32347 708.08 10.30 284 pps

(a)

All Intra

71.01

Random Access

0 1
276.38 11.63 25.82 85.45 361.76 OHEVC —5—

Mbps

Low Delay

Titan —A—
G980 —S—
G960 ——

1) 0
33.75 61.94 Mbps 103.25 177.47 3.58

1056 Mbps
(b)

All Intra

31.67

Random Access

0
7149 407 12.90 30.68 80.29 OHEVC —5-

Mbps

Low Delay

T

T

0
20.75 39.61 86.34 1.04

Mbps
©

Fig. 11.

SMs to perform kernels with a low degree of data parallelism, a
higher amount of memory accesses and synchronization points
(such as the IP kernel), may not necessarily provide perfor-
mance benefits. First, the overall utilization of cores and SMs
is still limited by the amount of intrinsic IP parallelism offered
in the wavefront (i.e., inherent data dependencies, as referred
in Section III). Second, increasing the amount of parallel mem-
ory requests in flight (from all SMs) may influence the amount
of L2 cache evictions. Finally, by coupling these two effects
with a lower operating frequency of the GPU cores (slower
dispatch rate of instructions) and a slower operating speed of
private/shared memory levels, a memory bound kernel does not
necessarily benefits from an increased number of SMs.

In fact, this behavior can be observed for all the consid-
ered GPU devices from Maxwell architecture (G960, G980 and
Titan) in All Intra configuration in Fig. 11, where all three GPUs
achieve a very similar performance level. However, as soon as
the share of the IP in the total execution time is decreased (i.e.,
when the share of data-parallel MC is increased in the Random
Access and Low Delay configurations — see Fig. 8), the benefits
of increased number of SMs are more observable, where the
best performance is achieved on Titan, followed by G980 and
G960. It is worth noting that the achieved performance in these
configurations does not directly correspond to the increase in
the number of SMs across different GPU devices, since the intra
prediction still has a significant share in the total execution time,
thus diminishing the overall gain of other data-parallel kernels.

The average frame rate obtained with the proposed GHEVC
decoder for all tested video sequences and for all considered
GPU devices is presented in Table V. In this evaluation, six
GPU devices were used that belong to two NVIDIA architec-
tures (i.e., Maxwell and Kepler), from high performance to
low-end GPUs (see Table III). Table V also presents the av-
erage power consumption (in Watts) for each GPU, class and
configuration.

1 1
209 ppps 495

0
17.60 0.97 2.05

Evaluation of the GHEVC decoder performance using NVIDIA Maxwell GPUs over the OpenHEVC decoder (running in the CPU).

As expected, for all GPU devices, the attained frame rate
is higher for lower resolution video sequences (e.g., Class B),
due to the small amount of data to be processed. Within a single
class, the obtained frame rate for a GPU is different across tested
sequences, because of the characteristics of each sequence bit-
stream (i.e., the amount of intra blocks, the amount of smaller
PU partitions, motion characteristics etc). For example, in All
Intra configuration, the SteamLocomotive and the Kimono bit-
streams provide the highest performance for Class A and Class
B, since they have the largest amount of bigger PU partitions
among the video bitstreams within their classes. Nevertheless,
for Class S, the reduced amount of smaller PU partitions in all
tested sequences leads to a more balanced performance among
the sequences (e.g., in Titan GPU, the obtained frame rate is
between 51.0 to 61.9 FPS).

When considering the Random Access and the Low Delay
configurations, it is observed that the amount of intra predicted
blocks in inter frames is the most limiting performance factor.
For example, the video bitstreams of sequences DucksTakeOff,
PeopleOnStreet and BasketballDrive are those with the higher
amount of intra predicted blocks within their classes, which,
by consequence, are responsible for the lower performance in
Class S, Class A and Class B, respectively, for any GPU.

In what concerns the power consumption, the obtained mea-
sures (using NVIDIA nvprof) within a single class only slightly
vary for the same GPU across different configurations (see
Table V). Nevertheless, within a single configuration, the power
consumption increases with the frame resolution for all GPUs.
Among the available GPUs, the G960 Maxwell GPU is the one
with the lowest power consumption (around 38.2 W), which
outperforms the K40c Kepler GPU not only in performance, but
also in energy efficiency.

In general, from the performance point of view, the pro-
posed GHEVC decoder running on NVIDIA Maxwell GPUs
outperforms its execution on Kepler devices. Even the decoding

DE SOUZA et al.: GHEVC: AN EFFICIENT HEVC DECODER FOR GPUs

473

TABLE V
AVERAGE PERFORMANCE (FPS) OBTAINED PER TESTED SEQUENCE WITH THE PROPOSED GHEVC DECODER

All Intra Random Access Low Delay

Sequence Titan G980 G960 G780 K40c G680 Titan G980 G960 G780 K40c G680 Titan G980 G960 G780 K40c G630
Class S CrowdRun 51.0 55.1 446 488 379 82 1372 126.1 802 573 439 150 1433 1279 783 569 437 134
DucksTakeOff 582 600 469 540 423 99 1086 1006 67.0 53.1 410 154 969 863 558 463 36.1 14.1
InToTree 619 639 493 582 455 113 1654 1503 953 662 505 21.8 1653 1479 924 662 508 2I.1
OldTownCross 565 61.1 489 53.0 4l1.1 85 1815 1643 1025 71.1 543 233 1928 1699 103.8 709 543 237
ParkJoy 532 559 453 507 395 93 1336 1232 794 57.1 436 159 1365 1219 761 549 422 143

Average Power (W) 90.8 68.5 385 - 83.4 - 91.0 68.6 38.6 - 83.5 - 909 68.6 38.6 - 83.4 -
Class A Traffic 794 882 715 760 57.1 107 411.0 380.8 2234 151.0 111.7 383 4619 411.6 228.1 1550 1148 3838
PeopleOnStreet ~ 81.1 90.8 799 778 584 100 261.7 2472 1557 1140 852 205 2843 2592 157.6 1120 844 187
Nebuta 979 1053 857 930 723 18.6 2727 2488 1488 118.7 903 37.6 2563 229.0 1362 112.6 862 37.1
SteamLocomotive 123.0 1332 1104 115.1 87.5 20.5 327.8 317.9 2045 148.8 110.1 405 3337 3146 1973 1441 107.2 387

Average Power (W) 90.5 682 384 - 82.8 - 90.5 683 384 - 82.8 - 90.5 684 382 - 82.7 -
Class B Kimono 156.0 1769 152.8 1464 1127 254 6326 6145 3782 258.6 1950 56.7 7035 6513 3753 2662 2005 56.0
ParkScene 121.0 1392 1257 1137 872 150 601.1 6055 379.7 247.7 1855 479 7374 7047 4022 263.6 1969 47.5
Cactus 120.0 1385 1262 1139 86.8 16.0 5922 611.1 3934 261.0 192.1 492 6748 6714 3982 268.1 2002 43.8
BQTerrace 1249 1454 1328 1172 893 143 7356 6985 4145 266.6 200.7 56.8 792.8 7319 4145 2714 2040 564
BasketballDrive 1249 1434 129.3 1164 89.0 182 4623 4828 3258 218.1 1625 440 4774 490.1 317.8 2189 1639 419

Average Power (W) 903 678 379 - 82.5 - 89.8 66.6 36.8 - 82.2 - 90.2 68.1 38.1 - 824 -

procedure running on the low-end G960 Maxwell GPU is faster
than the G780 and K40c high-performance Kepler GPUs in
most of the cases. Nevertheless, an average frame rate above
30 FPS is obtained in almost all the cases, except for the old-
est G680 GPU. In particular, for the high-performance Titan
Maxwell GPU, average frame rates of 56, 145 and 147 FPS in
the All Intra, Random Access and Low Delay configurations,
respectively, are observed for Class S.

VI. CONCLUSION AND FUTURE WORK

An efficient GPU-based HEVC decoder, exploiting the mas-
sively parallel processing capabilities of current state-of-the-art
GPU accelerators, was proposed in this paper. The presented de-
coder executes the whole decoding pipeline at the GPU, except
for the entropy decoder module, which is kept at the CPU side
due to its highly irregular execution pattern. With the considered
decoding structure, the frames are completely decompressed in
the GPU device and kept in the GPU memory for the subse-
quent inter frame predictions. All the required data was care-
fully packed and managed in order to avoid stride GPU global
memory accesses and minimize the memory transactions in a
GPU kernel. Moreover, all the deblocking filter decisions are en-
tirely performed at the GPU side, by manipulating the already
existing data. Furthermore, to take the maximum advantage of
CUDA Streams, each frame is horizontally divided, where the
set of regions that is processed by each stream is cautiously
updated in order to ensure the compliancy with the HEVC
standard.

A comprehensive profiling of all the GHEVC decoder mod-
ules identified the current design bottleneck, which, as expected,
is the most sequential module, the Intra Prediction. An eval-
uation of the overlap between the GPU executions and the
memory transfers provided an insightful knowledge on how
the proposed decoder behaves with CUDA Streams. Finally, the

optimized GHEVC decoder was extensively evaluated, where
eight CUDA Streams assure the best overall performance. When
comparing with the open-source OpenHEVC decoder (with four
CPU threads), the proposed GHEVC decoder shows significant
improvements in most application scenarios, by providing an
average frame rate of 145, 318 and 605 frames per second
for Ultra HD 4K, WQXGA and Full HD, respectively, in the
Random Access configuration.

In the future, an optimized SIMD Entropy Decoder for CPU
is expected to be integrated in the proposed GHEVC decoder,
which can handle high-level parallelization techniques (i.e.,
Tiles and WPP). Furthermore, a synchronization scheme has
to be developed, in order to conciliate multiple CPU threads
working in parallel with multiple CUDA Streams.

REFERENCES
[1] JCT-VC, High Efficient Video Coding (HEVC), ITU-T Recommen-
dation H.265 and ISO/IEC 23008-2, ITU-T and ISO/IEC JTC 1,
Apr. 2013.
J.R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Com-
parison of the coding efficiency of video coding standards — including
high efficiency video coding (HEVC),” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1669-1684, Dec. 2012.
F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and im-
plementation analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1685-1696, Dec. 2012.
D. Engelhardt, J. Moller, J. Hahlbeck, and B. Stabernack, “FPGA
implementation of a full HD real-time HEVC main profile de-
coder,” IEEE Trans. Consum. Electron., vol. 60, no. 3, pp. 476484,
Aug. 2014.
Y. Duan, J. Sun, L. Yan, K. Chen, and Z. Guo, “Novel efficient HEVC de-
coding solution on general-purpose processors,” IEEE Trans. Multimedia,
vol. 16, no. 7, pp. 1915-1928, Nov. 2014.
M. Chavarrias, F. Pescador, M. J. Garrido, E. Juarez, and C. Sanz, “A
multicore DSP HEVC decoder using an actorbased dataflow model and
OpenMP,” IEEE Trans. Consum. Electron., vol. 61, no. 2, pp. 236-244,
May 2015.
D. E de Souza, A. Ilic, N. Roma, and L. Sousa, “Towards GPU HEVC
intra decoding: Seizing fine-grain parallelism,” in Proc. IEEE Int. Conf.
Multimedia Expo, Jun. 2015, pp. 1-6.

[2]

[3]

[4]

[5]

[6]

[7]

474

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

D. F. de Souza, A. Ilic, N. Roma, and L. Sousa, “GPU-assisted HEVC
intra decoder,” J. Real-Time Image Process., vol. 12, no. 2, pp. 531-547,
2016.

D. F. de Souza, A. Ilic, N. Roma, and L. Sousa, “GPU acceleration of
the HEVC decoder inter prediction module,” in Proc. IEEE Global Conf.
Signal Inf. Process., Dec. 2015, pp. 1245-1249.

G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.
JCT-VC. (2014). Subversion repository for the HEVC test model
version HM 15.0. [Online]. Available: https://hevc.hhi.fraunhofer.de/
svn/svn_HEVCSoftware/tags/HM-15.0/

OpenHEVC. Open source HEVC decoder (OpenHEVC), 2016. [Online].
Available: https://github.com/OpenHEV C/openHEVC

C. C. Chi, M. Alvarez-Mesa, B. Bross, B. Juurlink, and T. Schierl, “SIMD
acceleration for HEVC decoding,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 25, no. 5, pp. 841-855, May 2015.

M. Tikekar, C. T. Huang, C. Juvekar, V. Sze, and A. P. Chandrakasan,
“A 249-Mpixel/s HEVC video-decoder chip for 4k ultra-HD applica-
tions,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 61-72, Jan.
2014.

T. M. Liu et al., “Energy and area efficient hardware implementa-
tion of 4K Main-10 HEVC decoder in ultra-HD blu-ray player and
TV systems,” in Proc. IEEE Int. Conf. Multimedia Expo, Jun. 2015,
pp. 1-6.

M. Abeydeera, M. Karunaratne, G. Karunaratne, K. D. Silva, and A.
Pasqual, “4K real-time HEVC decoder on an FPGA,” IEEE Trans. Circuits
Syst. Video Technol., vol. 26, no. 1, pp. 236-249, Jan. 2016.

S. Momcilovic, A. Ilic, N. Roma, and L. Sousa, “Dynamic load balancing
for real-time video encoding on heterogeneous CPU+GPU systems,” [EEE
Trans. Multimedia, vol. 16, no. 1, pp. 108-121, Jan. 2014.

W. Xiao, B. Li, J. Xu, G. Shi, and F. Wu, “HEVC encoding optimiza-
tion using multicore CPUs and GPUs,” IEEE Trans. Circuits Syst. Video
Technol., vol. 25, no. 11, pp. 1830-1843, Nov. 2015.

D. FE de Souza, N. Roma, and L. Sousa, “OpenCL parallelization
of the HEVC de-quantization and inverse transform for heteroge-
neous platforms,” in Proc. 22nd Eur. Signal Process. Conf., Sep. 2014,
pp. 755-759.

D. F. de Souza, N. Roma, and L. Sousa, “Cooperative CPU+GPU de-
blocking filter parallelization for high performance HEVC video codecs,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 2014,
pp. 4993-4997.

NVIDIA Video Decoder (NVDEC) Interface, NVIDIA Corp., Holmdel,
NJ, USA, 2016.

A. F. Eldeken, R. M. Dansereau, M. M. Fouad, and G. I. Salama, “High
throughput parallel scheme for HEVC deblocking filter,” in Proc. IEEE
Int. Conf. Image Process., Sep. 2015, pp. 1538—1542.

W. lJiang et al., “A novel parallel deblocking filtering strategy for
HEVC/H.265 based on GPU,” Concurrency Comput. Practice Experi-
ence, vol. 28, no. 16, pp. 4264-4276, 2016, cPE-15-0134.R1. [Online].
Available: http://dx.doi.org/10.1002/cpe.3751

L. P. He and S. Goto, “A high parallel way for processing IQ/IT part of
HEVC decoder based on GPU,” in Proc. Int. Symp. Intell. Signal Process.
Commun. Syst., Dec. 2014, pp. 211-215.

NVIDIA Compute Unified Device Architecture (CUDA) C Programming
Guide, NVIDIA Corp., Holmdel, NJ, USA, 2016, v8.0.

1. K. Kim, J. Min, T. Lee, W. J. Han, and J. Park, “Block partitioning struc-
ture in the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, pp. 1697-1706, Dec. 2012.

J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of
the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1792-1801, Dec. 2012.

A. Norkin et al., “HEVC deblocking filter,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1746—1754, Dec. 2012.

C. M. Fu et al., “Sample adaptive offset in the HEVC standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1755-1764, Dec.
2012.

F. Bossen, Common Test Conditions and Software Reference Configura-
tions, Doc. JCTVC-L1100 of JCT-VC, Jan. 2013.

L. Haglund, “The SVT high definition multi format test set,” Sveriges
Television AB, Sweden, Tech. Rep., 2006. [Online]. Available: ftp://vqeg.
its.bldrdoc.gov/HDTV/SVT_MultiFormat/SVT_MultiFormat_v10.pdf

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 3, MARCH 2017

Diego F. de Souza (S’11) received the M.Sc. degree
in electrical engineering from the Universidade Fed-
eral do Rio de Janeiro, Rio de Janeiro, Brazil, in 2010,
and is currently working toward the Ph.D. degree with
the Instituto Superior Técnico, Universidade de Lis-
boa, Lisbon, Portugal.

He is a Member of the SiPS Research Group at
INESC-ID, under the supervision of Prof. Leonel
Sousa and Prof. Nuno Roma. His current research
interests include efficient GPU parallelization tech-
niques for video coding applications, mainly based
on the HEVC standard.

Aleksandar Ilic (S’09-M’12) received the Ph.D. de-
gree in electrical and computer engineering from In-
stituto Superior Técnico (IST), Universidade de Lis-
boa, Lisbon, Portugal, in 2014.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
IST, and a Senior Researcher of the Signal Processing
Systems Group, Instituto de Engenharia de Sistemas
e Computadores R&D (INESC-ID), Coimbra, Portu-
gal. His research interests include high-performance
and energy-efficient computing and modeling on par-
allel heterogeneous systems.

Nuno Roma (S’01-A’06-M’09-SM’13) received
the Ph.D. degree in electrical and computer engi-
neering from the Instituto Superior Técnico (IST),
Universidade de Lisboa, Lisbon, Portugal, in 2008.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
IST, and a Senior Researcher of the Signal Process-
ing Systems Group (SiPS), Instituto de Engenharia de
Sistemas e Computadores R&D, Coimbra, Portugal.
He has authored or coauthored more than 90 papers
appearing in journals and international conferences,
and served in the organization of several international conferences. He edited
two special issues of renown international journals in the areas of energy effi-
cient computer architectures and video encoding.His research interests include
computer architectures, specialized, and dedicated structures for digital signal
processing (including image and video coding and biological sequences pro-
cessing), parallel processing, and high-performance computing systems.

Dr. Roma is a Senior Member of the IEEE Circuits and Systems Society and
a Member of the ACM.

Leonel Sousa (M’01-SM’03) received the Ph.D. de-
gree in electrical and computer engineering from the
Instituto Superior Técnico (IST), Universidade de
Lisboa (UL), Lisbon, Portugal, in 1996.

He is currently a Full Professor with UL. He is
also a Senior Researcher with the R&D Instituto de
Engenharia de Sistemas e Computadores, Coimbra,
Portugal. He has authored or coauthored more than
200 papers appearing in journals and international
conferences, and has edited four special issues of
international journals. His research interests include
VLSI architectures, computer architectures, parallel computing, computer arith-
metic, and signal processing systems.

Prof. Sousa is a Fellow of the IET, and a Distinguished Scientist of the
ACM. He has contributed to the organization of several international confer-
ences, namely as Program Chair and as General and Topic Chair, and has given
keynotes in some of them. He is currently Associate Editor of the IEEE TRANS-
ACTIONS ON MULTIMEDIA, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY, IEEE Access, IET Electronics Letters, Springer JR-
TIP, and the Editor-in-Chief of the Eurasip JES. He was the recipient of several
awards, including the DASIP’ 13 Best Paper Award, the SAMOS’11 “Stamatis
Vassiliadis” Best Paper Award, the DASIP’10 Best Poster Award, and several
Honorable Mention Awards from the Universidade Técnica de Lisboa/Santander
Totta (2007, 2009) and the Universidade de Lisboa/Santander (2016) for the
quality and impact of his scientific publications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

