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Abstract—The high computational demands and overall en-
coding complexity make the processing of high definition video
sequences hard to be achieved in real-time. In this manuscript, we
target an efficient parallelization and RD performance analysis of
H.264/AVC inter-loop modules and their collaborative execution
in hybrid multi-core CPU and multi-GPU systems. The proposed
dynamic load balancing algorithm allows efficient and concurrent
video encoding across several heterogeneous devices by relying
on realistic run-time performance modeling and module-device
execution affinities when distributing the computations. Due to
an online adjustment of load balancing decisions, this approach is
also self-adaptable to different execution scenarios. Experimental
results show the proposed algorithm’s ability to achieve real-time
encoding for different resolutions of high-definition sequences in
various heterogeneous platforms. Speed-up values of up to 2.6
were obtained when compared to the video inter-loop encoding
on a single GPU device, and up to 8.5 when compared to a highly
optimized multi-core CPU execution. Moreover, the proposed
algorithm also provides an automatic tuning of the encoding
parameters, in order to meet strict encoding constraints.

Index Terms—Video Coding, GPGPU, Hybrid CPU+GPU
System, Load Balancing.

I. INTRODUCTION

EAL-TIME compression of high quality video is a fun-
damental prerequisite for modern video services and ap-
plications. By efficiently exploiting temporal and spacial redun-
dancy in the video content, the latest coding standards, such as
H.264/MPEG-4 AVC [1] and HEVC [2], offer efficient video
compression for a wide range of bitrates and resolutions [3].
However, such compression efficiency is offered at the cost of
a significant increase of the encoding procedure computational
demands, and particularly for certain video coding modules.
Driven by the increasing capabilities of modern compute
systems, equipped with general purpose multi-core CPU and
GPU, this manuscript is focused on achieving real-time video
encoding of HD video sequences by simultaneously processing
on all available devices in these hybrid platforms. Several
levels of parallelism are considered, which do not only address
the parallelization of the video encoding modules on different
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architectures, but also their efficient collaborative execution in
heterogenous environments.

The encoding structure of H.264/AVC and HEVC comprise
several modules to process the raw input data. Due to their
different characteristics, the efficient parallelization of these
modules requires the observance of computational demands
and data dependencies at several levels: i) between consecu-
tive frames, i) within a single video frame, and iii) between
the processing modules. Moreover, architecturally different
devices in CPU+GPU systems impose additional challenges
in this parallelization: while GPUs favor to exploitation of
fine-gained data-level parallelism for simultaneous processing
on hundreds of cores, CPU architectures, with several general
purpose cores, exploit the parallelism even at a coarser-grained
level. Therefore, the different modules should be parallelized
for each device by considering not only the inherent per-module
parallelization potentials, but also the device architectural char-
acteristics. It is also important to properly guide the modules’
parallelization to assure an efficient collaborative execution in
CPU+GPU systems, by providing the unified per-module video
coding functionality across different devices.

In order to fully exploit the synergetic computational poten-
tial of CPU+GPU platforms, efficiently parallelized modules
have to be additionally integrated into a single cross-device
unified execution environment. Although several frameworks,
such as OpenCL [4] and StarPU [5], address the programma-
bility issues in CPU+GPU platforms, we focus herein on a direct
integration of the parallelized modules by relying on vendor-
specific programming models and tools, which also allows a
full execution control and attaining a per-device peak perfor-
mance. Other important issue considered herein deals with effi-
cient scheduling and load balancing in heterogenous CPU+GPU
systems. In particular, the attainable performance in multi-core
CPUs and GPUs may differ by several orders of magnitude. This
difference does not only come from their different architectures,
but also from the ability of each device to efficiently process a
certain module (device-module affinity). Furthermore, the ar-
chitecture of current desktop platforms integrates the GPU de-
vices as accelerators, where explicit data transfers must be per-
formed prior and after the GPU execution. The data transfers
and the GPU kernel invocations are explicitly initiated by the
host CPU and they are conducted over bidirectional intercon-
nection lines (PCI Express) with asymmetric bandwidth. Thus,
to fully exploit the capabilities of CPU+GPU systems, it is cru-
cial to consider the performance disparity, module-device affini-
ties and the available bandwidth of communication lines when
distributing the loads.
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For the first time, an iterative load balancing approach that
allows an efficient employment of all available heterogeneous
devices to cooperatively perform the complete video encoding
inter-loop procedure [1] is proposed in this manuscript. The pro-
posed scheduling strategy distributes the computations of the
parallelized modules across the devices by relying on an on-
line characterization of the computational performance of each
device-module pair and the asymmetric bandwidth of the com-
munication lines. These performance parameters are obtained
at run-time and without any a priori assumptions of the device,
module or communication performance. Furthermore, by iter-
atively improving the load balancing decisions, the proposed
adaptive scheduling method does not only allow achieving a
real-time encoding of HD sequences, but also adapting to dif-
ferent execution scenarios. This is particularly important for
video coding on unreliable and non-dedicated systems, where
the encoding time can greatly vary depending on the current
state of the platform (e.g., load fluctuations, multi-user time
sharing, operating system actions).

To the best of the authors’ knowledge, this is one of the first
studies that thoroughly investigates parallel real-time inter-loop
video encoding of HD sequences on heterogeneous systems. Its
main contributions may be summarized as follows: (i) efficient
parallelization of all inter-loop modules on both multi-core
CPU and GPU devices; (ii) integration of the parallelized
modules into an unified CPU+GPU execution environment;
(iii) analysis of the impact of the proposed parallelization algo-
rithms and strategies on the video encoding quality; (iv) linear
programming-based multi-module dynamic load balancing for
multi-core CPU and multi-GPU systems; (v) simultaneous iter-
ative scheduling of the entire inter-loop procedure on several
heterogeneous devices; (vi) accurate online module-specific
parametrization of the computational performance and asym-
metric communication bandwidth in heterogenous CPU+GPU
platforms; (vii) self-adaptive approach for non-dedicated and
unreliable execution systems.

II. RELATED WORK

Current state-of-the-art approaches for parallel video coding
on commodity platforms mainly deal with the individual ac-
celeration of certain modules on multi-core CPU or GPU
architectures, such as INT [6], MC [7], (inverse) transform
and (de)quantization (T&Q) [8], [9] and DBL [10]. The ME
parallelization usually considers FSBM [11]-[18], while only
a few studies consider fast algorithms [19]-[21]. In fact, an
efficient GPU parallelization of the FSBM is usually achieved
by relaxing the spacial data-dependencies, i.e., by redefining
the SA center either with zero [12], [13] or with temporary
dependent predictors [15], [16] (see Section III). This approach
is even used for parallelization of the fast algorithms [20], [21].
In contrast to the FSBM-based approaches, which are capable
of fully exploiting the GPU architecture, the implementation
of the highly adaptive fast algorithms in GPUs often does not
result in significant performance improvements [19], [21].
Only rare attempts on efficient parallelization of the complete
encoder (or its main functional parts) have been presented,
namely, for multi-core CPUs [22], GPUs [23], or CPU+GPU
[24]1-[26] environments. In heterogenous CPU+GPU systems,

state-of-the-art approaches usually i) simply offload one of the
inter-loop modules in its entirety (mainly the ME) to the GPU,
while performing the rest of the encoder on the CPU [13]-[15],
[21], [24], or ii) exploit simultaneous CPU+GPU processing at
the level of a single inter-loop module [11], [25], [26]. However,
these approaches have a limited scalability (only one GPU can be
employed) and cannot efficiently exploit the full CPU and GPU
capabilities (since CPU is idle, while GPU processes the entire
offloaded module) [13]-[15], [24]. Furthermore, for the simul-
taneous CPU+GPU processing of a single-module, the existing
methods for cross-device load distribution usually perform
exhaustive search over the set of all possible distributions and/or
rely on simplified models for module/platform performance. In
particular, in [21] the partitioning for “sub-frame” pipelining is
decided through a large set of experiments; [25], [26] use a single
GPU and constant compute-only performance parametrization;
whereas the load distribution in [11] is found by intersecting the
experimentally obtained fitted full performance curves. In [17],
[18] a simple equidistant data partitioning is applied for video
encoding in multi-GPU systems, since the CPU is only used
for controlling a homogenous set of GPUs.

The methods proposed herein span over three load balancing/
scheduling classes for heterogenous environments, namely:
simultaneous multi-module load balancing, static DAG-based
scheduling and dynamic iterative load balancing. Since the
considered row-based frame partitioning require a distribution
of independent computations, the proposed methods are related
to multi-application divisible load (DLT) scheduling [27],
which usually relies on linear programming to determine the
cross-device load distributions [28]. However, there are only
a limited number of studies targeting the DLT scheduling in
CPU+GPU systems either for general [29], [30] or applica-
tion-specific [31] problems. The proposed dynamic iterative
load balancing routine with on-the-fly update of performance
parameters relies on our previous contributions in this area [29],
[30]. However, a direct application of functional performance
modeling (FPM) [29], [30], [32] was not possible at simulta-
neous multi-application processing level, since up to date there
are no known algorithms to solve this problems with FPM.

The importance of efficient scheduling in video encoding has
been already emphasized in [33], where the authors apply DLT
scheduling for a single-module load distribution in single-port
CPU-only distributed environments for a non-H.264/AVC
encoder. However, to the best of the authors’ knowledge, the
work proposed herein is one of the first that thoroughly inves-
tigates dynamic load balancing, scheduling and parallelization
of H.264/AVC inter-loop modules for real-time video encoding
in heterogenous multi-core CPU and multi-GPU environments.

III. PARALLELIZATION OF THE VIDEO ENCODER

An efficient parallelization of the video encoder on het-
erogenous devices requires a detailed analysis of the entire
encoding structure and the parallelization potential of each indi-
vidual module, regarding their inherent data dependencies and
computational demands. The parallelization of the inter-loop
modules proposed herein focuses on the H.264/AVC standard,
even though the presented strategies can also be applied to
the HEVC standard, due to the similar encoding structure,
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Fig. 1. Block diagram of the H.264/AVC encoder: inter-loop.

modules’ functionalities and data dependencies [1], [2]. Fur-
thermore, when compared to the H.264/AVC standard [1], even
higher processing speedups are expected from the application
of the proposed parallelization models to the several HEVC
modules, due to their even higher computational requirements
and parallelization potentials.

According to the H.264/AVC standard [1], the CF is divided
in multiple square-shaped MB, which are encoded using either
an intra- or an inter-prediction mode (see Fig. 1). The stan-
dard allows a further subdivision of the MB by considering 7
different partitioning modes, namely 16 x 16, 16 x 8, 8 x 16,
8x 8, 8 x4 and 4 x 4 pixels. In the most computationally
demanding and frequently applied inter-prediction mode, the
prediction of each MB is obtained by searching within already
encoded RF. This procedure, denoted as ME, is then further
refined with previously interpolated RF from INT module by
applying the SME procedure. In the MC module, the residual
signal is computed according to the selected MB subdivision
mode, which is found as the best trade-off between the data
size required to encode the residual signal and the MV. This
residual is subsequently transformed and quantized, entropy
coded (alongside with the MV and the mode decision data), and
finally sent the decoder. The decoding process, composed of
the dequantization, inverse integer transform ((T&Q)~!) and
DBL, is also implemented in the feedback loop of the encoder,
in order to locally reconstruct the RF.

A. Data-Dependencies and Parallelization of the Encoder
Inter-Prediction Loop

In the H.264/AVC inter-prediction loop, the encoding of the
CF can not start before the previous frames are encoded and the
required RF are reconstructed, which prevents the encoding of
several frames in parallel. Moreover, the inherent data depen-
dencies between the neighboring MB in certain inter-loop mod-
ules (see Section III-C) also limit the possibility to concurrently
perform the entire encoding procedure on different parts of a
frame. Hence, efficient pipelined schemes with several modules
can hardly be adopted, either for parts of the frame or for the en-
tire frame. Furthermore, the output data of one module is often
the input data for another (e.g., the MVs from ME define the ini-
tial search point for the SME), which imposes additional data
dependencies between the inter-loop modules. Consequently,
the data-dependent inter-loop modules generally have to be se-
quentially processed (within a single frame). The only excep-
tions are ME and INT modules, which can be simultaneously
processed, since both of them use the CF and/or the RF.
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B. Analysis of Efficient Parallel Motion Estimation on CPU
+ GPU Platforms

Considering its high computational complexity, efficient ME
parallelization is crucial to minimize the overall encoding time.
Along its execution, a set of candidates within a predefined SA
and multiple RF are separately analyzed for 7 different MB-par-
titioning modes, by using the computationally demanding SAD
to calculate the matching distortion. In this procedure, the ME
algorithm relies on a median predictor, not only to determine
the SA center, but also to compute the displacement of the MV,
whose cost is added to the obtained SAD value when computing
the matching distortion [1]. In general, there are two classes of
ME algorithms, namely FSBM algorithm and fast search algo-
rithms. By relying on exhaustive FSBM algorithm, all possible
candidates within a predefined SA and multiple RF are sepa-
rately analyzed. Although it allows achieving very high RD per-
formance, FSBM is often considered impractical when serially
performed on a single CPU core due to its high computational
complexity. However, the regular processing pattern of FSBM
algorithm makes it particularly suitable for fine-grained GPU
parallelization [11]-[18], [34], where a significant processing
time reduction can be achieved by exploiting the high compu-
tational capabilities of GPUs.

In contrast to the FSBM, fast search algorithms, such as the
EPZS [35] and the UMHexagonS [36], are usually less com-
putationally demanding. Although significantly lower when
compared to the FSBM, the execution time when fast algorithms
are serially performed on a single CPU core can not meet the
real-time requirements, especially for HD sequences and de-
manding video coding parameters (e.g., several partitioning
modes, multiple RFs). However, in contrast to the FSBM, accel-
eration of the fast ME algorithms on GPU devices is limited by
their highly irregular structure and inherent data dependences
[19]. In detail, to define both the SA center and the early stop-
ping criterion, these algorithms usually do not only apply the
median predictor (as in FSBM), but also a larger set of predictors,
including the best MV from neighboring MB. In the case of the
EPZS algorithm, the distortion values found for these MV are
also used to decide the search pattern and to define the early
stopping threshold. This fact seriously limits the efficiency of a
parallel multi-thread processing, as current MB determines the
ME procedure in the neighboring MB. Since the computational
complexity of fast algorithms usually highly depends on the
video content, it is hard to balance the distribution of the com-
putational load not only among the different MB, but also across
different MV candidates. This is particularly important for GPU
parallelization, where it is required to evenly distribute the loads
across hundreds of cores. Moreover, the irregular execution pat-
tern in fast algorithms causes frequent branch divergency among
the GPU threads [37], leading to the threads serialization and
consequently to adegradation ofthe GPU performance[19],[38].

In order to fully exploit the capabilities offered by different
architectures for collaborative ME on CPU+GPU systems, it
is crucial to ensure that the devices perform the computations on
different frame partitions, by relying on different per-device im-
plementations of the ME algorithm. Considering all above-men-
tioned limitations for GPU parallelization of fast algorithms,
which in certain cases might even result in a slowdown when
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compared to the multi-core CPU execution [19], it was decided
to adopt the FSBM algorithm. Furthermore, achieving the load
balancing across processing devices in CPU+GPU systems by
relying on fast algorithms is almost impossible due to the al-
gorithms’ unpredictable performance, which highly depends on
the video content. Contrary, since GPUs can usually deliver
higher performance than multi-core CPUs, by collaboratively
performing the FSBM it is expected to obtain higher accelera-
tion in CPU+GPU systems (see Section V).

Although the FSBM algorithm imposes significantly less data
dependencies than the fast algorithms, its efficient paralleliza-
tion is still limited by the usage of the median predictor, which
is obtained as the median value of the best matching MV of
the left, up, and right-up neighbors. As a consequence, the pro-
cessing of the current block can not start until these neighbors
have been processed. This limits the number of concurrently
processed MB to one half of the number of blocks located in the
anti-diagonal of the CF [39], which is not sufficient to fully ex-
ploit the computational power of the GPUs [37]. Furthermore,
besides this restriction imposed by the inter-block dependen-
cies, the use of independent median predictors for each MB
partition seriously compromise the efficiency of a GPU par-
allelization. In particular, a common strategy to decrease the
computational demands of the FSBM [11]-[18], [26], [34] is
to reuse the SAD values for the smallest MB partitions to hi-
erarchically compute the SADs for larger ones [40]. However,
this is only possible when the same predictor is used to deter-
mine the SA center for all MB partitions, i.e., they share the
same current and reference MBs. Although several works adopt
the zero MV as the SA center [12], [13], [26], it is not the only
one that can be applied in practice. In detail, the SA center can
be determined with any predictor that satisfies the above-men-
tioned conditions, i.e., it does not impose any additional spa-
tial dependencies. Even though the selection of the predictor
does not influence the amount of performed computation in the
FSBM (total processing time), it might significantly influence
the achieved RD performance. Therefore, the RD performance
of a set of possible candidates for SA center predictors was an-
alyzed in [39] according to the Video Coding Experts Group
(VCEGQG) recommendations [41] and by considering a large set
of video sequences, resolutions, quantizer values and search
ranges. The obtained results suggest that the selection of an ad-
equate predictor is not an easy task, since it highly depends on
the sequence characteristics and video coding parameters [39].
However, in order to challenge the real-time inter-loop video en-
coding in CPU+GPU systems, it was observed that the best MV
found for the 16 x 16 partitioning mode in the previous frame
for the collocated MB represents a good compromise for the SA
center predictor [39]. It is worth noting that the proposed pre-
dictor is only used to compute the SA center. Afterwards, the
selected MV are post-computed according to real median vec-
tors of the neighboring MB.

C. Parallelization of Individual Modules

Due to the large number of parallelized modules and limited
space in the manuscript, we provide only a brief description of
the applied parallelization techniques for GPU and CPU archi-
tectures. Further details can be found in [39].

1) Motion Estimation Parallelization: The CPU paralleliza-
tion exploits both coarse-grained and fine-grained data-level
parallelism, by processing several MB-rows on different
threads and by applying SIMD vector instructions to the
processing of neighboring candidates, respectively. The cyclic
reuse of reference sample vectors is achieved by processing
the candidates in a column major order. When hierarchically
computing the matching distortions, a throughput of two
SADy,4 values per vector instruction is attained. Finally, in
order to reduce the branches, the minimum distortion values
are determined with a single vector instruction, applied to
the concatenated {distortion | MV} pairs. Since the distortion
value is placed in the most significant 2-bytes, by updating
the minimum distortion, the attached MV is automatically
updated. The fine-grained GPU parallelization is based on
[12], which was not only further optimized, but also addi-
tional SA scalability was provided [39]. In detail, the MB
are processed on different CUDA thread-blocks, while the
matching candidates are examined in parallel on the various
threads. The entire MB are kept in the local caches, while the
SA samples are cached and processed in portions, according
to the available space in the local cache. The distortion values
of larger MB-partitions are calculated with hierarchical SAD
reusing. The minimum distortion values found among the
candidates processed by each individual thread are kept in
local registers. Finally, the minimum values found by the
different threads are compared with each other in an optimized
reduction process, where the memory access pattern and the
thread reusing were improved and the thread divergency was
minimized [12].

2) Interpolation Parallelization: Inthe CPU parallelization,
different MB rows are examined by several parallel threads.
Within a single thread, SIMD vector instructions are applied
on the sub-pixels with the same offset from the full-pixel,
since they require the same filtering operations. However,
the complexity of the filtering operation significantly differs
between interpolation of half- and quarter-pixels, i.e., six-tap
filtering versus linear filtering. In the GPU parallelization,
each thread-block interpolates the pixels corresponding to a
single MB. Within a tread-block, each thread computes all
sub-pixels for a single full-pixel [12], [39]. Both the CPU
and GPU parallelizations store the interpolated pixels in a
specific format to ease the vectorization of the SME module.
In the SME module, the same distortion operation is applied
on sub-pixels that are exactly 4 sub-pixel positions apart from
each other (in the original format of the interpolated frame [1]),
where the sub-pixels can be full-, half- or quarter-pixels. How-
ever, to increase the efficiency of the proposed parallelization
approach, the interpolated frame is subdivided into 4 different
interpolated subframes, in order to allow the direct application
of vector instructions. In particular, since the vector instructions
can be applied on data stored in successive memory positions,
each interpolated subframe consists only of sub-pixels that
require the same distortion operation (every fourth sub-pixel
from the original format), which are now stored in consecutive
memory addresses. With such approach, the vectorized SME
distortion calculation can be efficiently applied on sub-pixels
belonging to each interpolated subframe.
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3) Sub-Pixel Motion Estimation Parallelization: In con-
trast to the full-pixel ME, the SME candidates for different
MB-partitions are examined on disjoint SAs centered in the
corresponding MVs found in the full-pixel ME procedure.
Hence, its parallelization in both CPU and GPU architectures
can not exploit neither the hierarchical distortion computation
nor the caching of the SA samples (since they can not be
reused for multiple MB partitions). The SME is implemented
and parallelized in seven separate sub-modules, each one for
different MB partitioning granularity by applying different
parallelization strategies [39]. In particular, the CPU par-
allelization is performed by exploiting both coarse-grained
parallelism (different MB-rows are examined in separate
threads) and fine-grain parallelism (within a single tread the
distortion is computed by simultaneously processing several
MB partitions with vector instructions). The number of simul-
taneously processed MB partitions is determined by the ratio
between the vector register size and the MB partition width,
while the total number of vector instructions corresponds to
the MB partition height. The overall parallelization efficiency
is assured by using seven data-independent kernels in the GPU
parallelization (one for each SME sub-module), which are
simultaneously processed in separate CUDA streams. Each
sub-module is parallelized such that the MB are processed
by parallel thread-blocks, and each thread processes a single
candidate of a single MB-partition. Moreover, only MB sam-
ples are cached in the local memory, while the SA samples are
accessed directly from the main memory.

4) Motion Compensation Parallelization: The MC module
comprises two sub-modules, namely, the MB partitioning mode
decision and computation of the residue. In the CPU paralleliza-
tion, both steps process different MB-rows, by exploiting the
coarse-grained parallelization. The fine-grained parallelization
of the mode decision sub-module uses vector additions to ac-
cumulate the distortion values for different partitioning modes,
which are then compared to find the mode with the minimum
distortion. According to the selected mode, the residual signal
is computed by applying a vectorized subtraction to the selected
best matching candidates from the current MB partitions. In
the GPU parallelization of both sub-modules, a single thread
block examines one MB. In the mode decision kernel, several
reduction trees are applied to accumulate the distortions for
each mode and to determine the minimum distortion mode. The
residual signal is computed within a single thread, by using the
loaded pair of the original and reference pixels [39].

5) Inverse Transform and de Quantization Parallelization:
The coarse-grained CPU parallelization assigns different
MB-rows to different threads for T&Q and (T& Q) ! modules.
Between the vertical and horizontal transforms, the transpo-
sition of the considered MB partitions is performed, where
both transform and transpose operate on two MB partitions at
once. The (de)quantization process is performed by applying
a vectorized multiplication and shift operations on trans-
formed/quantized samples in subsequent memory locations
[39]. In the GPU parallelization, a single MB is processed in
a single thread block. When the transform is performed along
the vertical direction, each thread computes a single column,
while in the horizontal direction it computes a single row. To
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reuse computed pixel offsets, quantization and its inverse are
performed within the same kernel.

6) Deblocking Filtering Parallelization: The DBL is per-
formed in two steps to filter vertical and horizontal edges. Due to
the strict data dependencies between the MB sharing the same
edge, the wavefront model [39], [42] is usually adopted. Ac-
cordingly, the coarse grained CPU parallelization is applied to
different MB on a single anti-diagonal. On the other hand, the
DBL vectorization is limited by the highly adaptive nature of
the algorithm, where different filtering operations need to be ap-
plied for different edge pixel values. Consequently, the vector-
ization can only be done if all possible branches are executed
and the correct ones are selected afterwards, according to the
observed branch conditions. In order to vectorize the filtering of
vertical edges, it is also required to transpose the loaded vectors.
The application of the wavefront pattern to a fine-grained GPU
parallelization seriously limits the attainable GPU performance,
since the number of MB in the anti-diagonal (thread blocks) is
not sufficient to fully exploit the GPU computational power. In
the initial step, each thread filters one pixel of the vertical edge,
which is subsequently used for the processing of the horizontal
edges. Despite all considered optimizations [39], this algorithm
cannot avoid branch divergence, but it takes advantage of adap-
tivity to reduce the computation load.

IV. COLLABORATIVE VIDEO ENCODING ON MULTI-CORE
CPU AND MULTI-GPU ENVIRONMENTS

As depicted in Fig. 2, modern CPU+GPU systems incor-
porate a set of & CPU cores and w GPU accelerators, i.e.,
p; heterogenous devices, where i={1,.., k+w}. Since the
accelerators are not stand-alone devices and usually perform
the computations on data explicitly transferred from the main
memory, the CPU is responsible for initiating both the device
executions and the data-transfers across the interconnec-
tion lines. Hence, in order to fully exploit the capabilities
of CPU+GPU systems for collaborative video encoding, an
unified execution environment is developed, which integrates
different per-device parallelizations of the inter-loop modules
presented in Section III. This environment ensures the efficient
cross-device execution by coalescing different programming
models and vendor-specific techniques. For such purpose,
it provides the full execution control in terms of per-device
memory management, automatic mechanisms for data-transfers
between the devices, as well as the necessary kernel launches.
Since a module might fit better to a certain device architecture
(GPU or CPU), one of the clear benefits of such an unified
environment is that the processing of the inter-loop modules
can be distributed to different devices with distinct characteris-
tics, according to their module-device affinities. However, an
additional level of collaborative execution is also considered
herein, since several heterogenous devices can simultaneously
perform different MB rows of a single module. Hence, we
tackle herein the issues related to the efficient cross-device
parallel inter-loop processing at three levels, namely: i) simul-
taneous collaborative processing; ii) inter-module scheduling
and iii) dynamic iterative load balancing.

Simultaneous collaborative processing can be efficiently
performed on the inter-loop modules with sufficient amount
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Fig. 2. Heterogeneous multi-core CPU and multi-GPU/accelerator system.

of computational load to distribute. According to the experi-
mental evaluation provided in [39], ME, INT, and SME mod-
ules take more than 90% of the total inter-loop encoding time,
which makes them good candidates for this kind of processing.
Hence, it is necessary to determine the most suitable distribu-
tion (e.g., the number of MB rows) across the heterogeneous
devices, such that the overall execution is as balanced as pos-
sible. In detail, for both the ME and INT modules, the distri-
bution vector o={(m,, [;)} needs to be determined, where the
tuple (m;, ;) represents the number of MB rows assigned to
ME (m;) and INT (l;), respectively. Similarly, for each SME
kernel (j€{16x16,16x8,8x16,8x8,8x4,4x8,4x4}), it is
required to determine the distribution vector 3 = {(s; ;)} with
the number of MB rows (s; ;) to be processed on each p; de-
vice. Due to the lower impact of the remaining modules on
the total video encoding time, the adopted inter-module sched-
uling assigns each remaining module to a device according to
its module-device affinities, such that the overall and sequen-
tially performed MC + T&Q + T&Q ! + DBL procedure is
executed in the shortest time.

The proposed iterative approach for scheduling and load
balancing does not rely on any assumption about module or
device performance. Instead, it relies on realistic performance
characterization which is obtained during the execution of the
video coding procedure (in runtime). In order to capture the per-
formance disparity of the heterogeneous devices and the corre-
sponding module-device affinities, the performance of each de-
vice is quantitatively expressed as the ratio between the given
workload (e.g., MB rows) and the time taken to process it. In
detail, for the ME, INT and SME modules, the performance of
each p; device is expressed by j1;, A; and o; ; for each module/
mode, respectively (according to the previously defined m;, {;,
and s, ; distributions). Since the bandwidth of the intercon-
nection lines does not depend on the module characteristics,
it is expressed as the ratio between the data size (i.e., bytes)
and the time taken to transfer the data between the CPU and
the connected device. Due to the fact that modern bidirectional
interconnections (e.g., PCI Expess) usually deliver an asym-
metric bandwidth, the available bandwidth from the CPU to
the device is modeled with ¢;, while 8; expresses the band-
width from the device to the CPU, for each connected device
pi(i={k+1, .., k4+w}). The general structure of the proposed
algorithm for collaborative inter-loop video encoding consists
of two main routines:/nitialization phase and Iterative phase
(see Algorithm 1).

Algorithm 1 Inter-Frame Scheduling Algorithm (Outline)

Initialization phase
1: load the first inter-frame

2: determine initial « distribution for ME and INT, such that
m;=l;=N/(k+w) for each processor p;, i={1, .., k+w}

3: execute, in parallel, the assigned ME and INT MB rows
(m; and [;) on each p; device and record the execution time of
each load (tm; and #/;), as well as the time taken to transfer
all the input and output data

4: determine initial 3 distribution by equidistant load
partitioning s; ;=N/(k-+w) for each processor p; and for each
SME mode j€{16x16,16x8,8x16,8x8,8x4,4x8,4x4}

5: execute the assigned s; ; loads and record the corresponding
execution times 7s; ; and the transfer time for input and output
data, for each device and SME mode

6: on each p; device, perform the remaining inter-loop modules
and record the execution times, as well as the input and output
data transfer times

7: calculate the per-processor performance p;=m; /tm;,
Ai=li/tl;, and 0; j=s; ;/ts; ;, as well as the asymmetric
bandwidth of the interconnections, ¢; and 8;, for each non-CPU
device p; (i={L,.., k+w}), according to the recorded transfer
sizes and times in each direction

8: proceed to the Iferative phase
Iterative phase:
1: for frame_nr=2to nr_of _inter_frames do

2: call ME+INT Load Balancing routine to determine the
« distribution

3: simultaneously process the assigned number of MB
rows for ME and INT modules (from « distribution) on
each p; device, perform the input and output transfers,
and record the corresponding times

4: call SME Load Balancing routine to determine the
distribution

5: simultaneously execute SME modes (from (3
distribution), perform the necessary transfers, and record
the execution and transfer times

6: call Inter-module scheduling routine to determine the
module-device execution pairs for the remaining modules
and record the corresponding processing/transfer times

7: Update Relative Performance Parameters and
determine if the load balancing is achieved (for dedicated
systems)

8: end for
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A. Initialization Phase

The Initialization phase of the algorithm is used to assess the
initial performance parameters, obtained during the encoding
of the first inter-frame. For the simultaneous collaborative pro-
cessing of ME, INT and SME modules, the required perfor-
mance information is obtained by performing an equidistant MB
row-wise partitioning among all available heterogeneous de-
vices (lines 2 and 4 in Algorithm 1). The execution times on each
device, as well as the input and output data-transfer times, are
recorded (lines 3 and 5) and used to calculate the module-spe-
cific relative device performance and asymmetric bandwidth of
interconnection lines (line 7). For inter-module scheduling, the
remaining modules are run, in parallel, on all the existing hetero-
geneous devices, in order to assess the module-device affinities,
by recording the execution time for each module (line 6). The
obtained data in the Initialization phase is used as an input of
the Iterative phase.

B. Iterative Phase

After the Initialization phase , which is only applied during
the encoding of the first inter-frame, the Ilferative phase is
applied for every subsequent inter-frame. This phase dynam-
ically balances the computational load of the simultaneously
processed modules, and efficiently distributes the remaining
modules. Moreover, it also iteratively improves the load bal-
ancing decisions and adapts to the current state of the execution
platform. The Iterative phase consists of three main scheduling
routines: 1) ME+INT Load Balancing (line 2 in Algorithm
1); 2) SME Load Balancing (line 4), and 3) Inter-module
scheduling (line 6), which are all used for each inter-frame.
The scheduling decisions from these three routines are used
for parallel cross-device execution of the respective modules,
followed by recording the execution/transfer times for each
assigned module-device pair (lines 3, 5 and 6). The Update
Relative Performance Parameters (line 7) concludes the Itera-
tive phase for a single inter-frame, by updating the performance
parameters and determining the achieved balance.

1) ME + INT Load Balancing: The simultaneous collab-
orative processing of ME and INT modules relies on linear pro-
gramming to obtain the « = {(my,{;)} distribution, by par-
titioning the total number of MB rows (V) across the avail-
able heterogenous devices. Since each (im;, I;) distribution tuple
consists of strictly integer values, the load balancing approach
relies on relaxing an integer linear program into a rational for-
mulation [28], in order to reduce the scheduling overheads while
ensuring a parallel execution as balanced as possible. This re-
laxation allows to obtain the upper bound of the optimal load
distribution, which is transposed into the discrete domain by ap-
plying a refinement procedure.

The load balancing problem considered herein is usu-
ally denoted as multi-application divisible load scheduling,
whose linear program formulation is summarized as follows:
MINIMIZE Thq; SUBJECT TO:

m; >0;1;>0; Z m;=N; Z =N (Vie{l, ... k+w}) (1)

i {;
Z—L + - < T ok} )

(Vie{l
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The objective of this function is to minimize the total
ME+INT processing time (Zi4;) across all employed devices.
Equation (1) states that each load within a (m,,/;) tuple in the
« distribution vector must be of a non-negative value, and that
the sum of per-module assigned loads must be equal to V.
Equations (2)—(4) reflect the inter-device load balancing condi-
tions (in the time domain), where the parallel execution across
several devices (including the data-transfers) should guarantee
the minimum 7Tjg. For each module, the computation time is
represented by the ratio between the assigned load (i, or [;)
and the corresponding module-specific device performance (i,
or A;). Although ME+INT are simultaneously performed in all
the devices, on the CPU side they are processed in sequence
(see (2)), while in each GPU device these two modules are
performed in parallel (see (3) and (4)). The time to perform
the data-transfers is modeled as the ratio between the amount
of transferred data (in bytes) and the bandwidth of the inter-
connection lines in each direction (¢; and 6;). The ME module
operates on m,; MB-rows from the CF, whose data size is
represented as a multiple of m; and the MB row size b.¢ (in
bytes). Similarly, the returned amount of data is represented
by the size of produced MV for all MB partitions and MB in a
row (b, ), multiplied by the 1, rows that are processed. The
amount of data corresponding to the interpolated samples is a
multiple of /; and the size of a single interpolated row 6, ¢. Due
to the limited memory of GPU devices and in order to further
exploit data reusing, the list of required RF is kept updated in
form of a FIFO circular buffer, where the oldest RF is updated
with the last RF produced at the end of the inter-loop.

The obtained upper bound of the optimal load distribution
(MB rows assigned to each device) is a vector of real values,
which are subsequently rounded down to the nearest integers.
This results in a certain number of loads being unassigned,
which cannot exceed the number of employed devices. Hence,
the remaining loads are assigned to devices by iteratively
incrementing their load until all NV rows are distributed for each
module, with following refinement procedure:

1. If > m;<N,ie{l,..,k+w} then go to step 2 else go to

step 4.
2. Find q¢€{l,.., k+w}
min{(m; +1)/p:}.

such that (mg + 1)/t =

3. mg=mgy+1 Repeat step 1.
4. If 3" [;< N then go to step 5 else stop the refinement.
5. Find re{l,..,k+w} such that (I.4+1)/c, =

min{({; + 1)/e;}.
6. {,=l,+1 Repeat step 4.
This « distribution is then used for ME+INT collaborative
processing on all heterogenous devices.
2) SME Load Balancing: This routine aims at de-
termining the J={(s;;)} distribution vector across
all p;, devices and for each SME mode §S;, where

JE{16x16,16x8,8%x16,8%8,8x4,4x8,4x4}. Similarly to

the ME+INT load balancing, the [ vector is determined by
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Fig. 3. Construction of a weighted DAG from the data-flow diagram and a possible minimal path (represented in bold).

relaxing an integer linear program into the rational domain and
by applying the refinement procedure. The SME load balancing
is expressed in the following linear program: MINIMIZE T
SUBJECT TO:

83,5205 Zsm:N (Vie{l, .., k+w}, Vi) ©)
S5 cqy (Viell, . k) Y)) (6)
~ 04
7
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As before, the main objective is to minimize the total execu-
tion time Ts across all employed devices, where (5) states that
the loads in each (s; ;) tuple are non-negative and their sum
is equal to V, for each SME mode. Equations (6) and (7) ex-
press the load balancing conditions to attain the minimum 7.
For each mode, the computation time is expressed as the ratio
between the s; ; load and the corresponding ; ; device perfor-
mance. The entire SME is processed in parallel on all devices.
On the CPU side all S; SME modes are sequentially performed
(see (6)), while on each GPU device these modes are performed
concurrently (see (7)). Prior to the execution of the SME modes
on non-CPU devices, the already estimated full-pixel MV and
the interpolated samples need to be transferred (i.e., b/, and
v, #» respectively). For each mode, the resulting amount of data
to be transferred is represented by multiplying s; ; by the size
of the estimated MV in a single row b, (in bytes). To round
down the obtained values to the nearest integers, the refinement
procedure is then applied to the obtained $ load distribution,
which is defined as follows:

1. For each j from S,

2. Ifz 8i7]'<N, iE{l, .
step 1
3. Find qe{l, .., k+w}
(895 +1)/0og j=min{(si; + 1)/0i;}
4. s4,;=54.;+1. Repeat step 2.

3) Inter-Module Scheduling: In this procedure, each of

the least computationally intensive modules (MC, T&Q,

k+w} then go to step 3 else go to

such that

(T&Q)~1, DBL) is mapped into a processing device according
to its module-device affinities. To minimize the time of a
MC + T&Q + T&Q~! + DBL sequence, this procedure relies
on the performance parameters from the Initialization phase.

The implementation of this procedure is illustrated in Fig. 3
for the case of a typical CPU+GPU system. To reflect the dif-
ferent module-device execution affinities, a data-flow diagram
is dynamically constructed, including both the processing and
the data transfer times (in each direction) for each of the re-
maining modules and devices in the system. This diagram al-
lows the construction of a weighted DAG, which encapsulates
all possible communication paths between the accelerators and
the CPU. The DAG nodes, i.e., 4, B, .., H, represent the de-
cision points, where each module can be mapped to any one
of the processing devices. The edges represent the individual
module transitions, weighted by the respective computing and
data transfer times. Thus, the shortest path between the starting
and ending nodes corresponds to the minimum encoding time of
a complete MC + T&Q + T&Q~! + DBL sequence. Dijkstra’s
algorithm [43] is typically used to find such a shortest path, de-
termining the best mapping between modules and devices. Due
to the small number of nodes and edges, this algorithm does not
introduce a significant overhead to the procedure.

4) Relative Performance Parameters Update: As soon as
each inter-frame is encoded, the module-specific performance
parameters of each device are updated. In particular, by relying
on the measured execution and data-transfer times for each de-
vice, the p;, A;, 055, ¢, and §; are updated according to the
assigned loads in the previously used « and 3 distributions.
Then, the newly calculated performance parameters are used
to update the « and 3 load distributions to be applied in the
following inter-frame encoding. Such online updating proce-
dure allows to iteratively improve the load balancing decisions
with each processed inter-frame and to adapt to the individual
non-linear device performance for the different modules and
load sizes. For non-dedicated systems, this procedure provides
an important self-adaptability characteristic to the proposed al-
gorithm, which makes it suitable even for execution scenarios
where the performance greatly varies with time (as presented in
Section V).
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TABLE 1
PROCESSING DEVICES AND CONSIDERED HETEROGENEOUS CPU + GPU SYSTEMS.
Devices | CPUN CPU_C GPU_T GPU_F_ | GPU_F; Systems Py GPUs
Model Intel Intel GeForce GeForce GeForce §§ :gg ggg—g gigf?
Corei7 | Core2Quad | 285GTX 580GTX 580GTX ’ - =
SysCF1 | CPU_C GPU_F1
# Cores 4 4 240 512 512 SysNTT CPUN GPU_T GPU_T
Frequency 3 GHz 2 GHz 1.48 GHz 1.54 GHz 1.59 GHz . = . h
Memory 4GB 4GB 1GB 1.5GB 1.5GB SysNFT | CPUN | GPUF  GPU_T
- : SysNFF | CPUN | GPU_F  GPU_F
TABLE 11
OVERALL RD ANALYSIS RESULTS FOR DIFFERENT SEARCH AREA SIZES (SA) PERFORMED ACCORDING TO [41].
SAT: 32x32 SA2: 64x64 SA3: 128x128 SA3 vs. SAT
Format Sequence Encod. Proposed UMHexagonS Proposed UMHexagonS Proposed UMHexagonS Proposed UMHexagonS
frames dB % dB % dB % dB % dB % dB % dB % dB %
Foreman 300 031 7.34 -0.36 8.49 029 | 686 | -0.31 7.26 0.19 | 440 | 032 747 0.14 | 333 | -0.06 1.46
Mobile 300 -0.04 0.81 -0.07 1.46 -0.05 | 097 | -0.06 1.25 -0.03 | 050 | -0.07 1.39 -0.01 0.18 0.00 -0.06
CIF Paris! 300 -0.52 9.76 -0.14 2.61 041 | 769 | -0.13 2.35 035 | 657 | -0.12 2.28 016 | 285 | -001 0.19
(352x288) Stefan 260 -0.36 6.71 -1.61 | 3309 | 036 | 671 | -0.60 | 11.68 | -0.30 | 5.69 | -0.47 9.08 0.16 | 297 | -124 | 2446
Table 260 0.28 6.74 -0.24 5.68 021 | 498 | -0.24 572 0.15 | 354 | -023 5.41 014 | 329 | -0.02 0.45
Tempete 260 -0.10 1.85 -0.30 5.83 -0.05 | 098 | -021 4.03 0.04 | 077 | -022 4.20 -0.07 133 | -0.09 1.82
BigShips 150 -0.03 093 -0.09 3.10 20.03 | 088 | -0.09 318 20.03 | 088 | -0.09 318 -0.01 036 | -0.01 0.24
City_corr 150 -0.06 1.87 -0.20 6.11 -0.05 | 137 | -0.19 5.88 -0.04 | 136 | -0.19 6.06 003 | 072 | -0.01 0.26
Crew 150 0.18 6.41 0.14 4.89 019 | 661 | -0.14 493 0.19 | 658 | -0.14 493 -0.01 044 | -0.02 0.58
720p CrwdRun 150 -0.07 1.30 -0.18 3.52 -0.07 | 137 | -0.18 3.40 0.09 | 176 | -0.17 3.34 0.03 -0.56 | 0.00 0.08
(1280x720) Jets? 150 0.62 | -11.27 | -1.08 | 2519 | -0.16 | 3.04 | -137 | 3321 | -040 | 829 | -0.88 | 2040 022 | 450 | -128 | 3251
Night 150 -0.33 9.05 038 | 1051 | -027 | 748 | -0.24 6.56 021 | 565 | -021 5.86 017 | 448 | -021 5.67
Raven 150 -0.22 5.56 -0.53 | 1417 | -020 | 511 | -047 | 1253 | -021 | 521 | -043 | 11.69 002 | 055 | -0.10 2.49
1080p RollToms 60 -0.09 495 0.14 8.60 011 | 597 | 0.16 9.60 011 | 622 | -0.17 | 1013 004 | 219 | -0.03 2.00
(1920x1080) | Sunflower 125 -0.15 4.16 081 | 2572 | -0.08 | 227 | 045 | 1371 | -0.08 | 220 | -044 | 1332 009 | 267 039 | 1181
Toys&Cal 125 -0.18 6.68 -0.86 | 3800 | 017 | 619 | -0.75 | 3272 | -015 | 554 | -0.76 | 32.92 005 | 212 | -012 5.09

1 FrameSkip=1; 2 StartFrame=300

Whenever the performance does not significantly vary (e.g.,
dedicated computing systems), it is even possible to reduce the
already small impact of the scheduling overhead on the whole
encoding time, by terminating the Iferative phase as soon
as the load balancing is achieved. For each scheduling stage
(corresponding to the above-mentioned routines), the achieved
load balancing is evaluated by comparing the obtained execu-
tion times of the employed devices. If the difference between
the measured execution times satisfies a predefined accuracy
margin, the achieved load distribution is marked as balanced
and used for the encoding of the subsequent inter-frames.

V. EXPERIMENTAL RESULTS AND EVALUATION

To evaluate the proposed parallelization and load balancing/
scheduling techniques, this section presents a comprehensive
set of experimental results obtained for both the RD and the
processing performance of the parallel implementations of the
H.264/AVC encoder based on JM 18.4 reference software [44].
For such purpose, a vast set of 352 x 288 (CIF), 720p, 1080p
and even 3840 x 2160 resolutions were considered. In order
to validate the efficiency of the proposed framework and al-
gorithms in several different execution scenarios, a broad set
of heterogeneous CPU+GPU setups were specifically chosen to
cover a wide range of processing platforms not only with dif-
ferent computational performance, but also with different de-
vice architectures (see Table I). In particular, an Intel Core 2
Quad (CPU_C) and an Intel Core i7 (CPU_N) architectures
were used as CPUs, whereas three NVIDIA GPU devices were
selected from Tesla (GPU _T) and Fermi (GPU_F, GPU F;)
architectures. All systems were running OpenSUSE 12.1 with
CUDA 4.1, Intel Parallel Studio 12.1, and OpenMP 3.0.

A. Rate-Distortion Analysis

As discussed in Section 111, an efficient parallelization of the
FSBM ME module in GPU-based platforms can be achieved

by relying on a single SA center predictor for all MB partitions.
Table II shows the overall RD performance obtained for a broad
set of video sequences, resolutions, QP and SA sizes. The pre-
sented values represent a subset of the extensive RD analysis
conducted in [39], where several possible candidates for the SA
center predictors were evaluated. These results were obtained by
strictly following the VCEG recommendations [41] for /PP P
sequences with 4 RF, Baseline Profile, and the following QP
{ISlice, PSlice}: {22,23}, {27,28}, {32,33} and {37,38}.
According to [39], the MV that was found in the previous
frame for the collocated MB when using the 16 x 16 par-
titioning mode (marked with Proposed in Table II) can be
selected as a viable and advantageous SA center predictor for
the current frame MB. The achieved RD performance with
Proposed predictor was then compared with the performance
of the original UMHexagonS [36] algorithm from the JM
reference software [44], since one of the rare attempts to par-
allelize an adaptive fast search algorithm on GPU was made
for a simplified version of this algorithm (smpUMHexagonS)
[19], which is expected to deliver lower RD performance. To
provide a fair comparison between the FSBM ME algorithm
that uses the Proposed predictor and the UMHexagonS [36]
fast algorithm, separate RD-curves were drawn (for different
QP) and using the original JM software, under the same testing
conditions [39]. The RD analysis was performed by calcu-
lating the difference between each of these curves and the
RD-curve obtained with the original FSBM algorithm. Table II
reports these objective differences calculated by relying on
the Bjondegard measurement method [45] and by using the
VCEG software tool [41]. The average differences are ex-
pressed in both bitrate (in %) and PSNR (in dB). As it can be
observed, for different sequences and SA, the FSBM encoding
with the Proposed predictor outperforms the UMHexagonS
[36] in 40 (out of 48) cases, especially for the HD sequences
(= 87%). The most notable difference occurs for Jets 720p
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Fig. 4.

video sequence for small SA, where even the original FSBM
was outperformed. This fact can be justified by the presence
of a pan-left movement of the camera in the considered part of
this low motion video sequence, which allows more accurate
motion prediction by relying on the MVs from the previous
frames (used by the Proposed predictor) than with spatially
dependent or zero predictors. However, when larger SAs were
considered, even ME with spatially dependent predictors was
capable of finding the minimal distortion candidates, which
were not within the smaller SA. In order to challenge the
real-time encoding on commodity systems (see Table I), the
difference between the RD-curves was evaluated for different
SA sizes (“SA3 vs. SA1”). With the Proposed solution, the av-
erage difference in bitrate of 1.9% is achieved for all sequences
(max. 4.5%) [41].

Finally, although the obtained results clearly show that the
proposed predictor achieves an adequate coding efficiency for
collaborative CPU+GPU real-time encoding of HD sequences,
it is worth to note that further research should be performed in
order to determine the best FSBM-based predictor. However,
such an investigation is out of the scope of this paper.

B. Evaluation of the Proposed Methods in Multi-Core CPU
and Multi-GPU Environments

Fig. 4 presents the obtained performance, measured in en-
coded fps, of the proposed collaborative inter-loop video en-
coder. In order to conduct a strict performance evaluation of
the video encoder inter-loop, the intra-mode block prediction in
all encoded inter frames was disabled and the SME was per-
formed for all MB partitions and partitioning modes. The pre-
sented results were obtained in the SysNF and the SysNFF het-
erogenecous systems (see Table I) and in a single device setups,
i.e., a multi-core CPU (CPU_N) and a GPU (GPU_F), when
processing HD video sequences with different resolutions for
four different SA sizes. In all presented charts, the shaded area
represents the performance region where it is not possible to
achieve a real-time encoding. As expected, the overall perfor-
mance of the inter-loop encoding significantly decreases be-
tween two successive SA sizes, due to the quadruplication of
the ME computational load. However, it can also be observed
that the obtained performance is not four times lower, due to the
fact that the complexity of other inter-loop modules does not in-
crease with the SA size. For all the considered SA sizes, the pro-
posed methods succeeded to efficiently exploit the synergetic
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Achieved performance (in fps) for different SA sizes (average results for 1 RF). (a) 1280 x 720 video resolution. (b) 1920 x 1080 video resolution.

performance of heterogeneous devices, by significantly outper-
forming their corresponding single device executions. At this re-
spect, it is also worth noting that, by relying on the proposed col-
laborative execution strategies, a real-time inter-loop encoding
can be achieved even on commodity CPU+GPU desktop sys-
tems. In particular, in the SysNFF platform, the real-time en-
coding can be attained for a SA size of up to 64 x 64 pixels
for 720p sequences, while it is achieved for 32 x 32 SA size
for 1080p sequences. Moreover, these charts also emphasize the
efficiency of the proposed GPU inter-loop parallelization, evi-
denced by the achieved real-time 720p HD encoding on a single
GPU _F device, with a 32 x 32 SA size. To further challenge the
real-time inter-loop encoding on the off-the-shelf desktop sys-
tems, we adopt a 32 x 32 pixels SA for the following experi-
mental evaluations, which for the conditions considered herein
does not impose a significant RD degradation when compared
to larger SA sizes (see Section V-A).

Fig. 5 presents the performance of the proposed methods ob-
tained with different platform configurations (see Table I), when
encoding 720p and 1080p HD video sequences for a different
number of RF. As it can be observed, for these two HD reso-
lutions, the proposed parallelization, load balancing and sched-
uling approaches allow achieving a real-time encoding rate (=
25 fps) for multiple RF. As an example, for the 1280 x 720 res-
olution, all tested platforms succeeded in achieving a real-time
video encoding for multiple RFs. In detail, it can be observed
that the proposed methods allow achieving a real-time encoding
performance for 12 and 3 RF for the 720p and 1080p resolu-
tions, respectively. As expected, the platforms equipped with
Fermi-based GPU devices (GPU_F, GPU F) tend to deliver
a higher overall system performance than the platforms with
Tesla GPUs (GPU_T). By relying on the presented load distri-
bution strategy, an average speedup of about 2.6 is obtained in
the multi-GPU SysNFF platform, when compared to the single
GPU F,and up to 8.5 when compared to the multi-core CPU N
execution, for all considered resolutions and RF.

Although the proposed load balancing and scheduling strate-
gies adapt to the performance variations in the system during
the run-time, the scheduling decisions highly depend on the
problem granularity to be distributed. In contrast to the com-
putationally intensive modules for which the fine-grained load
balancing is performed on a large set of MB rows, the remaining
modules are mapped in their entirety to the best performing de-
vices and these mappings usually do not significantly change
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(b) 1920 x 1080 video resolution.

TABLE III
PERFORMANCE COMPARISON (IN FPS) CONSIDERING DIFFERENT
PLATFORMS FOR 3840 x 2160 RESOLUTION (UHD).

Method Proposed GPU only | CPU only
Platform | SysNFF  SysNF GPU_F CPU_N
1 RF 10.03 6.91 4.35 I.11
2 RF 8.01 5.30 3.37 091

during the execution. For example, on SysNT the MC, T&Q and
(T& Q)1 are typically assigned to the GPU T, while the DBL
module is rather mapped to the CPU_N. On the other hand, for
the systems with more powerful GPUs, e.g., SysNF or SysNFF,
all the MC, T&Q, (T&Q)~! and DBL modules are usually
mapped to the GPU_F. However, the impact of these modules
to the overall encoding time is very small [39].

The applicability of the proposed approach was also assessed
for future video resolutions, such as 3840 x 2160 pixels Ultra
High Definition (UHD). The obtained results for UHD are pre-
sented in Table III and show that the proposed method is capable
of preserving the speedups obtained for the HD resolutions, thus
indicating the algorithm’s scalability regarding both the number
of RF and the video resolution.

Fig. 6 illustrates the capability of the proposed algorithm
to provide load balancing decisions in non-dedicated systems,
where the performance might vary along the time, depending
on the state of the platform or devices (e.g., when the system

resources are not used in exclusivity). For such purpose, the
presented performance (in time per frame) was obtained by
applying the proposed algorithm when encoding the first
30 inter-frames of a video sequence, immediately after the
leading intra-frame (frame 0). The results are presented for
both 1280 x 720 and 1920 x 1080 video resolutions and for
different number of RFs. As described in Section IV, the /ni-
tialization phase of the proposed algorithm was applied in the
encoding of the first inter-frame, in order to obtain the initial
device/module performance parameters. As a consequence,
the performance obtained for frame 1 in Fig. 6 corresponds to
the processing time with the equidistant load partitioning for
simultaneous collaborative processing and initial assessment
of device/module execution affinities. Then, by applying the
Iterative phase of the algorithm, significant performance im-
provements can be observed when subsequent inter-frames are
encoded, from frame 2. The raising slopes at the beginning of
this [terative phase correspond to a temporary limitation of
the parametrized inter-frame prediction mechanism. In fact, in
order to invoke the encoding procedure with a desired number
of RFs, it is required the completion of the processing of a
number of frames equal or greater than the specified number
of RFs. Due to the ability to iteratively assess and improve
the device performance parameters, it is also observed that the
presented approach is capable of providing load balancing, de-
spite this gradual increase in the computational load. Once the
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Fig. 7. Processing time per frame achieved with the proposed adaptive algorithm on SysNFF platform. (a) 1280 x 720 video resolution. (b) 1920 x 1080 video

resolution.

predefined number of RFs is reached, the proposed algorithm
converges towards very stable load balancing solutions, which
is evidenced with the constant performance after this initial
period (e.g., for 2, 4,5, 7 and 9 RFs).

An interesting phenomenon worth noting was observed
during the encoding of the 1280 x 720 sequence for 1 RF
(frame 9) and 10 RFs (frames 6 and 14), as well as in the
1920 x 1080 sequence for 3 RFs (frame 28), 6 RFs (frames 3,
14, 19 and 24) and 8 RFs (frame 14), where a sudden change
in the system performance has occurred (e.g., other processes
started running). Still, the dynamic performance detection of
the proposed algorithm allowed to capture this unexpected per-
formance change, resulting in a successful load redistribution
convergence according to the new state of the platform. This
is emphasized by a relatively fast recovery of the performance
curves, which only required a few inter-frames to converge to
the regions with stable load balancing decisions. This ability of
the proposed algorithm to provide stable distributions despite
sudden system performance changes highlights the self-adapt-
ability characteristics of the presented approach.

It is also worth emphasizing that during the above-presented
experimental evaluation, the light-weight scheduling operations
in the proposed algorithm take, in average, less than 1ms per
inter-frame encoding, which is significantly less than the time
required to individually execute any inter-loop module.

Finally, to further show the practical advantages of the
proposed approach, the achieved encoding speed and RD per-
formance were compared with the widely-used x264 encoder
[46]. In contrast to the proposed procedure, which considers
a collaborative inter-loop encoding on multi-core CPU and
multi-GPU environments, the x264 encoder only supports the
execution on multi-core CPU platforms. Hence, in order to pro-
vide a fair comparison between these two approaches, a series
of tests was conducted on a multi-core CPU (CPU_N) from the
SysNFF platform with different video sequences and resolu-
tions, under the same testing conditions and similar encoding
presets (e.g., by performing the “traditional” FSBM-based
ME). As expected, x264 achieves RD performance similar to
those that are obtained by encoding with the original FSBM
algorithm from JM software (see Table V-A and [39]), and an
encoding speed similar to the one obtained on CPU N with
the proposed approach, e.g., it achieves around 6fps for 720p
(4fps for 1080p) for 4 RFs and the same conditions as in Fig. 5.
However, as it was previously referred, by exploiting the full

SysNFF capabilities for collaborative CPU+GPU processing,
it is possible to achieve significant speed-ups when compared
to the encoding on the multi-core CPU_N (up to 8.5) with the
approach proposed herein.

C. Automatic Tuning of the Encoding Parameters for
Real-Time Processing

The dynamic nature of the proposed load balancing method
opens the possibility to adapt the video coding parametriza-
tion according to the targeted encoding performance. As an ex-
ample, some coding parameters, such as the number of RF, can
be adaptively adjusted in order to comply with other prede-
fined encoding goals or even streaming bandwidth limitations.
In particular, the proposed procedure to automatically tune the
number of RFs may also provide the minimization of the sched-
uling overhead, by reducing the number of algorithm’s invo-
cations. In detail, determined load balancing distributions ob-
tained for previously encoded frames can be re-used for sub-
sequent inter-frame encodings (with the increased number of
RFs) as long as the real-time processing is attained. Once the
processing does not achieve the real-time encoding, the perfor-
mance parameters are updated and the Iterative phase of the
proposed algorithm is invoked.

Fig. 7 illustrates the implemented procedure to determine the
upper bound on the number of RFs (up to a maximum of 16
RF, as defined by the H.264/AVC standard), in order to guar-
antee a real-time video encoding (= 25 fps), i.e., around 40 ms
per frame). In order to deal with small performance variations
in non-dedicated systems, minimum and maximum threshold
values were predefined (below the hard limit for real-time en-
coding of 40 ms per frame), which define the region of real-
istically attainable real-time processing (dark gray regions in
Fig. 7). The proposed algorithm was initially invoked for 1 RF
and the obtained load distribution was re-used for the encoding
of subsequent inter-frames, with an increased number of RFs.
For the case of the 1280 x 720 video sequence, the initially ob-
tained load distribution was re-used during the encoding of the
first three inter-frames. However, in the third inter-frame, the
re-used cross-device distribution no longer allowed to achieve
real-time processing, thus resulting in an update of the module-
specific device parameters and in a new invocation of the pro-
posed algorithm to determine the new load balancing solution
(see arrow in Fig. 7). This is emphasized by the improved perfor-
mance when encoding the forth inter-frame with 3 RF, for which
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the real-time processing was achieved. The encoding of subse-
quent inter-frames was performed by increasing the number of
RFs (until 9 RFs) and by reusing the obtained load balancing
solution. Since the predefined threshold limit was no longer
achieved when re-using the solution in the 10th inter-frame, the
proposed algorithm had to be invoked again, which allowed the
real-time processing with 9 RFs in the 11th inter-frame. This
procedure continues until reaching 11 RFs, which marks the
steady load balancing state with a maximum number of RFs
that allows the real-time encoding. A similar behavior can be
observed for the 1920 x 1080 resolution, where the real-time
encoding was automatically found for 2 RFs within the interval
of the first 30 inter-frames.

VI. CONCLUSIONS AND FUTURE WORKS

The presented contributions of this manuscript were fo-
cused on achieving real-time inter-loop encoding of HD video
sequences, by simultaneous executing the encoding modules
in heterogeneous CPU+GPU platforms. Efficient paralleliza-
tion methods for all H.264/AVC inter-loop modules on both
multi-core CPU and GPU architectures were investigated. Fur-
thermore, an adaptive load balancing algorithm that efficiently
distributes the loads across different heterogeneous devices,
in order to allow a collaborative multi-module processing for
ME+INT and SME with negligible scheduling overheads was
proposed. For the remaining inter-loop modules, it was adopted
a scheduling strategy that relies on module-device execution
affinities, determined during the run-time. By dynamically
capturing the module-specific performance parameters for
each device, the presented approach was capable of iteratively
improving the load balancing decisions, by adapting to the
performance changes in non-dedicated systems.

The proposed approach was experimentally evaluated on
different heterogeneous platforms with multi-core CPUs
and multi-GPUs, for various HD video resolutions (i.e.,
1280 x 720 and 1920 x 1080 pixels), as well as for UHD
resolution (3840 x 2160 pixels). The efficiency of the proposed
CPU/GPU parallelization methods was extensively assessed
by considering the RD performance and scalability over both
SA size and number of RFs. For all tested resolutions and
platforms, the proposed algorithm was capable of delivering
a performance which was several times higher than the one
obtained by using a single-device. The self-adaptable character-
istics of the proposed algorithm also allowed to automatically
tune certain encoding parameters (e.g., the number of RFs in
ME) to meet real-time constraints, converging to the maximum
achievable improvement in what concerns the quality of the
reconstructed video.

The future developments of the presented research will focus
on efficient CPU/GPU parallelization of a complete encoder
that also includes block intra-prediction, B-frames and entropy
coding modules. New possibilities to further validate and
improve the proposed scheduling/load balancing strategies for
CPU+GPU systems with even higher degree of heterogeneity
will be further investigated, in order to achieve real-time video
encoding for a higher number of RFs, SA sizes and (U)HD
resolutions.
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